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Functional generalized linear models investigate the effect of functional predictors on a 
scalar response. An interesting case is when the functional predictor is thought to exert 
an influence on the conditional mean of the response only through its values up to a 
certain point in the domain. In the literature, models with this type of restriction on the 
functional effect have been termed truncated or historical regression models. A penalized 
likelihood estimator is formulated by combining a structured variable selection method 
with a localized B-spline expansion of the regression coefficient function. In addition to a 
smoothing penalty that is typical for functional regression, a nested group lasso penalty is 
also included which guarantees the sequential entering of B-splines and thus induces the 
desired truncation on the estimator. An optimization scheme is developed to compute the 
solution path efficiently when varying the truncation tuning parameter. The convergence 
rate of the coefficient function estimator and consistency of the truncation point estimator 
are given under suitable smoothness assumptions. The proposed method is demonstrated 
through simulations and an application involving the effects of blood pressure values in 
patients who suffered a spontaneous intracerebral hemorrhage.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The need to incorporate data features such as curves or longitudinal recordings as predictors for regression has given 
rise to a large body of research in recent decades on functional regression models (Ramsay and Silverman, 2005; Morris, 
2015; Wang et al., 2016; Kokoszka and Reimherr, 2017). In particular, functional generalized linear models investigate the 
dependency of a scalar response, Y , on a functional predictor, X ∈ L2[0, T ] for some T > 0, where the conditional distribu-
tion of Y given X is assumed to belong to a common exponential family. As a direct extension of the classical generalized 
linear model (McCullagh and Nelder, 1983), this conditional distribution takes the form

f (y; X,α0, βo) = c(y)exp

{
yθ0 − b(θ0)

a(φ)

}
, (α0, β0) ∈ R× L2[0, T ], (1)
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where a, b, and c are known functions, and θ0 encodes the connection between X and Y via the identities E(Y |X) = b′(θ0) =
g−1

{
α0 + ∫ T

0 β0(t)X(t)dt
}

for some smooth link function g . The need to go beyond the functional linear model, a special 
case of which arises when f is a normal distribution and g is the identity function, is dictated by countless examples. 
For instance, the motivating example for this paper comes from a phase III clinical study for antihypertensive treatment 
of patients with spontaneous intracerebral hemorrhage (ICH). A current problem in this field is to develop an efficient 
protocol for the management of systolic blood pressure following hospital admission in order to help reduce mortality and 
improve functional outcomes. The blood pressure recordings constitute functional regressors, while the outcome is typically 
measured on a binary or ordinal scale, rendering linear models inadequate.

As for any regression model with functional predictor X , the primary difficulty compared to the classical generalized 
linear model is the infinite-dimensional nature of X . As a result, regularization in functional regression analysis is necessary 
regardless of sample size. A typical approach is to represent both X and the functional parameter β via basis expansions. 
Truncating the expansion at finitely many terms induces an initial regularization that can be followed by a regularized 
multivariate method on the coefficients of the expansion. James (2002) and Müller and Stadtmüller (2005) employed the 
eigenbasis arising from the Karhunen-Loève expansion and represented both X and β in that basis. Cardot and Sarda (2005)
used B-splines with the usual L2 penalty on the derivative of the coefficient function β . Within a reproducing kernel Hilbert 
space framework, Shang et al. (2015) derived the asymptotic distribution of their estimator in order to produce confidence 
and prediction intervals. Besides these functional extensions of the classical generalized linear model, extensive methodology 
has been developed for functional generalized additive models (Febrero-Bande and González-Manteiga, 2013; McLean et al., 
2014; Greven and Scheipl, 2017).

In this paper, we propose a method for structured estimation of β in the functional generalized linear model under the 
assumption that X has an effect on the conditional mean of Y only through its values on a subdomain [0, δ0] for T > δ0. 
That is, variations in X that only occur in the latter end of the interval (δ0, T ] will not affect the conditional mean of 
Y . In terms of the quantity 

∫ T
0 β0(t)X(t)dt involved in the systematic component of the model, this structural assumption 

effectively states that β(t) ≡ 0 on (δ0, T ]. Regarding the issue with blood pressure management protocols for treatment 
of ICH, recent randomized phase III trials have produced conflicting results on the optimum blood pressure target and 
how fast the blood pressure should be lowered to the target level; see Moullaali et al. (2019); Divani et al. (2019, 2020), 
and references therein. For this and other similar problems, it is thus crucial to understand not only how the functional 
covariate influences the regression (the shape of the coefficient function β0), but also over what time period it has an effect 
(the support of β0).

From one perspective, one may view this problem as the functional regression equivalent of simultaneous estimation 
and model selection in classical or high-dimensional regression models. Indeed, the more general problem of identifying 
the so-called null region over which β0(t) = 0 has been addressed in past work for the functional linear model. James et 
al. (2009) divided the time period into a fine grid of points and utilized regularized variable selection methods to enforce 
sparsity on the derivatives of the estimate at the grid points. Zhou et al. (2013) proposed a two-stage shrinkage method, 
in which the null region is roughly identified in stage one and then adaptively regularized using a group SCAD penalty in 
stage two. Lin et al. (2017) further designed a functional SCAD penalty to identify the null region and produce a smooth 
estimate of β0 outside this region in one single step.

More recently, there has been work on a more structured problem where the null region coincides with the latter portion 
(δ0, T ], although still within the framework of the functional linear model. Hall and Hooker (2016) termed it a truncated 
functional linear model and estimated β0 and δ0 simultaneously using a penalized least square method with a penalty on 
δ2. The resulting estimate of β is not continuous at δ̂, whereas it is often more reasonable to assume the effect of X on Y
changes continuously instead of having a sharp drop at δ0.

In this paper, we propose a method for simultaneous estimation of δ0 and β0 in the functional generalized linear model. 
We choose to use the localized B-splines to expand the functional parameter as the inherent ordering of B-splines is well-
suited to structure a truncated curve. When the tail of the coefficient vector of the spline expansion is identically zero, it 
induces a corresponding truncation in the coefficient function β . The recent work of Guan et al. (2020) also utilized B-splines 
in their estimation of the truncated functional linear model. In addition to handling the larger class of generalized responses, 
our model differs from the method of Guan et al. (2020) in the form of the penalty. Guan et al. (2020) used the nested 
group bridge penalty resulting in a non-convex optimization problem. Instead, we employ a nested group lasso penalty 
(Yuan and Lin, 2006), which guarantees the sequential entering of B-splines and yields a convex optimization problem.

The paper is organized as follows. In Section 2, we first introduce the nested group lasso penalty and construct the pe-
nalized log-likelihood function. Then we present a fast algorithm designed to optimize the convex loss function in Section 3. 
The convergence rate of the estimator and the consistency of the truncation point estimator are established in Section 4. In 
Section 5, the performance of the method is evaluated by simulation studies. A real data example of investigating the effect 
of blood pressure curve on the outcome of ICH is demonstrated in Section 6.

2. Methodology

Suppose we observe independent pairs (Yi, Xi(t)), i = 1, . . . , n, where the conditional distribution of each Yi given Xi
takes the form in (1) with parameter θ0i . The following developments assume that Xi is fully observed on [0, T ] while, 
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in reality, Xi is usually recorded only at a finite number of points along this continuum. In practice, one can construct an 
estimate of Xi using smoothing techniques, which would take the place of Xi in the equations below. Recall that a, b, and c
are known functions. We assume that the dispersion parameter φ is known, as in the common Binomial and Poisson cases. 
Furthermore, for simplicity, we assume that g is the canonical link, although the method can be applied to any suitable link 
function. Hence, we have θ0i = α0 + ∫ T

0 Xi(t)β0(t)dt , so that α0 ∈ R and β0 ∈ L2[0, T ] are the parameters to be estimated. 
Let 〈·, ·〉 and ‖·‖ denote the usual L2[0, T ] inner product and norm, respectively.

In this setting, Cardot and Sarda (2005) proposed

lS(α,β) = −1

n

n∑
i=1

[Yiθi − b(θi)] + 1

2
λs‖β(m)‖2, θi = α +

T∫
0

Xi(t)β(t)dt, (2)

as a target criterion for estimation (although their work omitted the intercept term), where the first term is proportional to 
the negative log-likelihood, and the superscript m denotes the m-th derivative. Cardot et al. (2003) minimized (2) over the 
space Sq,k of order q B-splines with interior knots 0 < t1 < · · · < tk < T , which we will take to be equally spaced for simplic-
ity. Let �(t) = (φ1(t), . . . , φq+k(t))ᵀ denote the B-spline basis, ordered in the usual way so that φ j is supported on [t j−q, t j]
for j = 1, . . . , q + k, where we define t j−q = 0 for j < q and t j = T for j > k (De Boor, 2001). In our numerical experiments, 
m = 2 and q = 4 will be used, corresponding to the space of cubic splines with a penalty on the second derivative, but the 
methodology can be applied so long as m ≤ q −1. To each β ∈ Sq,k there corresponds a unique η = (η1, . . . , ηq+k)

ᵀ such that 
β = �ᵀη, where we suppress the functional argument t . Hence, with a slight abuse of notation, write lS (α, η) = lS (α, β)

and let (ᾱ, η̄) be the minimizer of lS , yielding the penalized spline estimator β̄ = �ᵀη̄. The smoothness penalty is natural 
since it tends to produce interpretable estimates, but does not result in a truncated estimate of β .

Suppose that β0(t) = 0 for t > δ0, so that the systematic component becomes θ0i = α0 + ∫ δ0
0 Xi(t)β0(t)dt . Hence, we 

require an estimator δ̂ and a companion estimator β̂ that satisfies β̂(t) ≡ 0 for t > δ̂. Due to the sequential ordering of the 
supports of φ j , note that β(t) = 0 for t > t j if and only if ηl = 0 for l > j. Thus, truncation of β is equivalent to having a 
zero vector (η j+1, . . . , ηq+k) = 0, j = 0, . . . , k. Letting M be the (q + k) × (q + k) matrix with entries M jl = 〈φ(m)

j , φ(m)

l 〉, this 
leads to the objective function

Q V (α,η) = lS(α,η) + λt P T (η)

= −1

n

n∑
i=1

[Yiθi − b(θi)] + 1

2
λsη

ᵀMη + λt

k∑
j=0

ŵ j

⎛⎝ q+k∑
l= j+1

η2
l

⎞⎠1/2

,
(3)

where PT (η) = ∑k
j=0 ŵ j

(∑q+k
l= j+1 η2

l

)1/2
is the nested group lasso penalty, ŵ j are positive weights, and λs, λt are positive 

tuning parameters that control the amount of regularization that is applied in order to produce a smooth and truncated 
estimate. In the spirit of Zou (2006), in our analyses we define adaptive weights based on the preliminary consistent 
estimator η̄ via ŵ−1

j = ∑
l= j+1 η̄2

l . Finally, with

(α̂, η̂) = argmin
(α,η)∈R×Rq+k

Q V (α,η), (4)

we set β̂ = �ᵀη̂. As will be demonstrated below, (4) will always lead to a truncated estimate β̂ , so we may define δ̂ as the 
smallest knot value after which β̂ is identically zero.

3. Computational details

In this section, we describe how the convex nested group lasso penalty leads to a truncated estimate of β0 , without 
the need for a second thresholding step to zero out small estimates as required by some simultaneous estimation and 
selection techniques. Section 3.1 demonstrates the properties of hierarchical inclusion of components in η, after which a 
computational algorithm is given for approximating the solution path as λt ↓ 0. When λt decreases, the new estimate is 
computed in two steps. In the first, block norms are used to determine which, if any, basis coefficients should be added to 
the active set, as described in Section 3.2. Once the active set is updated, Section 3.3 describes an efficient algorithm that 
overcomes difficulties associated with the nonsmoothness of the truncation penalty. Tuning parameter selection is discussed 
in 3.4.

3.1. Nested group lasso

Hierarchical structured penalties such as PT in (3) have been well studied in multivariate regression analysis. In partic-
ular, the composite absolute penalty family proposed in Zhao et al. (2009) provided a framework to incorporate grouping 
or hierarchical information within the regression procedure. For any subset G ⊂ {1, . . . , q + k}, let ηG denote the subvector 
3
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specified by the index set G . For j = 0, . . . , k, define the index groups G j = { j + 1, . . . , q + k}, so that the truncation penalty 
PT can be viewed as a composition of 
1 and 
2 penalties. Specifically,

PT (η) =
k∑

j=0

ŵ j

⎛⎝ q+k∑
l= j+1

η2
l

⎞⎠1/2

=
k∑

j=0

ŵ j

∣∣∣∣‖ηG j
‖2

∣∣∣∣.
Similar to the rationale of group lasso penalty Yuan and Lin (2006), the 
1 penalty gives rise to sparsity and 
2 penalty keeps 
the grouping information. Meanwhile, the smaller groups are always nested in the larger group. The following proposition 
describes two important properties of the truncation penalty.

Proposition 1 (Theorem 1 and Theorem 2 in Zhao et al. (2009)).

1. The truncation penalty PT (η) is convex in η.
2. For i < j, ∂

∂ηi
P T (η) = 0 whenever η j �= 0 and ηi = 0.

Property 1 allows for the use of convex optimization techniques since the negative log-likelihood function, the smooth-
ness penalty ηᵀMη, and the truncation penalty PT are all convex. This also guarantees the uniqueness and existence of the 
estimator with high probability; see also Theorem 1 in Section 4 below. Property 2 states that, once the jth basis function, 
φ j , is added to the model, the infinitesimal movements of the coefficient of φi are not penalized and hence ηi will almost 
surely deviate from zero. In other words, while the truncation tuning parameter λt is decreasing, ηi enters the model no 
later than η j , which is exactly the desired hierarchical structure.

3.2. Updating the active set

Benefiting from the convexity and sequential entering property in Proposition 1, we are able to directly detect changes in 
the active set and compute an approximate solution path of η̂ as λt decreases. At step l, the active set is the set of indices 
j for which η̂ j �= 0. Suppose that, at the current value λl

t , the active groups are known to be (G0, . . . , Gkl−1), i.e. the active 
set is Al = (1, . . . , kl). We then optimize the penalized objective function (3) under the restriction that η j = 0 for any j /∈Al

using convex optimization techniques described in Section 3.3 below. The penalty parameter is decreased as λl+1
t = �λl

t and 
the active set is assessed to see if more basis coefficients should be added. In our simulations, we take � = 0.9 so that the 
step size shrinks as λt

l approaches 0. As � gets closer to 1, the solution path approximation becomes more accurate, but 
requires more time to compute.

First, we compute

dllS, j :=
∂lS
∂η j

∣∣∣∣
η=η̂l

, 1 ≤ j ≤ q + k,

dPl
T , j :=

{
η̂ j

∑ j−1
i=0 ŵi‖η̂Gi

‖−1
2 , 1 ≤ j ≤ kl,∑ j−1

i=kl
ŵi, kl < j ≤ q + k.

(5)

Since lS is differentiable, dllS, j corresponds to the j-th partial derivative of lS evaluated at η̂l . However, the partial derivatives 

of PT at η̂l only exist for active indices, so that dPl
T , j for j > kl are defined as subdifferentials, i.e. as the limit when η j ↓ 0. 

However, taking the alternative limit as η j ↑ 0 does not affect the procedure, which depends only on the norms

BllS, j = ‖(dllS,1, . . . ,dllS, j)‖2,
BPl

T , j = ‖(dPl
T ,1, . . . ,dP

l
T , j)‖2, j = 1, . . . ,k.

(6)

Similar to most of the stepwise optimization algorithms which update the unknown parameter from the origin, when 
decreasing the tuning parameter of the convex penalty, the convex feasible space gets larger. Therefore, when λt gets 
updated, there is a chance that more η’s can be active. Specifically, the block norms in (6) represent the magnitude of 
the change in the smoothed likelihood and truncation penalty terms, respectively, in the objective function. Hence, for a 
currently inactive index j > kl , the condition BllS, j ≥ λl+1

t B P l
T , j indicates that, by adding η j to the active set, the overall 

objective value can be decreased. By Proposition 1, if η j is active, all ηi, i < j, are also active.
Algorithm 1 describes the steps to update the active set, and can also be used to determine the starting point of the 

solution path as a special case. Define λ0
t = ∞, so that η̂0 = 0. According to the above arguments, the tuning parameter 

value

λ1
t = max

j=1,...,k

Bl0S, j
B P0

T , j

(7)

marks the first point at which Algorithm 1 yields a nonempty active set.
4
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Algorithm 1: Updating the Active Set.
input : Current Estimate η̂l

output : New active set Al+1

for i ← 1 to q + k do
Compute dllS,i and dPl

T ,i as in (5)
end
for j ← kl to k do

Compute BllS, j and BPl
T , j as in (6)

end

kl+1 ← max
{
j : kl ≤ j ≤ k and BllS, j ≥ λl+1

t B P l
T , j

}
Al+1 ← {1, . . . , kl+1}

3.3. Convex optimization with fixed dimension

Given a value λt , Algorithm 1 can be used to determine the active set A = {1, . . . , k0}. With the active set known, it 
remains to minimize (3) with η ranging over the set {η ∈ Rq+k : ηk0+1 = · · · = ηq+k = 0}. Thus, the dimension of the mini-
mization problem is k0 + 1, including the intercept. However, the nonsmoothness of (3) induced by the truncation penalty 
prevents the use of classical coordinate descent, Newton-Raphson, or similar first- and second-order methods, since these 
are required to have the continuous first order derivative and will have irregular behavior near the points of singularity. To 
overcome this, we employ the dual formulation of minimizing PT over the constrained active set, and introduce an auxiliary 
quadratic function to construct a smooth approximation of this dual problem (Chen et al., 2012). Then we are safe to apply 
the accelerated gradient descent onto the smooth convex function. Details are presented in Section S.1 in the Supplementary 
Material.

3.4. Selection of tuning parameters

Utilizing the conditions in Algorithm 1 and the optimization informed by knowledge of the active set, the solution path 
can be computed efficiently. Thanks to the continuous solution path, the former step solution can be used as a warm start in 
next step optimization algorithm. We thus propose an approximate BIC quantity to determine the optimal tuning parameter 
pair (λs, λt). Letting D(α̂, η̂) be the model deviance, and df(α̂, η̂) approximate degrees of freedom, set

BIC(λs, λt) = D(α̂, η̂) + log(n) × df(α̂, η̂).

In the linear model, the degrees of freedom is equal to the trace of the hat matrix. In the generalized case, we consider an 
approximate hat matrix from the method of scoring iterative equations, as an extension of the degrees of freedom definition 
used by Guan et al. (2020). Let U be the matrix with entries Ui1 = 1 and Ui, j+1 = 〈Xi, φ j〉, i = 1, . . . , n, j = 1, . . . , q + k, set 
V̂ = diag{b′′(θ̂i)}ni=1, and let Mt be the diagonal matrix of dimension 1 + q + k, with the first diagonal element being 0 and 
all others set to PT (η̂)/‖η̂‖2. Then the degrees of freedom approximation is

df(α̂, η̂) = trace[Ĥ(λs, λt)], Ĥ(λs, λt) = U

(
Uᵀ V̂ U + λs

(
0 0
0 M

)
+ λtMt

)−1

Uᵀ V̂ .

4. Asymptotic properties

In this section, we provide the convergence rates of the estimators in (4). Following Cardot and Sarda (2005), we measure 
the estimation error of the functional parameter in terms of the norm ‖·‖X induced by the inner product

〈β1, β2〉X = E (〈β1, X〉〈β2, X〉) =
T∫

0

T∫
0

C(s, t)β1(s)β2(t)dsdt,

where C(s, t) = E (X(s)X(t)) is the kernel function of the operator 
( f )(t) = ∫ T
0 C(s, t) f (s)ds, for f ∈ L2[0, T ]. Let (X, Y ) be 

a generic pair distributed identically to the (Xi, Yi), and define

LS(α,β) = E [lS(α,β)] = −E [Y θ − b(θ)] + 1

2
λs‖β(m)‖2, (8)

where θ = α + 〈β, X〉. The stochastic behavior of the estimates will be investigated relative to two intermediary approxima-
tions of (α0, β0). The first is defined via

(α̃, β̃) = argmin
(α,β)∈R×S

LS(α,β), (9)

q,k

5
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from which one can extract oracle weights

w̃ j =
⎛⎝ q+k∑

l= j+1

η̃2
l

⎞⎠−1

, β̃ = �ᵀη̃. (10)

The second is a truncated spline approximation of β0. Denoted β̃0 = �ᵀη̃0, this approximation is defined in (S.19) and its 
properties are detailed in Lemma 1 in Section S.3 of the Supplementary Material. In particular, suppose the true truncation 
point δ0 lies in (t j0 , t j0+1). If

j0k =
{
j0 + q/2, q even,

j0 + (q + 1)/2, q odd,
(11)

then η̃0l = 0 for all l ≥ j0k , while η̃0, j0k−1 �= 0. Hence, the smoothed approximation β̃0 will satisfy β̃0(t) = 0 for all t > t j0k . 
Setting δ̃0k = t j0k , this approximation of the true truncation point δ0 satisfies |δ0 − δ̃0k| = O (k−1).

Let ρk be the smallest eigenvalue of the (q + k) × (q + k) matrix C with entries C jl = 〈
(φ j), φl〉, so that ρk = o(1) as k
diverges, and set

an1 =
{
λs + λsk

2(m−p) + k−2p
}1/2

, an2 = ρ
−1/2
k k−1/2n−1/2. (12)

We require the following assumptions for estimation consistency.

(A1) The function b is three times continuously differentiable, with b′′ > 0 and E
{
b′′(θ0)X

} = 0.
(A2) ‖X‖ is bounded almost surely, and the eigenvalues of 
 are nonzero.
(A3) β0 has p′ derivatives for some integer p′ satisfying |β(p′)

0 (t1) − β
(p′)
0 (t2)| ≤ C |t1 − t2|v , C > 0, v ∈ [0, 1], and the degree 

q − 1 of the splines satisfies q − 1 ≥ p = p′ + v . Furthermore, ‖β(m)
0 ‖ < ∞.

(A4) k = k(n) → ∞, ρk = ω(k−(2p+1)), and λs = o(kρk) = o(1) as n → ∞.

(A5) w̃ j0k−1ρ
−1
k an2 = o(1), and λt = O  

(
ρ
1/2
k υ−1

k [an1 + an2]
)
, where υk = ∑ j0k−1

j=1 w̃ j .

Assumptions (A1)–(A3) are regularity and smoothness conditions, and are also made in Cardot and Sarda (2005). We note 
that the last requirement in (A1) can be satisfied by properly centering the functional variable X , similar to the zero mean 
assumption typically made for linear models. Next, (A4) requires that minimum eigenvalue ρk decay at a polynomial rate in 
k, and can be viewed as a compatibility assumption between the operator 
 and the B-spline basis. To avoid confusion, we 
emphasize that these eigenvalues are different from the eigenvalues of penalty matrices typically encountered in penalized 
spline estimation for nonparametric regression models involving scalar predictors (Xiao, 2019). In this latter scenario, the 
eigenvalues are not dependent on the distribution of the predictors, so that explicit lower bounds may be calculated. In the 
scenario considered in this paper with a functional predictor X , they are directly related to the second moment operator 
of X , and do not admit an explicit lower bound. As a comparison, in the special case of a functional linear model, Guan et 
al. (2020) made the stronger assumption that ρk ∼ k−1, whereas we assume only a polynomial lower bound related to the 
smoothness of β0. The decay of the smoothing parameter λs must then be of a smaller order than kρk . Assumption (A5) 
ensures that a unique minimizer (α̂, η̂) of the estimation criterion exists with high probability, and determines the final 
rate of convergence. The proofs of all theoretical results are in Section S.3 of the Supplementary Material.

Theorem 1. Suppose that (A1)–(A4) hold. Then

|α̃ − α0| = O (an1), ‖β̃ − β0‖X = O (an1).

Furthermore, if (A5) holds, the minimizers in (4) exist and are unique with probability tending to one, and

|α̂ − α0| = O p(an1 + an2), ‖β̂ − β0‖X = O p(an1 + an2).

We compare this result with other penalized spline-based regression methods involving functional predictors. As a com-
parison to the rate obtained by Guan et al. (2020) in the case of a functional linear model with a nested group bridge 
approach, suppose that ρk ∼ k−1 and λs = O (k−2p). Then the bias is an1 = k−p , matching the result of Guan et al. (2020). 
However, the stochastic term an2 obtained in Theorem 1 is the parametric rate n−1/2, compared to the rate of kn−1/2 ob-
tained in Guan et al. (2020). The ability to attain the parametric rate under this particular scenario is due to our use of 
the norm ‖·‖X , which effectively measures prediction error, as was also discovered in Cai and Hall (2006) in the functional 
linear regression model. One must keep in mind, however, that this comparison does not tell the whole story, since the two 
methods give distinct requirements regarding the divergence of the number of knots. Additionally, the proof in Guan et al. 
(2020) is quite different from our proof of Theorem 1, which relies heavily on the convexity of (3), and somewhat follows 
6
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the proofs in Cardot et al. (2003). Although our bias term matches that of Cardot et al. (2003), the stochastic rates differ 
mainly due to our inclusion of a truncation penalty. Indeed, the stochastic rate in Cardot et al. (2003) is independent of ρk , 
so that our rate is more efficient only in the regime ρk = ω(k−2).

Lastly, we prove consistent estimation of the truncation point δ0. Specifically, we define δ̂ as the unique knot t Ĵ for 
which the estimator β̂ = �ᵀη̂ satisfies β̂(t) �= 0 for some t ∈ (t Ĵ−1, t Ĵ ), while β̂(t) = 0 for all t ≥ t Ĵ . Although similar in 
spirit to model selection consistency in the sparse estimation of high-dimensional generalized linear models, this type of 
result requires a different nuance. In particular, we do not show that all nonzero elements of η̃0 in β̃0 = �ᵀη̃0 have nonzero 
estimates with high probability. Such a result may be difficult to obtain given that the individual elements η̃0 j shrink to zero 
as the corresponding knots approach δ̃0k , a condition typically prohibited in the high-dimensional case. Rather, we leverage 
the functional nature of the problem to obtain the weaker but sufficiently strong result that δ̂ converges in probability.

This is proved in two steps. First, using Theorem 1, one can immediately conclude that δ̂ must lie above δ0 − ε with 
probability approaching one for any ε > 0. This is the usual consistency argument, and requires that λt decay to zero quickly 
enough, as specified in (A5). On the other hand, in order to prove the so-called “sparsistency” result, which ensures that δ̂
does not lie too far above δ0, a lower bound on the decay of λt is needed, as follows.

(A6) ρ−1
k k−1/2υ−1

k (an1 + an2) = o(1), and λtρ
3/2
k k1/2(an1 + an2)−3 → ∞.

The first part of this assumption makes it possible to choose a sequence λt satisfying both (A5) and the second part of (A6). 
In terms of the functional parameter estimate, the following result guarantees that β̂ will be zero in any neighborhood of 
δ0 with probability tending to one.

Theorem 2. Let ε ∈ (0, δ0) be arbitrary. Under assumptions (A1)–(A5), P (δ̂ < δ0 − ε) → 0. If, in addition, (A6) holds, then 
P

(
δ̂ > δ̃0k

)
→ 0, so that

δ̂ − δ0 = op(1).

5. Simulation studies

Data were simulated for functional linear and functional logistic regression models. The systematic components, θ0 =
α0 + ∫ 1

0 β0(t)X(t)dt , were generated from the following two cases.

• Case I: α0 = 1 and β0(t) is a linear combination of B-splines with order q = 4 and 14 equally spaced interior knots. The 
first eight coefficients of B-splines are set as (-0.45, -0.29, -1.79, -3.08, -2.11, 0.64, 5.72, 3.02), and the last ten are all 0. 
Thus, β0(t) = 0 if t > 0.54.

• Case II: α0 = 1 and β0(t) = sin(2πt)I{t<=0.5} . Therefore, β0(t) truncates at 0.5.

The random predictor curves were generated as X(t) = ∑30
j=1 ξ jφ j(t), with {φ j}30j=1 being the cubic B-spline functions. The 

coefficients ξ j were generated sequentially, with ξ1 ∼ N(0, σ 2
x ) and for j ≥ 2, ξ j ∼ √

1/ jN(ξ j−1, σ 2
x ). For the linear regres-

sion simulations, σx = 3 and σx = 5.5 in Cases I and II, respectively, and the response was generated as Y |X ∼ N (θ0, 1). 
The signal-to-noise ratio is approximately 0.55 in Cases I and 0.7 in Case II, where signal-to-noise ratio is defined as 
Var(〈X, β0〉)/Var(Y ). The proposed method is compared with Guan et al. (2020), which utilized a nested group bridge 
(NGR) penalty to achieve truncation point estimation and Cardot and Sarda (2005), which simply is λt = 0 in our method. 
In logistic regression models, we set σx = 4 and σx = 16 in Cases I and II, respectively, and the response Y was generated 
as a Bernoulli random variable with probability of success (1 + exp{−θ0})−1.

We measure the estimation accuracy as well as the prediction accuracy according to the following definition.

Desti(β̂) = ‖β̂ − β0‖2
Dpred(β̂) = ‖β̂ − β0‖2X .

The number of cubic B-spline basis used for estimation is 100, where k = 96 and q = 4. Data were generated for three 
different sample sizes, n = 200, 400, 600, with 200 simulation runs in each case. The averaged estimation and prediction 
error of the estimates with and without truncation penalty are summarized in Table 1, with estimates from randomly 
selected simulation runs visualized in Fig. 1.

Comparing with Cardot and Sarda (2005), the proposed method has a smaller estimation error in general, but has a 
larger prediction error in logistic model Case II. The reason is that β0 in Case II actually can not satisfy the smoothness 
assumption, and the selection of two tuning parameters adds extra difficulties and variation. In linear model cases, the 
proposed method is the most accurate in terms of estimation and prediction error, followed closely by the method of Guan 
et al. (2020).
7
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Table 1
Estimation error and prediction error of β0.

Linear model

Dsp
esti Dtr

esti Dngr
esti Dsp

pred Dtr
pred Dngr

pred

I n = 200 0.584(0.27) 0.283(0.18) 0.364(0.35) 0.060(0.03) 0.033(0.02) 0.040(0.03)
n = 400 0.353(0.13) 0.157(0.08) 0.183(0.16) 0.029(0.01) 0.016(0.01) 0.018(0.01)
n = 600 0.285(0.11) 0.120(0.06) 0.125(0.11) 0.021(0.01) 0.011(0.01) 0.012(0.01)

II n = 200 0.029(0.02) 0.012(0.01) 0.015(0.03) 0.234(0.13) 0.157(0.12) 0.171(0.15)
n = 400 0.019(0.01) 0.007(0.01) 0.008(0.01) 0.131(0.07) 0.080(0.06) 0.088(0.07)
n = 600 0.016(0.01) 0.006(<0.01) 0.006(<0.01) 0.115(0.06) 0.063(0.05) 0.057(0.04)

Logistic model

Dsp
esti Dtr

esti Dngr
esti Dsp

pred Dtr
pred Dngr

pred

I n = 200 0.550(0.41) 0.357(0.44) - 1.244(1.54) 1.132(1.73) -
n = 400 0.329(0.14) 0.186(0.11) - 0.643(0.49) 0.580(0.49) -
n = 600 0.263(0.11) 0.139(0.08) - 0.450(0.30) 0.412(0.33) -

II n = 200 0.025(0.02) 0.022(0.02) - 8.315(12.63) 11.244(14.34) -
n = 400 0.019(0.01) 0.013(0.01) - 5.337(7.51) 6.560(7.15) -
n = 600 0.013(0.01) 0.009(0.01) - 3.517(3.78) 4.574(4.85) -

Superscripts indicate the method of estimation: (sp) proposed estimator with λt = 0; (tr) proposed estimator with 
λt chosen by BIC; (ngr) estimator of Guan et al. (2020) for the functional linear model.

Fig. 1. Comparison between the proposed truncated estimates, with λt = 0 (left column, equivalent to the method of Cardot and Sarda (2005)) and λt �= 0
chosen according to Section 3.4 (right). The top (bottom) row corresponds to linear (logistic) regression under the setting of Case I (Case II). Within each 
row, estimates from 40 randomly selected simulation runs are shown.

To assess the quality of the truncation point estimates, histograms of δ̂ for the functional linear model under Case I are 
given in Fig. 2. The corresponding plots for Case II and also those for functional logistic regression are given in Figures S.2 
and S.2 in Section S.2 of the Supplementary Material. We also provide the mean absolute error (MAE), root mean square 
error (RMSE) and standard deviation (SD) of δ̂ in Table 2. In all but one case, the proposed method has lower errors than the 
NGR method. For both NGR and the proposed methods, truncation point estimation in Case I is far more accurate than Case 
II since β0 in Case II does not satisfy the smoothness assumption on derivatives. Similar to Guan et al. (2020), performance 
is expected to deteriorate as the functional change at the true truncation point δ0 becomes sharper, or even discontinuous.
8
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Fig. 2. Histograms of the estimated truncation points in linear model under Case I, using sample sizes 200 (left), 400 (middle), and 600 (right), for the 
proposed nested group lasso estimator (top row) and the NGR estimator of Guan et al. (2020) (bottom row).

Table 2
Accuracy of the estimate of the truncation point.

Case I Case II

n = 200 n = 400 n = 600 n = 200 n = 400 n = 600

Linear TR MAE 0.038 0.024 0.020 0.107 0.084 0.080
RMSE 0.056 0.043 0.030 0.133 0.095 0.087
SD 0.048 0.043 0.029 0.081 0.046 0.034

NGR MAE 0.049 0.043 0.035 0.110 0.093 0.084
RMSE 0.064 0.052 0.044 0.132 0.105 0.093
SD 0.064 0.050 0.038 0.082 0.055 0.043

Logistic TR MAE 0.040 0.024 0.022 0.099 0.097 0.087
RMSE 0.071 0.035 0.029 0.127 0.121 0.105
SD 0.070 0.034 0.026 0.080 0.072 0.060

TR is the truncated estimate proposed in this paper and NGR is the method for functional linear 
model Guan et al. (2020).

In addition, we report the computational time of calculating BIC plus getting the final estimates for a single data set. 
Because these results depend on the chosen grids of tuning parameters, they provide a practical comparison of the imple-
mentations of the two competing methods, as opposed to a purely algorithmic comparison. On average, for the linear model 
cases, the proposed method takes 13.3 s, 15.3 s and 14.8 s for sample sizes n = 200, 400, 600, respectively, while the NGR 
method had corresponding averages of 4.9 s, 8.1 s, and 12.8 s. For logistic models, the proposed method takes 13.3 s, 19.8 s
and 21.1 s for sample size n = 200, 400, 600, on average. These computational times were measured on a 2.6 GHz 6-core i7 
Mac. The proposed method was coded in python and Guan et al. (2020)’s optimization employed the glmnet R package 
written in Fortran. It is also worth mentioning that, for the NGR method, the optimal tuning parameters were searched on 
a fixed grid, which was provided by the author. For the proposed method, λs was selected from a fixed length sequence of 
ten values. The λt sequence was chosen as outlined in Section 3.2, and was thus more sensitive to differences between data 
sets, explaining the larger computation time for our method as well as its nonlinear dependence on the sample size.

6. Application to blood pressure curves

It has been reported that the yearly overall incidence of spontaneous intracerebral hemorrhage (ICH) worldwide is 2.5 per 
10,000 people, with approximately 40,000 to 67,000 cases per year in the United States (Caceres and Goldstein, 2012). People 
with ICH often have an acute hypertensive response which may be associated with hematoma expansion that can lead to 
9
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increased risk of mortality. (Dandapani et al., 1995). The current guidelines from the American Heart Association/American 
Stroke Association suggest that, for ICH patients presenting with systolic blood pressure (SBP) between 150 and 220 mmHg
and without contraindication to acute SBP treatment, acute lowering of SBP to 140 mmHg is safe (Morgenstern et al., 
2010). Benefits of early reduction in blood pressure have been shown in several studies (Qureshi et al., 2012; ATLANTIS et 
al., 2004), though findings are not entirely consistent (Qureshi et al., 2010).

The Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH II) is a designed randomized trial aiming to test 
whether aggressive SBP reduction in acute settings significantly decreases the likelihood of death or disability at three 
months after ICH. From 2011 to 2015, 1000 patients underwent randomization, which took place within 4.5 hours after ICH 
onset. The detailed design, method, and rationale were clearly described in Qureshi and Palesch (2011). Roughly speaking, 
the goal for the standard group was to reduce and maintain SBP between 140 and 180 mmHg for 24 hours after ran-
domization, while that of the intensive group is to reduce and maintain SBP between 110 and 140 mmHg for 24 hours. 
A uniform SBP reduction strategy using calcium channel blocker was implemented to reach the goal in the standard and 
intensive groups. The final conclusion of ATACH II experiment was that treatment in the intensive group did not result in a 
lower rate of death or disability than the standard group (Qureshi et al., 2016).

In most of the previous investigations, the information in the SBP curve, which is a functional covariate, was summarized 
to scalar variables, such as a dummy variable to indicate treatment group (Qureshi et al., 2016), or numerical variables to 
measure magnitude or variability of SBP (Divani et al., 2019; Meeks et al., 2019). However, the time-varying SBP curves con-
stitute a richer source of information than these scalar summaries. In this analysis, we will use ATACH II data to investigate 
the time-period in which SBP management can have an effect on the 3-month rate of mortality and disability. Due to the 
different management strategies in the two groups, we will analyze them separately.

Mortality and disability are measured by the modified Rankin scale (mRS) score on an integer scale ranging from 0 (no 
symptoms) to 6 (death) at 3 months after randomization. The dichotomized mRS score (mRS = 0–3 vs. 4–6) is the scalar 
response in the FGLM. The functional predictors are the SBP curves, with recordings made at 15-minute intervals during 
the first hour and one measurement per hour thereafter during the first 24 hours after randomization. The R function
smooth.spline was used to estimate the smooth curve SBP(t) from the discrete observations. Using a simple modifica-
tion of the algorithms described in Section 3.2, the analysis also adjusts for relevant scalar covariates, including age, Glasgow 
Coma Scale (GCS) score, observed hematoma expansion (HE, binary) and logarithm of initial hematoma volume (log(Vol)). 
Thus, the linear component in the logistic regression is

θ = α +
δ∫

0

SBP(t)β0(t)dt + γ1Age + γ2GCS+ γ3HE+ γ4log(Vol).

After omitting the subjects with missing values, the sample size of standard group is 340 and intensive group is 376.
We compare the estimates of the proposed truncated model (k = 47, q = 4 and m = 2) with a penalized spline estimator 

implemented in the refund package. The 47 interior knots are equally spaced on [0, 24], so that the possible estimates 
for the truncation point occur at half an hour or on the hour. Fig. 3 plots the estimates of β0 for comparison, with a 
third FPCA-based estimator also included for the sake of interpretation, as described below. The estimated truncation points 
are δ̂ = 16.5 and δ̂ = 13.5 for the standard and intensive groups, respectively, so that the SBP after these time periods 
is estimated to have no significant effect on binarized 3-month mRS with the current management of ICH patients. To 
assess the uncertainty of the truncated estimate β̂ , nonparametric bootstrap was applied by sampling pairs (Xi , Yi) with 
replacement. For each bootstrapped data set, the estimation was carried out using the same set of tuning parameters as the 
full data set, with the active set of B-splines also fixed to match the support of β̂ . These bootstrapped estimates were then 
used to obtain a 95% pointwise confidence bands shown in red dotted lines in Fig. 3. For both groups, the truncated estimate 
is mostly positive, confirming the intuition that higher SBP is associated with higher likelihood of disability or mortality. 
The penalized spline and the proposed estimators are similar for the standard group, but the truncation regularization 
yields a more logical estimate that does not take negative values toward the end of the 24 hour period. For the intensive 
group, the estimates are again qualitatively the same, with the penalized spline estimator being clearly oversmoothed as it 
is nearly linear. Thus, the proposed truncated estimator has advantages over the penalized spline estimator in both groups. 
The estimates of standard and intensive group mostly differ in the initial period after randomization, where the estimate in 
the intensive group is markedly larger during this period, consistent with the fact that patients in the intensive group were 
treated so as to lower SBP to below 140 mmHg within the first two hours.

The fitted functional coefficient functions require careful interpretation. For instance, in the standard group, the fitted 
coefficient function is negative during the first two hours, but we can not conclude that the higher initial SBP is associated 
with lower probability of disability or mortality. To aid the interpretation, functional principal component analysis (FPCA) 
of the SBP curves was performed on the domains [0, 16.5] and [0, 13.5]. After retaining the first four FPC scores, which 
explain 87.92% and 91.51% of the variability in standard and intensive groups, respectively, these were combined with the 
other scalar covariates and served as predictors in a standard logistic regression model.

Using the standard group as an example, we denote the estimated eigenfunctions of the standard group as {ϕ S
j }4j=1, and 

j-th FPC score as FPC j . These FPCA-based regression results are summarized in Table 3, with the corresponding estimates 
of β0 depicted in Fig. 3. It can be seen that the individual p-values for scalar predictors are generally significant, with the 
10
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Fig. 3. Estimates of the functional parameter β0 in the functional logistic regression model for the standard (left) and intensive (right) groups. (Solid Black) 
Penalized spline estimate produced by the function pfr in the refund package, with pointwise 95% confidence bands (Black Dash); (Red Dash) Proposed 
truncated estimate, with 95% pointwise bootstrap confidence bands (Red Dot); (Green Dash-Dot) FPCA-based truncated estimate. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Table 3
Summary table of logistic regression models using four functional principal component scores. The p-values 
in bold indicate components of the blood pressure curves with p-values below 0.15.

Standard Group Intensive Group

Estimate SE z value Pr(> |z|) Estimate SE z value Pr(> |z|)
GCS -0.156 0.070 -2.217 0.027 -0.089 0.074 -1.213 0.225
Age 0.052 0.011 4.758 < 0.001 0.081 0.012 6.529 < 0.001
log(Vol) 0.914 0.181 5.060 < 0.001 1.341 0.191 7.02 < 0.001
HE 1.164 0.290 4.016 < 0.001 1.242 0.313 3.966 < 0.001

FPC1 0.010 0.004 2.363 0.018 0.022 0.006 3.57 < 0.001
FPC2 -0.006 0.007 -0.819 0.413 -0.008 0.01 -0.763 0.446
FPC3 -0.012 0.008 1.473 0.141 0.015 0.015 1.009 0.313
FPC4 -0.002 0.009 -0.232 0.816 -0.009 0.013 -0.669 0.503

exception of the GCS score in the intensive group. Likelihood ratio tests were conducted to compare the full model to a 
submodel containing only the scalar predictors and no FPC scores, resulting in p-values, 0.018 and 0.003, respectively, for 
standard and intensive groups, providing evidence for the significant effect of SBP on outcome after controlling other scalar 
variables. Furthermore, it emerges that the strongest SBP component affecting the outcome is FPC1, with p-values of 0.01 
and 0.022 in the standard and intensive groups, respectively, while the other FPC scores were not significant in either group.

In order to relate the FPC regression results in Table 3 to the truncated estimates β̂ S and β̂ I , these estimates were pro-
jected onto the spaces spanned by the first four FPC basis functions within each group. Ranking the projection coefficients 
by magnitude, the smallest coefficients were set to zero, yielding approximations

β̃ S = 0.006ϕ S
1 − 0.005ϕ S

3 ,

β̃ I = 0.014ϕ I
1.

(13)

Unsurprisingly, both groups retain a component corresponding to FPC1. However, only the standard group retains a com-
ponent along FPC3. Although this component was not statistically significant in the FPC regression model, the proposed 
truncated estimator clearly contains a measurable signal in this direction, given that its coefficient of −0.005 is nearly equal 
in magnitude to that of the first component. We remark that ‖β̃ S‖2 ≈ 0.963‖β̂ S‖2 and ‖β̃ I‖2 ≈ 0.918‖β̂ I‖2, so that these 
projections are very near to the original estimates, and that the signs of the coefficients in these projections match those 
of the corresponding estimates in Table 3. The salient effects of SBP on the probability of disability or death can then be 
understood by modes of variation of the relevant eigenfunctions in Fig. 4, i.e. by adding and subtracting multiples of the 
eigenfunction from the mean SBP curve.

In both the standard and intensive groups, variation in the first eigenfunction direction is of the most significance. 
From Fig. 4, the first eigenfunction represents the overall magnitude of SBP curves, where larger values of FPC1 associate 
with higher SBP level. Since the projection coefficients of the truncated estimates onto the first eigenfunctions in (13) are 
positive, we conclude that higher overall SBP leads to poor 3-month outcome. In the standard group, the third eigenfunction 
primarily differentiates between SBP patterns that are below/above the mean between hours 2–9 after randomization. Thus, 
11
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Fig. 4. Eigenfunction and mode of variation (mean ±10 × eigenfunction) plots for standard (top row) and intensive (bottom row) groups. (Top Left) First 
(Solid Black) and third (Green Dash) eigenfunctions, corresponding to FPC scores with p-value smaller than 0.15 in Table 3; (Top Middle) Mode of variation 
of the first eigenfunction; (Top Right) Mode of variation of the third eigenfunction; (Bottom Left) First eigenfunction, corresponding to the FPC score with 
p-value smaller than 0.15 in Table 3; (Bottom Middle) Mode of variation of the first eigenfunction.

the negative projection coefficient onto the third eigenfunction in (13) further emphasizes the importance of maintaining 
low SBP levels during this specific time period.

7. Discussion

In this paper, we develop a new methodology for producing a truncated estimate of the coefficient function in functional 
generalized linear models, where the true coefficient β0 is assumed to be identically zero after some fixed but unknown 
timepoint δ0 ∈ [0, T ]. With a minor modification to the proposed truncation penalty, the methodology can also be applied 
to regression models in which the coefficient is assumed to be zero prior to δ0, rather than after, so that the functional 
covariate only has an effect toward the end of the domain. All theoretical results will hold in this scenario under essentially 
the same assumptions.

In simulations, the proposed estimator was found to be competitive with the recent method of Guan et al. (2020) in 
the setting of functional linear regression, and exhibited improved accuracy with a larger sample size in all simulation 
cases. Unlike previous methods, which either directly penalized the value of the truncation point (Hall and Hooker, 2016) 
or resulted in a nonconvex optimization problem (Guan et al., 2020), the proposed approach utilizes a nested group lasso 
penalty (Yuan and Lin, 2006) and leads to a convex optimization problem. We have demonstrated how the nonsmooth 
lasso penalty can be expressed in its dual formulation, and subsequently smoothed so that the objective function can be 
optimized by accelerated gradient descent algorithm. Furthermore, the explicit conditions for updating the active set after a 
change of the truncation tuning parameter lead to efficient computation of the entire solution path.
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