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Summary

The covariance structure of multivariate functional data can be highly complex, especially
if the multivariate dimension is large, making extensions of statistical methods for standard
multivariate data to the functional data setting challenging. For example, Gaussian graphical
models have recently been extended to the setting of multivariate functional data by applying
multivariate methods to the coefficients of truncated basis expansions. However, compared with
multivariate data, a key difficulty is that the covariance operator is compact and thus not invertible.
This paper addresses the general problem of covariance modelling for multivariate functional data,
and functional Gaussian graphical models in particular.As a first step, a new notion of separability
for the covariance operator of multivariate functional data is proposed, termed partial separability,
leading to a novel Karhunen–Loève-type expansion for such data. Next, the partial separability
structure is shown to be particularly useful in providing a well-defined functional Gaussian
graphical model that can be identified with a sequence of finite-dimensional graphical models,
each of identical fixed dimension. This motivates a simple and efficient estimation procedure
through application of the joint graphical lasso. Empirical performance of the proposed method
for graphical model estimation is assessed through simulation and analysis of functional brain
connectivity during a motor task.

Some key words: Functional brain connectivity; Functional data; Inverse covariance; Separability.

1. Introduction

The analysis of functional data continues to be an important field for statistical development
given the abundance of data collected over time via sensors or other tracking equipment. Fre-
quently, such time-dependent signals are vector-valued, resulting in multivariate functional data.
Prominent examples include longitudinal behavioural tracking (Chiou & Müller, 2014), blood
protein levels (Dubin & Müller, 2005), traffic measurements (Chiou et al., 2014, 2016) and
neuroimaging data (Petersen & Müller, 2016; Happ & Greven, 2018), for which dimensionality
reduction and regression have been the primary methods investigated. As for standard multivari-
ate data, the nature of dependencies between component functions of multivariate functional data
is an important question requiring careful consideration.

Dependencies between functional magnetic resonance imaging, fMRI, signals for a large
number of regions across the brain during a motor task experiment consititute the motivating
example for this paper. Since fMRI signals are collected simultaneously, it is natural to model
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them as a multivariate process {X (t) ∈ R
p : t ∈ T }, where T ⊂ R is a time interval over

which the scans are taken (Qiao et al., 2019). The dual multivariate and functional aspects of the
data make the covariance structure of X complex, particularly if the multivariate dimension p is
large. This leads to difficulties in extending highly useful multivariate analysis techniques, such
as graphical models, to multivariate functional data without further structural assumptions. For
example, in the analogous setting of spatiotemporal data, it is common to impose further structure
on the covariance, usually assuming that the spatial and temporal effects can be separated in some
way. However, similar notions for multivariate functional data have not yet been considered.

As for ordinary multivariate data, the conditional independence properties of X are perhaps of
greater interest than the marginal covariance, leading to the consideration of inverse covariance
operators and graphical models for functional data. If X is Gaussian, each component function
Xj corresponds to a node in the functional Gaussian graphical model, which is a single network
of p nodes. This is inherently different from the estimation of time-dependent graphical models
(Zhou et al., 2010; Kolar & Xing, 2011; Qiu et al., 2016; Qiao et al., 2020), in which the graph
is dynamic and has nodes corresponding to scalar random variables. In this paper, the graph
is considered to be static, while each node represents an infinite-dimensional functional object.
This is an important distinction, as covariance operators for functional data are compact and
thus not invertible in the usual sense, so that presence or absence of edges cannot in general
be identified immediately with zeros in any precision operator. In the past few years there has
been some investigation into this problem. Zhu et al. (2016) developed a Bayesian framework
for graphical models on product function spaces, including the extension of Markov laws and
appropriate prior distributions. Qiao et al. (2019) implemented a truncation approach, where
each function is represented by the coefficients of a truncated basis expansion using functional
principal component analysis, and a finite-dimensional graphical model is estimated by a modified
graphical lasso criterion. Li & Solea (2018) developed a non-Gaussian variant, where conditional
independence is replaced by a notion of so-called additive conditional independence.

The methodology proposed in this paper is within the setting of multivariate Gaussian pro-
cesses as in Qiao et al. (2019), and exploits a notion of separability for multivariate functional
data to develop efficient estimation of suitable inverse covariance objects. There are at least three
novel contributions of this methodology to the fields of functional data analysis and Gaussian
graphical models. First, a structure termed partial separability is defined for the covariance oper-
ator of multivariate functional data, yielding a novel Karhunen–Loève-type representation. The
second contribution is to show that when the process is indeed partially separable, the functional
graphical model is well-defined and can be identified with a sequence of finite-dimensional
graphical models. In particular, the assumption of partial separability overcomes the problem
of noninvertibility of the covariance operator when X is infinite-dimensional, in contrast with
Zhu et al. (2016) and Qiao et al. (2019), which assume that the functional data are concentrated
on finite-dimensional subspaces. Third, an intuitive estimation procedure is developed based on
simultaneous estimation of multiple graphical models. Furthermore, theoretical properties are
derived under the regime of fully observed functional data. Empirical performance of the pro-
posed method is then compared with that of Qiao et al. (2019) through simulations involving
dense and noisily observed functional data, including a setting where partial separability is vio-
lated. Finally, the method is applied to the study of brain connectivity, also known as functional
connectivity in the neuroscience literature, using data from the Human Connectome Project
corresponding to a motor task experiment. Through these practical examples, our proposed
method is shown to yield improved efficiency in estimation and computation. An R package
(R Development Core Team, 2022) fgm implementing the proposed methods is freely available
from the CRAN repository.
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Functional Gaussian graphical models 667

2. Preliminaries

2.1. Gaussian graphical models

Consider a p-variate random variable θ = (θ1, . . . , θp)
T, where p > 2. For any distinct indices

j, k = 1, . . . , p let θ−(j, k) ∈ R
p−2 denote the subvector of θ obtained by removing its jth and

kth entries. A graphical model (Lauritzen, 1996) for θ is an undirected graph G = (V , E),
where V = {1, . . . , p} is the node set and E ⊂ V × V \ {(j, j) : j ∈ V } is the edge set. The
edges in E encode the presence or absence of conditional independencies among the distinct
components of θ by excluding (j, k) from E if and only if θj ⊥⊥ θk | θ−(j, k). In the case
where θ ∼ Np(0, �), the corresponding Gaussian graphical model is intimately connected to
the positive-definite covariance matrix � through its inverse � = �−1, known as the precision
matrix of θ . Specifically, the edge set E can be readily obtained from � by the relation (j, k) ∈ E
if and only if �jk |= 0 (Lauritzen, 1996). This identification of edges in E with the nonzero off-
diagonal entries of � arises from the simple fact that the latter are proportional to the conditional
covariance between components. Thus, the zero/nonzero structure of � serves as an adjacency
matrix of the graph G, allowing the employment of a vast number of statistical tools for sparse
inverse covariance estimation to recover a sparse graph structure from data.

2.2. Functional Gaussian graphical models

We first introduce some notation. Let L2[0, 1] denote the space of square-integrable measurable
functions on [0, 1] endowed with the standard inner product 〈g1, g2〉 = ∫ 1

0 g1(t)g2(t) dt and asso-
ciated norm ‖·‖. Let (L2[0, 1])p be its p-fold Cartesian product or direct sum, endowed with the
inner product 〈f1, f2〉p = ∑p

j=1〈f1j, f2j〉 and associated norm ‖·‖p. For a generic compact covari-

ance operator A defined on an arbitrary Hilbert space, let λA
j denote its jth-largest eigenvalue.

Suppose f ∈ (L2[0, 1])p, g ∈ L2[0, 1], a ∈ R
p, � is a p × p matrix and B : L2[0, 1] → L2[0, 1] is

a linear operator. Then ag ∈ (L2[0, 1])p takes values {g(x)}a ∈ R
p, �f ∈ (L2[0, 1])p takes values

�{f (x)} ∈ R
p, B(f ) = {B(f1), . . . , B(fp)} ∈ (L2[0, 1])p and (�B)(f ) = B(�f ). The tensor

products g ⊗ g and f ⊗p f signify the operators (g ⊗ g)(·) = 〈g, ·〉g and (f ⊗p f )(·) = 〈f , ·〉pf
on L2[0, 1] and (L2[0, 1])p, respectively.

In this paper, multivariate functional data constitute a random sample from a multivariate
process {X (t) ∈ R

p : t ∈ [0, 1]}, which is assumed, for the moment, to be zero-mean such that
X ∈ (L2[0, 1])p almost surely and E(‖X ‖2

p) < ∞. If X is also assumed to be Gaussian, then
its distribution is uniquely characterized by its covariance operator G, the infinite-dimensional
counterpart of the covariance matrix for standard multivariate data. In fact, one can think of it as
a matrix of operators G = {Gjk : j, k ∈ V }, where each entry Gjk is a linear, trace-class integral
operator on L2[0, 1] (Hsing & Eubank, 2015) with kernel Gjk(s, t) = cov{Xj(s), Xk(t)}. That is,

for any g ∈ L2[0, 1], Gjk(g)(·) = ∫ 1
0 Gjk(·, t)g(t) dt. Then G is an integral operator on (L2[0, 1])p

with {G(f )}j = ∑p
k=1 Gjk(fk) for f ∈ (L2[0, 1])p and j ∈ V .

A functional Gaussian graphical model for X is a graph G = (V , E) that encodes the conditional
independence structure among its components. As in the finite-dimensional case, the edge set
can be recovered from the conditional covariance functions

Cjk(s, t) = cov{Xj(s), Xk(t) | X−(j,k)} (j, k ∈ V , j |= k) (1)

through the relation (j, k) ∈ E if and only if Cjk(s, t) = 0 for all s, t ∈ [0, 1]. However, unlike in
the finite-dimensional case, the covariance operator G is compact and thus not invertible, with the
consequence that the connection between conditional independence and an inverse covariance
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operator is lost, as the latter does not exist. This is a known issue for infinite-dimensional functional
data, for instance in linear regression models with functional predictors; seeWang et al. (2016) and
references therein. Hence, a common approach is to regularize the problem by first performing
dimensionality reduction, most often through a truncated basis expansion of the functional data.
Specifically, one chooses an orthonormal functional basis {φjl}∞l=1 of L2[0, 1] for each j and
expresses each component of X as

Xj(t) =
∞∑

l=1

ξjlφjl(t), ξjl =
∫ 1

0
Xj(t)φjl(t) dt. (2)

These expansions are then truncated at a finite number of basis functions to perform estimation,
and the basis size is allowed to diverge with the sample size to obtain asymptotic properties.

Previous work related to functional Gaussian graphical models includes Zhu et al. (2016) and
Qiao et al. (2019). The former rigorously considered the notion of conditional independence for
functional data and proposed a family of priors for the covariance operator G. The latter truncated
(2) at L terms using the functional principal component basis (Hsing & Eubank, 2015) and set
ξj = (ξj1, . . . , ξjL)T (j ∈ V ). Qiao et al. (2019) defined a pL × pL covariance matrix 	 blockwise
for the concatenated vector (ξ1

T, . . . , ξp
T)T as 	 = (	jk)

p
j, k=1 with (	jk)lm = cov(ξjl , ξkm) (l, m =

1, . . . , L). Then, a functional graphical lasso algorithm was developed to estimate 	−1 with sparse
off-diagonal blocks in order to estimate the edge set.

The method of Qiao et al. (2019) represents an intuitive approach to functional graphical model
estimation, but it encounters some difficulties, which we seek to address in this paper. From a
theoretical point of view, even when p is fixed, consistent estimation of the graphical model
requires that one permits L to diverge, so that the number of covariance parameters needing to
be estimated is (pL)2. Additionally, the identification of zero off-diagonal blocks in 	−1 was
shown to be linked to the true functional graphical model only under the strict assumption that
each Xj take values in a finite-dimensional space almost surely. In many practical applications,
the dimension p can be high, the number of basis functions L may need to be large in order to
retain a suitable representation of the observed data, or both of these may occur simultaneously.
It is thus desirable to introduce structure on G so as to provide a parsimonious basis expansion
for multivariate functional data that is amenable to graphical model estimation.

3. Partial separability

3.1. A parsimonious basis for multivariate functional data

Functional principal component analysis is a commonly used tool for functional data, with one
of its most useful features being the parsimonious reduction of each univariate component Xj to
a countable sequence of uncorrelated random variables through the Karhunen–Loève expansion
(Hsing & Eubank, 2015), taking the form of (2) when the basis is chosen as the eigenbasis of
Gjj. Chiou et al. (2014) extended this approach to multivariate functional data via the spectral
decomposition G = ∑∞

m=1 λG
mρm ⊗p ρm, leading to the multivariate Karhunen–Loève expansion

X (t) = ∑∞
l=1〈X , ρl〉pρl(t), where {ρl}∞l=1 is an orthonormal basis of (L2[0, 1])p. While this

decomposition is indeed parsimonious, the multivariate aspect of the data is lost since the random
coefficients 〈X , ρl〉p are scalar. As a consequence, one cannot readily apply tools from finite-
dimensional Gaussian graphical model estimation to these coefficients. We begin by proposing a
novel structural assumption on the eigenfunctions of G, termed partial separability, and will then
demonstrate its advantages for defining and estimating functional Gaussian graphical models.
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Functional Gaussian graphical models 669

Definition 1. A covariance operator G on (L2[0, 1])p is partially separable if there exist
orthonormal bases {elj}p

j=1 (l ∈ N) of R
p and {ϕl}∞l=1 of L2[0, 1] such that the eigenfunctions of

G take the form eljϕl (l ∈ N, j ∈ V ).

We first draw a connection to separability of covariance operators as they appear in spatio-
temporal analyses, after which the implications of partial separability will be further explored.
Dependent functional data arise naturally in the context of a spatiotemporal random field that is
sampled at p discrete spatial locations. In many instances, it is assumed that the covariance of X
is separable, meaning that there exist a p × p covariance matrix � and a covariance operator B
on L2[0, 1] such that G = �B (Gneiting et al., 2006; Genton, 2007; Aston et al., 2017). Letting
{ej}p

j=1 and {ϕl}∞l=1 be the orthonormal eigenbases of � and B, respectively, it is clear that ejϕl
are the eigenfunctions of G. Hence, a separable covariance operator G satisfies the conditions of
Definition 1. It should be noted that the property of G having eigenfunctions of the form ejϕl has
also been referred to as weak separability (Lynch & Chen, 2018), and is a consequence and not
a characterization of separability. The connections between these three separability notions are
summarized in the following result, whose proof is simple and therefore omitted.

Proposition 1. Suppose G is partially separable according to Definition 1. Then G is also
weakly separable if and only if the bases {elj}p

j=1 do not depend on l. If G is weakly separable,
then it is also separable if and only if the eigenvalues take the form 〈G(ejϕl), ejϕl〉p = cjdl for
positive sequences {cj}p

j=1 and {dl}∞l=1.

The next result gives several characterizations of partial separability. The proof of this theorem
and all remaining theoretical results can be found in the Supplementary Material.

Theorem 1. Let {ϕl}∞l=1 be an orthonormal basis of L2[0, 1]. The following are equivalent.

(i) G is partially separable with L2[0, 1] basis {ϕl}∞l=1.
(ii) There exists a sequence of p × p covariance matrices {�l}∞l=1 such that

G =
∞∑

l=1

�lϕl ⊗ ϕl .

(iii) The covariance operator of each Xj can be written as Gjj = ∑∞
l=1 σljjϕl ⊗ ϕl , with σljj > 0

and
∑∞

l=1 σljj < ∞ and with cov(〈Xj, ϕl〉, 〈Xk , ϕl′ 〉) = 0 for j, k ∈ V and l |= l′.
(iv) The expansion

X =
∞∑

l=1

θlϕl , θl = (〈X1, ϕl〉, . . . , 〈Xp, ϕl〉)T, (3)

holds almost surely in (L2[0, 1])p, where the θl are mutually uncorrelated random vectors.

As will be seen in § 3.2, the matrices �l in statement (ii) of Theorem 1 contain all the neces-
sary information to form the functional graphical model when X is Gaussian and G is partially
separable. For clarity, when G is partially separable, the expansion in (ii) is assumed to be
ordered according to decreasing value of tr(�l). Statement (iii) reveals that the Gjj share common
eigenfunctions and are thus simultaneously diagonalizable, with projections of any features onto
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(a) (b) (c) (d)

Fig. 1. Covariance structures of R
Lp-valued random coefficients from different L-truncated Karhunen–Loève-type

expansions: (a) and (b) show covariance and precision matrices, respectively, of functional principal component
coefficients (ξT

1 , . . . , ξT
p )T in (2) as in Qiao et al. (2019); (c) and (d) show block-diagonal covariance and precision

matrices, respectively, of coefficients (θT
1 , . . . , θT

L )T under partial separability in (3).

different eigenfunctions being uncorrelated. This is related to the concept known as coregional-
ization (Banerjee & Johnson, 2006), but is more general in that it allows different eigenvalues
for each Gjj. Consequently, one obtains the vector Karhunen–Loève-type expansion in (3). If one
truncates (3) at L components, the covariance matrix of the concatenated vector (θ1

T, . . . , θL
T)T is

block-diagonal, with the p × p matrices �l = var(θl) constituting the diagonal blocks. Figure 1
visualizes this covariance structure in comparison with that of Qiao et al. (2019), along with
comparisons of the inverse covariance structure. The latter comparison is the more striking and
relevant one, since the model of Qiao et al. (2019) possesses a potentially full inverse covariance
structure, whereas that under partial separability remains block-diagonal. As a consequence, the
model of Qiao et al. (2019) has O(L2p2) free parameters, while the corresponding model under
partial separability has only O(Lp2) free parameters.

Lastly, we establish optimality and uniqueness properties for the basis {ϕl}∞l=1 of a partially
separable G. A key object is the trace-class covariance operator

H = 1

p

p∑
j=1

Gjj. (4)

Let λl = λH
l (l ∈ N) denote the eigenvalues of H, in nonincreasing order.

Theorem 2. Suppose the eigenvalues of H in (4) have multiplicity 1.

(i) For any L ∈ N and for any orthonormal set {ϕ̃l}L
l=1 in L2[0, 1], ∑L

l=1
∑p

j=1 var(〈Xj, ϕ̃l〉) �∑L
l=1 λl , with equality if and only if {ϕ̃}L

l=1 span the first L eigenspaces of H.
(ii) If G is partially separable with L2[0, 1] basis {ϕl}∞l=1, then

H =
∞∑

l=1

λlϕl ⊗ ϕl , λl = 1

p
tr(�l).

Statement (i) says that, independent of partial separability, the eigenbasis of H is opti-
mal in terms of retaining the greatest amount of total variability in vectors of the form
(〈X1, ϕ̃l〉, . . . , 〈Xp, ϕ̃l〉)T, subject to orthogonality constraints. Statement (ii) indicates that if G
is partially separable, the unique basis of L2[0, 1] that makes Definition 1 hold corresponds to
this optimal basis.
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Functional Gaussian graphical models 671

3.2. Consequences for functional Gaussian graphical models

Assume that G is partially separable according to Definition 1, so that the partially separable
Karhunen–Loève expansion in (3) holds. If we further assume that X is Gaussian, then the
θl ∼ N (0, �l) (l ∈ N) are independent, where �l is positive definite for each l. These facts
follow from Theorem 1. Recall that in order to define a coherent functional Gaussian graphical
model, the conditional covariance functions Cjk in (1) between component functions Xj and Xk
need to be well-defined. The expansion in (3) facilitates a simple connection between the Cjk

and the inverse covariance matrices �l = �−1
l , as follows. Let �l = (σljk)

p
j, k=1. For any fixed

j, k ∈ V define the partial covariance between θlj and θlk as

σ̃ljk = σljk − cov{θlj, θl,−(j, k)} var{θl,−(j, k)}−1 cov{θl,−(j, k), θlk}.
It is well known that these partial covariances are directly related to the precision matrix �l =
(ωljk)

p
j, k=1 by σ̃ljk = −ωljk/(ωljjωlkk − ω2

ljk), so that σ̃ljk = 0 if and only if ωljk = 0. The next
result establishes that the conditional covariance functions Cjk can be expanded in the partial
separability basis {ϕl}∞l=1 with coefficients σ̃ljk .

Theorem 3. If G is partially separable, then the cross-covariance kernel between Xj and Xk ,
conditional on the multivariate subprocess {X−(j, k)(u) : u ∈ [0, 1]}, is

Cjk(s, t) =
∞∑

l=1

σ̃ljkϕl(s)ϕl(t) (j, k ∈ V , j |= k; s, t ∈ [0, 1]).

Now, the conditional independence graph for the multivariate Gaussian process can be defined
by (j, k) /∈ E if and only if Cjk(s, t) ≡ 0. Owing to the above result, the edge set E is connected
to the sequence of edge sets {El}∞l=1 for which (j, k) /∈ El if and only if σ̃ljk = ωljk = 0,
corresponding to the sequence of Gaussian graphical models (V , El) for each θl .

Corollary 1. In the setting of Theorem 3, the functional graph edge set E is related to the
sequence of edge sets El by E = ⋃∞

l=1 El .

We have thus established that under partial separability, the problem of functional graphical
model estimation can be simplified to estimation of a sequence of decoupled graphical models.
When partial separability fails, the edge sets remain meaningful. Recall from Theorem 2 that the
eigenbasis of H is optimal in a sense that is independent of partial separability, so that the vectors
θl = (〈X1, ϕl〉, . . . , 〈Xp, ϕl〉)T are still the coefficients of X in an optimal expansion. Although
one loses a direct connection between the El and the edge set of the functional graph, each El
remains the edge set of the Gaussian graphical model for the coefficient vector θl in this optimal
expansion. Moreover, the equivalence E = ⋃∞

l=1 El may hold independent of partial separability.
For instance, the Supplementary Material gives sufficient conditions, based on a Markov-type
property and an edge coherence assumption, under which the equivalence holds.

4. Graph estimation and theory

4.1. Joint graphical lasso estimator

Consider a p-variate process X , with means μj(t) = E{Xj(t)} and covariance operator G.
Let {ϕl}∞l=1 be an orthonormal eigenbasis of H in (4), and set θlj = 〈Xj, ϕl〉 and �l = var(θl).
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The targets are the edge sets El , where (j, k) ∈ El if and only if (�−1
l )jk |= 0, as motivated

by the developments in § 3.2. Specifically, when X is Gaussian and G is partially separable, the
conditional independence graph of X has edge set E = ⋃∞

l=1 El . When partial separability fails,
these targets still provide useful information about the conditional independencies of X when
projected onto the eigenbasis of H, which is optimal in the sense of Theorem 2. Furthermore,
when X is not Gaussian, rather than representing conditional independence, the El represent the
sparsity structure of the partial correlations of θl , which may still be of interest. By Theorem 1,
tr(�l) = λl ↓ 0 as l → ∞. A practical consideration is that this makes estimators of �l
progressively more unstable to work with as l increases. To avoid this difficulty, we work with
�l = R−1

l , where Rl is the correlation matrix corresponding to �l; �l and �l share the same
edge information as entries in these two matrices are either zero or nonzero simultaneously.

We first define the estimation procedure with targets �l from a random sample X1, . . . , Xn,
each distributed as X . We remark that X is not required to be Gaussian, nor G partially separable,
in developing the theoretical properties of the estimators, which also allow the dimension p to
diverge with n. In order to make these methods applicable to any functional dataset, it is assumed
that preliminary mean and covariance estimates μ̂j and Ĝjk (j, k = 1, . . . , p) have been computed
for each component. As an example, if the Xi are fully observed, cross-sectional estimates

μ̂j = 1

n

n∑
i=1

Xij, Ĝjk = 1

n

n∑
i=1

(Xij − μ̂j) ⊗ (Xik − μ̂k) (5)

can be used. For practical observational designs, smoothing can be applied to the pooled data to
estimate these quantities (Yao et al., 2005;Yang et al., 2011). Given such preliminary estimates, the
estimate of H is Ĥ = p−1 ∑p

j=1 Ĝjj, leading to empirical eigenfunctions ϕ̂l , which are uniquely
defined only up to a sign and for 1 � l � np = rank(H). These quantities produce estimates of
σljk = 〈Gjk(ϕl), ϕl〉 by plug-in as

sljk = (Sl)jk = 〈Ĝjk(ϕ̂l), ϕ̂l〉. (6)

A group graphical lasso approach (Danaher et al., 2014) will be used to estimate the �l . Let
(R̂l)jk = r̂ljk = sljk/(sljjslkk)

1/2 be the estimated correlations. The estimates target the first L � np
inverse correlation matrices �l by

(�̂1, . . . , �̂L) = arg min
ϒl�0, ϒl=ϒT

l

L∑
l=1

{
tr(R̂lϒl) − log(|ϒl|)

} + P(ϒ1, . . . , ϒL). (7)

In the Gaussian case, these are penalized likelihood estimators with penalty

P(ϒ1, . . . , ϒL) = γ

⎧⎨
⎩α

L∑
l=1

∑
j |=k

|υljk | + (1 − α)
∑
j |=k

(
L∑

l=1

υ2
ljk

)1/2
⎫⎬
⎭, (ϒl)jk = υljk . (8)

The parameter γ > 0 controls the overall penalty level, while α ∈ [0, 1] distributes the penalty
between the two penalty terms. Then the estimated edge set is (j, k) ∈ Êl if and only if �̂ljk |= 0.
The joint graphical lasso was chosen to borrow structural information across multiple bases
instead of multiple classes, as was done in Danaher et al. (2014). If α = 1, the first penalty
will encourage sparsity in each �̂l and the corresponding edge set Êl , but the overall estimate
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Functional Gaussian graphical models 673

Ê = ⋃L
l=1 Êl may not be sparse. While consistent graph recovery is still possible with α = 1, as

demonstrated below in Theorem 5, the influence of the second penalty term when α < 1 ensures
that the overall graph estimate is sparse, enhancing interpretation.

In practice, the tuning parameters γ and α can be chosen with cross-validation to minimize
(7) for out-of-sample data. Specifically, the procedure would select γ and α that minimize the
average of (7) evaluated over each fold, where ϒ1, . . . , ϒL are computed with the training set
and R̂l are from the validation set. Another practically useful, and less computationally intensive,
approach is to choose these parameters to yield a desired sparsity level of the estimated graph
(Qiao et al., 2019). This latter approach is implemented in the data example of § 6.

4.2. Asymptotic properties

The goal of the current subsection is to provide lower bounds on the sample size n so that with
high probability, Êl = El (l = 1, . . . , L). The approach follows that of Ravikumar et al. (2011),
adapting the results to the case of functional graphical model estimation in which multiple graphs
are estimated simultaneously. For simplicity, and to facilitate comparisons with the asymptotic
properties of Qiao et al. (2019), the results are derived in the setting of fully observed functional
data, so that μ̂ and Ĝjk are as in (5). As a preliminary result, we first derive a concentration
inequality for the estimated covariances sljk in (6), requiring the following mild assumptions.

Assumption 1. The eigenvalues λl of H have multiplicity 1 and are thus strictly decreasing.

Assumption 2. There exists ς2 > 0 such that E{exp(sθlj)} � exp(s2ς2σljj/2) for all l ∈ N,

j ∈ V and s ∈ R; that is, the standardized scores θlj/σ
1/2
ljj are sub-Gaussian random variables

with parameter ς2. Furthermore, there exists M independent of p such that supj∈V
∑∞

l=1 σljj <

M < ∞.

Assumption 2 can be relaxed to accommodate eigenvalues with multiplicity greater than 1, at
the cost of an increased notational burden. The eigenvalue spacings play a key role through the
quantities τ1 = 2

√
2(λ1 − λ2)

−1 and τl = 2
√

2 max
{
(λl−1 − λl)

−1, (λl − λl+1)
−1

}
, for l � 2.

Assumption 2 clearly holds in the Gaussian case, and can be relaxed to accommodate different
parameters ς2

l for each l, though for simplicity these are assumed to be uniform.

Theorem 4. Suppose thatAssumptions 1 and 2 hold.Then there exist constants C1, C2, C3 > 0
such that for any 0 < δ � C3 and for all l � np and j, k ∈ V ,

pr(|sljk − σljk | � δ) � C2 exp(−C1τ
−2
l nδ2). (9)

Concentration inequalities such as (9) are generally required in penalized estimation problems
where the dimension diverges to infinity. For the current problem, even if the dimension p of
the process remains fixed, the dimension still diverges since one requires L to diverge with n.
Furthermore, in contrast to standard multivariate scenarios, the bound in Theorem 4 contains the
additional factor τ−2

l . Since λl ↓ 0, τl diverges to infinity with l, so that (9) reflects the increased
difficulty of estimating covariances corresponding to eigenfunctions with smaller eigenvalue
gaps.

Remark 1. A similar result to Theorem 4 was obtained by Qiao et al. (2019) under a specific
eigenvalue decay rate and truncation parameter scheme. Imposing similar assumptions on the
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674 J. Zapata, S. Y. Oh and A. Petersen

eigenvalues of H, we have τl = O(l1+β1) for some β1 > 1, so that for any 0 < β2 < 1/(4β1)

and L = nβ2 , (9) implies

max
l=1,..., L

max
j, k∈V

pr(|sljk − σljk | � δ) � C2 exp(−C1n1−2β2(1+β1)δ2),

matching the rate of Qiao et al. (2019). In addition to establishing the concentration inequality
for a general eigenvalue decay rate, our proof is greatly simplified by using the inequality

|sljk − σljk | � 2τl‖Gjk‖HS ‖Ĥ − H‖HS + ‖Ĝjk − Gjk‖HS, (10)

where ‖·‖HS is the Hilbert–Schmidt operator norm.

Remark 2. The bound in (10) utilizes a basic eigenfunction inequality found, for example, in
Bosq (2000, Lemma 4.3); see also Bhatia et al. (1983). However, using expansions instead of
geometric inequalities, Jirak (2016) and other authors cited therein established stronger results for
differences between true and estimated eigenfunctions in the form of limiting distributions and
moment bounds. Therefore, it is likely that the bound in (9) is suboptimal, although improvements
along the lines of Jirak (2016) would require further challenging work to establish the required
exponential tail bounds.

As the objective (7) utilizes the correlations r̂ljk , the following corollary is needed.

Corollary 2. Under the assumptions of Theorem 4, there exist constants D1, D2, D3 > 0
such that for any 0 < δ � D3 and for all l � np and j, k ∈ V ,

pr(|r̂ljk − rljk | � δ) � D2 exp(−D1nm2
l δ

2), ml = τ−1
l πl , πl = min

j∈V
σljj.

To establish consistency of Êl , we introduce some additional notation. Let �l = Rl ⊗̃ Rl , where
⊗̃ is the Kronecker product, and let Ēl = El ∪ {(1, 1), . . . , (p, p)}. For B ⊂ V × V , let �l,BB
denote the submatrix of �l indexed by sets of pairs (j, k) ∈ B, where �l,(j, k),(j′,k ′) = Rljj′Rlkk ′ . For
a p × p matrix �, let ‖|�‖|∞ = maxj=1,...,p

∑p
k=1|�jk |. The following assumption corresponds

to the irrepresentability or neighbourhood stability condition often seen in sparse matrix and
regression estimation (Meinshausen & Bühlmann, 2006; Ravikumar et al., 2011).

Assumption 3. For l = 1, . . . , L, there exists ηl ∈ (0, 1] such that

∥∥∥∣∣∣�l,Ēc
l Ēl

(
�l,Ēl Ēl

)−1
∥∥∥∣∣∣∞ � 1 − ηl .

For fixed l, Assumption 3 was employed by Ravikumar et al. (2011) as a sufficient condition for
model selection consistency. As Theorem 5 below implies simultaneous consistency of the first
L edge sets, we require the assumption for each l.

Set κRl = ‖|Rl‖|∞ and κ�l = ‖|(�l,Ēl Ēl
)−1‖|∞, let yl = maxj∈V |{k ∈ V : �ljk |= 0}| be the

maximum degree of the graph (V , El), and define ξmin,l = min{|�ljk | : �ljk |= 0}. Finally,
when Assumptions 1–3 hold, for any α > 1 − minl=1,..., L ηl define η′

l = α + ηl − 1 > 0 and
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Functional Gaussian graphical models 675

εL = min1�l�L η′
lml . Then, with D3 as in Corollary 2, set

aL = D3 min
l=1,..., L

ml ,

bL = min
l=1,..., L

{
6ylml max(κ2

�l
κ3

Rl
, κ�lκRl )(m

−1
l + 8ε−1

L )2
}−1

,

cL = min
l=1,..., L

ξmin,l

{
4κ�l (m

−1
l + 8ε−1

L )
}−1

.

Tracking aL and bL, including the maximal degrees yl , allows one to obtain uniform consistency of
the estimates �̂l in (7), and to conclude that Êl ⊂ El with high probability; see the Supplementary
Material. The quantity cL involves the weakest nonzero signal ξmin,l of each graph, with weaker
signals requiring larger n for recovery. The quantities bL and cL decrease with α, so that smaller
values of α also require larger n.

Theorem 5. Suppose Assumptions 1–3 hold, (1 − minl=1,..., L ηl) < α � 1, L � np and that
for some � > 2 one has γ = 8ε−1

L {(D1n)−1 log(D2L�−1p�)}1/2, where D1 and D2 are constants
from Corollary 2. If the sample size n satisfies

n min(aL, bL, cL)2 > D−1
1 {log(D2) + (� − 1) log(n) + (2� − 1) log(p)}, (11)

then with probability at least 1 − (Lp)2−�, Êl = El for all l = 1, . . . , L.

Remark 3. If L grows sufficiently slowly with respect to n, (11) becomes n min(aL, bL, cL)2 �
� log(p) for large n, where � denotes inequality up to a multiplicative constant. Hence, the
conclusion of Theorem 5 holds for large n when log(p) = o(n) by suitably limiting the growth
of L.

Remark 4. To understand how the graph properties affect the lower bound, assume that κ�l ,
κRl and ηl do not depend on l, n or p, and that min1�l�n ml � n−d for 0 < d < 1/4. Then (11)
becomes

n �
[{(

max
1�l�L

ξ−2
min,l

)
+

(
max

1�l�L
y2

l

)}
� log(p)

]1−4d

asymptotically. In particular, if L remains bounded so that d = 0, the above bound is consistent
with that of Ravikumar et al. (2011), where the maxima over l reflect the need to satisfy the bound
for the edge set El that is most difficult to estimate.

If the conditional independence graph of X is E = ⋃∞
l=1 El , as is the case when X is Gaussian

and G partially separable, Theorem 5 can lead to edge selection consistency in the functional

graphical model. For a given n, there exists a finite L∗
p such that E = ⋃L∗

p

l=1 El , where L∗
p can only

diverge with n if p does so. The following corollary is then immediate.

Corollary 3. Under the assumptions of Theorem 5, suppose log(p) = o(n), L → ∞ such
that min(aL, bL, cL)[n/ log{max(n, p)}]1/2 → ∞ and that for large n one has L � L∗

p. Then for

large n, E = ⋃L
l=1 Êl with probability at least 1 − (Lp)2−�.
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5. Numerical experiments

5.1. Simulation settings

The simulations in this section compare the proposed method for partially separable functional
Gaussian graphical models with that of Qiao et al. (2019). Throughout this section we denote
these methods by psFGGM and FGGM, respectively. Other potentially competing non-functional-
based approaches are not included, since they are clearly outperformed by the latter (Qiao et al.,
2019). An initial conditional independence graph G = (V , E) is generated from a power-law
distribution with parameter π = pr{(j, k) ∈ E}. Then, for a fixed M , a sequence of edge sets
E1, . . . , EM is generated so that E = ⋃M

l=1 El . A set of common edges to all edge sets is computed
for a given proportion of common edges τ ∈ [0, 1]. Next, p×p precision matrices �l are generated
for each El based on the algorithm of Peng et al. (2009). A detailed description of this step is
included in the Supplementary Material.

Random vectors θi ∈ R
Mp are then generated from a zero-mean multivariate normal

distribution with covariance matrix �, yielding discrete and noisy functional data

Yijk = Xij(tk) + εijk , εijk ∼ N (0, σ 2
ε ) (i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , M ).

Here, σ 2
ε = 0.05

∑M
l=1 tr(�l)/p and Xij(tk) = ∑M

l=1 θiljϕl(tk) according to the partially separable
Karhunen–Loève expansion in (3). Fourier basis functions ϕ1, . . . , ϕM evaluated on an equally
spaced time grid t1, . . . , tT , with t1 = 0 and tT = 1, were used to generate the data. In all settings,
100 simulations were conducted. To mimic a real-data example from § 6, we set T = 30, M = 20
and π = 5% for a sparse graph.

We consider two models for �, corresponding to partially separable and non-partially separable
X . In the first, the covariance �ps is formed as a block-diagonal matrix with p×p diagonal blocks
�l = al�

−1
l . The decaying factors al = 3l−1.8 guarantee that tr(�l) decreases monotonically

in l. In the second model, �ps is modified to violate partial separability. Specifically, a block-
banded precision matrix � is computed with p × p blocks �l,l = �l and �l+1,l = �l,l+1 =
0.5(�∗

l + �∗
l+1), where �∗

l = �l − diag(�l). Then, the non-partially separable covariance is
computed as �non-ps = diag(�ps)

1/2�−1diag(�ps)
1/2.

5.2. Comparison of results

Presented here are comparisons between the proposed method and that of Qiao et al. (2019),
implemented using code provided by the authors. Additional comparisons obtained by thresh-
olding correlations are reported in the Supplementary Material. Although this alternative method
does not estimate a sparse inverse covariance structure, its graph recovery is competitive with that
of the proposed method in some settings. As performance metrics, the true and false positive rates
of correctly identifying edges in graph G are computed over a range of γ values and a coarse grid
of five evenly spaced points α ∈ [0, 1]. The value of α maximizing the area under the receiver
operating characteristic curve is considered for the comparison. In all cases, we set π = 0.05 and
τ = 0. The two methods are compared using L principal components that explain at least 90% of
the variance. For all simulations and both methods, this threshold results in a choice of L = 5 or
L = 6 components. For higher variance-explained thresholds, however, we see a sharp contrast.
While the proposed method consistently converges to a solution, the method of Qiao et al. (2019)
does not, due to increasing numerical instability. The reason for the instability is the need to
estimate L = 5 or 6 times more parameters than the proposed method. The proposed method can
thus accommodate larger L, thereby incorporating more information from the data. In the figures
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Fig. 2. Mean receiver operating characteristic curves for the proposed method, denoted by psFGGM, and that of
Qiao et al. (2019), denoted by FGGM: (a) high-dimensional case of n = p/2; (b) large-sample case of n = 1.5p. In
both (a) and (b), �ps was used for the upper row and �non-ps for the lower row, with p = 50, 100, 150. Curves are
coded as psFGGM (– – –) and FGGM (——) at 90% of variance and psFGGM (—·—) at 95% of variance explained.

For psFGGM, the values of α used to compute the curve values are printed in each panel.

and tables, additional results are reported for the proposed method when L is increased to explain
at least 95% of the variance.

Figure 2(a) shows average true versus false positive rate curves for the high-dimensional case
of n = p/2. The smoothed curves are computed using the R package supsmu, which implements
SuperSmoother (Friedman, 1984), a variable-bandwidth smoother that uses cross-validation to
find the best bandwidth. Table 1 shows the mean and standard deviation of area-under-the-curve
estimates for various settings.When partial separability holds, i.e., � = �ps, the proposed method
exhibits uniformly higher true positive rates across the full range of false positive rates. Even
when partial separability is violated, i.e., � = �non-ps, the two methods perform comparably.
More importantly, and in all cases, the proposed method is able to leverage a 95% level of
variance explained, owing to the numerical stability mentioned above. Figure 2(b) and Table 1
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Table 1. Values of mean area under the receiver operating characteristic curve (with standard
errors in parentheses) for Fig. 2

� = �ps � = �non-ps

n p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

p/2 AUC FGGM90% 0.60 (0.03) 0.62 (0.02) 0.63 (0.01) 0.75 (0.03) 0.72 (0.02) 0.75 (0.02)
psFGGM90% 0.71 (0.04) 0.69 (0.02) 0.70 (0.01) 0.75 (0.03) 0.73 (0.02) 0.74 (0.03)
psFGGM95% 0.72 (0.04) 0.74 (0.02) 0.77 (0.02) 0.77 (0.03) 0.78 (0.02) 0.79 (0.02)

AUC15 FGGM90% 0.15 (0.04) 0.18 (0.02) 0.20 (0.01) 0.39 (0.04) 0.40 (0.02) 0.45 (0.03)
psFGGM90% 0.30 (0.05) 0.35 (0.02) 0.37 (0.02) 0.39 (0.04) 0.42 (0.03) 0.44 (0.04)
psFGGM95% 0.29 (0.05) 0.40 (0.03) 0.46 (0.03) 0.41 (0.05) 0.48 (0.03) 0.51 (0.03)

1.5p AUC FGGM90% 0.76 (0.02) 0.72 (0.02) 0.73 (0.01) 0.86 (0.02) 0.78 (0.02) 0.80 (0.03)
psFGGM90% 0.87 (0.03) 0.75 (0.02) 0.75 (0.01) 0.85 (0.02) 0.78 (0.02) 0.79 (0.03)
psFGGM95% 0.92 (0.02) 0.84 (0.02) 0.85 (0.02) 0.92 (0.03) 0.85 (0.02) 0.85 (0.02)

AUC15 FGGM90% 0.37 (0.04) 0.41 (0.02) 0.44 (0.02) 0.66 (0.03) 0.55 (0.03) 0.57 (0.04)
psFGGM90% 0.69 (0.04) 0.52 (0.02) 0.52 (0.02) 0.65 (0.04) 0.56 (0.04) 0.55 (0.05)
psFGGM95% 0.75 (0.04) 0.68 (0.03) 0.69 (0.03) 0.76 (0.06) 0.68 (0.03) 0.64 (0.03)

AUC, area under the receiver operating characteristic curve; AUC15, AUC computed for false positive rates in the
interval [0, 0.15], normalized to have maximum area 1.

summarize results for the large-sample case n = 1.5p, with similar conclusions. Comparisons
under additional simulation settings can be found in the Supplementary Material.

6. Application to functional brain connectivity

In this section, the proposed method is used to reconstruct the connectivity structure of the
brain using fMRI data from the Human Connectome Project. We analyse the ICA-FIX pre-
processed data variant that controls for spatial distortions and alignments across both subjects
and modalities (Glasser et al., 2013). In particular, we use the 1200 Subjects 3T MR imaging
data available at https://db.humanconnectome.org, which consists of fMRI scans
of individuals performing basic body movements. During each scan, a three-second visual cue
signals the subject to move a specific body part, which is then recorded for 12 seconds at a
temporal resolution of 0.72 seconds. For this work, we consider only the data from left- and
right-hand finger movements.

The left- and right-hand tasks data for n = 1054 subjects with complete metadata were
pre-processed by averaging the blood oxygen level-dependent signals over p = 360 regions of
interest, ROIs (Glasser et al., 2016).After removing cool-down and ramp-up observations, T = 16
time-points of pure movement tasks remained. Motivated by Theorem 1(iii), diagnostics were
performed to assess the plausibility of the partial separability assumption, with no indications to
the contrary; see the Supplementary Material for more details. Penalty parameters γ = 0.91 and
α = 0.95 were used to estimate very sparse graphs in both tasks.

Figure 3 compares activation patterns from left- and right-hand task datasets. Panels (a) and
(b) show the recovered ROI graph on a flat brain map, and only those ROIs with positive degree
of connectivity are coloured. Panels (c) and (d) show connected ROIs that are unique to each
task, whereas (e) shows only those that are common to both tasks. In this map, one can see that
almost all of the visual cortex ROIs in the occipital lobe are shared by both maps. This is expected
as both tasks require individuals to watch visual cues. Furthermore, the primary sensory cortex,
corresponding to touch and motor sensory inputs, and the intraparietal sulcus, corresponding to
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(a) Left-hand task (b) Right-hand task

(c) Activated ROIs unique to left-hand task (d) Activated ROIs unique to right-hand task

(e) Activated ROIs common to both tasks (f) ROI task activation map (Glasser et al., 2016)

Fig. 3. psFGGM-estimated functionally connected cortical ROIs for the left- and right-hand motor tasks. Each panel
shows a flat brain map of the left and right hemispheres, in that order. ROIs having a positive degree of connectivity
in each estimated graph are coloured based on their functionality (Glasser et al., 2016): visual (blue), motor (green),

mixed motor (light green), mixed other (red) and other (purple).

perceptual motor coordination, are activated during both left- and right-hand tasks. On the other
hand, the main difference between these motor tasks lies in the motor cortex near the central
sulcus. In Fig. 3 panels (c) and (d) the functional maps for the left- and right-hand tasks present
particular motor-related cortical areas in the right and left hemispheres, respectively. These results
are in line with the motor task activation maps obtained by Barch et al. (2013).

7. Discussion

Partial separability for multivariate functional data is a novel structural assumption with further
potential applications beyond graphical models. For example, it is well known that the functional
linear model is simplified by univariate functional principal component analysis, which parses
out the problem into a sequence of simple linear regressions; see Wang et al. (2016) and refer-
ences therein. The partially separable Karhunen–Loève expansion in (3) demonstrates a similar
potential, namely to break down a problem involving multivariate functional data into a sequence
of standard multivariate problems. This potential was shown in the present paper by decomposing
a functional graphical model into a sequence of standard multivariate graphical models.

Motivated by the brain connectivity example, we have presented partial separability for multi-
variate processes with components Xj defined on the same domain. However, this restriction is not
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necessary for defining partial separability. If the Xj are elements of L2(Tj) (j = 1, . . . , p), a more
general definition of partial separability would be the existence of orthonormal bases {ϕjl}∞l=1 of
L2(Tj) (j = 1, . . . , p), such that the vectors θl = (θl1, . . . , θlp)

T, where θlj = ∫
Tj

Xj(t)ϕjl(t) dt, are
mutually uncorrelated across l. Such a generalization is highly desirable, as many multivariate
functional datasets consist of functions on different domains. In fact, the above notion is appli-
cable even when the domains Tj are of different dimensions (Happ & Greven, 2018), and even
to a complex manifold such as the surface of the brain.

The proposed method for functional graphical model estimation is equally applicable to dense
or sparse functional data, observed with or without noise. However, rates of convergence will
inevitably suffer, as observations become more sparse or are contaminated with higher levels of
noise. The results in Theorem 4 of this paper or Theorem 1 of Qiao et al. (2019) have been derived
in the setting of fully observed functional data, so future work will include similar derivations
under more general observation schemes.
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