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Abstract—Backward reachability analysis is essential to
synthesizing controllers that ensure the correctness of closed-
loop systems. This paper is concerned with developing scalable
algorithms that under-approximate the backward reachable
sets, for discrete-time uncertain linear and nonlinear systems.
Our algorithm sequentially linearizes the dynamics, and uses
constrained zonotopes for set representation and computation.
The main technical ingredient of our algorithm is an efficient
way to under-approximate the Minkowski difference between
a constrained zonotopic minuend and a zonotopic subtrahend,
which consists of all possible values of the uncertainties and
the linearization error. This Minkowski difference needs to be
represented as a constrained zonotope to enable subsequent
computation, but, as we show, it is impossible to find
a polynomial-size representation for it in polynomial time.
Our algorithm finds a polynomial-size under-approximation in
polynomial time. We further analyze the conservatism of this
under-approximation technique, and show that it is exact under
some conditions. Based on the developed Minkowski difference
technique, we detail two backward reachable set computation
algorithms to control the linearization error and incorporate
nonconvex state constraints. Several examples illustrate the
effectiveness of our algorithms.

Index Terms—Computational geometry, backward reachability
analysis, Minkowski difference, constrained zonotope.

I. INTRODUCTION

BACKWARD reachability analysis is concerned with
finding a set of states (called the backward reachable set,

BRS for short), from where a proper control strategy can steer
the system’s trajectories into a prescribed target region in finite
time. The computation of BRSs is central to many control
synthesis problems with reachability [1], [2], safety [3], [4]
or even more complex temporal logic requirements [5], and
can be used to seek critical test cases for closed-loop systems
with complex controllers in the loop [6], [7]. Whenever the
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exact computation is hard, an under-approximation can still
be used to define a conservative strategy that accomplishes
the reachability task. For systems that exhibit modeling error
or are affected by environmental uncertainties, the target
region should be reached in a guaranteed manner, regardless
of these uncertainties. This leads to a conservative analysis
and hence smaller BRSs. For linear systems with additive
disturbances, this amounts to a Minkowski difference step
in the sequential computation of BRSs [1]. For nonlinear
systems, this is achieved by shrinking the target set [8],
[9], which can be implemented by Minkowski subtracting
a set that over-approximates the impact of the linearization
error and disturbances. This shrinking step is absent in the
forward reachability analysis, for which there is a sizable
literature focusing on over-approximation (see [10] and the
references therein). However, to under-approximate the BRSs
under uncertainties by employing those forward computation
techniques (e.g., [11], [12]), the shrinking step is necessary.

Minkowski Difference: Since the late 60s, a simple
approach using support functions is known to compute the
exact Minkowski difference (in halfspace representation, H-
Rep for short) between a polyhedral minuend (in H-Rep)
and a compact subtrahend [13]. For a thorough discussion
on this subject, see [14]. For high-dimensional polyhedra,
unfortunately, H-Reps are not suitable for other operations
such as affine transformation and Minkowski addition. This is
because an H-Rep’s complexity may grow exponentially after
these operations [15]. For example, the off-the-shelf tool MPT3
[16] may return an error when computing the Minkowski
addition between two 4-D polytopes. For applications like
reachability analysis that extensively involves such operations,
algorithms can be made more scalable at the cost of generality,
by considering a special class of polyhedra called zonotopes. A
zonotope can be expressed by its generator representation (G-
Rep for short), which is more suitable for affine transformation
and Minkowski addition. The Minkowski difference, however,
is not as easy to compute when the minuend is in G-Rep.
Compared to other operations, the problem of Minkowski-
subtracting a set from a zonotopic minuend (in G-Rep)
receives less attention, and is first studied in [17], where
the subtrahend is also assumed to be a zonotope (in G-
Rep). The exact Minkowski difference is not necessarily a
zonotope, but a zonotopic under-approximation can still be
found efficiently [18], [19] using the encoding techniques
developed in [20]. Based on these developments, a scalable
backward reachability algorithm is obtained for linear systems
with additive disturbances in [19].
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Constrained Zonotopes: To enjoy the same computational
advantages as zonotopes (and their G-Reps) while achieving
the generality of polyhedra, a new set representation called
constrained generator representation (CG-Rep for short) is
proposed in [21]. A set expressible by CG-Rep is called a
constrained zonotope. Not only can affine transformation and
Minkowski addition of constrained zonotopes be done easily
via CG-Rep manipulation, so can intersection, under which
zonotopes are not even closed. Moreover, all polytopes (i.e.,
bounded polyhedra) are expressible by CG-Rep. Therefore,
constrained zonotopes (in CG-Reps) serve as an efficient
tool for set-based control and estimation. They are more
general than zonotopes and are particularly suitable to deal
with state constraints. However, the Minkowski difference
operation, which is necessary for BRS computation, is
difficult for constrained zonotopes. In fact, we show that no
polynomial-time algorithm can find a polynomial-size CG-Rep
of the Minkowski difference between a constrained zonotopic
minuend (in CG-Rep) and a zonotopic subtrahend (in G-
Rep), unless P = NP. Neither is there, to the best of our
knowledge, an efficient way to compute a polynomial-size
under-approximation. This prohibits the use of constrained
zonotopes for BRS computation under uncertainties because a
compact representation of the BRS is essential for its efficient
end uses (e.g., checking if a state belongs to the BRS and
deriving the control law accordingly).

Contributions: In this paper, we use constrained zonotopes
to develop scalable algorithms that under-approximate the
BRSs for discrete-time nonlinear systems. Our approach is
based on sequential linearization, and the linearization error is
incorporated with a Minkowski difference step. Our technical
contributions are summarized as follows.

i) We propose an efficient way to under-approximate
the Minkowski difference between a constrained zonotopic
minuend (in CG-Rep) and a zonotopic subtrahend (in G-Rep).
Our approach is optimization-based. We show that a naïve use
of the encoding from [20] leads to a bilinear program, but by
extending the two-step approach proposed in [19], an under-
approximation can be found via a linear program. The size of
this linear program is polynomial in that of the minuend’s and
the subtrahend’s representations. Our approach hence gives a
polynomial-size under-approximation in polynomial time.

ii) We further analyze the conservatism of this extended
two-step approach. In particular, we show that any constrained
zonotopic minuend has a “rich” enough CG-Rep, for which
our two-step approach is exact. While it may be impractical
to always assume such a rich CG-Rep, this result opens the
direction of incrementally enriching the given CG-Rep of the
minuend to improve the two-step approach’s accuracy.

iii) Using the developed Minkowski difference technique,
we propose two methods: scaling method and splitting method
for BRS computation. The scaling method can compute BRSs
with convex constraints for longer time horizon than the
splitting method. In contrast, the splitting method can give
larger BRSs than those obtained by scaling method for a
short time horizon but have difficulties in computing BRSs
for long time horizon. However, the splitting method can
deal with nonconvex constraints and expand the BRSs into

different homotopy classes. Experiments show the advantages
of these constrained-zonotope-based methods: they give less
conservative BRSs under-approximation than those using
zonotopes [19], especially in the presence of state constraints,
and scales better than the Hamilton-Jacobi (HJB) method [22].

II. NOTATIONS & PRELIMINARIES

We use 1 (0, resp.) to represent a matrix of proper size
whose entries are all ones (zeros, resp.). We will not make the
size of such a matrix explicit unless it is not clear from context.
Let M be a matrix and M1 (M2, resp.) be another matrix
of the same height (width, resp.) as M , [M ,M1] ([M ;M2],
resp.) denotes the matrix obtained by concatenating M and
M1 horizontally (concatenating M and M2 vertically, resp.).
Further, N (M) is the null space of M and |M | is the matrix
that consists of the element-wise absolute values of M .

Let a, a ∈ Rn such that a ≤ a (≤ is element-wise), a
hyper-box [[a,a]] is the set {x ∈ Rn | a ≤ x ≤ a}. Let
G ∈ Rn×N and c ∈ Rn, a zonotope Z = ⟨G, c⟩ is defined
to be the set

{
Gθ + c | θ ∈ [[−1,1]]}. The tuple ⟨G, c⟩

is called the generator-representation (or G-Rep) of Z . The
matrix G is the generator matrix and c is the center of Z .
A set CZ is a constrained zonotope if it can be expressed as
{Gθ + c | θ ∈ [[−1,1]],Aθ = b}, where A ∈ Rm×N and
b ∈ Rm. The tuple ⟨G, c,A, b⟩ is a constrained generator
representation (or CG-Rep) of CZ , A is the constraint matrix
and b is the constraint vector of this CG-Rep. A zonotope
⟨G, c⟩ is a constrained zonotope whose CG-Rep has the same
G, c and empty A, b. Further, let H ∈ Rℓ×N and a ∈ Rℓ, a
set is an AH-polytope if it can be expressed as {Gθ+c |Hθ ≤
a}. Zonotopes and constrained zonotopes are AH-polytopes,
i.e., ⟨G, c⟩ = {Gθ + c | [I;−I]θ ≤ 1} and ⟨G, c,A, b⟩ =
{Gθ + c | [A;−A; I;−I]θ ≤ [b;−b;1]}.

Let S , R ⊆ Rn be two sets, x ∈ Rn be a vector and
M ∈ Rm×n be a matrix, we define M S := {Ms | s ∈ S}
and x+S := {x+s | s ∈ S}. Further, S⊕R := {s+r | s ∈
S, r ∈ R} is the Minkowski sum of S and R, and S ⊖R :=
{x ∈ Rn | x +R ⊆ S} is the Minkowski difference between
S and R. Let P ⊆ Rp, S × P := {[s;p] | s ∈ S,p ∈ P} is
the product of S and P .

The following set operations can be performed by CG-Rep
manipulation for constrained zonotopes.

Lemma 1. [From [18], [21]] Let CZ = ⟨G, c,A, b⟩ ⊆ Rn,
CZi = ⟨Gi, ci,Ai, bi⟩ ⊆ Rp for i ∈ {1, 2} be constrained
zonotopes, M ∈ Rm×n be a matrix and H = {x ∈ Rn |
h⊤x ≤ a} be a halfspace, then

i) M CZ = ⟨MG,Mc,A, b⟩,
ii) CZ1⊕CZ2 = ⟨[G1,G2], c1+c2, diag(A1,A2), [b1; b2]⟩,

iii) CZ1 ∩ CZ2 = ⟨[G1,0], c1, [diag(A1,A2); [G1,−G2]],
[b1; b2; c2 − c1]⟩,

iv) if CZ∩H ̸= ∅, then CZ∩H = ⟨[G,0], c, [A,0;h⊤G, d
2 ],

[b; a− h⊤c− d
2 ]⟩ where d = a− h⊤c+ ∥h⊤G∥1,

v) CZ ×CZ1 = ⟨diag(G,G1), [c; c1], diag(A,A1), [b; b1]⟩.
The following lemma follows from the definitions.

Lemma 2. Let A, B, C ⊆ RN and M ∈ Rn×N
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i) M (A⊕ B) = M A⊕M B.
ii) M (A⊖ B) ⊆M A⊖M B.

iii) (A⊖ C) ∪ (B ⊖ C) ⊆ (A ∪ B)⊖ C.
iv) A⊖ B ⊕ C ⊆ A⊕ C ⊖ B.

For bullet ii), iii) and iv), equality does not hold in general.

Lemma 3. [[20], Theorem 1] Let Si := ci+Gi{θi |Hiθi ≤
ai} ⊆ Rn for i ∈ {1, 2} be two AH-polytopes. Suppose that
S1 has nonempty interior. Then a sufficient condition for S1 ⊆
S2 is that there exist matrices Γ,β,Λ of proper sizes such that

G1 = G2Γ, c2 − c1 = G2β, ΛH1 = H2Γ,

Λa1 ≤ a2 +H2β, Λ ≥ 0. (1)

The condition in Eq. (1) is known as the encoding of
AH-polytope containment. The numbers of variables and
constraints in Eq. (1) are polynomial in the sizes of ci, Gi,
Hi, ai. Since the zonotope containment problem, which is a
special instance of the AH-polytope containment problem, is
known to be co-NP hard [23], the linear condition in Eq. (1)
cannot possibly be necessary in general unless P = NP.

Lemma 4. [[14], Theorem 2.3] Let S ⊆ Rn be compact, then
{x |Hx ≤ a} ⊖ S = {x |Hx ≤ a}, where ai = maxh⊤

i S
is the ith element of a and h⊤

i is the ith row of H .

III. PROBLEM DESCRIPTION

Consider the following discrete-time nonlinear system:

xt+1 = f(xt,ut) +wt, (2)

where x ∈ Rn is the state, u ∈ U ⊆ Rp is the control input,
and w ∈ W ⊆ Rn is the additive disturbance input. Given a
set Xsafe of safe states and a set X0 of target states, the kth

backward reachable set Xk is defined recursively as follows:

Xk = Pre(Xk−1) :=

{
x ∈
Xsafe

∣∣∣∣ ∃u ∈ U : ∀w ∈ W :
f(x,u) +w ∈ Xk−1

}
, (3)

Our goal is to compute X k, represented by constrained
zonotopes, s.t. X k ⊆ Xk under the following assumptions.

Assumption 1. The sets X0, U are constrained zonotopes (CG-
Reps given). The disturbance set W is a zonotope (G-Rep
given). The safe set Xsafe =

⋃
p{x |Hpx ≤ ap} is the union

of finitely many polytopes in their H-Reps.

Our solution approach uses sequential linearization. If the
system is linear, i.e., f(x,u) = Ax+Bu for some invertible
matrix A 1, then

Xk = Xsafe ∩A−1(Xk−1 ⊖W ⊕−B U). (4)

For nonlinear systems, in each step, we linearize f at some
[x∗;u∗] and compute a under-approximation X k of Xk by
applying Eq. (4) to the previously obtained X k−1 and the linear
dynamics. Particularly, to ensure that X k−1 can be reached
from X k under the nonlinear dynamics, we conservatively
approximate the linearization error by an additive term that

1The matrix A here is not to be confused with the constraint matrix in the
CG-Rep of a constrained zonotope.

takes value from a zonotopic set L, and require X k−1 ⊖L to
be reachable from X k under the linear dynamics (i.e., replace
W in Eq. (4) by L ⊕W).

The main challenge in the above approach is twofold:
C1) To implement Eq. (4) under Assumption 1, while

the affine transformation, intersection and Minkowski
addition can be done via CG-Rep manipulation (Lemma
1), there still lacks an efficient way to compute (or to
under-approximate) the Minkowski difference between a
constrained zonotopic minuend Xk−1 and a zonotopic
subtrahend W (or L ⊕ W). Subsequent computations
require this Minkowski difference to be in CG-Rep.

C2) To compute X k, one needs to make a guess of L
that encompasses all possible values of the additive
linearization error over X k, without knowing X k a priori.

The rest of the paper is devoted to tackling these two
challenges. In Sec. IV, we develop an efficient algorithm for
Minkowski difference under-approximation. We further show
that our algorithm is exact for the problem instances whose
minuend set has sufficiently rich CG-Reps (Sec. V). In Sec. VI,
we explore two strategies to tackle challenge C2) and present
two detailed algorithms that combine all ingredients together
for BRS under-approximation.

IV. UNDER-APPROXIMATING CZ ⊖ Z
This section is concerned with under-approximating CZ⊖Z ,

where CZ = ⟨G, c,A, b⟩ ⊆ Rn is a constrained zonotope
and Z = ⟨G′, c′⟩ ⊆ Rn is a zonotope. We will show
that computing a compact CG-rep of the exact Minkowski
difference is hard (Sec. IV-A). Hence we restrict our under-
approximation to be a constrained zonotope CZd that shares
the same “template” as the minuend CZ , i.e., CZd =
⟨G diag(δ), cd,A diag(δ), bd⟩ for some δ ∈ [[0,1]], cd ∈ Rn

and bd ∈ Rm. Under such restrictions, one can enforce
CZd ⊕ Z ⊆ CZ using the constraints given by Lemma 3
and find CZd by solving an optimization problem. However,
this optimization problem, as will be shown in Sec. IV-B, is
a bilinear program. We refer to the above approach as the
“naïve approach”. To find a CZd more efficiently, in Sec.
IV-C, we propose a two-step approach that amounts to solving
a linear program. We further show how to reduce the size of
this linear program and present some results to understand how
conservative our under-approximation is.

A. Complexity Analysis
We show that, given the CG-Reps of CZ and Z , it is

impossible to find a polynomial-size CG-Rep of CZ ⊖ Z in
polynomial time, unless P = NP. This motivates us to find an
under-approximation that admits a polynomial-size CG-Rep
computable in polynomial time.

Proposition 1. No algorithm satisfies the following two
conditions simultaneously unless P = NP.

a) It finds ⟨G′′, c′′,A′′, b′′⟩ = CZ ⊖ Z in poly(n,N,N ′)
time, where N (N ′, resp.) is the width of G (G′, resp.).

b) The widths and heights of matrices G′′, c′′,A′′, b′′ are
poly(n,N,N ′).
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Proof: Assume that an algorithm A satisfies conditions a)
and b) simultaneously. Since Z ⊆ CZ iff 0 ∈ CZ⊖Z , whether
Z ⊆ CZ can be determined via the following procedure:

1) find ⟨G′′, c′′,A′′, b′′⟩ by algorithm A,
2) claim Z ⊆ CZ iff 0 ∈ ⟨G′′, c′′,A′′, b′′⟩.

By bullet a), step 1) takes poly(n,N,N ′) time to run. Further,
step 2) amounts to solving the following linear program:

find θ
s.t. G′′θ + c′′ = 0, A′′θ = b′′, −1 ≤ θ ≤ 1

(LP)

Let N ′′ (m′′, resp.) be the width (height, resp.) of A′′, there
are N ′′ variables and 2N ′′+m′′+n constraints in (LP). These
two numbers are poly(n,N,N ′) by bullet b). Therefore, the
above two-step procedure takes poly(n,N,N ′) time to run.
However, it is co-NP hard [23] to decide if Z ⊆ CZ given
the CG-Reps of Z and CZ as the inputs, which consist of
n(N+N ′+2) reals. Hence the existence of such an algorithm
A that satisfies a) and b) implies P = NP.

B. Naïve Approach with Bilinear Constraints
With the aforementioned naïve approach, we need to solve

the following optimization problem:

maxδ,cd,bd
∥δ∥1

s.t. CZd ⊕Z ⊆ CZ
. (5)

The objective function ∥δ∥1 is used as a heuristic to maximize
the set CZd. To apply Lemma 3, we write CZ as an AH-
polytope, i.e.,

CZ = c+G{θ | [A;−A; I;−I]θ ≤ [b;−b;1]}, (6)

and write CZd ⊕Z either as

cd + c′ + [G diag(δ),G′]{ξ | [A diag(δ),0;
−A diag(δ),0; I;−I]ξ ≤ [bd;−bd;1]}, (7)

or as

cd + c′ + [G,G′]{ξ | [A,0;−A,0; I;−I]ξ
≤ [bd;−bd; δ;1; δ;1]}. (8)

Unfortunately, Lemma 3 gives bilinear constraints when
applied to Eqs. (6),(7) or to Eqs. (6),(8). If (7) is used, “H1” in
(1) depends on the variable δ and the term “ΛH1” is bilinear;
if (8) is used, “a1” in (1) depends on δ and “Λa1” is bilinear.

The key observation here is that the encoding in Lemma 3
is more favorable (i.e., tends to be linear) if the variables are
related to the outer set. On the contrary, the above encoding
is bilinear because the variable δ is related to the inner set.

C. Two-Step Approach: Overview
We propose an alternative approach that finds an under-

approximation CZd of CZ ⊖Z with the following two steps.
I) Compute a vector σ ∈ [[0,1]] such that CZs =
⟨G diag(σ), cs, A diag(σ), bs⟩ encloses Z .

II) Compute CZd = ⟨G diag(1 − σ), c − cs,A diag(1 −
σ), b− bs⟩.

Since Z ⊆ CZs by construction, CZ ⊖ CZs is an under-
approximation of CZ ⊖ Z . The significance of Step I) is
that, since the variable σ is related to the outer set CZs, the
encoding of Z ⊆ CZs by Lemma 3 is linear. Further, since
the generator matrix G and the constraint matrix A of the
minuend CZ are used as “templates” when constructing CZs,
it follows that CZ ⊖ CZs ⊇ CZd = ⟨G diag(1 − σ), c −
cs,A diag(1 − σ), b − bs⟩. Hence CZ ⊖ CZs can be further
under-approximated via a simple CG-Rep manipulation. The
above two-step approach extends the one in [19] for under-
approximating the Minkowski difference of two zonotopes.

In what follows, we first show in details how to implement
Step I) by solving a linear program. We further simplify this
linear program by showing that it is optimal to choose cs = c′

and bs = 0 in Step I). Then we prove that CZ ⊖CZs ⊇ CZd.
As a step to understand the conservatism of our under-
approximation, we will also give a sufficient condition for
CZ ⊖ CZs = CZd to hold.

D. Step I: Over-approximating Z by CZs

Our goal is to solve

minσ,cs,bs
∥σ∥1

s.t. Z ⊆ CZs
, (9)

where Z = ⟨G′, c′⟩ and CZs = ⟨G diag(σ), cs,
A diag(σ), bs⟩. In (9), we minimize ∥σ∥1. This can be seen
as a heuristic to minimize the enclosing constrained zonotope
CZs. Note that CZs can be rewritten as cs + GSbs

where
Sbs

= {σ ∈ [[−σ,σ]] | Aσ = bs}.
The following result shows that, to solve the optimization

problem in (9), one can choose cs = c′ and bs = 0 without
loss of optimality.

Proposition 2. Let Sbs
:= {σ ∈ [[−σ,σ]] | Aσ = bs} and Z

be a zonotope centering at c′. We have

min{∥σ∥1 | Z ⊆ c′ +GS0}
≤ min{∥σ∥1 | ∃cs, bs : Z ⊆ cs +GSbs}. (10)

Proof: We first prove that Z ⊆ cs +GSbs
implies Z ⊆

c′ + GS0. Note that Z is symmetric w.r.t its center c′, i.e.,
−Z + c′ = Z − c′. By Z ⊆ cs +GSbs , we have

Z − c′

⊆ (cs − c′) +GSbs
∩ −(cs − c′)−GSbs

=

{
Gθ+

(cs − c′)

∣∣∣∣ θ,µ ∈ [[−σ,σ]],Aθ = Aµ = bs,
Gθ + (cs − c′) = −Gµ− (cs − c′)

}
⊆
{
Gθ −G

(
µ+θ
2

) ∣∣∣θ,µ ∈ [[−σ,σ]],A(θ − µ) = 0
}

=
{
G
(

θ−µ
2

) ∣∣∣θ−µ
2 ∈ [[−σ,σ]],A

(
θ−µ
2

)
= 0

}
= {Gσ | σ ∈ [[−σ,σ]],Aσ = 0} = GS0 (11)

Therefore, we have Z ⊆ c′ + GS0. Since Sbs
and S0 are

defined by the same σ, Eq. (10) follows readily.

Remark 1. Proposition 2 holds for any set Z that is symmetric
w.r.t. c′ and any other cost function of σ than ∥σ∥1.
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Next, we show that, with the sufficient condition for Z ⊆
CZs given in Lemma 3, how to find a suboptimal solution of
(9) by solving a linear program.

Proposition 3. Suppose that Z = ⟨G′, c′⟩ has nonempty
interior. Let σ be part of a minimizer of the following linear
program:

min
σ,cs,bs,Γ,β,Λ

∥σ∥1
s.t. G′ = GΓ,Gβ = cs − c′,

Λ[I;−I] = [A;−A; I;−I]Γ,
Λ1 ≤ [bs;−bs;σ;σ] + [A;−A; I;−I]β,
0 ≤ σ ≤ 1, Λ ≥ 0

(min-out)

then Z ⊆ CZs = ⟨G diag(σ), cs, A diag(σ), bs⟩.
Proof: Note that the constrained zonotope CZs and the

zonotope Z can be written as

CZs = cs +G{σ | [A;−A; I;−I]σ ≤ [bs;−bs;σ;σ]}, (12)
Z = c′ +G′{σ | [I;−I]σ ≤ 1}. (13)

Therefore CZs ⊇ Z can be enforced by a set of linear
constraints using Lemma 3, which leads to (min-out).

In spite of Proposition 2, we keep cs, bs as free variables
in (min-out). In what follows, we show that one can also set
cs = c′ and bs = 0 in (min-out) without loss of optimality.
This result leads to a linear program equivalent to (min-out)
with fewer variables and constraints. Note that this result
does not follow immediately from Proposition 2 because the
condition in Lemma 3 is only sufficient but not necessary in
general (in fact, if that condition were also necessary, it would
be straightforward that cs = c′ and bs = 0 is optimal for
(min-out)). The proof is based on the following observations.

Proposition 4. Let (σ, cs, bs,Γ,β,Λ) be a feasible solution
of (min-out), then i) cs = Gβ − c′, ii) bs = −Aβ and iii)
AΓ = 0, and iv) (σ, c′,0,Γ,0,Λ) is feasible for some Λ.

Proof: Bullet i) follows from the constraint Gβ = cs−c′.
By Λ ≥ 0 (hence Λ1 ≥ 0) and Λ1 ≤ [bs;−bs;σ;σ] +
[A;−A; I;−I]β, we have

0 ≤ Λ1 ≤ [bs;−bs;σ;σ] + [A;−A; I;−I]β. (14)

This implies that 0 ≤ bs + Aβ and 0 ≤ −bs − Aβ, i.e.,
bs +Aβ = 0. Hence bullet ii) holds. Also, Λ1 = [02m;σ +
β;σ − β] and hence the upper part of matrix Λ must be all
zeros, i.e., Λ = [02m×2N ′ ; Λ̃] for some Λ̃ ≥ 0, where m is the
height of A and N ′ is the width of G′. This further implies
that AΓ = 0 because Λ[I;−I] = [A;−A; I;−I]Γ.

To prove bullet iv), define Λ as follows. The topmost 2m
rows of Λ are all zeros. For i = 1, 2 . . . N , where N is the
width of G,

i) if the ith element of β is non-positive, define the
2m + ith row of Λ to be the same as that of Λ, i.e.,
[Λ2m+i,1:N ′ ,Λ2m+i,N ′+1:2N ′ ], and the 2m+N+ith row
of Λ to be [Λ2m+i,N ′+1:2N ′ ,Λ2m+i,1:N ′ ];

ii) if the ith element of β is positive, define the 2m +
N + ith row of Λ to be the same as that of Λ, i.e.,

[Λ2m+N+i,1:N ′ ,Λ2m+N+i,N ′+1:2N ′ ], and the 2m + ith

row of Λ to be [Λ2m+N+i,N ′+1:2N ′ ,Λ2m+N+i,1:N ′ ].
By construction, Λ has a special structure, i.e.,
Λ = [02m×2N ′ ;Λ1,Λ2;Λ2,Λ1]. Moreover, Λ[I;−I] =
[02m;Γ;−Γ] and that Λ1 ≤ [02m;σ − |β|;σ − |β|] ≤
[02m;σ;σ]. Together with bullet i) ii) and iii), it is
straightforward to check that (σ, c′,0,Γ,0,Λ) is feasible.

Proposition 4 leads to a simplification of (min-out).

Theorem 1. The linear program (min-out) is equivalent to

minΓ ∥|Γ|1∥1
s.t. [G;A]Γ = [G′;0], |Γ|1 ≤ 1

. (simple)

Proof: If Γ minimizes (simple), (σ, c′,0,Γ,0,Λ)
is feasible to (min-out), where σ = |Γ|1, Λ =
[02m×2N ′ ;Λ1,Λ2;Λ2,Λ1], Λ1 = Γ+ := (|Γ| + Γ)/2 and
Λ2 = Γ− := (|Γ| − Γ)/2. Moreover, the cost given by this
feasible solution is ∥σ∥1 = ∥|Γ|1∥1, i.e., the same as the
minimum of (simple).

Suppose that (σ, cs, bs,Γ,β,Λ) minimizes (min-out).
Construct Λ from Λ as in the proof of Proposition 4, and
let [Λ1,Λ2] consist of the 2m+ 1st to 2m+N th rows of Λ.
Then Γ = Λ1 − Λ2 is feasible to (simple). Further, the cost
associated with Γ is ∥|Γ|1∥1 ≤ ∥σ∥1. This is because, by
Proposition 4, (σ, c′,0,Γ,0,Λ) is also feasible to (min-out)
and hence σ ≥ Λ11+Λ21 = |Γ|1 must hold.

By Theorem 1, we can find the minimizer Γ of (simple),
define σ = |Γ|1 and ⟨G diag(σ), c′,A diag(σ),0⟩ is
guaranteed to enclose Z . From now no, we will use CZs to
denote the constrained zonotope ⟨G diag(σ), c′,A diag(σ),0⟩
and omit the subscript “0” of the set S0 = {σ ∈ [[−σ,σ]] |
Aσ = 0}.

The simplified optimization problem (simple) has a
geometric interpretation. Its decision variable Γ can be viewed
as the generator matrix of a zonotope ⟨Γ,0⟩ ⊆ RN , where N
is the width of G. The inner zonotope Z is the image of ⟨Γ,0⟩
under linear map G and translation c′. Moreover, ⟨Γ,0⟩ is in
the null space of A, and [[−σ,σ]] is the smallest hyper-box
that encloses ⟨Γ,0⟩ as σ = |Γ|1. With this interpretation, it
is easy to see Z ⊆ CZs. To be precise,

Z = ⟨G′, c′⟩
= {GΓθ + c′ | θ ∈ [[−1,1]]} (GΓ = G′)

= {Gσ + c′ | σ ∈ ⟨Γ,0⟩}
= {Gσ + c′ | σ ∈ ⟨Γ,0⟩,Aσ = 0} (AΓ = 0)

⊆{Gσ + c′ | σ ∈ [[−σ,σ]],Aσ = 0} (σ = |Γ|1)
= c′ +GS = CZs. (15)

Remark 2. For arbitrary constrained zonotope ⟨G, c,A, b⟩,
the unit hyper-box [[−1,1]] may not necessarily be tight, i.e.,
it is not the smallest hyper-box that encloses {θ ∈ [[−1,1]] |
Aθ = b}. Such a tight hyper-box can be founded by solving
2N linear programs, where N is the width of matrix G, or can
be outer-approximated more efficiently by an iterative method
proposed in [21]. However, for ⟨G diag(σ), c′,A diag(σ),0⟩
obtained by solving (simple), [[−1,1]] is tight. This is because,
by the above interpretation, [[−σ,σ]] is the smallest hyper-box
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that contains ⟨Γ,0⟩ ⊆ {σ ∈ [[−σ,σ]] | Aσ = 0} = S . Hence
[[−σ,σ]] is also the smallest hyper-box containing S . As we
will see, the tightness of [[−σ,σ]] plays an important role in
the conservatism analysis of Step II.

Remark 3. The cost function ∥|Γ|1∥1 of (simple) is the
absolute element sum of the matrix Γ. One may ask whether
minimizing this cost would achieve |Γ|1 ≤ 1 whenever
possible, even after removing the constraint |Γ|1 ≤ 1. This
is not the case in general though it happens often times. If we
ignore |Γ|1 ≤ 1 in (simple) and minimize the Frobenius norm
of Γ instead, it is equivalent to finding the minimum norm
solution of the least square problem defined by [G;A]Γ =
[G′;0]. If this minimum norm solution also satisfies |Γ|1 ≤ 1,
then it is a good estimate of the minimizer of (min-out) and
can be found more efficiently.

E. Step II: CZ ⊖ CZs by CG-Rep Manipulation

We further under-approximate CZ ⊖ CZs by CZd =
⟨G diag(1 − σ), c − c′,A diag(1 − σ), b⟩. It is tempting to
conclude that CZd = CZ⊖CZs, but this is not true in general.
In what follows, we show CZd ⊆ CZ ⊖ CZs and give a
sufficient condition for this under-approximation to be exact.

The following two propositions will be useful later.

Proposition 5. Define

M = {µ ∈ [[−δ, δ]]⊕ [[−σ,σ]] | Aµ = b}, (16)
S = {σ ∈ [[−σ,σ]] | Aσ = 0}, (17)
D = {δ ∈ [[−δ, δ]] | Aδ = b}. (18)

Assume that [[−σ,σ]] is the smallest hyper-box that contains
S . Then M⊖S = D.

Proof: This is a direct result of Lemma 4. Particularly,
since [[−σ,σ]] is the smallest hyper-box that contains S ,
max±e⊤i S = ±σi, where ei is the ith natural basis vector
and σi is the ith element of σ.

Proposition 6. DefineM, S ⊆ RN the same as in Proposition
5, let G ∈ Rn×N and N := N (A) ∩ N (G). Then GM⊖
GS = G (M⊕N ⊖ S).

Proof: By Lemma 2, bullets i) and ii)

G (M⊕N ⊖ S) ⊆ G (M⊕N )⊖GS
= GM⊖GS. (19)

It remains to prove that GM⊖GS ⊆ G (M⊕N⊖S). To this
end, let x ∈ GM⊖GS be arbitrary. Since x⊕GS ⊆ GM,
we have

∀σ ∈ S : ∃µσ ∈M : x+Gσ = Gµσ. (20)

Now let σ, σ′ ∈ S be arbitrary, Eq. (20) tells us

Aµσ = Aµσ′ = b, (21)
G(µσ − σ︸ ︷︷ ︸

=:δσ

) = G(µσ′ − σ′︸ ︷︷ ︸
=:δσ′

) = x. (22)

Clearly, δσ − δσ′ ∈ N by Eqs. (21), (22) and the fact that σ,
σ′ ∈ N (A). This further implies that

δσ + σ′ = δσ′ − δσ′ + δσ + σ′

= µσ′ + (δσ − δσ′)︸ ︷︷ ︸
∈N

∈M⊕N . (23)

Since σ′ ∈ S is arbitrary, Eq. (23) implies that

δσ ⊕ S ⊆M⊕N ⇐⇒ δσ ∈M⊕N ⊖ S. (24)

Note that, by Eq. (20), x = G(µσ − σ) = Gδσ . Combining
this with Eq. (24) yields x ∈ G (M⊕N ⊖ S).

Now we state the main result of this part.

Theorem 2. Let CZ = ⟨G, c,A, b⟩ and CZs =
⟨Gdiag(σ), c′,Adiag(σ),0⟩, then CZd = ⟨G diag(1−σ), c−
c′,A diag(1−σ), b⟩ ⊆ CZ ⊖ CZs. Further, if N := N (G)∩
N (A) = {0}, we have CZd = CZ ⊖ CZs.

Proof: Note that CZs = c′ + GS where S = {σ ∈
[[−σ,σ]] | Aσ = 0} (see Remark 2). Also note that CZ =
c + GM where M = {µ ∈ [[−1,1]] | Aµ = b} = {µ ∈
[[−1 + σ,1 − σ]] ⊕ [[−σ,σ]] | Aµ = b}. Define D = {δ ∈
[[−1+σ,1−σ]] | Aδ = b}. We have D =M⊖S by Remark
2 and Proposition 5. Also note that

CZ ⊖ CZs

= (c− c′) +GM⊖GS
= (c− c′) +G(M⊕N ⊖ S) (Proposition 6)
⊇ (c− c′) +G(M⊖S ⊕N ) (Lemma 2)
= (c− c′) +G(M⊖S)⊕GN (Lemma 2)
= (c− c′) +G(M⊖S) (N ⊆ N (G))

= (c− c′) +GD = CZd. (Proposition 5) (25)

Note that “⊇” in Eq. (25) holds as “=” if N = {0}.

Fig. 1. Example 1.

Example 1. With an example, we illustrate that CZ ⊖ CZs ̸=
CZd in general. Define

G =

[
1 0 0 0.1
0 1 0 0.8

]
, c =

[
0
0

]
, (26)

A = [ −1 1 0.3 1 ] , b = 1, (27)
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and σ = [0.2, 0.2, 0.2, 0.2]⊤. Let CZ = ⟨G, c,A, b⟩ and CZs

be defined as in Proposition 3. Fig. 1 shows that there is a gap
between CZ ⊖ CZs and its under-approximation CZd.

Remark 4. Since CZ ⊖ CZs ⊋ CZd in general, it is possible
that CZ ⊖CZs ̸= ∅ but CZd = ∅. This issue can be mitigated
by enforcing the following constraint in (min-out): θ ∈ [[−1+
σ,1−σ]], Aθ = b, where θ is a decision variable. This extra
constraint will ensure that CZd ̸= ∅ whenever possible.

V. EXACTNESS UNDER A RICH CG-REP OF CZ
The CG-Rep of a constrained zonotope is not unique. A

notable feature of our two-step approach is: the obtained under-
approximated difference CZd varies with the CG-Rep of the
minuend CZ . In fact, if the CG-Rep of CZ is “rich” enough,
the two-step approach is exact when CZ ⊖Z ̸= ∅. Such a rich
CG-Rep of CZ can be constructed as follows. Let

1) H ∈ Rℓ×n, a ∈ Rℓ be s.t. {x ∈ Rn |Hx ≤ a} = CZ;
2) h⊤

i ̸=0 be the ith row of H and ai the ith element of a
(if h⊤

i = 0, then ai = 0 and this row can be removed);
3) r > 0 be a sufficiently large real number s.t. CZ0 :=
⟨r In, c⟩ encloses CZ for some c ∈ c′ + (CZ ⊖ Z) ̸= ∅,
where c′ is the center of Z;

4) ⟨G, c,A, b⟩ be the CG-Rep of CZℓ obtained via
iteratively applying Lemma 1 iv) to the following
intersection operation, which leaves the center c
unchanged:

CZi = CZi−1 ∩ {x | h⊤
i x ≤ ai}, i = 1, 2, . . . , ℓ. (28)

Clearly, ⟨G, c,A, b⟩ is a CG-Rep of set CZ because
⟨G, c,A, b⟩ = CZℓ = {x |Hx ≤ a} = CZ . To be precise,

G = [r In,0n×ℓ], (29)
A = [rH, diag( 12d)], (30)

di = ai − h⊤
i c+ r∥h⊤

i ∥1, i = 1, 2, . . . , ℓ, (31)

bi =
ai−h⊤

i c−r∥h⊤
i ∥1

2 , i = 1, 2, . . . , ℓ, (32)

where di (bi, resp.) is the ith element of vector d (b, resp.).
In the rest of this section, we use ⟨G, c,A, b⟩ as the CG-

Rep of the minuend CZ and show that Step I and Step II are
exact when CZ ⊖ Z ̸= ∅.

The following lemma will be useful.

Lemma 5. Assume that CZ ⊖Z ̸= ∅, then di > 0 and [G;A]
is invertible.

Proof: Recall that CZ = {x | Hx ≤ a}, Z = ⟨c′,G′⟩.
Since c ∈ c′ + (CZ ⊖ Z), i.e., c− c′ + Z ⊆ CZ , we have

ai ≥ maxh⊤
i (c− c′ + Z) = h⊤

i c+ ∥h
⊤
i G

′∥1. (33)

By Eqs. (31), (33), di ≥ ∥h⊤
i G

′∥1 + r∥h⊤
i ∥1. Since hi ̸= 0

and r > 0 (see bullets 2), 3)), di > 0.
By Eqs. (29), (30), [G;A] = [r In,0; rH, diag(d2 )] ∈

R(n+ℓ)×(n+ℓ). Since r > 0 and di > 0 for i = 1, 2, . . . , ℓ,
[G;A] is a triangular matrix with non-zero diagonal entries.
Therefore [G;A] is invertible.

The following result says that Step I is exact.

Proposition 7. Suppose that CZ ⊖ Z ̸= ∅, then (simple) is
feasible. Moreover, let Γ be the minimizer of (simple), define
σ = |Γ|1 and CZs = ⟨G diag(σ), c′,A diag(σ),0⟩, then
CZ ⊖ CZs = CZ ⊖ Z .

Proof: By Lemma 5, there is a unique Γ satisfying the
equality constraint [G;A]Γ = [G′;0], i.e.,

Γ =
[
1
rG

′;−diag(d2 )
−1HG′], (34)

In what follows, we show that, assuming that ⟨r In, c⟩ ⊇ CZ ,
the constraint |Γ|1 ≤ 1 holds automatically. Note that

σ = |Γ|1 =
[
1
r |G

′|1;
∣∣diag(d2 )

−1HG′∣∣1]. (35)

i) For j = 1, 2 . . . , n, σj =
1
r∥e

⊤
j G

′∥1 where ej is the jth

natural basis. Since ⟨r In, c⟩ ⊇ CZ ⊇ c − c′ + Z =
⟨G′, c′⟩, we have

e⊤j c
′ + ∥e⊤j G

′∥1 = max e⊤j (c− c′ + Z)
≤ max e⊤j ⟨r In, c⟩ = e⊤j c

′ + r. (36)

Therefore ∥e⊤j G
′∥1 ≤ r and σj ≤ 1.

ii) For i = 1, 2, . . . , ℓ, σn+i = 2
di
∥h⊤

i G
′∥1 =

2∥h⊤
i G′∥1

∥h⊤
i G′∥1+r∥h⊤

i ∥1
. Again, since ⟨r In, c⟩ ⊇ c− c′ +Z =

⟨G′, c′⟩, we have

h⊤
i c+ ∥h

⊤
i G

′∥1 = maxh⊤
i (c− c′ + Z)

≤ maxh⊤
i ⟨r In, c⟩ = h⊤

i c+ r∥h⊤
i ∥1. (37)

Therefore ∥h⊤
i G

′∥1 ≤ r∥h⊤
i ∥1 and σn+i ≤ 1.

So far we have proved that Γ is the unique feasible solution
(hence the minimizer) of (simple).

It is known from Lemma 4 that CZ ⊖ Z = CZ ⊖ {x |
Hx ≤ as}, where as ∈ Rℓ and its ith element as,i = h⊤

i c
′+

∥h⊤
i G

′∥1. Note that, for i = 1, 2, . . . , ℓ,

maxh⊤
i CZs

= maxh⊤
i {Gσ + c′ | σ ∈ [[−σ,σ]],Aσ = 0}

=h⊤
i c

′ +max

{
rh⊤

i σ1:n

∣∣∣∣ σ ∈ [[−σ,σ]], rHσ1:n =
−diag(d2 )σn+1:n+ℓ

}
≤h⊤

i c
′ +max{−di

2 σn+i | σ ∈ [[−σ,σ]]}
=h⊤

i c
′ + di

2 σn+i

=h⊤
i c

′ + ∥h⊤
i G

′∥1 = as,i, (38)

where σ1:n (and σn+1:n+ℓ, resp.) is a vector that consists of
the first n elements (and the last ℓ elements, resp.) of σ. By
Eq. (38), CZs ⊆ {x | Hx ≤ as}. Together with the fact that
Z ⊆ CZs, we have CZ ⊖ CZs = CZ ⊖ Z .

The following result says that Step II is exact.

Proposition 8. Let CZs = ⟨G diag(σ), c′,A diag(σ),0⟩ and
CZd = ⟨G diag(1−σ), c− c′,A diag(1−σ), b⟩, where σ is
defined the same as in Proposition 7, then CZ ⊖CZs = CZd.

Proof: By Lemma 5, N (G) ∩ N (A) = N ([G;A]) =
{0}. By Theorem 2, CZ ⊖ CZs = CZd.
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Although CZ ⊖Z ̸= ∅ is assumed in Propositions 7, 8, the
result CZd returned by the two-step approach is exact in the
following sense, regardless of this assumption.

Theorem 3. For any constrained zonotope CZ , if we construct
its CG-Rep following steps 1)-4), then the followings hold:

i) if CZ ⊖Z = ∅, either CZd = ∅ or (simple) is infeasible;
ii) if CZ ⊖ Z ̸= ∅, CZd = CZ ⊖ Z .

Proof: Bullet ii) follows from Proposition 7 and
Proposition 8. For bullet i), if (simple) is feasible, then
CZd = ∅ because CZd ⊆ CZ ⊖ Z = ∅ by Theorem 2.

Remark 5. The run time of our two-step approach is
polynomial in the input size. By Example 1, this approach
is not exact in general. However, as stated by Theorem 3,
the two-step approach still achieves exactness in special cases
where CZ’s CG-Rep is not the most “compact” one. Note
that, such non-compact CG-Rep is constructed from the H-
Rep of CZ , whose complexity may, in the worst case, be
exponential in that of CZ’s most compact CG-Rep. Therefore,
the exactness results are not surprising because in this case,
the two-step approach bypasses the high-complexity step of
computing CZ’s H-Rep. This is also consistent with the fact
that Minkowski-subtracting a zonotope from a polytope in its
H-Rep is easy [14]. However, our results in Sec. V may open
the direction of incrementally enriching the minuend’s CG-Rep
to achieve exact results quickly whenever possible.

VI. BACKWARD REACHABLE SET COMPUTATION FOR
NONLINEAR SYSTEMS

In this section, we use our two-step approach from Sec. IV to
develop BRS under-approximation algorithms for system (2).
To incorporate the error introduced by sequential linearization,
we require X k−1 ⊖ L to be reachable from X k under the
linearized dynamics, where X k−1 ( X k, resp.) are the k− 1st

(kth, resp.) under-approximated BRS and L contains all values
of the linearization error over X k. As mentioned in Sec. III, the
challenge is to approximate L without knowing X k a priori.
To resolve this issue, we explore the following two strategies.
A) Scaling method: we incrementally enlarge L by a scaling

factor until i) X k−1 ⊖L is reachable from X k under the
linear dynamics, and ii) L encompasses all the values
of the linearization error in X k. Here, each X k is a
constrained zonotope.

B) Splitting method: we fix L and split X k−1 into finitely
many smaller sets, i.e., X k−1 =

⋃
i X

i
k−1. The nonlinear

system is linearized for each X i
k−1, and the splitting

procedure terminates when the linearization error in each
X i

k, from where X i
k−1 ⊖ L is reachable under the ith

linear dynamics, are contained by L. In this case, X k =⋃
i X

i
k and is represented by the collection of the CG-

Reps of constrained zonotopic sets X i
k.

The scaling method is in principle similar to the approach
proposed in [24], and the splitting method borrows the idea
from [25], where a similar splitting procedure is developed
for zonotopes to control the linearization error in forward
reachability analysis. Unique to our implementation is the use

of our efficient Minkowski-difference computation techniques
tailored to constrained zonotopes. While the scaling method
better suits the computation with more steps (i.e., larger k) in
a convex safe set Xsafe, the splitting method better captures the
shape of a nonconvex set Xk and is more suitable when Xsafe

is also nonconvex, because X k is represented as a collection
of constrained zonotopes in the latter method. In what follows,
we present the detailed algorithms for the two methods above.

A. Scaling Method

Algorithm 1 X k = ScalingBRS(X k−1,f ,U ,W,Xsafe)
Input: Constrained zonotope X k−1; System’s vector field f ;

Control input set U ; Disturbance set W; Safe set Xsafe

Output: Constrained zonotope X k ⊆ Pre(X k−1)
1: z̃ ← center(X k−1 × U)
2: [Ã, B̃]← linearize(z̃,f); L̃ ← {f(z̃)− [Ã, B̃]z̃}
3: Z̃k ← Prex,u(X k−1, Ã, B̃,U ,W, L̃,Xsafe)

4: z∗ ← center(Z̃k)
5: [A,B]← linearize(z∗,f); L ← LE(z∗,f , Z̃k)
6: Zk ← Prex,u(X k−1,A,B,U ,W,L,Xsafe)
7: while LE(z∗,f ,Zk) ̸⊆ L do
8: Enlarge L by a factor α
9: Zk ← Prex,u(X k−1,A,B,U ,W,L,Xsafe)

10: return X k ← Projx(Zk)

Algorithm 1 details the scaling method. In this algorithm,
we first linearize the system at the geometric center z̃ of the
interval closure of X k−1×U . The function center(Z) returns
1
2 (z + z), where z and z are the lower and upper limits of
the smallest hyper-box that contains set Z . That is,

zi = min e⊤i Z, zi = max e⊤i Z, (39)

where zi and zi are the ith elements of z and z, respectively.
Suppose that Z is a constrained zonotope, executing the
function center amounts to solving 2n linear programs. On
line 2, the function linearize(z,f) linearizes the vector field
f at point z and returns the matrices that define the obtained
linear system, i.e.,

A =
∂f(x,u)

∂x

∣∣∣∣
[x;u]=z

, B =
∂f(x,u)

∂u

∣∣∣∣
[x;u]=z

. (40)

On line 3, we compute a set Z̃k of state-input vectors
[x;u] such that X k−1 is reached from state x under
control u and the obtained linear dynamics. To be precise,
Prex,u(X ,A,B,U ,W,L,Xsafe) is defined to be:

{[x;u] ∈ Xsafe × U |Ax+Bu ∈ X ⊖ (L ⊕W)}. (41)

Suppose that Xsafe is a polytope, then Prex,u is a constrained
zonotope whose CG-Rep can be obtained using Lemma 1 and
our two-step approach for Minkowski-difference computation.
Note that, in line 3, Z̃k is computed without considering
any linearization error (i.e., L̃ = {f(z̃) − [Ã, B̃]z̃} is a
singleton set). The purpose of this step is to find a better point
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z∗ = center(Z̃k) to linearize the system at (line 4). Then on
lines 5-6, we linearize the system at z∗ and recompute a set
Zk with the latest linear system and a set L = LE(z∗,f , Z̃k)
that contains all possible values of the linearization error.
Particularly, LE(z∗,f ,Z) is a zonotope that encloses the
following set of Lagrange remainders over set Z:

f(z∗)− [A,B]z∗+{
L ∈ Rn

∣∣∣∣Li =
1
2 (z − z∗)⊤ ∂2fi

∂z2 (ξi)(z − z∗), z ∈ Z
ξi = λiz

∗ + (1− λi)z, λi ∈ [[0, 1]]

}
(42)

where A, B are given by Eq. (40) evaluated at z∗, and
Li, fi are the ith elements of L and f , respectively. The
set LE(z∗,f ,Z) can be computed as a hyper-box using
interval analysis techniques (e.g., see [25]). If L encloses
all possible values of the linearization error in set Zk, then
Xk−1 can be reached from Projx(Zk) := {x | [x;u] ∈
Zk} under the nonlinear dynamics2. In that case, we return
X k = Projx(Zk). Otherwise we incrementally enlarge L by
a factor α and recompute Zk until the linearization error set
LE(z∗,f ,Zk) is enclosed by L.

B. Splitting Method

The real backward reachable set Xk may not be convex
due to the nonlinearity of the system’s vector field f or the
nonconvexity of the safe set Xsafe. Therefore, the scaling
method can be conservative because we under-approximate a
potentially nonconvex set Xk with a constrained zonotope X k,
which is a convex set. In this part, we present the splitting
method, where the linearization error set L is defined to have
a prescribed (i.e., fixed) size, and X k is represented as the
union of a finite collection {X i

k} of constrained zonotopes, so
that the linearization error in each X i

k is over-approximated
by the prescribed L. Since X k =

⋃
i X

i
k is not necessarily

convex in the splitting method, it serves as a less conservative
(i.e., larger) under-approximation of Xk.

The following proposition provides a rigorous way to split
one constrained zonotope into two, so that the linearization
error can be evaluated over the two smaller sets separately.

Proposition 9. Assume that CZ = ⟨G, c,A, b⟩, where
G = [g1, g2, · · · , gN ],A = [a1,a2, · · · ,aN ]. Then set
CZ can be split into CZi

1 = ⟨G1, c1,A1, b1⟩ and CZi
2 =

⟨G2, c2,A2, b2⟩ along gi, i.e., CZ = CZi
1 ∪ CZ

i
2 where

G1 = G2 = [g1, g2, · · · , 1
2gi, · · · , gN ] (43)

A1 = A2 = [a1,a2, · · · , 1
2ai, · · · ,aN ] (44)

b1 = b− 1
2ai c1 = c+ 1

2gi (45)
b2 = b+ 1

2ai c2 = c− 1
2gi (46)

Proof: The set CZ can be written as

CZ = {Gθ + c | |θj | ≤ 1, j = 1, 2, · · · , N,Aθ = b}. (47)

2The projection step amounts to a linear transformation and is easy for
CG-Reps by Lemma 1, bullet i).

where θ = [θ1; θ2; · · · ; θN ] ∈ RN . Define

CZi
1={Gθ + c |θi ∈ [[0, 1]], |θj | ≤ 1, j ̸= i,Aθ = b}, (48)

CZi
2={Gθ + c |θi ∈ [[−1, 0]], |θj | ≤ 1, j ̸= i,Aθ = b}. (49)

Apparently, CZ = CZi
1 ∪ CZ

i
2. To show that CZi

1 =
⟨G1, c1,A1, b1⟩, let θ be such that θi ∈ [[0, 1]], |θj | ≤ 1
for all j ̸= i and Aθ = b. Define µi = 2θi − 1 and
θ̂ = [θ1, θ2, · · · , θi−1;µi; θi+1; · · · ; θN ]⊤, then

Gθ + c = c+
∑N

j=1,j ̸=i gjθj + gi(
1
2µi +

1
2 )

= (c+ 1
2gi) +

∑N
j=1,j ̸=i gjθj +

1
2giµi

= G1θ̂ + c1 (50)

In addition,

Aθ = b ⇐⇒
∑N

j=1 ajθj = b

⇐⇒
∑N

j=1,j ̸=i ajθj + ai(
1
2µi +

1
2 ) = b

⇐⇒ A1θ̂ = b1 (51)

Since |µi| = |2θi − 1| ≤ 1, we have θ̂ ∈ [[0,1]]. Therefore,

CZi
1 = {G1θ̂ + c1 | θ̂ ∈ [[0,1]],A1θ̂ = b1}
= ⟨G1, c1,A1, b1⟩ (52)

Similarly, to show that CZi
2 = ⟨G2, c2,A2, b2⟩, let θ be such

that θi ∈ [[−1, 0]], |θj | ≤ 1 for all j ̸= i and Aθ = b. The
above argument follows by setting µi = 2θi + 1.

Fig. 2 shows the two sets CZ1 (green) and CZ2 (red)
obtained by splitting CZ (black contour) using Proposition 9.
Note that CZ1 overlaps with CZ2. As we will see, this overlap
helps to reduce the conservatism in the BRS computation.

Fig. 2. Result for Proposition 9: CZ = CZ1 ∪ CZ2

Based on Proposition 9, a detailed algorithm that
implements the splitting method is given in Algorithm 2. The
input {X ℓ

k} and the output {X i
k−1} are finite collections of

constrained zonotopes s.t. X k−1 =
⋃

i X
i
k−1 and X k =

⋃
ℓ X

ℓ
k

are the under-approximation of the k − 1st and the kth

BRSs, respectively. The sub-procedures center, linearize
and LE are the same as in the scaling method. However,
Prex,u(X ,A,B,U ,W,L), which computes the extended
constrained zonotope Z , has a slightly different definition, i.e.,

Z = {[x;u] | Ax+Bu ∈ X ⊖ (L ⊕W), u ∈ U}. (53)
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In Eq. (53), x ∈ Xsafe is not enforced as in the scaling method.
Algorithm 2 is briefly explained below. For each X i

k−1 from
the input collection, we construct a collection Cik of constrained
zonotopes, the union of which is contained by Pre(X i

k−1). To
obtain Cik, we compute a set Zi

k of the state-input pairs [x;u]
using linearization (lines 2-5). These steps are the same as
those in the scaling method except that the linearization error
set L is now defined by a prescribed error bound L̄. If all
possible values of the linearization error over Zi

k are contained
by L, it follows that Projx(Zi

k)∩Xsafe ⊆ Pre(X i
k−1) and Cik

is given as in line 7. Otherwise we split X i
k−1 into two smaller

constrained zonotopes X i,j∗

k−1,1, X i,j∗

k−1,2 and compute the BRSs
for them by calling SplittingBRS recursively. Note that, for the
first case (i.e., line 7), each Cik may still contain multiple sets
when Xsafe is nonconvex. For example, if Xsafe =

⋃
pHp is

the union of finitely many polytopes Hp, the collection Cik will
consist of Projx(Zi

k) ∩Hp for all p. Each Projx(Zi
k) ∩Hp

is a constrained zonotope, whose CG-Rep can be obtained
by Lemma 1. For details, see [18]. Finally, if f is twice
continuously differentiable, LE(z∗,f ,Z) will converge to a
singleton set as Z does. This ensures that the recursion will
terminate after sufficiently many splittings.

Algorithm 2 {X ℓ
k} = SplittingBRS({X i

k−1},f ,U ,W, L̄,Xsafe)

Input: A collection {X i
k−1} of constrained zonotopes;

System’s vector field f ; Control input set U ; Disturbance
set W; Safe set Xsafe; Admissible linearization error
L̄ ∈ Rn

Output: A collection {X ℓ
k} of constrained zonotopes s.t.⋃

ℓ X
ℓ
k ⊆ Pre(

⋃
i X

i
k−1)

1: for each X i
k−1 do

2: z∗ ← center(X i
k−1 × U)

3: [A,B]← linearize(z∗,f)
4: L ← ⟨diag(L̄),f(z∗)− [A,B]z∗⟩
5: Zi

k ← Prex,u(X i
k−1,A,B,U ,W,L)

6: if LE(z∗,f ,Zi
k) ⊆ L then

7: Cik ← {Projx(Zi
k) ∩ Xsafe}

8: break
9: else

10: Select a generator gi,j∗

k−1 of X i
k−1

11: Split X i
k−1 into X i,j∗

k−1,1 and X i,j∗

k−1,2 {Proposition 9}

12: Cik−1 ← {X
i,j∗

k−1,1, X
i,j∗

k−1,2}
13: Cik ← SplittingBRS(Cik−1,f ,U ,W, L̄,Xsafe)
14: return {X ℓ

k} ←
⋃

i Cik

In line 10, the generator gi,j∗

k−1 is selected as follows. Similar
to [25], for the jth generator of the set X i

k−1 to split, we
compute a performance index ρj as follows:

ρj = max(Lj
1/L̄) ·max(Lj

2/L̄), (54)

where Lj
1, Lj

2 ∈ Rn are vectors that define the linearization
error bound for sets X i,j

k,1 and X i,j
k,2, respectively. The operations

max and / in Eq. (54) are element-wise. In line 10, the

generator gi,j∗

k−1 with the lowest performance index will be
chosen, i.e., j∗ = argminj ρj .

Remark 6. Note that, while executing SplittingBRS in line
13, the set L ⊕ W will be subtracted from the two sets
X i,j∗

k−1,1 and X i,j∗

k−1,2, which are obtained via splitting. By
Lemma 2, bullet iii), the union of these two Minkowski
differences is only a subset of (but not necessarily equal to)
X i

k−1 ⊖ (L ⊕ W). This means that the splitting procedure
introduces more conservatism. However, the overlapping area
generated by Proposition 9 can ease the conservatism. This is
because the larger X i,j∗

k−1,1 and X i,j∗

k−1,2 are, the larger Cik is.

When doing the splitting, the number of the obtained
constrained zonotopes may grow exponentially. Therefore, a
sampling algorithm is required to restrict their number. In order
to evenly cover the union of these sets, we implement the
farthest point sampling algorithm [26] based on the geometric
centers of the constrained zonotopes’ interval closures.

VII. EXAMPLES

In this section we illustrate our algorithms with several
examples. TABLE I summarizes our results with, for each
example and method, the system dimension d, the iteration
steps k and the computing time. These examples were run on
a laptop with a 12th generation Intel CPU and 16 GB of RAM.
Our implementation is in MATLAB R2019a. The zonotope-
based method and the HJB method that we use as benchmarks
are also in MATLAB. Note that the splitting method does not

d k Splitting Scaling HJB
Example 2 2 100 N/A 56.1s 45.2s
Example 3 10 10 226.7s N/A Memory error
Example 4:

Convex constraints 3 − 478.9s
(k = 25)

2821.3s
(k = 400) Memory error

Example 4:
Nonconvex constraints 3 20 1564.1s N/A 4521.6s

Example 5 10 340 951.6s N/A Memory error
TABLE I. COMPUTATION TIME FOR THE EXAMPLES.

apply to Example 2 because the system is linear and Xsafe

is convex (hence no reason for splitting). We also do not
apply the scaling methods to examples with nonconvex Xsafe

(Examples 4 and 5), because its implementation only generates
one homotopy class.

While Algorithm 1, 2 are developed for nonlinear systems,
they both reduce to Eq. (4) for linear systems (i.e., when
f(x,u) = Ax+Bu). The following linear system examples
show that less conservative under-approximations can be
obtained using constrained zonotopes instead of zonotopes,
because the former has a stronger expressive power.

Example 2. Consider a linear system with the following
system matrices and sets:

A =

[
0.9962 0.02394
−0.1496 0.9962

]
,B =

[
−0.004034
0.08025

]
, (55)

U = [[−1.5, 1.5]], W = ⟨[0.1997, 0.002396;−0.01498,
0.1997],0⟩, X0 = ⟨diag([0.5, 0.5]), [1.5; 0]⟩ and Xsafe = {x ∈
R2 | [−1, 0; 2, 1]x ≤ [2; 5]}. Fig. 3 shows the exact BRSs Xk

(gray) for k = 1, 2 . . . , 100 and their under-approximations.
The constrained zonotopic under-approximations X k are in
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Exact Constrained
zonotope Zonotope HJB

Volume 37.079 28.343 7.810 2.817
TABLE II. EXAMPLE 2, THE VOLUME OF

THE BRSS.

Constrained
zonotope HJB Intersection

Volume 0.1608 0.3422 0.1504
Projection

Volume 0.7070 0.7326 0.6674

TABLE III. EXAMPLE 4, THE VOLUME OF
THE BRSS AND THEIR PROJECTIONS.

Fig. 3. Example 2, exact BRSs and their under-
approximations.

Fig. 4. Example 3, BRSs by the zonotope-based
& the constrained-zonotope-based methods.

Fig. 5. Example 4 (nonconvex state
constraints), BRSs by the splitting method.

Fig. 6. Example 4 (convex constraints), BRSs
by the scaling method and the splitting method.

Fig. 7. Example 5, the projections of the
10-D BRSs.

blue. As a comparison, we used the method in [19] to
compute zonotopic under-approximations (red) and scaled the
generators of these zonotopes to satisfy the linear safety
constraints. The latter approach is clearly more conservative
(i.e., gives smaller sets). In fact, due to the wrapping effect
after hitting the unsafe set {x | [2, 1]x > 5}, the red sets
vanish before k = 100 is reached. The main reason of
this conservatism is that the true backward reachable set Xk

becomes asymmetric due to the state constraints. Hence it is
more accurate to approximate Xk with a constrained zonotope
than with a zonotope. The former is as expressive as polytopes
while the latter is restricted to be a centrally symmetric set.

In addition, we use the HJB method to compute the BRSs
(cyan contour) with the same constraints. The obtained result
is more conservative and stops expanding after k = 20. The
volumes of the BRSs by different methods are approximated
using a sample-based method and are shown in TABLE II.

Example 3. Consider the 10-D system from [19], discretized
with a sampling period of ∆t = 0.1s. Let the disturbance set
W be so that w{1,3,5} ∈ [[−0.12, 0.12]], w{2,4,6} ∈ [[−0.2, 0.2]],
w{7,8,9,10} ∈ [[−0.1, 0.1]] and the control set U ∈ [[−0.5, 0.5]]3.
Define the target set such that xi ∈ [[9.5, 10.5]] for i ∈
{1, 2, 3, 4, 5, 6} and xi ∈ [[8, 12]] for i ∈ {7, 8, 9, 10}.

To avoid potential numerical issues when visualizing
10-D zonotopes or constrained zonotopes, bounding boxes
are used to visualize the results. Fig. 4 shows the 3-D
projection of the boxes including the constrained zonotopic
under-approximation of BRSs (blue) and zonotopic under-
approximation of BRSs (green) for k = 1, 2 · · · , 10. Since
the system dimension is large, Hamilton-Jacobi method
encountered memory error, whereas both zonotope and
constrained zonotope-based methods can obtain a result. Here

we used the approach in Sec. VI-B to avoid obstacles. In this
example, the zonotopic representation is more conservative
than that based on constrained zonotopes, while the latter being
as scalable as the former. That is, constrained zonotopes can
also handle high dimensional linear systems, as zonotopes do.

Example 4. Consider a Dubins Car system: x1
k+1 = x1

k +
u1
k cos(x

3
k), x2

k+1 = x2
k + u1

k sin(x
3
k), x3

k+1 = x3
k + u2

k,
where xk = [x1

k;x
2
k;x

3
k] is the state and uk = [u1

k;u
2
k] ∈

[[0.04, 0.08]]× [[0, 0.04]] is the control input. We use the scaling
method and the splitting method to compute the BRSs with
convex and nonconvex state constraints, respectively.

Fig. 5 shows the [x1;x2]-projection of the constrained
zonotopic under-approximation X k (cyan) of the BRSs,
obtained by the splitting method. As a comparison, we also use
the HJB method [22] to approximate the BRSs (blue contour).
To this end, a uniform grid (201×201×101) of the state space
is used. The BRSs obtained via these two methods both contain
states from different homotopy classes in an environment with
obstacles. Further, the two methods give BRSs that are similar
in sizes but not comparable in the set inclusion sense (Fig
5 & TABLE III). In particular, when expanding into the free
state space, the HJB method tends to give larger BRSs than
the splitting method. However, the splitting method is faster
(TABLE I). The volumes of the BRSs (and their projections)
obtained using both methods are approximated using a sample-
based method and are shown in TABLE III.

Fig. 6 shows X k obtained by the scaling method (blue) and
the splitting method (cyan). Here the safe set is a single half-
space (specified by the red plane). For small k’s, the splitting
method finds larger BRSs than the scaling method. However,
the splitting method has difficulties to proceed for k ≥ 25.
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This is because, in the splitting method, X k is represented as
a collection of small sets, whose number grows fast without
an obstacle “pruning” these sets in a convex domain. It is
also conservative to Minkowski subtract L ⊕ W from each
small set in the collection, and uses the union of the obtained
Minkowski-differences to compute X k+1 (see Remark 6). On
the contrary, the scaling method, which computes one set at
each step, does not suffer from these issues and can compute
the BRSs in a convex domain for a longer time horizon.

Example 5. Consider a 10-D water tank system with the
following dynamics: x1

k+1 = x1
k+dt

(
u−k2x

10
k −k1

√
2gx1

k

)
,

xi
k+1 = xi

k+dtk1

(√
2gxi−1

k −
√
2gxi

k

)
for i ̸= 1, where xi

is the ith tank’s water level, u ∈ [[0.135, 0.145]] is the inflow,
dt = 0.01, k1 = 0.015, k2 = 0.01, g = 9.81, and the target set
is [[3.9, 4.1]]10. We apply the splitting method to this example.
Figure 7 shows the 2-D projections of the target set (green), the
obstacle (red), and the bounding boxes (blue) that include the
obtained constrained zonotopic under-approximations of the
BRSs. For this example, the HJB toolbox reports a memory
error due to the large grid size, which is necessary for the 10-D
system. We manage to compute the BRSs (with two homotopy
classes) in reasonable time (TABLE I). This example shows
that our method can deal with high-dimensional nonlinear
systems with nonconvex state constraints.

VIII. CONCLUSION & FUTURE WORK

In this paper, we developed constrained-zonotope-based
methods to under-approximate the BRSs for discrete-time
nonlinear systems. Our main technical contribution was
twofold. First, we developed an efficient way to under-
approximate the Minkowski difference between a constrained
zonotopic minuend and a zonotopic subtrahend, which is a
necessary step in the sequential BRS computation. Our under-
approximation was shown to be exact for minuends with rich
enough CG-Reps. Secondly, using the developed Minkowski
difference computation technique, we proposed two methods,
i.e., the scaling method and the splitting method, for BRS
computation. Experiments showed that these constrained-
zonotope-based methods were less conservative than those
using zonotopes, and were more scalable than the HJB method.

The exactness result in Sec. V suggests that, for constrained
zonotopes, there is a trade-off between the computational
complexity and the accuracy of set operations. This trade-
off may be better understood via a systematic conversion
between the different CG-Reps of a constrained zonotope. This
conversion may be used, e.g., to incrementally enrich the CG-
Rep of a constrained zonotopic minuend and improve our two-
step approach’s accuracy. We will explore this in the future.
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