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Abstract—Backward reachability analysis is essential to
synthesizing controllers that ensure the correctness of closed-
loop systems. This paper is concerned with developing scalable
algorithms that under-approximate the backward reachable
sets, for discrete-time uncertain linear and nonlinear systems.
Our algorithm sequentially linearizes the dynamics, and uses
constrained zonotopes for set representation and computation.
The main technical ingredient of our algorithm is an efficient
way to under-approximate the Minkowski difference between
a constrained zonotopic minuend and a zonotopic subtrahend,
which consists of all possible values of the uncertainties and
the linearization error. This Minkowski difference needs to be
represented as a constrained zonotope to enable subsequent
computation, but, as we show, it is impossible to find
a polynomial-size representation for it in polynomial time.
Our algorithm finds a polynomial-size under-approximation in
polynomial time. We further analyze the conservatism of this
under-approximation technique, and show that it is exact under
some conditions. Based on the developed Minkowski difference
technique, we detail two backward reachable set computation
algorithms to control the linearization error and incorporate
nonconvex state constraints. Several examples illustrate the
effectiveness of our algorithms.

Index Terms—Computational geometry, backward reachability
analysis, Minkowski difference, constrained zonotope.

I. INTRODUCTION

ACKWARD reachability analysis is concerned with

finding a set of states (called the backward reachable set,
BRS for short), from where a proper control strategy can steer
the system’s trajectories into a prescribed target region in finite
time. The computation of BRSs is central to many control
synthesis problems with reachability [1], [2], safety [3], [4]
or even more complex temporal logic requirements [5], and
can be used to seek critical test cases for closed-loop systems
with complex controllers in the loop [6], [7]. Whenever the
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exact computation is hard, an under-approximation can still
be used to define a conservative strategy that accomplishes
the reachability task. For systems that exhibit modeling error
or are affected by environmental uncertainties, the target
region should be reached in a guaranteed manner, regardless
of these uncertainties. This leads to a conservative analysis
and hence smaller BRSs. For linear systems with additive
disturbances, this amounts to a Minkowski difference step
in the sequential computation of BRSs [1]. For nonlinear
systems, this is achieved by shrinking the target set [8],
[9], which can be implemented by Minkowski subtracting
a set that over-approximates the impact of the linearization
error and disturbances. This shrinking step is absent in the
forward reachability analysis, for which there is a sizable
literature focusing on over-approximation (see [10] and the
references therein). However, to under-approximate the BRSs
under uncertainties by employing those forward computation
techniques (e.g., [11], [12]), the shrinking step is necessary.

Minkowski Difference: Since the late 60s, a simple
approach using support functions is known to compute the
exact Minkowski difference (in halfspace representation, H-
Rep for short) between a polyhedral minuend (in H-Rep)
and a compact subtrahend [13]. For a thorough discussion
on this subject, see [14]. For high-dimensional polyhedra,
unfortunately, H-Reps are not suitable for other operations
such as affine transformation and Minkowski addition. This is
because an H-Rep’s complexity may grow exponentially after
these operations [15]. For example, the off-the-shelf tool MPT3
[16] may return an error when computing the Minkowski
addition between two 4-D polytopes. For applications like
reachability analysis that extensively involves such operations,
algorithms can be made more scalable at the cost of generality,
by considering a special class of polyhedra called zonotopes. A
zonotope can be expressed by its generator representation (G-
Rep for short), which is more suitable for affine transformation
and Minkowski addition. The Minkowski difference, however,
is not as easy to compute when the minuend is in G-Rep.
Compared to other operations, the problem of Minkowski-
subtracting a set from a zonotopic minuend (in G-Rep)
receives less attention, and is first studied in [17], where
the subtrahend is also assumed to be a zonotope (in G-
Rep). The exact Minkowski difference is not necessarily a
zonotope, but a zonotopic under-approximation can still be
found efficiently [18], [19] using the encoding techniques
developed in [20]. Based on these developments, a scalable
backward reachability algorithm is obtained for linear systems
with additive disturbances in [19].
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Constrained Zonotopes: To enjoy the same computational
advantages as zonotopes (and their G-Reps) while achieving
the generality of polyhedra, a new set representation called
constrained generator representation (CG-Rep for short) is
proposed in [21]. A set expressible by CG-Rep is called a
constrained zonotope. Not only can affine transformation and
Minkowski addition of constrained zonotopes be done easily
via CG-Rep manipulation, so can intersection, under which
zonotopes are not even closed. Moreover, all polytopes (i.e.,
bounded polyhedra) are expressible by CG-Rep. Therefore,
constrained zonotopes (in CG-Reps) serve as an efficient
tool for set-based control and estimation. They are more
general than zonotopes and are particularly suitable to deal
with state constraints. However, the Minkowski difference
operation, which is necessary for BRS computation, is
difficult for constrained zonotopes. In fact, we show that no
polynomial-time algorithm can find a polynomial-size CG-Rep
of the Minkowski difference between a constrained zonotopic
minuend (in CG-Rep) and a zonotopic subtrahend (in G-
Rep), unless P = NP. Neither is there, to the best of our
knowledge, an efficient way to compute a polynomial-size
under-approximation. This prohibits the use of constrained
zonotopes for BRS computation under uncertainties because a
compact representation of the BRS is essential for its efficient
end uses (e.g., checking if a state belongs to the BRS and
deriving the control law accordingly).

Contributions: In this paper, we use constrained zonotopes
to develop scalable algorithms that under-approximate the
BRSs for discrete-time nonlinear systems. Our approach is
based on sequential linearization, and the linearization error is
incorporated with a Minkowski difference step. Our technical
contributions are summarized as follows.

i) We propose an efficient way to under-approximate
the Minkowski difference between a constrained zonotopic
minuend (in CG-Rep) and a zonotopic subtrahend (in G-Rep).
Our approach is optimization-based. We show that a naive use
of the encoding from [20] leads to a bilinear program, but by
extending the two-step approach proposed in [19], an under-
approximation can be found via a linear program. The size of
this linear program is polynomial in that of the minuend’s and
the subtrahend’s representations. Our approach hence gives a
polynomial-size under-approximation in polynomial time.

ii) We further analyze the conservatism of this extended
two-step approach. In particular, we show that any constrained
zonotopic minuend has a “rich” enough CG-Rep, for which
our two-step approach is exact. While it may be impractical
to always assume such a rich CG-Rep, this result opens the
direction of incrementally enriching the given CG-Rep of the
minuend to improve the two-step approach’s accuracy.

iii) Using the developed Minkowski difference technique,
we propose two methods: scaling method and splitting method
for BRS computation. The scaling method can compute BRSs
with convex constraints for longer time horizon than the
splitting method. In contrast, the splitting method can give
larger BRSs than those obtained by scaling method for a
short time horizon but have difficulties in computing BRSs
for long time horizon. However, the splitting method can
deal with nonconvex constraints and expand the BRSs into

different homotopy classes. Experiments show the advantages
of these constrained-zonotope-based methods: they give less
conservative BRSs under-approximation than those using
zonotopes [19], especially in the presence of state constraints,
and scales better than the Hamilton-Jacobi (HIB) method [22].

II. NOTATIONS & PRELIMINARIES

We use 1 (0, resp.) to represent a matrix of proper size
whose entries are all ones (zeros, resp.). We will not make the
size of such a matrix explicit unless it is not clear from context.
Let M be a matrix and M, (M, resp.) be another matrix
of the same height (width, resp.) as M, [M, M| ([M; M|,
resp.) denotes the matrix obtained by concatenating M and
M ;| horizontally (concatenating M and M, vertically, resp.).
Further, A'(M) is the null space of M and | M| is the matrix
that consists of the element-wise absolute values of M.

Let a, @ € R™ such that ¢ < @ (< is element-wise), a
hyper—boxl\g[g,ﬁ]] is the set {x € R" | @ < « < @}. Let
G € R and ¢ € R", a zonotope Z = (G, c¢) is defined
to be the set {GO + ¢ | 6 € [-1,1]}. The tuple (G, c)
is called the generator-representation (or G-Rep) of Z. The
matrix G is the generator matrix and c is the center of Z.
A set CZ is a constrained zonotope if it can be expressed as
{GO +c | 0 c[-1,1], A9 = b}, where A € R™*¥ and
b € R™. The tuple (G, c, A,b) is a constrained generator
representation (or CG-Rep) of CZ, A is the constraint matrix
and b is the constraint vector of this CG-Rep. A zonotope
(G, c) is a constrained zonotope whose CG-Rep has the same
G, c and empty A, b. Further, let H € RN and a e RY, a
set is an AH-polytope if it can be expressed as {GO+c | HO <
a}. Zonotopes and constrained zonotopes are AH-polytopes,
ie, (G,e) = {GO+c | [I;-1I]0 < 1} and (G,c, A, b) =
{GO+c|[A;—A;I;—-1I]6 < [b;—b;1]}.

Let S, R C R" be two sets, * € R" be a vector and
M € R™*™ be a matrix, we define M S := {Ms | s € S}
and z+S := {x+s| s € S}. Further, S&R := {s+7 | s €
S,7 € R} is the Minkowski sum of S and R, and SO R :=
{x € R" | & + R C S} is the Minkowski difference between
Sand R.Let PCRP, Sx P :={[s;p] | s € S,pec P}is
the product of S and P.

The following set operations can be performed by CG-Rep
manipulation for constrained zonotopes.

Lemma 1. [From [18], [21]] Let CZ = (G,c, A,b) C R™,
CZ; = (G4, ci, A;, b)) C RP for i € {1,2} be constrained
zonotopes, M € R™*™ be a matrix and H = {x € R" |
hix< a} be a halfspace, then
iy MCZ = (MG, Mc, A,b),
ll) 621@622 = <[G1,G2]761+Cg,diag(A1,A2), [bl;b2]>,
iii) CZ; NCZy = ([G1,0], ¢y, [diag(Aq, A2); [G1, —G2]],
[b1;ba; 2 — ci]),
iv) if CZNH # 0, then CZNH = ([G, 0], ¢, [A,0;R" G, 4],
[b;a—h'ec— 41) where d = a — h'c+|h" G|,
v) CZ x CZ, = (diag(G, G1), [c; ¢1],diag(A, A1), [b; by]).

The following lemma follows from the definitions.
Lemma 2. Let A, B, C CRY and M € R**N
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DMAGB) =MA® MB.
i) M(AeB)C M Ao MB.
i) (AeC)u(BeCl) C(AuB)acC.
iv AoBeCC AaCoB.
For bullet ii), iii) and iv), equality does not hold in general.

Lemma 3. [[20], Theorem 1] Let S; := ¢; + G;{6; | H;0; <
a;} CR"” for i € {1,2} be two AH-polytopes. Suppose that
&1 has nonempty interior. Then a sufficient condition for &1 C
S is that there exist matrices I', 3, A of proper sizes such that

G1 = G2l o — ¢ = G238, AH, = H,T,
Aa; <as+ Hy3, A>0. (1)

The condition in Eq. (1) is known as the encoding of
AH-polytope containment. The numbers of variables and
constraints in Eq. (1) are polynomial in the sizes of ¢;, G,
H;, a;. Since the zonotope containment problem, which is a
special instance of the AH-polytope containment problem, is
known to be co-NP hard [23], the linear condition in Eq. (1)
cannot possibly be necessary in general unless P = NP.

Lemma 4. [[14], Theorem 2.3] Let S C R™ be compact, then
{x | Hx <a} oS = {z | Hx < a}, where a; = maxh, S
is the i*" element of @ and h, is the i*" row of H.

ITT. PROBLEM DESCRIPTION
Consider the following discrete-time nonlinear system:

Tip1 = [, up) + wy, ()

where x € R" is the state, u € U C RP is the control input,
and w € W C R” is the additive disturbance input. Given a
set Xgafe Of safe states and a set Ay of target states, the kth
backward reachable set X, is defined recursively as follows:

T e EIuGZ/{:V'wEW:}7(3)

Xy = Pre(Xy—1) := {Xsafe flz,u) +w e X1

Our goal is to compute X, represented by constrained
zonotopes, s.t. X, C X, under the following assumptions.

Assumption 1. The sets Xy, U are constrained zonotopes (CG-
Reps given). The disturbance set W is a zonotope (G-Rep
given). The safe set Xare = |J {z | Hpx < a,} is the union
of finitely many polytopes in their H-Reps.

Our solution approach uses sequential linearization. If the
system is linear, i.e., f(x,u) = Ax + Bu for some invertible
matrix A !, then

Xy = Xaate N AN (X ©W S —BU). @)

For nonlinear systems, in each step, we linearize f at some
[z*;u*] and compute a under-approximation X, of Xj by
applying Eq. (4) to the previously obtained X, ; and the linear
dynamics. Particularly, to ensure that X', _; can be reached
from X, under the nonlinear dynamics, we conservatively
approximate the linearization error by an additive term that

IThe matrix A here is not to be confused with the constraint matrix in the
CG-Rep of a constrained zonotope.

takes value from a zonotopic set £, and require X;,_; © L to

be reachable from X', under the linear dynamics (i.e., replace

W in Eq. (4) by LS W).

The main challenge in the above approach is twofold:

Cl) To implement Eq. (4) under Assumption 1, while
the affine transformation, intersection and Minkowski
addition can be done via CG-Rep manipulation (Lemma
1), there still lacks an efficient way to compute (or to
under-approximate) the Minkowski difference between a
constrained zonotopic minuend Xj_; and a zonotopic
subtrahend W (or £ @ W). Subsequent computations
require this Minkowski difference to be in CG-Rep.

C2) To compute X, one needs to make a guess of L
that encompasses all possible values of the additive
linearization error over X, without knowing X, a priori.

The rest of the paper is devoted to tackling these two
challenges. In Sec. IV, we develop an efficient algorithm for
Minkowski difference under-approximation. We further show
that our algorithm is exact for the problem instances whose
minuend set has sufficiently rich CG-Reps (Sec. V). In Sec. VI,
we explore two strategies to tackle challenge C2) and present
two detailed algorithms that combine all ingredients together
for BRS under-approximation.

IV. UNDER-APPROXIMATING CZ © Z

This section is concerned with under-approximating CZ6 Z,
where CZ = (G,c, A,b) C R™ is a constrained zonotope
and Z = (G',¢/) C R" is a zonotope. We will show
that computing a compact CG-rep of the exact Minkowski
difference is hard (Sec. IV-A). Hence we restrict our under-
approximation to be a constrained zonotope CZ4 that shares
the same “template” as the minuend CZ, ie., CZq =
(G diag(d), cq, A diag(d), bq) for some & € [0,1], cq € R"
and by € R™. Under such restrictions, one can enforce
CZ4 ® Z C CZ using the constraints given by Lemma 3
and find CZ4 by solving an optimization problem. However,
this optimization problem, as will be shown in Sec. IV-B, is
a bilinear program. We refer to the above approach as the
“naive approach”. To find a CZ4 more efficiently, in Sec.
IV-C, we propose a two-step approach that amounts to solving
a linear program. We further show how to reduce the size of
this linear program and present some results to understand how
conservative our under-approximation is.

A. Complexity Analysis

We show that, given the CG-Reps of CZ and Z, it is
impossible to find a polynomial-size CG-Rep of CZ © Z in
polynomial time, unless P = NP. This motivates us to find an
under-approximation that admits a polynomial-size CG-Rep
computable in polynomial time.

Proposition 1. No algorithm satisfies the following two
conditions simultaneously unless P = NP.
a) It finds (G",c", A", b") = CZ © Z in poly(n,N,N’)
time, where N (N’, resp.) is the width of G (G, resp.).
b) The widths and heights of matrices G”,c”, A”,b" are
poly(n, N, N’).
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Proof: Assume that an algorithm A satisfies conditions a)
and b) simultaneously. Since Z C CZ iff 0 € CZ6 Z, whether
Z C CZ can be determined via the following procedure:

1) find (G”,c"”, A”,b") by algorithm A,

2) claim Z CCZ iff 0 € (G",c¢", A", b").
By bullet a), step 1) takes poly(n, N, N’) time to run. Further,
step 2) amounts to solving the following linear program:

find @

st. G'0+c" =0, A"0=0b", —-1<0<1 P

Let N (m”, resp.) be the width (height, resp.) of A", there
are N variables and 2N"' +m" +n constraints in (LP). These
two numbers are poly(n, N, N’) by bullet b). Therefore, the
above two-step procedure takes poly(n, N, N') time to run.
However, it is co-NP hard [23] to decide if Z C CZ given
the CG-Reps of Z and CZ as the inputs, which consist of
n(N + N’ +2) reals. Hence the existence of such an algorithm
A that satisfies a) and b) implies P = NP. [ |

B. Naive Approach with Bilinear Constraints

With the aforementioned naive approach, we need to solve
the following optimization problem:

maxz . 5 16]|1

st. CZq@ZCCZ )

The objective function ||§||; is used as a heuristic to maximize
the set CZ4. To apply Lemma 3, we write CZ as an AH-
polytope, i.e.,

CZ=c+G{O|[A;-A;I;-1]0 < [b;-b; 1]}, (6)
and write CZ4 @ Z either as
ca + ¢ +[G diag(d), G'){€ | [Adiag(é), 0;

— Adiag(8),0;I; —I¢ < [bg; —ba; 1]}, (7
or as

catc +[G GHEI[A,0,-A,0,I;-I]¢
< [ba; —ba; 031;6; 1]} ®)

Unfortunately, Lemma 3 gives bilinear constraints when
applied to Egs. (6),(7) or to Egs. (6),(8). If (7) is used, “H ;” in
(1) depends on the variable d and the term “AH " is bilinear;
if (8) is used, “a;” in (1) depends on § and “Aa,” is bilinear.
The key observation here is that the encoding in Lemma 3
is more favorable (i.e., tends to be linear) if the variables are
related to the outer set. On the contrary, the above encoding
is bilinear because the variable § is related to the inner set.

C. Two-Step Approach: Overview

We propose an alternative approach that finds an under-
approximation CZ4 of CZ & Z with the following two steps.

I) Compute a vector ¢ € [0,1] such that CZy =
(G diag (@), cs, A diag(7), bs) encloses Z.

M) Compute CZq = (Gdiag(l — 7),c — ¢, Adiag(1l —
T),b— b).

Since Z C CZ, by construction, CZ & CZg is an under-
approximation of CZ © Z. The significance of Step I) is
that, since the variable & is related to the outer set CZ, the
encoding of Z C CZ; by Lemma 3 is linear. Further, since
the generator matrix G and the constraint matrix A of the
minuend CZ are used as “templates” when constructing CZ,
it follows that CZ © CZ; 2 CZ4 = (Gdiag(l1 — o),c —
cs, Adiag(l — @),b — by). Hence CZ & CZ can be further
under-approximated via a simple CG-Rep manipulation. The
above two-step approach extends the one in [19] for under-
approximating the Minkowski difference of two zonotopes.

In what follows, we first show in details how to implement
Step I) by solving a linear program. We further simplify this
linear program by showing that it is optimal to choose ¢5 = ¢’
and by = 0 in Step I). Then we prove that CZoCZs O CZ4.
As a step to understand the conservatism of our under-
approximation, we will also give a sufficient condition for
CZoCZ;=CZq to hold.

D. Step I: Over-approximating Z by CZ
Our goal is to solve

n'linE,cs,bS HEHl

st. ZCCZ, > ©)

where Z = (G',¢) and CZ, = (Gdiag(o),cs,
Adiag(a), bs). In (9), we minimize ||&||;. This can be seen
as a heuristic to minimize the enclosing constrained zonotope
CZ,. Note that CZ4 can be rewritten as ¢ + GSp, where
Sp, ={o € [-7,7] | Ao = bs}.

The following result shows that, to solve the optimization
problem in (9), one can choose ¢s = ¢’ and by = 0 without
loss of optimality.

Proposition 2. Let Sp, := {0 € [-7,7] | Ao = b} and Z
be a zonotope centering at ¢/. We have
min{|[a|; | Z C ¢ + GSo}
< min{||o|l1 | Jes,bs : Z C s+ GSp, }- (10)
Proof: We first prove that Z C ¢s + G Sp, implies Z C

¢ + GSy. Note that Z is symmetric w.r.t its center ¢, i.e.,
—Z+4+cd =Z-c.By ZC ¢+ GSp,, we have

Cles—)+GSp.N—(cs— ) — G Sy,

aau € [[—E,E]LAH = A/J/: bs,
GO+ (cs—c)=—-Gu—(cs—¢)

clgo - G(“T“’) 0. pc|-5.5],A0 —p) = 0}
={c(%)|%2 e [-7.51.4(%2) = 0}

={Go |o € [-7,7],Ac =0} = GSp (11)
Therefore, we have Z C ¢ + GSp. Since Sp, and Sp are
defined by the same &, Eq. (10) follows readily. [ |

Remark 1. Proposition 2 holds for any set Z that is symmetric
w.r.t. ¢/ and any other cost function of & than ||&||;.
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Next, we show that, with the sufficient condition for Z C
CZg given in Lemma 3, how to find a suboptimal solution of
(9) by solving a linear program.

Proposition 3. Suppose that Z = (G’,c’) has nonempty
interior. Let o be part of a minimizer of the following linear
program:

_min ol
7,cs,bs, T, 8,A
st. G'=GI',GB=c,— ¢,
AL -1 = [A; -A; I; - IT,
Al S [bs§ _bs;E; E] + [A7 _A§ I; _I]ﬂ7

0<o <1, A>0
(min-out)

then Z C CZ; = (G diag(a), cs, Adiag(a), bs).

Proof: Note that the constrained zonotope CZ and the
zonotope Z can be written as

C2s=c;+Glo| [A;—A;I; - I]o < [bs; —bs; 030}, (12)
Z=cd +G{o|[I;-Ilo <1}. (13)

Therefore CZ; O Z can be enforced by a set of linear
constraints using Lemma 3, which leads to (min-out). |

In spite of Proposition 2, we keep cs, bs as free variables
in (min-out). In what follows, we show that one can also set
¢; = ¢ and by = 0 in (min-out) without loss of optimality.
This result leads to a linear program equivalent to (min-out)
with fewer variables and constraints. Note that this result
does not follow immediately from Proposition 2 because the
condition in Lemma 3 is only sufficient but not necessary in
general (in fact, if that condition were also necessary, it would
be straightforward that ¢; = ¢’ and by = 0 is optimal for
(min-out)). The proof is based on the following observations.

Proposition 4. Let (7, cs, b, I', 3, A) be a feasible solution
of (min-out), then i) ¢s = GB — ¢, ii)) by = — A and iii)
AT =0, and iv) (7,c,0,T',0,A) is feasible for some A.

Proof: Bullet i) follows from the constraint GG = ¢s—c'.
By A > 0 (hence A1 > 0) and Al < [bs;—bs; ;0] +
[A;—A; I;—I)3, we have

0 < Al < [bs;—bg;o;0) + [A;—A; I; —1I)3. (14)

This implies that 0 < by + AB and 0 < —b; — A, ie.,
bs + AB = 0. Hence bullet ii) holds. Also, A1 = [02,;0 +
B; — B] and hence the upper part of matrix A must be all
zeros, i.e., A = [Og;,x2n; A] for some A > 0, where m is the
height of A and N’ is the width of G’. This further implies
that AT = 0 because A[I; —I] =[A;—A;I;-I|T.

To prove bullet iv), define A as follows. The topmost 2m
rows of A are all zeros. For ¢ = 1,2... N, where N is the
width of G,

i) if the i*® element of B is non-positive, define the
2m + " row of A to be the same as that of A, i.e.,
[A2mti1:N7, Aomti,n1:287], and the 2m+ N +i™ row
of A to be [Agmti N7+1:2N7, Aomti1:N7];

ii) if the ¢*" element of 3 is positive, define the 2m +
N + i row of A to be the same as that of A, i.e.,

[A2m+N+i1:N"s Aot N+iN+1:2n7], and the 2m + 0

row of A to be [Agmy Nti N +1:2N7, Aomt N44,1:N7].
By construction, A has a special structure, i.e.
A = [Oomxon; A1, Ag; Ay, Aq]. Moreover, A[I; —1I]

[02/; T; —T] and that A1 < [O9;0 — |85 — |8]] <

[02,,;0; 7). Together with bullet i) ii) and iii), it is

straightforward to check that (&, ¢’,0,T,0,A) is feasible. W

Proposition 4 leads to a simplification of (min-out).
Theorem 1. The linear program (min-out) is equivalent to
minr  |||T|1]1 .

st. [GAT=[G;0], T]1<1" (simple)

Proof: Tf T minimizes (simple), (&,c’,0,T',0,A)

is feasible to (min-out), where a = |1"|1 A =

[OQmXQNI;AhAQ;AQ,Aﬂ, A1 = (‘Fl +I‘)/2 and
Ay =T = (T|-DI)/2. Moreover the cost given by this
feasible solution is ||&]; = |||T|1|1, i.e., the same as the
minimum of (simple).

Suppose that (&, cs, bs,I', 3, A) minimizes (min-out).
Construct A from A as in the proof of Proposition 4, and
let [A1, Az] consist of the 2m + 15° to 2m + N** rows of A.
Then T' = Ay — As is feasible to (simple). Further, the cost
associated with T is |||T'|1||y < ||&||1. This is because, by
Proposition 4, (&,¢’,0,T,0,A) is also feasible to (min-out)
and hence & > A1 + A1 = |T'|1 must hold. [ ]

By Theorem 1, we can find the minimizer I' of (simple),
define & = |I'|1 and (Gdiag(a), ¢, Adiag(F),0) is
guaranteed to enclose Z. From now no, we will use CZ; to
denote the constrained zonotope (G diag(a), ¢/, A diag(F), 0)
and omit the subscript “0” of the set So = {0 € [-&,7] |
Ao = 0}.

The simplified optimization problem (simple) has a
geometric interpretation. Its decision variable I' can be viewed
as the generator matrix of a zonotope (I',0) C RY, where N
is the width of G. The inner zonotope Z is the image of (T', 0)
under linear map G and translation ¢’. Moreover, (T', 0) is in
the null space of A, and [—&, 7] is the smallest hyper-box
that encloses (I, 0) as & = |I'|1. With this interpretation, it
is easy to see Z C CZ,. To be precise,

:<G/7cl>
={Gro+c |6¢

[-1,1]} (GT =G")
—{Go +c | e (T,0)}
r,o

={Go +c | o € (T,0),Ac =0} (AT = 0)
C{Go+ |oc[-7,5],Ac =0} (& —|T1)
—d +GS=CZ.. (15)

Remark 2. For arbitrary constrained zonotope (G, c, A, b),
the unit hyper-box [—1, 1] may not necessarily be tight, i.e.,
it is not the smallest hyper-box that encloses {6 € [—1,1] |
A0 = b}. Such a tight hyper-box can be founded by solving
2N linear programs, where NV is the width of matrix G, or can
be outer-approximated more efficiently by an iterative method
proposed in [21]. However, for (G diag(e), ¢/, A diag(F), 0)
obtained by solving (simple), [—1, 1] is tight. This is because,
by the above interpretation, [—&, @] is the smallest hyper-box
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that contains (I",0) C {0 € [-&,7] | Ao = 0} = S. Hence
[—o,7] is also the smallest hyper-box containing S. As we
will see, the tightness of [—&,&] plays an important role in
the conservatism analysis of Step II.

Remark 3. The cost function |||T'|1]]; of (simple) is the
absolute element sum of the matrix I'. One may ask whether
minimizing this cost would achieve |T'|1 < 1 whenever
possible, even after removing the constraint |T'|1 < 1. This
is not the case in general though it happens often times. If we
ignore |T'|1 < 1 in (simple) and minimize the Frobenius norm
of T instead, it is equivalent to finding the minimum norm
solution of the least square problem defined by [G; A]T' =
[G’; 0]. If this minimum norm solution also satisfies |T'|1 < 1,
then it is a good estimate of the minimizer of (min-out) and
can be found more efficiently.

E. Step II: CZ & CZs by CG-Rep Manipulation
We further under-approximate CZ © CZ, by CZ4 =
(Gdiag(1 — 7),c — ¢/, Adiag(1 — @),b). It is tempting to
conclude that CZ4 = CZ6CZ, but this is not true in general.
In what follows, we show CZq C CZ & CZ; and give a
sufficient condition for this under-approximation to be exact.
The following two propositions will be useful later.

Proposition 5. Define
M={pe[-6d]®[-7.5] | Ap=0b}, (16
S={oe|-7,7]| Ao =0}, (17)
D=1{6€c[-6,0]| Ad = b}. (18)
Assume that [—&, 5] is the smallest hyper-box that contains
S. Then M e S =

Proof: This is a direct result of Lemma 4. Particularly,
since [—&,&] is the smallest hyper-box that contains S,
max +e/ S = +5;, where e; is the i'" natural basis vector
and &; is the i*" element of &. [

Proposition 6. Define M, S C RY the same as in Proposition
5, let G € R™N and N := N(A) N N(G). Then GM ©
GS=GMaNOS).

Proof: By Lemma 2, bullets i) and ii)

GMaNeS)CGMaN)eGS
=GM&SGS. (19)

It remains to prove that G MG S C G (MaN&S). To this
end, let € € G M S G S be arbitrary. Since t &GS C G M,
we have

VoS :3pu, e M:x+Go =Gpu,. (20)
Now let o, o’ € S be arbitrary, Eq. (20) tells us

Ap, = Apy = b, 21)
Glp, —0)=G(p, —o')==. (22)

o

Clearly, 6, — 8, € N by Egs. (21), (22) and the fact that o,
o’ € N(A). This further implies that

0 +0 =65 —085/ + 05 + 0’
=py + (g —8o/) EMODN. (23)
————
eEN
Since o’ € S is arbitrary, Eq. (23) implies that
0o ®BSCMBN — deMaNSS (24

Note that, by Eq. (20), x = G(u, — o) = Gd,. Combining
this with Eq. (24) yields x € G (M & N © S). ]
Now we state the main result of this part.

Theorem 2.Let CZ = (G,c,Ab) and CZ, =
(Gdiag(@), ¢/, Adiag(@), 0), then CZ4 = (G diag(1—o),c—
¢, Adiag(1 —&),b) C CZ & CZ,. Further, if N := N(G)N
N(A) = {0}, we have CZ4 =CZ 6 (CZ,.

Proof: Note that CZ;, = ¢/ + GS where § = {o €
[-o,0] | Ac = 0} (see Remark 2). Also note that CZ =
c+GMwhereM—{u€[[ 1,1] | Ap = b} = {p €
[-1+7,1—-0])®[-7,5] | An = b}. Define D = {§ €
[-14+7,1-7] | Ad = b}. We have D = M S S by Remark
2 and Proposition 5. Also note that

CZoCZ;

=(c-)+GMeGS

=(c-c)+GMaNBS) (Proposition 6)

D—cd)+GMaSaN) (Lemma 2)

=(c—cd)+GMoS)aGN (Lemma 2)

=(c-d)+GM6S) N CN(G))

=(c-c)+GD=CZ4. (Proposition 5)  (25)
Note that “2” in Eq. (25) holds as “=" if N' = {0}. [ |

Fig. 1. Example 1.

Example 1. With an example, we illustrate that CZ © CZ #
CZ4 in general. Define

10 0 01 0
G:[0100.8}’ ‘3:[0}’ (26)
1

A=[-1 1 03 1], b=1, 27)
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and & = [0.2,0.2,0.2,0.2] ". Let CZ = (G, ¢, A, b) and CZ,
be defined as in Proposition 3. Fig. 1 shows that there is a gap
between CZ © CZ, and its under-approximation CZy.

Remark 4. Since CZ ©CZ, 2 CZ4 in general, it is possible
that CZ ©CZ4 # () but CZ4 = (. This issue can be mitigated
by enforcing the following constraint in (min-out): 6 € [—1+
o,1—0], AG = b, where 0 is a decision variable. This extra
constraint will ensure that CZ4 # () whenever possible.

V. EXACTNESS UNDER A RICH CG-REP OFCZ

The CG-Rep of a constrained zonotope is not unique. A
notable feature of our two-step approach is: the obtained under-
approximated difference CZ4 varies with the CG-Rep of the
minuend CZ. In fact, if the CG-Rep of CZ is “rich” enough,
the two-step approach is exact when CZ & Z # (). Such a rich
CG-Rep of CZ can be constructed as follows. Let

1) HeR”", acRlbest. {xcR"| Hx < a} =CZ;

2) h,#0 be the i*® row of H and a; the i*" element of a
af h;r = 0, then a; = 0 and this row can be removed);

3) » > 0 be a sufficiently large real number s.t. CZy :=
(rI,,c) encloses CZ for some c€ ¢’ + (CZ6 Z) # 0,
where ¢’ is the center of Z;

4) (G,c,A,b) be the CG-Rep of CZ, obtained via
iteratively applying Lemma 1 iv) to the following
intersection operation, which leaves the center c
unchanged:

CZ;=CZ,1n{x|hjx<a}, i=12...0 (28)

Clearly, (G,c, A,b) is a CG-Rep of set CZ because
(G,c,A,b) =CZ;,={x | Hx < a} = CZ. To be precise,

G = [TI’HJOan], (29)
A = [r H,diag(3d)], (30)
di:ai_h;rc_‘_’r”h;rulv i:1727"'a€7 (31)
b= sshierlhllh g9 ¢ (32)

where d; (b;, resp.) is the i*® element of vector d (b, resp.).
In the rest of this section, we use (G, c, A,b) as the CG-
Rep of the minuend CZ and show that Step I and Step II are
exact when CZ & Z # ().
The following lemma will be useful.

Lemma 5. Assume that CZ© Z # (), then d; > 0 and [G}; A]
is invertible.

Proof: Recall that CZ = {z | Hx < a}, Z = (¢, G').
Since ce ' + (CZ6 2),ie,c—c + Z CCZ, we have

a; >maxh, (c—c +Z)=hjc+|h/G|. (33)

By Egs. 31), (33), d; > ||h; G'||1 + r||h; ||1. Since h; # 0
and > 0 (see bullets 2), 3)), d; > 0.

By Egs. (29), (30), [G;A] = [rI,,0;r H, diag($)] €
R +Ox(n+0) Since » > 0 and d; > 0 for i = 1,2,...,4,
[G; A] is a triangular matrix with non-zero diagonal entries.
Therefore [G; A] is invertible. [ |

The following result says that Step I is exact.

Proposition 7. Suppose that CZ & Z # (), then (simple) is
feasible. Moreover, let I' be the minimizer of (simple), define
o = |T'|1 and CZ, = (Gdiag(F),c, Adiag(7),0), then
CZoCZ,=CZ0 Z.

Proof: By Lemma 5, there is a unique I' satisfying the
equality constraint [G; A|T' = [G'; 0], i.e.,
I = [1G';—diag($)"'HG'], (34)

In what follows, we show that, assuming that (r I,,,¢) 2 CZ,
the constraint |T'|1 < 1 holds automatically. Note that

F=T1= [%|G/|l; |diag(g)*1HG’|1] (35)

i) Forj=1,2...,n,7; = t[|e] G'||, where e; is the j*™
natural basis. Since (rI,,c¢) 2 CZ D e—c + Z =
(G', '), we have

e;d +|le] G’y = maxe] (c—c + 2)
< maxe, (rl,c)=e c +r. (36)
Therefore |le] G'||y <r and 7; < 1.
ii) For 7 =
2|h{ G'|x
[h,) G ll1+rllh] |11
(G', '), we have
h; c+||h] G|y = maxh, (c—c + Z)
<maxh; (rI,,c¢)= h, c+r||h] . 37

-
ki Gl =
. Again, since (rI,,c) Dc—c + 2 =

1,2,...,6, En+1‘ =

Therefore ||h, G'||1 < r||h; ||, and 7y < 1.

So far we have proved that T' is the unique feasible solution
(hence the minimizer) of (simple).

It is known from Lemma 4 that CZ © Z = CZ & {z |
Hzx < a,}, where a; € R and its i*" element as; = h;rc’ +
|k} G’|)1. Note that, for i =1,2,...,¢,

max h,iTCZS
= maxh, {Go + ¢ | o € [-7,7], Ac = 0}
o€[-o,7], rHoy, =
_diag(%)an-&-lrn-&-é }
<h/c +max{-%0,4; | o € [-7,5]}
= hiTc' + %EHH
=h ¢+ |h/ G|l = as,, (38)

T 7 T
=h, c +max{rhi O1.n

where o1., (and 0, 11.n+¢, r€Sp.) is a vector that consists of

the first n elements (and the last ¢ elements, resp.) of o. By

Eq. (38), CZ; C {x | Hx < as}. Together with the fact that

ZCCZ;,wehave CZOCZ,=CZ0 Z. [
The following result says that Step II is exact.

Proposition 8. Let CZ, = (G diag(d), ¢, Adiag(F),0) and
CZ4 = (Gdiag(1—7),c— ¢, Adiag(1 — @), b), where 7 is
defined the same as in Proposition 7, then CZ & CZ; = CZ,.

Proof: By Lemma 5, N(G) N N(A) = N([G; A]) =
{0}. By Theorem 2, CZ ©CZs =CZ4. [ |
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Although CZ & Z # () is assumed in Propositions 7, 8, the
result CZ4 returned by the two-step approach is exact in the
following sense, regardless of this assumption.

Theorem 3. For any constrained zonotope CZ, if we construct

its CG-Rep following steps 1)-4), then the followings hold:
i) if CZ0 Z =, either CZ4 = 0 or (simple) is infeasible;
i) ifCZOZ#£0,C24=CZ0 Z.

Proof: Bullet ii) follows from Proposition 7 and
Proposition 8. For bullet i), if (simple) is feasible, then
CZ4 =0 because CZ4 CCZ © Z = () by Theorem 2. [ ]

Remark 5. The run time of our two-step approach is
polynomial in the input size. By Example 1, this approach
is not exact in general. However, as stated by Theorem 3,
the two-step approach still achieves exactness in special cases
where C2Z2’s CG-Rep is not the most “compact” one. Note
that, such non-compact CG-Rep is constructed from the H-
Rep of CZ, whose complexity may, in the worst case, be
exponential in that of CZ’s most compact CG-Rep. Therefore,
the exactness results are not surprising because in this case,
the two-step approach bypasses the high-complexity step of
computing C2’s H-Rep. This is also consistent with the fact
that Minkowski-subtracting a zonotope from a polytope in its
H-Rep is easy [14]. However, our results in Sec. V may open
the direction of incrementally enriching the minuend’s CG-Rep
to achieve exact results quickly whenever possible.

VI. BACKWARD REACHABLE SET COMPUTATION FOR
NONLINEAR SYSTEMS

In this section, we use our two-step approach from Sec. IV to
develop BRS under-approximation algorithms for system (2).
To incorporate the error introduced by sequential linearization,
we require X,_; © L to be reachable from X, under the
linearized dynamics, where X'}, _; ( X', resp.) are the k — 15t
(k'h, resp.) under-approximated BRS and £ contains all values
of the linearization error over X';.. As mentioned in Sec. III, the
challenge is to approximate £ without knowing X, a priori.
To resolve this issue, we explore the following two strategies.

A) Scaling method: we incrementally enlarge £ by a scaling
factor until i) X, © L is reachable from X’;, under the
linear dynamics, and ii) £ encompasses all the values
of the linearization error in X,. Here, each X is a
constrained zonotope.

B) Splitting method: we fix £ and split X',,_; into finitely
many smaller sets, i.e., X, _; = (J; X},_,. The nonlinear
system is linearized for each X} _,, and the splitting
procedure terminates when the linearization error in each
X, from where X},_; © L is reachable under the '}
linear dynamics, are contained by L. In this case, X' =
\U; X% and is represented by the collection of the CG-
Reps of constrained zonotopic sets X7J,.

The scaling method is in principle similar to the approach
proposed in [24], and the splitting method borrows the idea
from [25], where a similar splitting procedure is developed
for zonotopes to control the linearization error in forward
reachability analysis. Unique to our implementation is the use

of our efficient Minkowski-difference computation techniques
tailored to constrained zonotopes. While the scaling method
better suits the computation with more steps (i.e., larger k) in
a convex safe set Xg,fe, the splitting method better captures the
shape of a nonconvex set X}, and is more suitable when X,
is also nonconvex, because X, is represented as a collection
of constrained zonotopes in the latter method. In what follows,
we present the detailed algorithms for the two methods above.

A. Scaling Method

Algorithm 1 X, = ScalingBRS(X;,_,, f, U, W, Xsate)

Input: Constrained zonotope X, _,; System’s vector field f;
Control input set U; Disturbance set W; Safe set Xsate
Output: Constrained zonotope X; C Pre(X,_;)
z + center(X,_, xU)
[A, B] < linearize(z, f); L+« {f(z) - [A, B|z}
Zk — Prem,u (&k-lv Aa Bvua Wa ‘Ca Xsafc)
z* « center(Zy,) B
[A, B] < linearize(z*, f); L <« LE(z*, f,Z)
Zk — Prem,u (&k717 A7 B7u7 W7 £7 Xsafe)
while LE(z*, f,Z;) < L do
Enlarge £ by a factor «
Zk‘ — Prew,u(&kflu A7 Bu u7 W7 ‘C7 Xsafe)
return X, < Proj.(Z;)

N A RNl

—_

Algorithm 1 details the scaling method. In this algorithm,
we first linearize the system at the geometric center z of the
interval closure of X,_; x . The function center(Z) returns
1(z + %), where z and Z are the lower and upper limits of
the smallest hyper-box that contains set Z. That is,

Zz; = min e;-rZ7 Z; = max eZTZ, 39)
where 2, and Z; are the i*® elements of z and Z, respectively.
Suppose that Z is a constrained zonotope, executing the
function center amounts to solving 2n linear programs. On
line 2, the function linearize(z, f) linearizes the vector field
f at point z and returns the matrices that define the obtained
linear system, i.e.,
of (z,u) Of (z, u)

A= A - (o

[ziu]=2 [z;u]==2

On line 3, we compute a set Z, of state-input vectors
[;u] such that X, ; is reached from state a under
control w and the obtained linear dynamics. To be precise,
Preq (X, A, B,U,W, L, Xsage) is defined to be:

{[z;u] € Xsate xU |Ax + Bue X o (LAW)}. (41)

Suppose that X,re is a polytope, then Preg 4, is a constrained
zonotope whose CG-Rep can be obtained using Lemma 1 and
our two-step approach for Minkowski-difference computation.
Note that, in line 3, Z; is computed without considering
any linearization error (i.e., £L = {f(z) — [A,B|z} is a
singleton set). The purpose of this step is to find a better point
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z* = center(Zy,) to linearize the system at (line 4). Then on
lines 5-6, we linearize the system at z* and recompute a set
Zj. with the latest linear system and a set £ = LE(z*, f, Z)
that contains all possible values of the linearization error.
Particularly, LE(z*, f, Z) is a zonotope that encloses the
following set of Lagrange remainders over set Z:

f(z") - [A BJz"+
Li=5(z - Z*>T%QZJ§ (&)(z ~2"), z € Z} (42)

L eR"
{ © & =Xiz"+ (1= )z, N €[0,1]

where A, B are given by Eq. (40) evaluated at z*, and
L;, f; are the ith elements of L and f, respectively. The
set LE(z*, f,Z) can be computed as a hyper-box using
interval analysis techniques (e.g., see [25]). If £ encloses
all possible values of the linearization error in set Zj, then
Xr—1 can be reached from Proj,(Z;) = {x | [z;u] €
Zi} under the nonlinear dynamicsz. In that case, we return
X = Projz(Z2;). Otherwise we incrementally enlarge £ by
a factor o and recompute Zj until the linearization error set
LE(z*, f, Z) is enclosed by L.

B. Splitting Method

The real backward reachable set X} may not be convex
due to the nonlinearity of the system’s vector field f or the
nonconvexity of the safe set Xg,p. Therefore, the scaling
method can be conservative because we under-approximate a
potentially nonconvex set A}, with a constrained zonotope X',
which is a convex set. In this part, we present the splitting
method, where the linearization error set £ is defined to have
a prescribed (i.e., fixed) size, and X is represented as the
union of a finite collection {X}.} of constrained zonotopes, so
that the linearization error in each X’j, is over-approximated
by the prescribed L. Since X, = [J; X}, is not necessarily
convex in the splitting method, it serves as a less conservative
(i.e., larger) under-approximation of A.

The following proposition provides a rigorous way to split
one constrained zonotope into two, so that the linearization
error can be evaluated over the two smaller sets separately.

Proposition 9. Assume that CZ = (G, ¢, A,b), where
G = [91.92 - .9n],A = lai,a2,--- ,ay]. Then set
CZ can be split into CZ] = (G1,¢1,A1,b1) and CZ5 =
(G, €2, Az, bs) along g,, ie., CZ =CZ] UCZ, where

Gl:GQ:[gl7g27"'>%gi7"'ﬂgN] (43)
A1:A2:[a1,a2,-~-,%ai,--~,aN] (44)
bi=b-—1a; ci=c+1ig, (45)
b2:b+%ai CQZC*%gi (46)

Proof: The set CZ can be written as

CZ={GO+c||9;|<1,j=1,2,---,N, A0 = b}. (47)

>The projection step amounts to a linear transformation and is easy for
CG-Reps by Lemma 1, bullet i).

where 0 = [01;02;--- ;0n] € RY. Define
CZ,={GO +c|b; € [0,1],10;] < 1,j #1i, A0 = b}, (48)
CZL={GO + c|0; € [-1,0],]0;] < 1,5 # i, AB = b}. (49)
Apparently, CZ = CZ? U CZQ. To show that CZ! =
(Gh,¢1,A1,by), let O be such that 0; € [0,1], [0;] < 1
for all j # i and A® = b. Define pu; = 20; — 1 and
0 = [91,027 e ,91'_1;,[Li;97;+1; e ;HN]T, then
N
GO+c=c+> ;.90 + gi(5pi +3)
= (c+ 39, + Zj‘vzl,j;éi 9,0 + 59,1
=G0+ (50)
In addition,
N
A =b — Zj:l ajﬁj =b
N
— A6=0b (51
Since |p;] = |20; — 1| < 1, we have 6 [0, 1]. Therefore,

CZZl = {Glé + c1 | é € [[O, 1]],Alé = bl}
=(G1,c1,A1,by) (52)

Similarly, to show that CZ% = (G, ¢, Aa, bs), let O be such
that 6; € [-1,0], |6;] < 1 for all j # ¢ and A = b. The
above argument follows by setting p; = 260; + 1. ]
Fig. 2 shows the two sets CZ; (green) and CZs (red)
obtained by splitting CZ (black contour) using Proposition 9.
Note that CZ overlaps with CZ5. As we will see, this overlap
helps to reduce the conservatism in the BRS computation.

2
CZ,

8 ez,

Fig. 2. Result for Proposition 9: CZ =CZ1 UCZq

Based on Proposition 9, a detailed algorithm that
implements the splitting method is given in Algorithm 2. The
input {X%} and the output {X% ,} are finite collections of
constrained zonotopes s.t. X, _; = |J, Xi_; and X, = U, X},
are the under-approximation of the k& — 1% and the kM
BRSs, respectively. The sub-procedures center, linearize
and LE are the same as in the scaling method. However,
Preqg (X, A, B,U,W, L), which computes the extended
constrained zonotope Z, has a slightly different definition, i.e.,

Z={[z;u] | Ax+ Buc X (L&W),ucl}. (53)
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In Eq. (53), © € Xjafe is not enforced as in the scaling method.

Algorithm 2 is briefly explained below. For each X}, _; from
the input collection, we construct a collection C,i of constrained
zonotopes, the union of which is contained by Pre(X),_;). To
obtain C}, we compute a set Z; of the state-input pairs [z; u]
using linearization (lines 2-5). These steps are the same as
those in the scaling method except that the linearization error
set £ is now defined by a prescribed error bound L. If all
possible values of the linearization error over Zj, are contained
by L, it follows that Projz(Z;) N Xte € Pre(X),_;) and Cj,
is given as in line 7. Otherw1se we spllt X! | into two smaller

constrained zonotopes X4 X1 X4 X0 and compute the BRSs
for them by calling SphttlngBRS recursively. Note that, for the
first case (i.e., line 7), each C} may still contain multiple sets
when Xj.¢. is nonconvex. For example, if Xgape = Up H, is
the union of finitely many polytopes H,, the collection C;. will
consist of Proj,(Z}) NH, for all p. Each Proj,(Z) NH,
is a constrained zonotope, whose CG-Rep can be obtained
by Lemma 1. For details, see [18]. Finally, if f is twice
continuously differentiable, LE(z*, f, Z) will converge to a
singleton set as Z does. This ensures that the recursion will
terminate after sufficiently many splittings.

Algorithm 2 { X} } = SplittingBRS({X},_+}, £, U, W, L, Xiate)

Input: A collection {X}_;} of constrained zonotopes;
System’s vector field f; Control input set U/; Disturbance
set W; Safe set AXare; Admissible linearization error
LecR”

Output: A collection {X } of constrained zonotopes s.t.
U, &}, € Pre(U, Xj_y)

1. for each X} do

z* « center(X;_, X U)

[A, B] < linearize(z*, f)

L« (diag(L), f(=*) — [A, B]z")

Zi « Preg o (X 1, A, B,UW,L)

if LE(z*,f,Z;) C L then

Cllc A {P’I’O‘]m(Zi) N 'X‘Safe}
break

else . '

Select a generator g;”7 ; of X} _,;

1 Split Xi_, into X} | and X}7 , {Proposition 9}

@0 PN

—

12: CIZ—IF{X;CJll’XZJIZ
13: Ci « SplittingBRS(CL._,, f,U W, L, Xsate)
14: return {X1} « |J,Ch

In line 10, the generator gﬁ *1 is selected as follows. Similar

to [25], for the ;" generator of the set X 2_1 to split, we
compute a performance index p; as follows:

pj = maX(L{/E) . maX(Lg/f/), (54)

where L{, Lj € R™ are vectors that define the linearization
error bound for sets X,J and X,z 7, respectively. The operations
max and / in Eq. (54) are element-wise. In line 10, the

generator g;,i , with the lowest performance index will be
chosen, i.e., j* = arg minj pj-

Remark 6. Note that, while executing SplittingBRS in line
13, the set £ & W will be subtracted from the two sets
X 2’] 1 and X7 1,2- Which are obtained via splitting. By
Lemma 2, bullet 111) the union of these two Minkowski
differences is only a subset of (but not necessarily equal to)
Xi._1 © (L ®W). This means that the splitting procedure
introduces more conservatism. However, the overlapping area
generated by Proposmon 9 can ease the conservatism. This is

because the larger X}’ | and X k’] 1,2 are, the larger Cj is.

When doing the splitting, the number of the obtained
constrained zonotopes may grow exponentially. Therefore, a
sampling algorithm is required to restrict their number. In order
to evenly cover the union of these sets, we implement the
farthest point sampling algorithm [26] based on the geometric
centers of the constrained zonotopes’ interval closures.

VII. EXAMPLES

In this section we illustrate our algorithms with several
examples. TABLE I summarizes our results with, for each
example and method, the system dimension d, the iteration
steps k£ and the computing time. These examples were run on
a laptop with a 12th generation Intel CPU and 16 GB of RAM.
Our implementation is in MATLAB R2019a. The zonotope-
based method and the HIB method that we use as benchmarks
are also in MATLAB. Note that the splitting method does not

d k Splitting Scaling HJB
Example 2 2 100 N/A 56.1s 45.2s
Example 3 10 10 226.7s N/A Memory error
Example 4: 3 478.9s 2821.3s Memory error

Convex constraints (k = 25) (k = 400)
Example 4: 320 | 1564.1s N/A 4521.6s
Nonconvex constraints

Example 5 10 340 951.6s N/A Memory error
TABLE 1. COMPUTATION TIME FOR THE EXAMPLES.

apply to Example 2 because the system is linear and Xy,
is convex (hence no reason for splitting). We also do not
apply the scaling methods to examples with nonconvex Xg,fe
(Examples 4 and 5), because its implementation only generates
one homotopy class.

While Algorithm 1, 2 are developed for nonlinear systems,
they both reduce to Eq. (4) for linear systems (i.e., when
f(x,u) = Az + Bu). The following linear system examples
show that less conservative under-approximations can be
obtained using constrained zonotopes instead of zonotopes,
because the former has a stronger expressive power.

Example 2. Consider a linear system with the following
system matrices and sets:

0.9962  0.02394 —0.004034
A= 01496 0.9962]’3{ 0.08025 } ©5)
U = [-1515], W = ([0.1997,0.002396; —0.01498,
0.1997],0), Xo — (diag([0.5,0.5)), [1.5; 0]) and Xaae = { €

R? | [-1,0;2,1]x < [2;5]}. Fig. 3 shows the exact BRSs A},
(gray) for k£ = 1,2...,100 and their under-approximations.
The constrained zonotopic under-approximations X, are in
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Exact Constrained Zonotope HIB
zonotope
Volume ‘ 37.079 28.343 7.810 2.817 8
TABLE II. EXAMPLE 2, THE VOLUME OF
THE BRSS.
0 F Xinsafe
Constrained HJB Intersection 3 {
zonotope !
Volume 0.1608 0.3422 0.1504 E
Projection 07070 07326  0.6674 . :
Volume 3 2 -1
TABLE III. EXAMPLE 4, THE VOLUME OF

THE BRSS AND THEIR PROJECTIONS.

Fig. 3. Example 2, exact BRSs and their under-

approximations.

W Target set
W Obstacles
—HJB

.Constrained Zonotopes

i N

I Exact
Constrained Zonotope
[JZonotope
HJB

Xunsale

L
©

Fig. 4. Example 3, BRSs by the zonotope-based
& the constrained-zonotope-based methods.

Splitting method
e Scaling method

C\é 02 A A
w .
10
Fig. 5. Example 4 (nonconvex state Fig. 6. Example 4 (convex constraints), BRSs Fig. 7. Example 5, the projections of the
constraints), BRSs by the splitting method. by the scaling method and the splitting method. 10-D BRSs.

blue. As a comparison, we used the method in [19] to
compute zonotopic under-approximations (red) and scaled the
generators of these zonotopes to satisfy the linear safety
constraints. The latter approach is clearly more conservative
(i.e., gives smaller sets). In fact, due to the wrapping effect
after hitting the unsafe set {x | [2,1]z > 5}, the red sets
vanish before £k = 100 is reached. The main reason of
this conservatism is that the true backward reachable set X,
becomes asymmetric due to the state constraints. Hence it is
more accurate to approximate X with a constrained zonotope
than with a zonotope. The former is as expressive as polytopes
while the latter is restricted to be a centrally symmetric set.
In addition, we use the HIB method to compute the BRSs
(cyan contour) with the same constraints. The obtained result
is more conservative and stops expanding after £ = 20. The
volumes of the BRSs by different methods are approximated
using a sample-based method and are shown in TABLE II.

Example 3. Consider the 10-D system from [19], discretized
with a sampling period of At = 0.1s. Let the disturbance set
W be so that ’LU{1,375} € [[*012, 012]], '(1){27476} € [[*0.2, 02]],
wy7,8.9,10} € [—0.1,0.1] and the control set U € [—0.5,0.5]°.
Define the target set such that x; € [9.5,10.5] for ¢ €
{1,2,3,4,5,6} and z; € [8,12] for i € {7,8,9,10}.

To avoid potential numerical issues when visualizing
10-D zonotopes or constrained zonotopes, bounding boxes
are used to visualize the results. Fig. 4 shows the 3-D
projection of the boxes including the constrained zonotopic
under-approximation of BRSs (blue) and zonotopic under-
approximation of BRSs (green) for ¥ = 1,2.--,10. Since
the system dimension is large, Hamilton-Jacobi method
encountered memory error, whereas both zonotope and
constrained zonotope-based methods can obtain a result. Here

we used the approach in Sec. VI-B to avoid obstacles. In this
example, the zonotopic representation is more conservative
than that based on constrained zonotopes, while the latter being
as scalable as the former. That is, constrained zonotopes can
also handle high dimensional linear systems, as zonotopes do.

Example 4. Consider a Dubins Car system: z} 11 = T +
ubcos(z}), at,, — a? + ubsin(ed). @, = o +
where @), = [z};2%; 23] is the state and wuy, = [uj;ui] €
[0.04,0.08] x [0,0.04] is the control input. We use the scaling
method and the splitting method to compute the BRSs with

convex and nonconvex state constraints, respectively.

Fig. 5 shows the [z';z?]-projection of the constrained
zonotopic under-approximation X, (cyan) of the BRSs,
obtained by the splitting method. As a comparison, we also use
the HIB method [22] to approximate the BRSs (blue contour).
To this end, a uniform grid (201 x 201 x 101) of the state space
is used. The BRSs obtained via these two methods both contain
states from different homotopy classes in an environment with
obstacles. Further, the two methods give BRSs that are similar
in sizes but not comparable in the set inclusion sense (Fig
5 & TABLE III). In particular, when expanding into the free
state space, the HIB method tends to give larger BRSs than
the splitting method. However, the splitting method is faster
(TABLE I). The volumes of the BRSs (and their projections)
obtained using both methods are approximated using a sample-
based method and are shown in TABLE III.

Fig. 6 shows X, obtained by the scaling method (blue) and
the splitting method (cyan). Here the safe set is a single half-
space (specified by the red plane). For small k’s, the splitting
method finds larger BRSs than the scaling method. However,
the splitting method has difficulties to proceed for £ > 25.
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This is because, in the splitting method, X, is represented as
a collection of small sets, whose number grows fast without
an obstacle “pruning” these sets in a convex domain. It is
also conservative to Minkowski subtract £ & VW from each
small set in the collection, and uses the union of the obtained
Minkowski-differences to compute X', ,; (see Remark 6). On
the contrary, the scaling method, which computes one set at
each step, does not suffer from these issues and can compute
the BRSs in a convex domain for a longer time horizon.

Example 5. Consider a 10-D water tank system with the
following dynamics: } , , = o}, +dt (u — kox}? — k1+/297}),

xh . =z +dthy (W/ngz,*l— \/ngfé) for i # 1, where 2
is the i*1 tank’s water level, u € [0.135,0.145] is the inflow,
dt =0.01, k; = 0.015, k3 = 0.01, g = 9.81, and the target set
is [3.9,4.1]*°. We apply the splitting method to this example.
Figure 7 shows the 2-D projections of the target set (green), the
obstacle (red), and the bounding boxes (blue) that include the
obtained constrained zonotopic under-approximations of the
BRSs. For this example, the HIB toolbox reports a memory
error due to the large grid size, which is necessary for the 10-D
system. We manage to compute the BRSs (with two homotopy
classes) in reasonable time (TABLE I). This example shows
that our method can deal with high-dimensional nonlinear
systems with nonconvex state constraints.

VIII. CONCLUSION & FUTURE WORK

In this paper, we developed constrained-zonotope-based
methods to under-approximate the BRSs for discrete-time
nonlinear systems. Our main technical contribution was
twofold. First, we developed an efficient way to under-
approximate the Minkowski difference between a constrained
zonotopic minuend and a zonotopic subtrahend, which is a
necessary step in the sequential BRS computation. Our under-
approximation was shown to be exact for minuends with rich
enough CG-Reps. Secondly, using the developed Minkowski
difference computation technique, we proposed two methods,
i.e., the scaling method and the splitting method, for BRS
computation. Experiments showed that these constrained-
zonotope-based methods were less conservative than those
using zonotopes, and were more scalable than the HIB method.

The exactness result in Sec. V suggests that, for constrained
zonotopes, there is a trade-off between the computational
complexity and the accuracy of set operations. This trade-
off may be better understood via a systematic conversion
between the different CG-Reps of a constrained zonotope. This
conversion may be used, e.g., to incrementally enrich the CG-
Rep of a constrained zonotopic minuend and improve our two-
step approach’s accuracy. We will explore this in the future.

REFERENCES

[1] D. Bertsekas and I. Rhodes, “On the minimax reachability of target sets
and target tubes,” Automatica, vol. 7, no. 2, pp. 233-247, 1971.

[2] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349—
370, 1999.

[3] D. Bertsekas, “Infinite time reachability of state-space regions by using
feedback control,” IEEE TAC, vol. 17, no. 5, pp. 604-613, 1972.

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in Intl. Workshop on HSCC. Springer, 2007, pp.
428-443.

M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, “Signal temporal
logic meets reachability: Connections and applications,” in Intl. WAFR.
Springer, 2018, pp. 581-601.

G. Chou, Y. E. Sahin, L. Yang, K. J. Rutledge, P. Nilsson, and N. Ozay,
“Using control synthesis to generate corner cases: A case study on
autonomous driving,” IEEE TCAD, vol. 37, no. 11, pp. 2906-2917,
2018.

L. Yang and N. Ozay, “Synthesis-guided adversarial scenario generation
for gray-box feedback control systems with sensing imperfections,”
ACM TECS, vol. 20, no. 5s, pp. 1-25, 2021.

E. Goubault and S. Putot, “Inner and outer reachability for the
verification of control systems,” in Proc. of the 22nd HSCC, 2019, pp.
11-22.

B. Schurmann, M. Klischat, N. Kochdumper, and M. Althoff, “Formal
safety net control using backward reachability analysis,” IEEE TAC,
2021.

M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques
for reachability analysis,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, pp. 369-395, 2021.

X. Chen, S. Sankaranarayanan, and E. Abrahém, “Under-approximate
flowpipes for non-linear continuous systems,” in 2014 FMCAD. IEEE,
2014, pp. 59-66.

N. Kochdumper and M. Althoff, “Computing non-convex inner-
approximations of reachable sets for nonlinear continuous systems,”
in the 59th CDC. IEEE, 2020, pp. 2130-2137.

E. Hnyilicza, “A set-theoretic approach to state estimation,” Master’s
thesis, Massachusetts Institute of Technology, 1969.

I. Kolmanovsky and E. G. Gilbert, “Theory and computation
of disturbance invariant sets for discrete-time linear systems,”
Mathematical Problems in Engineering, vol. 4, no. 4, pp. 317-367,
1998.

H. R. Tiwary, “On the hardness of computing intersection, union and
minkowski sum of polytopes,” Discrete & Computational Geometry,
vol. 40, no. 3, pp. 469-479, 2008.

M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. of the 12th ECC, 2013, pp. 502-510.

M. Althoff, “On computing the minkowski difference of zonotopes,”
arXiv preprint arXiv:1512.02794, 2015.

V. Raghuraman and J. P. Koeln, “Set operations and order reductions
for constrained zonotopes,” Automatica, vol. 139, p. 110204, 2022.

L. Yang and N. Ozay, “Scalable zonotopic under-approximation of
backward reachable sets for uncertain linear systems,” IEEE L-CSS,
vol. 6, pp. 1555-1560, 2021.

S. Sadraddini and R. Tedrake, “Linear encodings for polytope
containment problems,” in the 58th CDC. IEEE, 2019, pp. 4367-4372.

J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126-136, 2016.

S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in the 56th CDC.
IEEE, 2017, pp. 2242-2253.

A. Kulmburg and M. Althoff, “On the co-np-completeness of the
zonotope containment problem,” Eur. J. Control, vol. 62, pp. 84-91,
2021.

M. Althoff, “Reachability analysis of nonlinear systems using
conservative polynomialization and non-convex sets,” in Proc. of the
16th HSCC, 2013, pp. 173-182.

M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis
of nonlinear systems with uncertain parameters using conservative
linearization,” in the 47th CDC. 1EEE, 2008, pp. 4042-4048.

T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical computer science, vol. 38, pp. 293-306, 1985.



	Introduction
	Notations & Preliminaries
	Problem Description
	Under-approximating CZZ
	Complexity Analysis
	Naïve Approach with Bilinear Constraints
	Two-Step Approach: Overview
	Step I: Over-approximating Z by CZs
	Step II: CZ CZs by CG-Rep Manipulation

	Exactness under A Rich CG-Rep of CZ
	Backward Reachable Set Computation for Nonlinear Systems
	Scaling Method
	Splitting Method

	Examples
	Conclusion & Future Work
	References

