
A Projection Operator-based Newton Method for the
Trajectory Optimization of Closed Quantum Systems

Jieqiu Shao,1 Joshua Combes,1 John Hauser,1 and Marco M. Nicotra1

1Department of Electrical, Computer and Energy Engineering,
University of Colorado Boulder, Boulder, Colorado 80309, USA

(Dated: October 11, 2022)

Quantum optimal control is an important technology that enables fast state preparation and gate
design. In the absence of an analytic solution, most quantum optimal control methods rely on
an iterative scheme to update the solution estimate. At present, the convergence rate of existing
solvers is, at most, superlinear. This paper develops a new general purpose solver for quantum
optimal control based on the PRojection Operator Newton method for Trajectory Optimization,
or PRONTO. Specifically, the proposed approach uses a projection operator to incorporate the
Schrödinger equation directly into the cost function, which is then minimized using a Newton descent
method. At each iteration, the descent direction is obtained by computing the analytic solution
to a linear-quadratic trajectory optimization problem. The resulting method guarantees monotonic
convergence at every iteration and quadratic convergence in proximity of the solution. The potential
of PRONTO is showcased by solving the optimal state-to-state mapping problem for a qubit and
providing comparisons to a state-of-the-art quantum optimal control method.

I. INTRODUCTION

To accomplish the promise of quantum computing
and quantum sensing, it is necessary to reliably and
accurately control increasingly large quantum systems.
Quantum control [1–4] is difficult for many reasons, in-
cluding: interesting quantum systems are fundamentally
nonlinear [5], observations disturb the state of the system
being controlled, and, like classical systems, the quantum
state space suffers from the curse of dimensionality.

Broadly speaking, the field of quantum optimal control
can be divided into model-free, e.g. [6], and model-based
methods. In the context of model-based quantum opti-
mal control, the two predominant strategies in modern
literature are the GRadient Ascent Pulse Engineering al-
gorithm (GRAPE) [7, 8], which treats the control input
as a sequence of piecewise-constant pulses, and Krotov
methods [9, 10], which treat the control input as a con-
tinuous function. For a detailed comparison between the
two strategies, readers are referred to [11]. Because these
prior methods use gradient-based descent, their conver-
gence to the optimal solution is predominantly linear (or
superlinear in the case of quasi-Newton gradient accelera-
tion schemes [12, 13]). The development of quadratically
convergent quantum control methods is an open problem
and may lead to the ability to control larger quantum
systems.

This paper introduces a new strategy for model-based
quantum optimal control by specializing the PRojec-
tion Operator-based Newton method for Trajectory Op-
timization (PRONTO) [14] to quantum systems. An ex-
ample featuring a prior application of PRONTO to quan-
tum control is discussed briefly in [15].

PRONTO is conceptually similar to Krotov, in the
sense that they both solve the optimal control problem
directly in function space, and they both do so by se-
quentially solving backward-in-time and forward-in-time

ordinary differential equations. Their difference lies in
how they handle the system dynamics: Krotov enforces
them using Lagrange multipliers and employs a primal-
dual gradient method to seek the saddle point of the La-
grangian; PRONTO embeds them into a modified cost
function using the projection operator, and employs a
Newton descent method to seek the minimum of the mod-
ified cost function. Thus, the convergence rate of Krotov
is linear, whereas the convergence rate of PRONTO can
be quadratic.

The paper is structured as follows: Section II states the
quantum optimal control problem we wish to solve and
reformulates it into a traditional optimal control prob-
lem. Section III reviews established results from numeri-
cal optimization theory to familiarize the reader with the
general concepts used in PRONTO. Section IV provides
a detailed description of how to implement PRONTO
on quantum systems and includes a pseudo-code sum-
marizing all the steps performed by the method. Fi-
nally, Section V provides preliminary comparisons be-
tween PRONTO and the state-of-the-art Krotov imple-
mentation package [16].

II. PROBLEM STATEMENT

The objective of this paper is to develop a systematic
approach for the state-to-state control of quantum sys-
tems, meaning that we wish to steer some initial state
|ψ0〉 to a target state |φ〉 over a finite time interval [0, T ].
In this section, we show how the state-to-state quantum
control problem can be reformulated as a classic opti-
mal control problem, which we will then solve using a
specialized version of the PRONTO algorithm.
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A. Dynamic Model

We consider a system governed by the Hamiltonian

Ĥ[u(t)] = Ĥ0 +
m∑
j=1

Ĥj fj [uj(t)], (1)

where Ĥ0 ∈ Cn×n represents the free evolution of the
system, Ĥj ∈ Cn×n is the j-th control Hamiltonian and
the associated fj : R → R is a class C2 function of the
control input uj(t) ∈ R. The dynamics generated by this
Hamiltonian are

i~
∂

∂t
|ψ(t)〉 = Ĥ[u(t)] |ψ(t)〉 , (2)

with |ψ(t)〉 ∈ Cn and u(t) ∈ Rm. Henceforth, we set
~ = 1 for simplicity.

B. Cost Function

To quantify the effectiveness of a given controller, we
will rank the behavior of (|ψ(t)〉, u(t)) within the time
window t ∈ [0, T ], by evaluating the cost function

m̂[ |ψ(T )〉] +

∫ T

0

l̂[ |ψ(t)〉 , u(t)]dt, (3)

where both the terminal cost m̂ : Cn → R≥0 and the

incremental cost l̂ : (Cn×Rm)→ R≥0 are class C2 convex
functions that can be interpreted as follows:

• The incremental cost penalizes undesirable behaviors
within the time window t ∈ [0, T ]. A common choice is

l̂(|ψ〉 , u
)

= l̂ψ(|ψ〉) + lu(u), (4)

with l̂ψ convex and lu strongly convex. The latter pre-
vents u(t) from growing unbounded, and is therefore nec-
essary for the well-posedness of the problem. A typical
choice for lu 6= 0 is

lu(u) = 1
2u

TR(t)u. (5)

whereR(t) > 0, ∀t ∈ [0, T ] is a (potentially time-varying)

symmetric matrix. As for the former, l̂ψ 6= 0 can be use-
ful for penalizing the transfer of population onto undesir-
able states |λ〉, as detailed in [17]. In this case, a suitable
choice would be

l̂ψ(|ψ〉) = 1
2 〈ψ| P̂λ |ψ〉 , (6)

where the operator P̂λ = |λ〉〈λ| is a projection of |ψ〉
onto a state |λ〉. If we do not wish to penalize any states

during the transient, it is worth noting that l̂ψ = 0 is a
suitable, and fairly common [16], alternative.

• The terminal cost drives the final state |ψ(T )〉 to a
desirable target |φ〉 by penalizing the deviation between

|ψ(T )〉 and |φ〉. For example, we can perform an arbi-
trary phase state-to-state transition by assigning

m̂(|ψ〉) = 〈ψ| P̂¬φ |ψ〉 , (7)

where the operator P̂¬φ = 1−|φ〉〈φ| is the complement of

P̂φ and m̂ denotes the squared Hilbert-Schmidt distance
between |ψ〉 and the target state |φ〉.

C. Optimal Control Problem

Having identified the system dynamics and a suitable
cost function, we can now formulate the well-known [1]
quantum optimal control problem

min m̂[ |ψ(T )〉] +

∫ T

0

l̂[ |ψ(t)〉 , u(t)]dt (8a)

s.t. ∂
∂t |ψ(t)〉=−iĤ[u(t)]|ψ(t)〉, |ψ(0)〉= |ψ0〉. (8b)

To solve this problem, we will start by re-framing it into
the form found in conventional control literature [18].
This is done by transforming the complex state vector
|ψ(t)〉 ∈ Cn into a larger real vector x(t) ∈ R2n by taking
advantage of the bijective mapping

x(t) =

[
Re
[
|ψ(t)〉

]
Im
[
|ψ(t)〉

]] . (9)

This mapping, detailed in [19], allows us to transform

any operator Ŷ ∈ Cn×n into a matrix Y ∈ R2n×2n using

Y =

[
Re(Ŷ ) −Im(Ŷ )

Im(Ŷ ) Re(Ŷ )

]
. (10)

The Schrödinger equation (2) can therefore be rewritten
as the real-valued ordinary differential equation

ẋ(t) = H[u(t)]x(t) (11)

by defining

H =

[
Re(−iĤ) −Im(−iĤ)

Im(−iĤ) Re(−iĤ)

]
. (12)

Likewise, the bijective mapping (9) can be leveraged to

transform the functions l̂(|ψ〉 , u) and m̂(|ψ〉) into their
equivalent form l(x, u) and m(x). For example, the cost
functions (4)-(7) can be rewritten as

l(x, u)= 1
2x

TPλ x+ 1
2u

TR(t)u, (13a)

m(x)= 1
2x

TP¬φ x, (13b)

where the matrices P¬φ and Pλ can be obtained from the

operators P̂¬φ and P̂λ using Eq. (10).

Solving the quantum optimal control problem (8) is
therefore equivalent to solving the conventional optimal
control problem

min m[x(T )] +

∫ T

0

l[x(t), u(t)]dt (14a)

s.t. ẋ(t) = H[u(t)]x(t), x(0) = x0. (14b)
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Compared to the more general formulation featuring ẋ =
f(x, u), (14) features two very interesting properties that
stem from the nature of closed quantum systems

• The differential equation (14b) is affine in the state
vector x, meaning that its second derivative satis-
fies ∇2

xx[H(u)x] = 0;

• The matrix H(u) is skew-symmetric for all u ∈ Rm.
This implies ‖x(t)‖ = ‖x(0)‖, ∀t ∈ [0, T ].

These properties, plus the general simplicity of comput-
ing the partial derivatives of (14) will be leveraged in
Sec. IV to design an efficient iterative solver.

III. OPTIMIZATION PRIMER

The goal of this section is to provide the interested
reader with an intuition for the main ingredients used in
PRONTO. Although most of the information contained
in this section can be found in a good textbook on nu-
merical optimization, e.g. [20], the order in which it is
presented and the way it is interpreted is both original
to this paper and critical for understanding the theory
behind PRONTO.

The starting point is Eq. (14), which is a constrained
optimization problem defined in function space, mean-
ing that its solution [x(t), u(t)] is a pair of functions
x : [0, T ] → R2n and u : [0, T ] → Rm. Since readers
are more likely familiar with vector space optimization,
this section describes the general intuition behind the
approach used in Sec. IV for the simplified case where
x ∈ R2n and u ∈ Rm are just two vectors.

A. Embedding Constraints into the Cost Function

Given a constrained optimization problem in the form

min h(x, u) (15a)

s.t. c(x, u) = 0, (15b)

where h : (R2n × Rm) → R≥0 is a C2 convex function
and c : (R2n × Rm) → R is a C2 function, a systematic
method for finding the solution is to search for the saddle
point of the Lagrangian L(x, u, χ) = h(x, u)+χT [c(x, u)],
where χ ∈ R2n is the vector of Lagrange multipliers.
This can be done using a primal-dual gradient method
(incidentally, if one were to transfer this intuition back
into function space, one would obtain something akin to
the Krotov method [21]).

Given a C2 function p : Rm → (R2n,Rm) such that
c(x, u) = 0 iff [x, u] = p(u), an alternative method would
be to solve the unconstrained optimization problem

min g(u), (16)

with g(u) = h[p(u)]. Clearly, the main challenge associ-
ated to this transformation is finding a suitable function

p(u). Doing so, however, enables us to use a standard
Newton method for finding the solution.

B. Newton Method

The classic Newton method seeks local minima of (16)
by applying an iterative procedure in the form

uk+1 = uk + νk, (17)

where, given a guess uk, the Descent Direction νk is
obtained by computing the local quadratic approxima-
tion of the cost update, i.e.

g(u) ≈ g(uk) +∇T g(uk)ν + 1
2ν

T∇2g(uk)ν, (18)

and solving a quadratic minimization problem

νk = arg min∇T g(uk)ν + 1
2ν

T∇2g(uk)ν. (19)

The interest in this approach is that, unlike the origi-
nal problem (16), the local quadratic approximation (19)
can be solved explicitly iff ∇2g(uk) > 0. Notably, the
solution to (19) is

νk = −∇2g(uk)−1∇g(uk). (20)

When a local minimizer of a C2 function satisfies
∇2g(u?) > 0, it can be shown that, given a sufficiently
small initial error ‖u0 − u?‖, the sequence ‖uk − u?‖ is
quadratically convergent to zero. Moreover, since a local
minimizer of a C2 function satisfy ∇g(u?) = 0, it is pos-
sible to use ‖∇g(uk)‖ ≤ tol, with tol > 0, as an exit
condition for the iterative solver.

C. quasi-Newton Method

Even in cases where the requirement ∇2g(uk) > 0
holds for uk sufficiently close to the optimum, there is
no guarantee that ∇2g(uk) > 0, ∀uk ∈ Rm. Given
∇2g(uk) 6> 0, the quadratic approximation (19) does
not admit a bounded solution, which causes the New-
ton method to fail. In such instances, the quasi-Newton
method can overcome this issue by replacing (19) with

νk = arg min
ν∈Rm

∇g(uk)ν + 1
2ν

TGkν, (21)

where Gk > 0 is a positive-definite matrix. Since Gk = I
leads to the gradient descent method νk = −∇g(uk),
which is linearly convergent, we note that, if Gk > 0 is
a suitable approximation of ∇2g(uk), the quasi-Newton
method can achieve superlinear convergence.

For example, given g(u) = h[p(u)], we have

∇2g(u) = ∇p(u)T∇2h[p(u)]∇p(u) +
m∑
j=1

∂h

∂uj

∣∣∣∣
p(u)

∇2pj(u)

which is, in general, not positive definite. If h is a convex
function, however, a suitable positive definite approxima-
tion of ∇2g(uk) 6> 0 would be

Gk = ∇p(uk)T∇2h[p(uk)]∇p(uk). (22)
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D. Dampened (quasi-)Newton Method

Since (18), or its quasi-Newton counterpart (21), is
only a second-order approximation, there is no guarantee
that g(uk + νk) < g(uk). This can cause the Newton
method to diverge when the initial error ‖u0−u?‖ is too
large. To prevent this, we replace the classic Newton step
(17) with the dampened Newton step

uk+1 = uk + γkνk, (23)

where the Step Size γk ∈ (0,1] is chosen to ensure a
sufficient decrease in the cost function. Notably, if we
define gk : (0, 1]→ R as

gk(γ) = g(uk + γνk), (24)

we can compute the Taylor expansion

gk(γ) = gk(0) + g′k(0)γ +
1

2
g′′k (0)γ2 + o(γ2). (25)

By construction of νk, we know that the minimum of
the quadratic approximation of gk(γ) lies in γ = 1. As
shown in Figure 1, however, the higher order terms o(γ2)
may cause gk(1) to be quite different from its quadratic
approximation, thus causing the Newton method to fail.
To ensure that the cost decreases by a sufficient amount
at each iteration, we use a backtracking linesearch to en-
force the Armijo Rule

gk(γk) ≤ gk(0)− αg′k(0)γk, (26)

with α ∈ (0, 0.5). Specifically, given the initial value
γk = 1, we check if (26) holds. If it does, the higher-
order terms o(γ2) are not dominant. If it doesn’t, we
assign

γk ← βγk, (27)

with β ∈ (0, 1) and proceed to once again check the
Armijo Rule (26). Typical values for the backtracking
linesearch are α = 0.4 and β = 0.7. This modification is
sufficient to ensure the monotonic convergence property

g(uk+1) < g(uk), (28)

thus guaranteeing monotonic convergence to a local min-
imum for any initial condition such that ∇g(u0) 6= 0, i.e.
for any initial condition that isn’t a local maximum or a
saddle point.

IV. PRONTO FOR QUANTUM SYSTEMS

Having given a general intuition behind of all the steps
used in PRONTO, we now go back to the original opti-
mization problem (14) for which the solution space is
[x(t), u(t)] ∈ (X × U), where X denotes the set of all C0
functions x : [0, T ] → R2n and U denotes the set of all
C0 functions u : [0, T ] → Rm. Here, the idea is to per-
form the same steps laid out in Sec. III using functional
analysis instead of vector calculus. The PRONTO pseu-
docode obtained by following all these steps is provided
in Algorithm 1 at the end of this section.

0 0.2 0.4 0.6 0.8 1 1.2
-20

-10

0

10

20

30

nonlinear cost function
first order approx.
second order approx.
Armijo rule
backtracking linesearch

FIG. 1. Visual representation of the backtracking linesearch
applied to a nonlinear cost function gk(γ). For γ = 1 and
γ = 0.7, the nonlinearities are too strong to be captured by a
second order approximation. Given γ = 0.49, the Armijo rule
is satisfied, meaning that the decrease in cost is acceptable.
Note that, for γ → 0, the nonlinear function gk(γ) tends to
coincide with its first and second order approximations.

A. The Projection Operator

The first step to solve the constrained optimization
problem (14) is to reformulate it as an unconstrained
optimization problem by embedding the equality con-
straints into the cost function. To this end, we define
ξ(t) = [x(t), u(t)] which means we can rewrite (14a) as

h(ξ) = m[x(T )] +

∫ T

0

l[x(t), u(t)]dt, (29)

where h : X × U → R is a C2 convex function. Since
the Schrödinger equation (14b) imposes the restriction
ξ ∈ T , where

T = {ξ ∈ (X × U) | ẋ = H(u)x, x(0) = x0}, (30)

we define the simplified1 projection operator P : U → T
as the solution to

P(µ) = ξ :

{
ẋ = H(u)x, x0 = x̄
u = µ.

(31)

This operator simply maps a specific control field µ(t) to
an abstract state ξ(t) consisting of both the control field
and the dynamic response of the state under that control
field. Then, given g(u) = h(P(u)), the optimal control

1 As detailed in [14], the projection operator should formally map
(X × U) → T . Given α ∈ X , we can turn (31) into a “proper”
projection operator P(α, µ) by defining u = µ+Kr(α−x), where
Kr is a time-varying feedback gain that stabilizes the system
trajectories. Since closed quantum systems evolve on the unit
sphere (and are therefore inherently stable), we assign Kr = 0
for the sake of simplicity. The design of suitable Kr 6= 0, which
is likely to improve convergence, is left to future work.
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problem (14) can be rewritten as an unconstrained opti-
mization problem in the form

min g(u), (32)

which we now solve using a dampened (quasi-)Newton
method in the function space U .

B. Newton Descent Direction

In analogy to Sec. III B, given the current solution es-
timate uk(t) ∈ U , we now wish to compute a descent

direction νk(t) ∈ U for our next estimate by minimizing
the local quadratic approximation of (32). This can be
done by solving the optimization problem

νk = arg min Dg(uk) ◦ ν +
1

2
D2g(uk) ◦ (ν, ν), (33)

where D and D2 are the first and second Fréchet deriva-
tives of g(u). As detailed in Appendix A, the evaluation
of (33) leads in the following Linear-Quadratic Optimal
Control Problem (LQ-OCP)

νk(t) = arg min πTk z(T ) +
1

2
z(T )TΠkz(T ) +

∫ T

0

[
qk(τ)
rk(τ)

]T [
z(τ)
ν(τ)

]
+

1

2

[
z(τ)
ν(τ)

]T [
Qk(τ) Sk(τ)
STk (τ) Rk(τ)

] [
z(τ)
ν(τ)

]
dτ

s.t. ż(t) = Ak(t)z(t) +Bk(t)ν(t), z(0) = 0,

(34)

where

qk(t) = ∇xl(xk(t), uk(t)),
rk(t) = ∇ul(xk(t), uk(t)),
πk = ∇xm(xk(T )),

(35)

capture the first-order contributions to the cost and

Qk(t) = ∇2
xxl(xk(t), uk(t)),

Rk(t) = ∇2
uul(xk(t), uk(t)) + R̃k(t),

Sk(t) = ∇2
xul(xk(t), uk(t)) + S̃k(t),

Πk = ∇2
xxm(xk(T )),

(36)

capture the second-order contributions, with

S̃k(t) =
[
H1(t)χk(t) . . . Hm(t)χk(t)

]

R̃k(t) =

χ
T
k (t)H11(t)xk(t) . . . χTk (t)Hm1(t)xk(t)

...
. . .

...
χTk (t)H1m(t)xk(t) . . . χTk (t)Hmm(t)xk(t)

 .
Here, the brackets indicate a matrix concatenation of
column vectors for S̃k and scalars for R̃k, the co-state2

χk ∈ X is obtained by solving the differential equation

− χ̇k = H(uk(t))Tχk + qk(t), χ(T ) = πk, (37)

and, given the vector w ∈ Rm, we define

Hi(t) =
∂H(w)

∂wi

∣∣∣∣
w=uk(t)

Hij(t) =
∂2H(w)

∂wi∂wj

∣∣∣∣
w=uk(t)

.

2 Coincidentally, it is worth noting that the co-state dynamics (37),
which stem from the computation of D2g(uk)(ν, ν), detailed in
Appendix A, are identical to what is found by the Krotov method
[16, Eq. (30)] using Lagrange multipliers.

Finally, the matrices

Ak(t) = H(uk(t)),
Bk(t) =

[
H1(t)xk(t) . . . Hm(t)xk(t)

]
,

(38)

capture the linearization of system dynamics ẋ = H(u)x
around the current trajectory ξk = (xk(t), uk(t)).

Although somewhat daunting, (34) is a well-known op-
timal control problem [18], which admits an explicit solu-
tion (see Appendix B). Unfortunately, depending on the
matrices in (36), there is no guarantee that (34) the solu-
tion exists and is unique. This issue is solved in the next
subsection by using a positive definite approximation of
the cost function whenever necessary.

C. quasi-Newton Descent Direction

If, at a given iteration k, the LQ-OCP (34) does not
admit a solution, it is possible to replace (36) with

Qk(t) = ∇2
xxl(xk(t), uk(t)),

Rk(t) = ∇2
uul(xk(t), uk(t)),

Sk(t) = ∇2
xul(xk(t), uk(t)),

Πk = ∇2
xxm(xk(T )).

(39)

By construction, these matrices satisfy the positive semi-
definite properties Πk ≥ 0, Rk(t) > 0, ∀t ∈ [0, T ], and
[Qk(t) Sk(t);Sk(t)T Rk(t)] ≥ 0, ∀t ∈ [0, T ]. This is suffi-
cient to ensure that the new LQ-OCP has a unique min-
imizer, making it always possible to compute a descent
direction νk.

It is very interesting, and somewhat counter-intuitive,
to note that the co-state χk(t) is not required to com-
pute the quasi-Newton descent direction since χk(t) only

enters the problem through the matrices S̃k, R̃k in (36).
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D. Maximum Step Size

In analogy to Sec. III D, since the descent direction
νk(t) was computed using a local second order approxi-
mation, there is no guarantee that uk+1(t) = uk(t)+νk(t)
satisfies g(uk+1) < g(uk). To ensure a monotonically con-
vergent sequence, we therefore define the next estimate

uk+1(t) = uk(t) + γkνk(t), (40)

where the step size γk ∈ (0, 1] is chosen using a a back-
tracking linesearch to enforce the Armijo rule

g(uk + γkνk) ≤ gk(uk)− αγk Dg(uk) ◦ νk. (41)

Details on how to compute Dg(uk)◦νk are also provided
in Appendix B. A possible issue with the backtracking
linesearch is that, if the Armijo rule is only satisfied for
very small γ, the algorithm may perform a large number
of checks before selecting a suitable step size.

To prevent unnecessary calculations, we introduce a
heuristic that upper bounds the initial value of the back-
tracking linesearch whenever the norm of the descent di-
rection is too large. To this end, we note that, although
xk+1 ∈ X is obtained from the projection operator (31),
the LQR problem (B2) approximates the state update as

xk+1 ≈ xk + γkzk. (42)

Since (14b) is a closed quantum system such that
‖xk+1(t)‖ = ‖xk(t)‖ = ‖x0‖, ∀t ∈ [0, T ], the approxima-
tion (42) is valid only if γk‖zk(t)‖ is “sufficiently small”
∀t ∈ [0, T ]. This motivates the step size upper bound

γk ≤
δ‖x0‖

max
t∈[0,T ]

‖zk(t)‖
, (43)

where δ ∈ (0, 1) ensures that the norm of the update is, at
most, comparable to the norm of the state. A reasonable
heuristic for this upper bound is δ = 0.6. Note that, once
‖zk(t)‖ ≤ δ‖x0‖, ∀t ∈ [0, T ], i.e. once the updates are
sufficiently small, we return to the full range γk ∈ (0, 1].

Although PRONTO only guarantees monotonic con-
vergence to a local minimum, it is worth noting that there
exists a large class of quantum optimal control problems
for which all local minima share the same cost [22].

Algorithm 1 Q-PRONTO

Initialization
1: Dg = −10tol

Initial Control Guess
2: uk(t) = u0(t)

Solve Schrödinger Equation and Compute Cost
3: ξk ← P(uk(t)) . F.i.t. (31)
4: gk ← h(ξk)

Main Loop
5: while −Dg ≥ tol do

Compute Linear-Quadratic Approximation
6: [Ak(t), Bk(t), qk(t), rk(t), πk]← [(38)− (35)]

Perform Newton Step
7: Compute χk(t) . B.i.t (37)
8: [Qk(t), Sk(t), Rk(t),Πk]←(36)
9: Compute [Ko(t), vo(t)] . B.i.t (B1)

Perform quasi-Newton Step
10: if (B1) failed to converge then
11: [Qk(t), Sk(t), Rk(t),Πk]←(39)
12: Compute [Ko(t), vo(t)] . B.i.t (B1)
13: end if

Compute Descent Direction and Cost Gradient
14: Compute [zk(t), νk(t), ηk(T )] . F.i.t. (B2)
15: Dg ← πT

k zk(T ) + ηk(T )

Apply Armijo Rule for Step Size Selection
16: γk ← min( 1 , δ‖x0‖/max(‖zk(t)‖) )
17: ξk+1 ← P(uk(t) + νk(t)) . F.i.t. (31)
18: gk+1 ← h(ξk+1)
19: while gk+1 > gk − αDg ◦ γk do
20: γk ← βγk
21: ξk+1 ← P(uk(t) + γkνk(t)) . F.i.t. (31)
22: gk+1 ← h(ξk+1)
23: end while

Proceed to Next Iteration
24: uk(t)← uk(t) + γkνk(t)
25: ξk ← ξk+1

26: gk ← gk+1

27: end while
Output

Final Control Solution
28: return uk(t)

F.i.t. = Integrate forward in time
B.i.t. = Integrate backward in time

V. EXAMPLE: QUBIT
STATE-TO-STATE CONTROL

We now apply PRONTO to a canonical quantum con-
trol problem and compare it to one of the leading quan-
tum control techniques, the Krotov method [9, 10].

Specifically, we wish to perform a state-to-state transi-
tion |0〉 → |1〉 on a qubit evolving under the Schrödinger
equation

|ψ̇〉 = −i(Ĥ0 + uĤ1) |ψ〉 , |ψ(0)〉 = |0〉 , (44)

where Ĥ0 = −ω2 σ̂z, Ĥ1 = σ̂x, σ̂i are the usual Pauli
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matrices and ω = 1. To achieve this goal while limiting
the fluence of the control input u(t), we minimize the
cost function

1
2 〈ψ(T )| P̂¬1 |ψ(T )〉+

∫ T

0

ϑ(t)

2
‖u(t)‖2dt, (45)

where P̂¬1 = I − |1〉〈1| = |0〉〈0| is a projection operator,
ϑ(t) > 0, ∀t ∈ [0, T ] is a time-varying penalty on the
energy of the control input, and T = 5 s is the control
horizon. Using the bijective mapping in (9) and (10),
this optimization problem can then be rewritten as

min 1
2x(T )TP¬1x(T ) +

∫ T

0

ϑ(t)

2
‖u(t)‖2dt (46a)

s.t. ẋ = (H0 + uH1)x, x = x0. (46b)

To completely define the optimal control problem, we
now have to specify ϑ(t). For ease of comparison3 with
the benchmark in the Krotov Package, we assign the same
input weight function featured in [16], i.e.

ϑ(t) =


1+ε

B.6(t)+ε
∀t ∈ [0, 0.3],

1 ∀t ∈ (0.3, 4.7),
1+ε

B.6(5−t)+ε ∀t ∈ [4.7, 5],
(47)

where ε = 10−6 and

B.6(t) =
1

2

(
.84− cos

(
2πt

.6

)
+ .16 cos

(
4πt

.6

))
(48)

is a Blackman window of length 0.6. Note that ε > 0
ensures that ϑ(t) remains bounded for t = 0 and t = 5.
The control cost ϑ(t) in (47) is high at the beginning
and end, and constant throughout the majority of the
control time interval. This is used to ensure that the
input starts at zero and ends at zero, thereby making the
control input better suited for hardware implementation.

Finally, to initialize our iterative solver, we use the
same initial guess featured in [16], i.e.

u0(t) =

 0.2B.6(t) ∀t ∈ [0, 0.3],
0.2 ∀t ∈ (0.3, 4.7),
0.2B.6(5− t) ∀t ∈ [4.7, 5].

(49)

A. Benchmark Comparison, Part I

To perform an initial comparison between PRONTO
and the Krotov method implemented in [16], we begin by

3 Unfortunately, the optimal control problem featured in [16] is
different from Eq. (46). The Krotov method penalizes the con-
trol update, i.e.

∫
(uk(t) − uk−1(t))2dt, to achieve convergence,

whereas the Bolza-type cost functional (14) penalizes the control
effort, i.e.

∫
u(t)2dt, as in [23, 24]. See [25, Chap. 1] for further

discussion on Bolza-type optimal control formulations.
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FIG. 2. Top: Control input u(t) and Bottom: Population
P1(t) = | 〈ψ(t)|1〉 |2 for the qubit benchmark comparison. The
dashed lines are the initial guess, the solid lines are the solu-
tion estimate satisfying tol ≤ 10−2, and the dotted lines are
the solution obtained using Krotov. Intermediate iterations
of PRONTO are represented using semi-transparent lines.
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FIG. 3. Top: Value of the cost decrease −Dg(uk) ◦ νk
at each iteration of PRONTO. The red dashed line is the
exit condition tol = 10−2. Bottom: Value of the squared
Hilbert-Schmidt distance 1− | 〈ψ(T )|1〉 |2 at each iteration of
PRONTO and of the Krotov method.

solving the quantum optimal control problem (46) using
Algorithm 1 subject to tol = 10−2.

Figure 2 illustrates the behavior of the control input
(top panel) and the population dynamics (bottom panel)
at each iteration. In the top panel it is evident that the
control amplitude remains bounded and does not contain
any discontinuities.

Figure 3 (Top) illustrates the value of the exit condi-
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FIG. 4. Top: Control input u(t) and Bottom: Popula-
tion P1(t) = | 〈ψ(t)|1〉 |2 for the qubit benchmark comparison.
The dash-dotted lines denote the solution estimate satisfying
tol ≤ 10−2 and the solid lines denote the optimized solution
satisfying tol ≤ 10−8. Intermediate iterations of PRONTO
are represented using semi-transparent lines.

tion −Dg(uk) ◦ νk ≤ tol at each iteration. The method
meets the desired tolerance after just 3 iterations. In
Figure 3 (Bottom) we compare PRONTO to the Krotov
method [16] by plotting the value of the Hilbert-Schmidt
distance 1−| 〈ψ(T )|1〉 |2 obtained by each method at each
iteration. For this particular example, all PRONTO iter-
ations ended up using the Newton step as opposed to the
quasi-Newton step. Although the two methods converge
to similar results, the convergence rate is quadratic in the
case of PRONTO and linear in the case of Krotov. This
is not surprising since the former is a Newton method,
whereas the latter is a gradient descent method.

B. Benchmark Comparison, Part II

We now continue to solve the quantum optimal control
problem (46) up to tol = 10−8. Intuitively, if the esti-
mates obtained in the previous section were sufficiently
close to the solution of (46), the method would only
require a few additional iterations to meet the desired
tolerance and there would be no perceivable changes to
the estimate. Instead, something curious happens: the
method departs from the trajectory obtained in [16] and
converges to an entirely different solution.

Figure 4 illustrates the behavior of the control in-
put (top panel) and the population dynamics (bottom
panel) at every third iteration of Algorithm 1. Looking
at the population dynamics, we note that every itera-
tion achieves the target objective 1 − | 〈ψk(T )|1〉 |2 ≈ 0.
Looking at the control input, we note that the overall
amplitude of uk(t) tends to decrease at every iteration.

0 3 6 9 12 15 18 21
Iteration

10-8

10-4

100

C
os

t d
ec

re
as

e

0 3 6 9 12 15 18 21
Iteration

100

101

102

C
os

t F
un

ct
io

n

FIG. 5. Top: Value of the cost decrease −Dg(uk) ◦ νk at
each iteration of PRONTO. The red dashed line is the exit
condition tol = 10−8. Bottom: Value of the cost function
(45) at each iteration of PRONTO.

This can be interpreted as PRONTO initially moving in
the direction that minimizes the cost function (thereby
obtaining a solution estimate similar to Krotov), but then
refining its solution to also minimize the control effort.
This is not surprising since the quantum optimal con-
trol problem (46) penalizes both the Hilbert-Schmidt dis-
tance and the fluence of the control input, as opposed to
the Krotov method, which only penalizes the Hilbert-
Schmidt distance.

Figure 5 illustrates the value of the exit condition
−Dg(uk) ◦ νk ≤ tol (top panel) and of the cost function
(3) (bottom panel) at each iteration. The cost function
is monotonically decreasing and is lower-bounded by the
value at the local minimizer. Quadratic convergence to
the solution is achieved in proximity of the minimizer.

In this case, the advantage of using PRONTO over
Krotov is not in terms of requiring a lower computational
effort, but in terms of obtaining an arguably “better”
control input (i.e., the same output result is obtained

with a smaller fluence
∫ T
0
ϑ(t)‖u(t)‖2dt).

C. Multiple Control Inputs

We now wish to perform a state-to-state transition
|0〉 → |1〉 in the multi-input case of a qubit described
by the Schrödinger equation

~ |ψ̇〉 = −i(Ĥ0+u1Ĥ1+u2Ĥ2) |ψ〉 , |ψ(0)〉 = |0〉 , (50)

where Ĥ2 = σ̂y and all other parameters are the same as
(44). Given u = [u1, u2]T , the optimization problem (46)
becomes

min 1
2x(T )TP¬1x(T ) +

∫ T

0

ϑ(t)

2
‖u(t)‖2dt (51a)

s.t. ẋ = (H0 + u1H1 + u2H2)x, x = x0. (51b)
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FIG. 6. Top: Control inputs u1(t), u2(t) and Bottom: Pop-
ulation P1(t) = | 〈ψ(t)|1〉 |2 for the multi-input qubit. The
dashed lines are the initial guess and the solid lines are the
optimized solution satisfying tol ≤ 10−8. Intermediate iter-
ations are represented using semi-transparent lines.
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FIG. 7. Top: Value of the cost decrease −Dg(uk) ◦ νk at
each iteration of PRONTO. The red dashed line is the exit
condition tol = 10−8. Bottom: Value of the cost function
(45) at each iteration of PRONTO.

The initial guess (49) is used for both u1 and u2. The
quantum optimal control problem (51) is solved using
Algorithm 1 subject to tol = 10−8.

Figure 6 illustrates the behavior of the control input
(top panel) and the population dynamics (bottom panel)
at each iteration. In this example, it is interesting to note
that the shape of u1(t) is similar to the one found in the
previous section, but the amplitude is lower due to the
contribution of u2(t).

Figure 7 illustrates the value of the exit condition
−Dg(uk) ◦ νk ≤ tol at each iteration. The method
quadratically converges to the optimizer in 4 iterations.
Once again, the cost function decreases monotonically
and quadratically converges to a lower bound.

VI. CONCLUSIONS

This paper specialized the Projection Operator-based
Newton method for Trajectory Optimization (PRONTO)
to quantum control problems. The method is guaranteed
to be monotonically convergent at all times and features a
quadratic convergence rate in proximity of local minima.

There are many directions for future work. The orig-
inal PRONTO method [14, 15] included a “regulator”
that is not featured in the quantum extension presented
here. Thus, an important technical extension of the
quantum PRONTO is to design a quantum-specific reg-
ulator to be used in the projection operator. This will
likely enable faster convergence for higher-dimensional
quantum systems. Additional extensions include the de-
sign of unitary gates, control of open quantum systems,
and in-depth comparisons with existing optimization
methods. Eventually, we plan to release an open source
toolkit/package for quantum control using PRONTO.
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Wilhelm, Training Schrödinger’s cat: quantum optimal
control, European Physics Journal D 69, 279 (2015).

[5] S. Lloyd and S. L. Braunstein, Quantum computation
over continuous variables, Phys. Rev. Lett. 82, 1784
(1999).

[6] P. Doria, T. Calarco, and S. Montangero, Optimal control
technique for many-body quantum dynamics, Phys. Rev.
Lett. 106, 190501 (2011).

https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1109/TAC.2012.2195830
https://doi.org/10.1109/TAC.2012.2195830
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://link.aps.org/doi/10.1103/PhysRevLett.106.190501
https://link.aps.org/doi/10.1103/PhysRevLett.106.190501


10

[7] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
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Appendix A: Fréchet Derivatives

This appendix shows how to obtain the LQR problem
(34) by formally computing the first and second Fréchet
derivatives featured in (33).

First Derivatives
Using the chain rule, we obtain

Dg(uk) ◦ ν = Dh(P(uk)) ◦DP(uk) ◦ ν. (A1)

Following from the definition of the projection operator
(31), we have P(uk) = ξk. Moreover, its local derivative
ζ(t) = (z(t), v(t)) satisfies

DP(uk) ◦ ν = ζ :

{
ż = Ak(t)z +Bk(t)v, z(0) = 0
v = ν,

with Ak(t) and Bk(t) defined in (38). Thus, the first
derivative can be rewritten as

Dg(uk) ◦ ν = Dh(ξk) ◦ ζ. (A2)

It then follows from (29) that

Dh(ξk) ◦ ζ = πTk z(T ) +

∫ T

0

qTk (τ)z(τ) + rTk (τ)ν(τ)dτ,

with

qk(t) = ∇xl(xk(t), uk(t)),
rk(t) = ∇ul(xk(t), uk(t)),
πk = ∇xm(xk(T )),

(A3)

which translate into (35) once all the partial derivatives
are evaluated.

Second Derivatives
By applying the chain rule to (A1), we obtain

D2g(uk)◦(ν, ν) = D2h(P(uk))◦(DP(uk)◦ν,DP(uk)◦ν)
+Dh(P(uk))◦D2P(uk)◦(ν, ν).

Substituting P(uk) = ξk and DP(uk)◦ν = ζ then implies

D2g(uk) ◦ (ν, ν) = D2h(ξk) ◦ (ζ, ζ) + . . .
Dh(ξk) ◦D2P(uk) ◦ (ν, ν).

(A4)

It then follows from (29) that the first term satisfies

D2h(ξk) ◦ (ζ, ζ) = z(T )TΠkz(T ) + . . .∫ T

0

[
z(τ)
ν(τ)

]T[
Qk(τ) Sk(τ)
STk (τ) Rk(τ)

][
z(τ)
ν(τ)

]
dτ,

with

Qk(t) = ∇2
xxl(xk(t), uk(t))

Sk(t) = ∇2
xul(xk(t), uk(t))

Rk(t) = ∇2
uul(xk(t), uk(t))

Πk = ∇2
xxm(xk(T )),

(A5)

https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevA.63.032308
https://doi.org/10.1103/PhysRevA.66.053619
https://doi.org/10.1063/1.3691827
https://arxiv.org/abs/2003.10132
https://doi.org/10.1103/PhysRevA.83.053426
https://doi.org/10.1016/j.jmr.2011.07.023
https://doi.org/10.3182/20020721-6-ES-1901.00312
https://doi.org/10.3182/20020721-6-ES-1901.00312
https://doi.org/10.1109/ACC.2003.1243395
https://doi.org/10.21468/SciPostPhys.7.6.080
https://doi.org/10.1103/PhysRevA.77.063412
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1126/science.1093649
https://doi.org/10.1126/science.1093649
https://doi.org/10.1109/9.928587
https://doi.org/10.1109/9.928587
https://doi.org/10.1109/TAC.2008.916662
https://doi.org/10.1007/978-1-4613-8165-5_1
https://doi.org/10.1007/978-1-4613-8165-5_1


11

which yield (39) when evaluated.

As for the second term, we note that the second deriva-
tive of the projection operator (31) yields

D2P(uk) ◦ (ν, ν) =

{
ẏ = Ak(t)y +Bk(t)w + φk(t)
w = 0,

with y(0) = 0 and

φk(t) =
m∑
i=1

νi(t)Hi(t)z(t) +
m∑

i,j=1

νi(t)νj(t)Hij(t)xk(t).

Given the state transition matrix Φ(t, τ) satisfying

∂

∂t
Φ(t, τ) = A(t)Φ(t, τ ), (A6)

we can write

y(t) =

∫ t

0

Φ(t, s)φk(s)ds. (A7)

Thus, we have

Dh(ξk) ◦D2P(uk) ◦ (ν, ν)

= πTk y(T ) +

∫ T

0

qTk (τ)y(τ)dτ

= πTk y(T ) +

∫ T

0

qTk (τ)

∫ τ

0

Φ(τ, s)φk(s)ds dτ

= πTk y(T ) +

∫ T

0

∫ T

s

qTk (τ)Φ(τ, s)dτ φk(s)ds

=

∫ T

0

(
πTk Φ(T, s) +

∫ T

s

qTk (τ)Φ(τ, s)dτ

)
φk(s)ds

Given

χk(s) = Φ(T, s)Tπk +

∫ T

s

Φ(τ, s)T qk(τ)dτ, (A8)

it follows from the properties of state transition matrices
that χ : [0, T ] → R2n can be obtained by solving the

differential equation (37). Thus, we obtain

Dh(ξk) ◦D2P(uk) ◦ (ν, ν) =

∫ T

0

χTk (s)φk(s)ds,

where it is possible to show that

χTk (s)φk(s) =

[
z(s)
ν(s)

]T[
0 S̃k(s)

S̃Tk (s) R̃k(s)

][
z(s)
ν(s)

]
,

with R̃k(·) and S̃k(·) the same as in (36).

Appendix B: Linear-Quadratic Optimal Control

The optimal control problem (34) is a special class of
trajectory optimization problems for which it is possible
to compute an explicit solution [18]. To do so, we first
solve the backwards in time Differential Riccati Equation
−Ṗ = ATk P+PAk −KT

o RkKo +Qk, P (T )=Πk,
−ṗ = (Ak −BkKo)

T p−KT
o rk + qk, p(T ) = πk,

Ko = R−1k (BTk P + STk ),
vo = R−1k (BTk p+ rk).

(B1)
Having solved for Ko(t) and vo(t), it is then possible to
obtain νk(t) by solving η̇k = qTk zk + rTk νk, η(0) = 0,

żk = Akzk +Bkνk, z(0) = 0,
νk = −vo −Kozk,

(B2)

where zk ∈ X is a local approximation of the state update
and the running cost ηk : [0, T ]→ R≥0 is used to compute

Dg(uk) ◦ νk = πTk zk(T ) + ηk(T ), (B3)

which is needed to a) determine the step size γk via the
Armijo rule (41), and b) verify the exit condition for the
iterative solver −Dg(uk) · νk ≤ tol.
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