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Abstract

The sub-kilometre scale distribution of snow depth on Arctic sea ice impacts atmosphere-ice
fluxes of energy and mass, and is of importance for satellite estimates of sea-ice thickness
from both radar and lidar altimeters. While information about the mean of this distribution is
increasingly available from modelling and remote sensing, the full distribution cannot yet be
resolved. We analyse 33 539 snow depth measurements from 499 transects taken at Soviet drifting
stations between 1955 and 1991 and derive a simple statistical distribution for snow depth over
multi-year ice as a function of only the mean snow depth. We then evaluate this snow depth dis-
tribution against snow depth transects that span first-year ice to multiyear ice from the MOSAiC,
SHEBA and AMSR-Ice field campaigns. Because the distribution can be generated using only the
mean snow depth, it can be used in the downscaling of several existing snow depth products for
use in flux modelling and altimetry studies.

Introduction

The snow cover of Arctic sea ice insulates it from solar radiation in the summer and cold tem-
peratures in the winter. In addition, snow impacts the propagation of laser and radar pulses from
satellite altimeters (e.g. Mallett and others, 2020), affecting the timing of their return. This
importance has driven the development of a range of modelling and remote-sensing approaches
to accurately characterise the snow cover (see Zhou and others, 2021, for intercomparison of sev-
eral products). Satellite remote-sensing approaches (e.g. Lawrence and others, 2018; Rostosky and
others, 2018) are generally limited by their low (multi-kilometre) spatial resolution, which has the
effect of averaging out kilometre and sub-kilometre scale variability. Modelling approaches (e.g.
Petty and others, 2018; Liston and others, 2020; Stroeve and others, 2020) have similar limita-
tions, with grid resolutions not falling below tens of kilometres. This in part reflects the coarse
spatial resolution of standard atmospheric reanalysis and sea-ice drift products.

This lower-bound on spatial resolution is a significant barrier to scientific progress, as the
effects of snow on fluxes and sea-ice thickness retrievals cannot be characterised solely by the
mean snow depth in a gridcell of a traditional data product (Iacozza and Barber, 1999). To
account for the observed variability of snow depth on scales below a gridcell (e.g. Farrell
and others, 2012), a sub-grid scale snow depth distribution must be employed (see Petty
and others, 2020; Glissenaar and others, 2021, for impacts on sea-ice thickness retrievals). For
instance, the amount of shortwave solar radiation incident on the ice surface in a multi-kilometre
gridcell is sensitive to the fractional coverage of snow which is optically thin (& 15 cm for dry
snow; Warren, 2019). This area cannot be straightforwardly gleaned from modelling or satellite
observations of the mean snow depth in the gridcell (Stroeve and others, 2021).

In the example above, the area of optically thin snow within a larger area of snow with
given mean depth will be primarily dictated by wind redistribution (Moon and others,
2019). Snow is dynamically transported through wind suspension and saltation and is eroded
and deposited heterogeneously around any ice topography such as ridges and hummocks
(Sturm and others, 2002; Chung and others, 2011). Furthermore, turbulence-induced features
such as sastrugi introduce depth variability even on level ice (Eicken and others, 1994; Massom
and others, 1997). The probability of snow transport and redistribution is dependent on its
bulk and microstructural properties such as density and bond-radius (Filhol and Sturm,
2015). The combination of these factors makes deterministic modelling of snow redistribution
a major challenge when the local ice topography is not known to a high level of detail (e.g.
Liston and others, 2018), which is generally the case on sea ice. Because of this limitation
on deterministic modelling, in this paper we instead aim to derive a statistical model for
the snow depth distribution. The model is trained on the large number of snow depth mea-
surements taken at Soviet drifting stations, and requires only the mean snow depth to generate
a distribution.
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Snow transects from Soviet drifting stations

We analyse the results of snow depth transects performed at
Soviet North Pole (NP) drifting stations between 1955 and 1991
(Figs 1, 2). These were crewed stations that drifted year-round
in the Arctic Ocean while measuring a range of atmospheric,
oceanographic and cryospheric parameters on what was generally
multi-year sea ice. In particular we examine 33 539 snow depth
measurements from 499 transects from NP stations 5–31. Snow

transects did not begin until NP 5, and the NP programme was
halted in 1991. While it was restarted in 2003, these data are
not publicly available.

Snow depths were measured every 10 m along a line of either
500 or 1000 m in length when snow depth was at least 5 cm and
more than 50% of the surrounding area was snow covered based
on a qualitative assessment. In total, 166 transects were ∼500 m
long and 333 were ∼1000 m long, with transects prior to 1974
generally being 500 m long (Fig. 2b). The vast majority of trans-
ects were of the exact length specified above, however ∼6% of
transects were slightly shorter by ∼10%: it is unclear why this
was the case, however the operational challenges of Arctic
research (e.g. ice dynamics, polar bears, severe weather) may
explain this. The direction of the line was chosen randomly but
did deviate where hummocks were present, and was at least
500 m from the station at its closest point. We note that this devi-
ation around hummocks may introduce a bias in the snow depth
measurements to sample more level ice with thinner snow. Where
successive transects were taken at the same station, each was offset
by 3 m from the previous line.

Method

We now present a method for transforming an estimate of mean
snow depth (from remote sensing or modelling) into a distribu-
tion of snow depths. We first characterise the linear relationship
between the standard deviation of snow depths measured along
a transect and the mean of that transect (Fig. 3a). This ratio is
known as the coefficient of variation (CV; Brown, 1998). When
a linear regression is performed (and forced through the origin),
the root-mean-square of the residuals is 3.20 cm, meaning that
the standard deviation of the transect depths can be predicted
with this standard error where the mean is known. For every
10 cm increase in the mean snow depth, we find the standard
deviation of the snow depths to increase by 4.17 cm:

sD = 0.417 × D (1)

Fig. 1. Map indicating the locations of snow transects used in this study. Small purple
dots indicate locations of transects taken at Soviet NP drifting stations. Pink circles
and green pentagons indicate transects taken on the SHEBA and MOSAiC expeditions,
respectively. Orange square indicates the locations of the AMSR-Ice transects, which
would not be individually well-resolved on the map.

Fig. 2. (a) Operational periods of the Soviet ‘NP’ stations contributing to this study. Bars at top indicate the time period between the first and last snow depth
transects of the station. Solid circles indicate mean snow depth of transects, with vertical bars indicating 1 standard deviation in snow depth. (b) The number of
transects measured by each station, broken down by transect length (500 vs 1000m). (c) Number of transects measured by each station broken down by summer
(May–September) and winter (October–April).
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where σD is the standard deviation of snow depth in a transect,
and D is the mean depth of the transect. In the above equation,
0.417 represents the CV. All NP station snow depth measure-
ments are then converted into depth-anomalies from their
respective transect means. We then divide all measurements by
the standard deviation of their respective transects. These anom-
alies can then be plotted as one distribution (Fig. 3b). To this dis-
tribution we fit a skew normal curve.

Our skew normal distribution function is defined following
O’Hagan and Leonard (1976) and Azzalini and Capitanio
(1999) such that:

f (a, j, v, sD) = 1

v 2p
√ 1 + erf

ax

2
√ e−(x2/2) where

x = sD − j

v

(2)

with a being the skewness parameter, ξ being a locationparameter,ω
being a scaling parameter and erf being the error function. Through
fitting a skew normal curve using the technique of maximum likeli-
hood estimation (Richards, 1961), we find the best-fit values of the
three parameters to be a = 2.54, ξ =−1.11 and ω = 1.50.

We repeat this process for the winter and summer seasons
individually (October–April, May–September). While the CV is
slightly larger in summer (Fig. 3c), the shape of the summer prob-
ability distribution does not depart greatly from the winter distri-
bution (Fig. 3d). This seasonal difference in the CV is relatively
small compared to the uncertainty and residuals in the regression,
and as such we opt for a singular analysis, considering all trans-
ects from all months. Here we point out that in summer a meas-
urement bias is introduced in the form of a ‘surface scattering
layer’ (e.g. Polashenski and others, 2012), which forms at the

snow–ice interface and can be penetrated by a probe despite
being formed of ice rather than snow. Because this would theor-
etically increase the mean but not the standard deviation of depth
measurements along a transect, it would introduce a low-bias on
the CV in summer. In reality, we see the summer CV being larger
than in winter.

The above method allows the standard deviation of the snow
depth to be estimated from the mean snow depth (Fig. 3a).
When both of these quantities are known, a statistical model
for the snow depth distribution may be calculated using the
skewed normal curve shown in Fig. 3b.

For instance, if the mean snow depth is assumed to be 0.5 m,
then the standard deviation of the snow depth distribution
is estimated using Eqn (1) such that σD = 0.209 +/− 0.032 m.
Transforming the x coordinates of the distribution in Figure 3b
from units of standard deviations to units of snow depth (using
the CV), it can be inferred (e.g.) that the probability of randomly
sampled snow of depth <30 cm is 17%, and the chance of sam-
pling snow deeper than 1 m deep is 1.8%.

For calculations of light flux through thin snow, it may be
found that for snow with a mean depth of 0.5 m, the probability
of snow depth being <15 cm is 2.3%. In contrast, this probability
for snow with a mean depth of 25 cm is 16.6%.

Choice of skew normal distribution

Several authors have characterised terrestrial snow depth distribu-
tions with other curves than the skew normal, such as log-normal
(Donald and others, 1995; Pomeroy and others, 1998; Marchand
and Killingtveit, 2004) or gamma distributions (Skaugen, 2007;
Egli and others, 2012). Luce and Tarboton (2004) and
Kuchment and Gelfan (1996) applied both, with the latter finding

Fig. 3. (a) Relationship between a transect’s mean snow depth and the standard deviation. The slope of the regression (forced through the origin) is 0.417, the
root-mean-squared-residual is 3.20 cm, and the Pearson correlation coefficient (r value) is 0.66. A visualisation of the point density of this panel is given in
Supplementary Figure S1. (b) The probability density of a snow depth being measured such that it is a given number of standard deviations from the mean of
the transect. The empirical distribution is given in red from drifting station data and a skew normal curve is fitted in black. (c) Same as (a), but with individual
regressions for winter and summer transects. (d) Same as (b), but with individual probability density distributions for winter and summer transects. The two sea-
sonal skew normal fits (black) are visually indistinguishable.
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the log-normal distribution to provide a superior fit. However,
this comparison was over a significantly larger area (basin-scale
rather than sub-kilometre). In contrast, Skaugen and Melvold
(2019) and Gisnas and others (2016) observed that the gamma
distribution offered an improved fit over a log-normal fit.

We find that the skew normal curve provides a marginally
better fit to the data than both the log-normal and gamma dis-
tributions (Fig. 4). We first characterise the goodness of fit of
these distributions using the one-sample Kolmogorov–Smirnov
test. The test statistics for all three distributions result in
extremely small p-values, indicating that none of the distribu-
tions fully capture the observed data. However, the test statistic
is largest for the gamma and smallest for the skew normal distri-
bution, with the p-value being smallest for the gamma distribu-
tion, and largest for the skew normal distribution. This indicates
that the skew normal distribution is the best of the three fits to
the data, and the gamma the worst. For completeness, we also
calculate the RMSE of the observations against the best-fit of
all three distributions in bins of 0.1 standard deviations of
snow depth. We again find that the skew normal curve performs
best, and the gamma distribution worst (Fig. 4b). We note that
that the improved performance of the log-normal fit over the
gamma distribution is not a contradiction of previous work
with the opposite findings (e.g. Gisnas and others, 2016;
Skaugen and Melvold, 2019), as these studies concerned terres-
trial environments where meteorological forcing, surface topog-
raphy and snow properties are different.

All three of the above distributions have the same number of
fitting parameters. Because of the superior goodness-of-fit, we
therefore use the skew normal distribution in this paper.
However, we also provide the best-fit parameters for the log-
normal and gamma distributions in the Supplementary material.

Results

Cross-validation

We now evaluate the consistency of our snow depth distribution
model with a leave-one-out-cross-validation (LOOCV) approach
(Stone, 1978). To do this we select a single transect and recalculate
the skewed-normal curve using the remaining 498 transects.

We then assess the goodness-of-fit of the curve against the selected
transect. This is performed iteratively for each transect such that
499 goodness-of-fit statistics are generated. We calculate the
goodness-of-fit using theRMSE for the fitted probability distribution
and that of the transect, using ten equal-width depth bins that span
from 0 cm to the maximum depth measured.

This cross-validation exercise allows for the estimation of
model skill as a function of different variables, such as the trans-
ect’s length, its mean depth and the month in which it was per-
formed (Figs 5a–c). We also investigate whether the snow depth
distribution of a transect can be better predicted with the NP
station-based model presented here (the ‘NP model’) when its
corresponding station has contributed many other transects to
the distribution (Fig. 5d).

We first show that the NP model’s skill is very similar when
applied to both long and short NP transects (Fig. 5a). The
mean RMSE for long and short transects is 0.053 and 0.057
respectively (a difference of 7%). This similarity is to be expected,
with the difference likely reflecting the more incomplete sampling
of the local snow depth distribution by a shorter transect. We also
show that the skill of the NP distribution is relatively independent
of the depth of the transect. The skill of the model is maximal for
snow distributions with means in the range of 20–40 cm.
Transects where the model exhibited lowest skill had very shallow
depths (< 10 cm). In this category the model’s skill is halved rela-
tive to the 20–40 cm range (which represents 69% of all transects).
This mean-depth dependent skill reflects the relative representa-
tion of transects that contribute to the NP model: the model per-
forms best when predicting transects similar to those on which it
was trained (Fig. 3a).

The model’s skill is relatively insensitive to the month of the
year with the exception of July and August (Fig. 5c). In these
two summer months its skill is diminished with the RMSE
being on average 67% higher in these 2 months by comparison
to the average of the other months. Again, this is ostensibly a
reflection of the low contributions of these months to the total
number of transects: July and August contribute three and six
transects to the NP model respectively, whereas the other months
on average each contribute 49 transects. Low skill in these months
is also likely a reflection of the snow depths being lowest, which is
also associated with low skill (see Fig. 5b).

Fig. 4. (a) Best-fit curves of the skew normal, log-normal and gamma distributions. The log-normal and gamma distributions have historically been fitted to ter-
restrial snow depth distributions, however we find that the skew normal distribution provides a superior fit to our data. (b) RMSE and one-sample Kolmogorov–
Smirnov test statistics. Both metrics for goodness of fit indicate that skew normal has the best fit, and gamma the worst. The quantities of probability density,
RMSE and the Kolmogorov–Smirnov test statistic have the same units as the number of standard deviations, which is unitless.

Journal of Glaciology 1017

�����://���.���/10.1017/���.2022.18 ��������� ������ �� ��������� ���������� �����



We finally address the potential lack of independence between
successive transects at the same station. Our LOOCV approach
assumes that by not training the model with the transect being
validated against, the validation transect is independent. But the
potential exists that information about the validation transect
enters the model through previous and subsequent transects at
the same station that are included. If successive transects are
strongly related, we would expect stations that contribute more
transects to the model to have their transects perform better in
the LOOCV exercise. Application of the non-parametric
Spearman’s rank test for correlation reveals no statistically signifi-
cant relationship (p < 0.05) between the number of transects con-
tributed by a station to the model and the mean or median RMSE
of its transects in the LOOCV exercise (Fig. 5d). This supports the
premise that LOOCV is an appropriate tool with which to evalu-
ate the skill of the NP model.

Evaluation against MOSAiC measurements

We compare our regression and fitted curve (Figs 3a, b) against
the snow surveys taken on the MOSAiC expedition using a mag-
naprobe (Figs 6, 7). To do this we select snow surveys of the
‘Northern Transect’ (Stroeve and others, 2020b), which predom-
inantly consisted of second-year ice.

We first note that the NP-based CV is lower than that
observed on the MOSAiC transects (Fig. 6a). The effect of this
is that the width of the modelled depth distribution is too high
in standard deviation space (Fig. 6b), i.e. the NP model distribu-
tion is insufficiently ‘peaked’. Symptoms of this are underestima-
tion of the two modal bins (relative to the MOSAiC data), and
overestimation of the low tail probabilities. This extra width can

be understood because the standard deviations are themselves
smaller.

Despite this bias, the NP model generally provides a good fit to
the individual MOSAiC transects (Fig. 7). The skewness param-
eter of the NP model (a = 2.54) is smaller than when a skew nor-
mal fit is applied to the MOSAiC transects (a = 6.4). This results
in the modal depth bin often being overestimated by the NP
model (Fig. 7). For clarity, the skewness parameter (a) of the
skew normal distribution is different to the commonly calculated
sample skewness (γ), although both quantities consistently have
the same sign. We calculate and report the sample skewness for
the NP data and all evaluation data in Supplementary Figure S2.

A corollary to this underestimation of skewness by the NP
model is that that where the modal bin is overestimated by the
model, the probability (or fractional coverage) of the depth bin
is underestimated. This can be seen (e.g.) in the panel of
Figure 7 corresponding to 30th January. The skewness parameter
of data in this panel is 13.7, higher than that of the NP model.
This results in the model’s modal depth bin being one too high
(20–25 vs 15–20 cm), and the probability of the modal bin
being 3.5% too low. However, we recognise that the binning pro-
cess involved in this comparison places a lower resolution limit on
any comparison of modal values. As such, we also compare the
modal value of the NP model with that of a skew normal curve
fitted to each magnaprobe transect (Supplementary Fig. S3). We
find that, similarly to Figure 7, the modal depth of the NP
model is higher by comparison to the mode of the skew normal
curve of best fit to the observations. This discrepancy grows
over the winter from 2.7 cm at the start of October to 9.5 cm by
the end of February. We stress that although a precise number
can be determined for the difference in the mode of the NP

Fig. 5. (a) Histograms of the RMSE for long transects (1 km) and short transects (500m) separately. (b) RMSE of the NP distribution against observed transects
shown as a function of transect mean depth. (c) NP distribution RMSE as a function of month. ‘n’ indicates the number of transects contributing to the model
from that month. (d) Median RMSE of all transects at a given station, shown as a function of the number of transects at that station. RMSE values are unitless
as they represent the error in a probability distribution.
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model and the observationally derived curves, the curve-fitting pro-
cess to the magnaprobe observations does not necessarily fully cap-
ture the underlying data, particularly with regards to the position of
the modal value.

The fractional coverage of shallow snow is a key parameter
for energy flux modelling, so is now given specific consideration.
We find the NP model underestimates the coverage of thin snow
(<10 cm) in early winter (end of October to mid December) with
respect to MOSAiC observations. The observed coverage is 6.1%,
and the NP model produces a coverage of 4.3%. After mid
December the model begins to overestimate the thin snow cover-
age. On average it was observed to be 1.5%, and modelled to be
2.1%, an overestimate by 0.6 percentage points. With regards to
heat fluxes, an overestimation of the thin snow coverage would
lead to an overestimate of the heat flux from the ice to the atmos-
phere (and accompanying overestimation of sea-ice growth rate).

Evaluation against SHEBA measurements

We now evaluate our model using snow depth transect data from
the Surface Heat Budget of the Arctic (SHEBA) expedition (Sturm
and others, 2002; Uttal and others, 2002). Snow transects were
taken over a variety of ice types during the SHEBA expedition,
and here we opt to compare our model to transects taken in the
‘Atlanta’ and ‘Tuktoyaktuk’ (henceforth ‘Tuk’) areas which were
dominated by multi-year ice (for best comparison with the NP
data). These areas were described using ice-class codes, and
were indicated as 2–3 and 4 respectively. Class 2 indicates
‘Refrozen melt ponds’, 3 ‘Hummocky’ and 4 ‘Deformed’ (Sturm
and others, 2002). Snow depths were initially measured with a
marked ski-pole, with a prototype magnaprobe being used later.
While the NP model provides a good fit to the Atlanta transects,
it is less appropriate for Tuk transects (where the RMSE is on
average doubled compared to Atlanta).

Atlanta transects
We find the CV to be very similar between the SHEBA and NP
transects (Fig. 8a). Removing transects from the high-melting
month of July from the SHEBA data marginally improves this
agreement, but not greatly relative to the uncertainty in the regres-
sions. We note that no transects were taken in the Atlanta region
in August.

Fig. 6. (a) Snow depth variability for a given mean depth was larger on the MOSAiC transects than on average for the NP stations. Regression for NP station data
shown in red, MOSAiC transects in blue. (b) Because the depth variability is lower in the NP model, the probability distribution in standard deviation space is wider
(as the standard deviations themselves are smaller).

Fig. 7. Winter evolution of the snow depth distribution on the MOSAiC Northern
Transect (blue histograms, 5 cm bins). The modelled depth distribution described
in this paper shown in red. Top right: plots of the 14 transects contributing to the
MOSAiC evaluation exercise, with panel coordinates being the relative coordinates
of the floe with the research vessel Polarstern at the origin orientated upwards).
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Unlike the CV, the agreement of the snow depth distribution is
clearly improved by removing July transects from the SHEBA dis-
tribution (Fig. 8b). We attribute this to strong alteration of the
snow depth distribution by melt ponds in this month, which
developed at the site in the second half of June (Webster and
others, 2015). Outside of this period the snow depth distribution
is primarily dictated by wind redistribution, but within the period
it is dictated by the production of liquid water at the surface of the
snow, consequent runoff and potential melt pond formation.

The poor performance of our model in July and its
association with intense snow melting is shown in Figure 8c.
After strong melting (decreasing snow depth) in June, the
snow depth distribution begins to diverge from the NP model dur-
ing the transition from June to July, and increases throughout July.

Tuk transects
The NP model performs considerably less well when applied to Tuk
transects (Fig. 9). Unlike Atlanta, the standard deviation of snow
depth on Tuk transects is significantly underestimated by the NP
regression. Furthermore, the skew parameter of the NP model (a =
2.54) is less thanhalf thatof a skewnormal curve fitted to theTuk trans-
ects (a = 6.27). The corresponding value for Atlanta is 2.9.

It is striking that the mismatch in the skewness parameter
for the Tuk transects is slightly smaller than the MOSAiC trans-
ects, but the model-observations mismatch is much larger.
Furthermore it is notable that although the skewness of the Tuk
transects is larger than the NP model, the NP model still does a
good job of predicting the modal depth bin. We would expect

the modal bin to correspond to snow depth that is too deep
where the skewness is underestimated (see Fig. 7). These features
are explained by the fact that a skew normal curve cannot be eas-
ily fitted to the Tuk transects in standard deviation space (Fig. 10).

To illustrate, we display the transect data alongside the best
possible skew normal fit (not involving the NP data) to the
data. The agreement is good for the Atlanta and MOSAiC data-
sets, but noticeably less good for the Tuk data (Fig. 10). This indi-
cates that unlike the MOSAiC northern transects and the SHEBA
Atlanta transects, the SHEBA Tuk transects do not display a skew
normal distribution of snow depths.

We attribute the deviation of the Tuk data from the skew nor-
mal distribution to the highly deformed nature of the ice relative
to that seen at Atlanta and the MOSAiC northern transects, and
at most of the NP stations. Firstly we point out that over strongly
deformed ice the wind dynamics may cause snow to be distribu-
ted differently. Secondly we raise the fact that NP transects
deviated around highly deformed ice such as that dominating
the Tuk transects. There is a related sampling bias for the
MOSAiC Northern transect, because the transect layout was cho-
sen such that a snowmobile could drive around it.

Discussion

Negative snow depths

The use of a skew normal distribution results in a small fraction of
negative snow depths. The total fraction is relatively constant at

Fig. 8. (a) Relationship between the mean snow depth and standard deviation of the snow depth on SHEBA ‘Atlanta’ transects (blue scatter). Linear regressions
through the points are shown both including and excluding data points from July and August (blue solid and black dotted lines respectively). Linear regression
from all NP transects shown by red line. (b) The snow depth distribution on the SHEBA ‘Atlanta’ transect excluding July and August (blue) and from NP stations
(red). The SHEBA fit from all transects including July and August shown by black dotted line. (c) Time evolution of the error in this paper’s model (blue scatter).
RMSE is higher during July and August than in other months, which coincides with melted snow (depth in orange scatter).
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0.1% in the 0–50 cm range of mean snow depths. Above this
range, it transitions to a linear decline with increasing mean
snow depth, dropping below 0.075% for snow depths larger
than 200 cm (Supplementary Fig. S4).

Because the fraction of negative snow depths does not exceed
0.1%, we treat it as negligible in our analysis. However, if this dis-
tribution was implemented in a snow-conserving model it would
be necessary to modify the low-tail of the distribution. This could

Fig. 9. (a) Relationship between the mean snow depth and standard deviation of the snow depth on SHEBA ‘Tuk’ transects (blue scatter). Linear regressions
through the points are shown both including and excluding data points from July and August (blue solid and black dotted lines respectively). Linear regression
from all NP transects shown by red line. (b) The snow depth distribution on the SHEBA ‘Tuk’ transect excluding July and August (blue) and from NP stations (red).
The SHEBA fit from all transects including July and August shown by black dotted line. (c) Time evolution of the error in this paper’s model (blue scatter). RMSE is
significantly higher during July and August than in other months, which coincides with melted snow (depth in orange scatter).

Fig. 10. Distribution of relative depth anomalies for the three evaluation datasets used in this paper (red). Distributions were generated with a bin width of 0.5
standard deviations. Skew normal distributions are fitted to each and show variable agreement (black).
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be done by merging the distribution with an exponential curve at
low values, or by truncating it at zero and redistributing the cover-
age so that the area under the probability distribution is unity. In
the redistribution case, it would be possible to either scale the
whole curve by a small amount, or instead preferentially add the
‘lost’ coverage to the low-end of the distribution. We stress however
that the effect of this would be extremely small (and not noticeable
in the analysis of this paper), and so is only necessary for applica-
tions where snow must be precisely conserved. For completeness
we point out that when a log-normal distribution is fitted to the
data in Figure 3a (instead of a skew normal), the fraction of nega-
tive snow depths is a similar function of the mean depth as in the
skew normal case, but ∼100 times smaller in magnitude.

Potential for application to first year ice

No multi-station data similar to the NP transects exist for first year
ice (FYI). This is in part because FYI cannot be drifted on for long
before experiencing a melt season, but also because FYI is thinner
and more liable to break up, making crewed research installations

difficult to establish. Because of these difficulties, it is natural to
wonder whether the NP snow depth distribution can be applied
to FYI and with what uncertainty. To investigate this we apply
the NP model to FYI snow depth transects taken on the
AMSR-Ice03, AMSR-Ice06 (Sturm and others, 2006) and
MOSAiC field campaigns (Krumpen and others, 2020). Several
of these transects were performed in Elson Lagoon (EL in
Fig. 11), which consists of level ice. This contrasts with the more
deformed ice on the nearby Beaufort sea measured during
AMSR-Ice03 (BS in Fig. 11). During AMSR-Ice06 a level-ice sec-
tion in the Chukchi Sea was also surveyed (CS in Fig. 11).
Finally, during the MOSAiC expedition, successive transects were
taken on a refrozen lead (nicknamed the ‘runway’, described in
Stroeve and others (2020b)), which provides some information
about the thin-snow regime on FYI (Figs 11g, h, i). For the eight
transects described above we calculate the RMSE of the NP
model when applied based on the mean value, calculated with 5
cm bins. We also fit a skew normal curve to the transect data
and investigate the skewness parameter (a) to shed light on the
mismatch between the NP model and the observations.

Fig. 11. Comparison of the NP model with data from FYI transects taken during the AMSR-Ice03, AMSR-Ice06 and MOSAiC field campaigns. Panel (a) shows the ratio
of snow depth standard deviation to transect mean depths (the CV) for the FYI transects (large markers) as well as for the NP transects (grey dots). All other panels
show the snow depth distribution produced by the NP model (red) against the transects (blue), with 5 cm wide depth bins for comparative purposes. Panels
represent (in order b–i) Elson Lagoon (EL) and level ice on the Chukchi Sea (b and c), two transects on Elson Lagoon one week apart (d and e), a transect on
FYI of the Beaufort sea near Elson Lagoon (f). Bottom row (g–i) displays snow transects taken on a refrozen lead during the MOSAiC expedition.
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We first observe that all eight FYI transects have CV values
roughly consistent with that observed in the NP stations
(Fig. 11a), particularly those from AMSR-Ice06. The average dif-
ference between the FYI CV values and that of the NP model is
0.74 (a unitless quantity), or ∼17% of the CV of the NP model.
We display the CV values for all FYI data in Supplementary
Figure S5. We also note that the skewness parameter of the
AMSR-Ice06 data (a = 1.6 and 2.2) is close to the skewness par-
ameter of the NP model (a = 2.54). These characteristics lead to
the NP model performing better on the AMSR-Ice06 data than
the AMSR-Ice03 data. The AMSR-Ice06 survey on Elson
Lagoon has the lowest RMSE of all eight FYI transects (0.012)
when compared to the NP model – this is related to it having
the most closely matching skewness parameter to the NP model.

While all three AMSR-Ice03 transects have very similar mean
snow depths to each other (∼ 30 cm), the CV is lower than the
NP station transects for the Elson Lagoon transects, but higher
for the Beaufort Sea (Fig. 11a). That is to say, the snow over the
deformed FYI in the Beaufort Sea exhibited considerably more
variability than that over the level ice in Elson Lagoon during
AMSR-Ice03. In addition to being more variable, the Beaufort
Sea transect showed a much higher skewness parameter (a =
5.14) than those on Elson Lagoon (a = 1.02 and 0.844). The tran-
sect over deformed ice exhibits the lowest RMSE value of the
AMSR-Ice03 transects by some margin.

We attribute the low-skewness (symmetry) of the 2003 Elson
Lagoon data to a lack of ice topography around which to build
up a ‘long tail’ of drifted, thick snow. Conversely, the highly
deformed ice of the Beaufort Sea produces a noticeable long tail
of thick snow, such that the probability of finding snow deeper
than 55 cm is underestimated by the NP model (Fig. 11f).
However, it is striking that the AMSR-Ice06 transects at Elson
Lagoon are more weakly governed by this: while the skewness
parameters are still lower than for the NP transects, there is a
smaller difference. It is possible that this variability is produced
by the cumulative effect of wind redistribution, and particularly
strong wind events. Investigating the role of strong-wind events
on the CV and skewness of the snow depth distribution may
form the basis for future work.

We now turn to the thin snow cover of the three MOSAiC
‘runway’ transects (Figs 11g, h, i). We first point out that a
skew normal curve cannot be easily fitted to these data
(Supplementary Fig. S6; similar to the situation with the
SHEBA ‘Tuk’ transects above). This indicates that the NP
model will not be a good fit, even before it is applied. Because
of this feature, the skewness parameter values listed in the panels
of Figure 11 should not be assumed to properly capture the
underlying transect data. When the NP model is applied and
compared, it exhibits a high RMSE relative to the other FYI trans-
ects. As well as being related to the poor approximation with a
skew normal curve, this performance is also linked to the three
‘runway’ transects having the highest error in the CV (Fig. 11a)
by comparison to the NP transects. One key physical difference
between the runway transects and the other FYI surveys is the
low average snow depth. However, other contextual differences
exist: for example the transects were performed in a colder region
(near the pole), and at a colder time of year (January/February).
This may result in a more weakly bonded snowpack at the time
of measurement, susceptible to more wind-redistribution and
resulting in a higher CV (by comparison to the AMSR-Ice
transects).

Because of the differences in the age of the snow (and the ice
topography over level ice), there is no a priori reason that the NP
model for the snow depth distribution derived in this paper
should be applicable to FYI, and indeed our model works rela-
tively poorly when simulating the ‘symmetrical’ snow depth

distributions at Elson Lagoon in 2003, and the thin snow on
the MOSAiC runway.

However, in the instance where the ice was deformed (Fig. 11f)
the model performs relatively well. Perhaps counterintuitively
given the 2003 results, the NP model also performed well in
2006 over both level ice transects. The RMSE of the NP model
when applied to the Beaufort Sea transect was 0.016, which is
in fact lower than the corresponding values for the MOSAiC nor-
thern transects (Fig. 7), which ranged from 0.019 to 0.031. By this
metric the performance of the model over FYI in 2006 was also
better (lower RMSE, 0.012) and comparable (similar RMSE,
0.022).

In summary, we have shown that the NP model is capable of
performing well over deformed FYI, and even over level ice in the
case of 2006 (where ‘well’ is defined with reference to its perform-
ance over second-year ice at MOSAiC). But despite this capability,
it also clearly performs poorly in the case of thin snow (at
MOSAiC runway, where we observed that the measurements
could not be well-represented by any skew normal distribution),
and also in the case of highly symmetrical (low-skew) snow dis-
tributions over FYI (Elson Lagoon in 2003).

Application to point-measurements of snow depth

There are several drifting, autonomous platforms in existence that
record the snow depth at a single point, such as snow buoys and
ice mass balance buoys (Nicolaus and others, 2021). If the buoy is
deployed at random, it is most likely to sample the modal snow
depth. In reality these instruments are often not deployed at ran-
dom, and a conscious choice is made to sample what is perceived
to be the modal depth. However, for applications such as laser and
radar altimetry retrievals of sea-ice thickness, the mean snow
depth is the quantity required for characterising the floe’s hydro-
static equilibrium (e.g. Mallett and others, 2021). We now present
a simple method of relating these point measurements to the
mean snow depth of the surrounding area.

If the mean snow depth (D) is related linearly to the standard
deviation (σD, Fig. 3a, Eqn (1)) by the CV, and we observe the
modal snow depth to be X SDs below the mean (Fig. 3b), then
we can relate the modal depth to the mean depth as follows:

sD = CV × D and D = Dmode + XsD (3)

D = Dmode

1 − (X × CV)
(4)

Using the NP data from Figure 3 we now calculate that X =
0.35. The CV was found earlier (Eqn (1)) to be 0.417. We there-
fore calculate that the mean snow depth is 17% larger than the
modal depth. Where singular drifting instruments are assumed
to retrieve the modal snow depth in their environment, we recom-
mend this correction for estimation of the mean.

Length scales

The NP station transects were performed over distances of
500–1000 m, and this characterises the length scale on which
our distribution is relevant. If the same transects were theoretic-
ally performed over just a few centimetres, the CV (Fig. 3a)
would be lower, and the distribution about the mean would likely
be different. The distribution would be sensitive to the small-scale
roughness of the snow surface, rather than larger-scale features
like sastrugi and snow drifts around ice topography. If the trans-
ects were performed (again, theoretically) over thousands of
kilometres then the snow distribution would again be different,
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and more representative of synoptic variability in snowfall and ice
type. As such we stress that the distribution of snow depths has
been characterised at the sub-kilometre length scale (on the
order of hundreds of metres).

We also investigate the sensitivity of our analysis to the spatial
sampling interval of the transects, which was 10 m for the NP sta-
tions. In particular, we consider the possibility that adjacent (and
near-adjacent) snow depth measurements on a given transect may
be correlated (Moon and others, 2019), and the impact that this
might have on our main results. To do this we perform an auto-
correlation analysis for each of the 499 transects, testing the
correlationof a spatially lagged series against the original set ofmea-
surements.We find that fora lagof onemeasurement (10 m), 26%of
transects show a statistically significant autocorrelation (p < 0.05).
Toput this anotherway,wedetect that adjacent points are correlated
in 26% of transects. This fraction drops by roughly half at a lag of 2
measurements (20 m, 12%), and half again for a lag of 3 (30 m, 7%;
Fig. 12a). We performed our test for correlation at the 5% level (i.e.
significance at p < 0.05), and as such would predict one in 20 trans-
ects to exhibit a correlation even in the case where all snow depth
measurements were sampled randomly from a normal distribution.
As such, we see the fraction of statistically significant transects tend
to this level at higher lag values (Fig. 12a). We also analyse the
strength of positive autocorrelations where they are statistically

significant. The typical strength (r value) of these statistically signifi-
cant correlations is broadly similar (0.364, 0.315 and 0.31 respect-
ively for lag = 1, 2 and 3; Fig. 12b).

The effect of adjacent points being correlated on our main
analysis can be obviated by only analysing every other transect
measurement. To remove the effect of autocorrelation for a lag
of two samples, we can perform our analysis again but only con-
sider every third measurement, etc. The results of this exercise on
the main results are displayed in Figures 12c, d (cf. Figs 3a, b).
The CV (Fig. 12c) is essentially unchanged by only analysing
every second or third measurement from the transects, and this
is also true for the calculated skew normal distribution
(Fig. 12d). To stretch this approach, we also display the results
of taking every fifth and tenth sample from transects. When com-
paring a 10 m sampling interval to a 100 m sampling interval, the
CV decreases from 0.416 to 0.361, and the skewness parameter
decreases from 2.54 to 1.84. Extrapolating from this trend, mag-
naprobe samples used in the validation datasets which have a
very low sampling interval of 1 m may therefore have a high-skew
and high coefficient of variation bias relative to transects from NP
stations. However, the corresponding analysis for these datasets is
significantly more complex as, unlike the NP transects, the sam-
ples were generally neither regularly spaced nor taken along a
straight line.

Fig. 12. (a) Fraction of transects with a statistically significant autocorrelation at various lags. A total of 26% of transects exhibit correlated adjacent measurements
at lag = 1. (b) The distribution of Pearson r correlation coefficients for various lags, where correlations are statistically significant. The mean strength of the stat-
istically significant correlations decreases slowly as the lag increases. (c) Impact of undersampling the transect by taking every second, third, fifth and tenth meas-
urement on CV, and (d) the probability density distribution in standard deviation space. The impact of this sampling is small for the double-spacing and
triple-spacing, indicating that the correlation of adjacent points in 28% of transects has a negligible impact on the main results in this paper.
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For completeness we also investigate a common statistic for
correlation between adjacent measurements: the correlation length
(Supplementary Fig. S7). This is calculated for a transect by, as
above, calculating the correlation of lagged transects with the ori-
ginal transect at increasing lags. The correlation length is then
defined as the lag at which the correlation drops to a value of
1/e. Because only a minority (28%) of transects have statistically
significant correlations for adjacent points (Lag = 1 sample, 10
m), the correlation lengths for the transects are generally below
10 m. Because of the coarse spatial resolution of the measure-
ments, we must interpolate to get the correlation length, and
this was done linearly. When calculating in this way, we find
the modal correlation length of the transects to be 6.8 m
(Supplementary Fig. S7b), although this would be highly sensitive
to the interpolation method. In total, 9.4% of transects had a cor-
relation length of 10 m or greater.

Relevance in a changing Arctic Ocean and other limitations

The potential for application of the NP model to FYI was dis-
cussed above, and it was found that while the NP model was
capable of performing well over FYI, it performed poorly
when simulating the distribution of thin snow, and overesti-
mated the skew in some cases. Here we point out that the
Arctic Ocean is becoming increasingly dominated by FYI, so
arguably the relevance of this multi-year ice trained model is
in slow decline.

There may also be spatial limitations on applicability. The NP
drifting stations generally operated in the Central Arctic Ocean
(Fig. 1) rather than in the marginal regions such as the Kara,
Beaufort and Barents seas (Warren and others, 1999). However,
these areas are generally dominated by FYI, so this geographic
constraint is less strict that the ice-type one described above.

The average age of multi-year ice is in decline, with the cover-
age of ice aged 5 years or more shrinking from 28 to 1.9% between
1984 and 2018 (Stroeve and Notz, 2018). The mean thickness of
sea ice is also in decline (Kwok, 2018). Because we produce our
statistical model using drifting station data from 1955 to 1991,
it likely reflects snow conditions on ice older and thicker than
that which currently exists in the Arctic. We note however that
our model does still display good skill with respect to the
MOSAiC transects, which were generally performed on ice that
had only experienced one melt season.

Summary

In this paper we have developed a generic snow depth distribution
for multi-year ice that can be fully characterised by the mean
snow depth. This allows it to be superimposed onto estimates
of mean snow depth from satellites and models for the purposes
of flux modelling and altimetry studies.

We performed a cross-validation exercise and found the
model’s skill to be highest in winter, and lowest during the sum-
mer months of intense melt and sparse measurements. We then
evaluated the distribution against snow depth transects from the
MOSAiC, SHEBA and AMSR-Ice field campaigns. These ana-
lyses revealed that the model generally overestimated the vari-
ability in snow depths for the MOSAiC campaign, but the fit
parameters were otherwise broadly appropriate. On the
smoother multiyear ice of the SHEBA campaign the model per-
formed well, but the model performed poorly on transects exe-
cuted over highly deformed ice. This was related to the fact that
the snow depth distribution in this area was not well approxi-
mated by the skewed normal distribution used in the NP
model. Application of the distribution to eight transects con-
ducted over FYI shows that while the NP model was capable of

performing well (over deformed FYI and in two cases over level
ice), it performed poorly when simulating thin snow on a refrozen
lead in the Central Arctic, and also when simulating a highly sym-
metrical snow distribution over level ice.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2022.18.

Code and data availability. All code and data required to reproduce this
analysis can be downloaded from: www.github.com/robbiemallett/sub_km.
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