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A B S T R A C T   

Landfast ice along the Arctic coasts plays an important role in supporting ecosystem services, local communities 
and offshore activities by industry. Seasonal predictions of landfast ice conditions are generally lacking in current 
seasonal forecasting products but are needed especially for planning of on-ice activities such as the construction 
of ice roads. This study focuses on the planned offshore development of Liberty Island where there is a need to 
generate seasonal forecasts for the construction of ice roads in Foggy Island Bay along the Beaufort Sea coast in 
northern Alaska. Due to the lack of prior in-situ observations of ice thickness in the region, a combination of 
newly obtained field measurements, remote sensing data analysis and modeling were employed to produce 
prototype seasonal forecasts of ice thickness in the landfast ice around Liberty Island. Seasonal forecasts 
initialized in September and March were built using Climate Forecast System seasonal forecast model data 
coupled with a single column ice model to forecast ice thickness that capture the start and end of the operational 
season, respectively. The results showed that the model forecasts had modest skill in capturing the timing of key 
ice thickness thresholds needed to support vehicle traffic during the start of the season in November–December 
but very limited skill with end of season and ice breakup forecasts. Much of the forecast skill was improved 
through bias correction but such improvement was hampered by the lack of long-term observational data in the 
region. Integration of the observational data and modeling is necessary to begin development of seasonal 
forecasts in this data sparse region.   

1. Introduction 

1.1. Motivation 

Arctic landfast sea ice lines the vast majority of Arctic coastlines for a 
significant part of the year and constitutes an important, seasonal 
element of the coastal zone that supports a range of ecosystem services 
(Dammann et al., 2019; Eicken et al., 2009; Yu et al., 2014). In many 
parts of the Arctic and sub-Arctic, the landfast ice cover serves as an 
important platform for a range of human activities, including over-ice 
travel and transportation between communities (Mäkynen et al., 
2020) or the harvesting of marine living resources (Ford et al., 2019). Ice 
roads across landfast ice also provide services to the natural resource 
industry, including access to offshore production sites or the staging and 
operation of heavy equipment associated with the construction of 

temporary or permanent structures (Potter and Walden, 1981; Dumas 
et al., 2005; Bashaw et al., 2013). Many ice charting services routinely 
map the extent of landfast ice using an amalgamate of different remote 
sensing techniques (Yu et al., 2014). Furthermore, recent advances in 
synthetic aperture radar (SAR) remote sensing, in particular SAR inter-
ferometry, have greatly aided large-scale mapping of landfast ice extent 
and stability at resolutions of hundreds of meters or less (Dammann 
et al., 2019; Mäkynen et al., 2020). 

There is a considerable interest in seasonal forecasting of sea ice and 
most efforts have focused on capturing broader conditions such as sea 
ice extent across the pan-Arctic (e.g. Sigmond et al., 2013; Blanchard- 
Wrigglesworth et al., 2017). There is also growing interest in and efforts 
at forecasting sea ice at regional scales (Bushuk et al., 2019). However, 
the prediction of landfast ice formation, persistence and decay, in 
particular on sub-seasonal to seasonal timescales has received less 
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attention. In principle, forecasting ice growth in the coastal ice-ocean 
system or seasonal scale prediction of atmospheric forcing from 
ensemble simulations does not present fundamental challenges, 
although the resolving of key processes critical to landfast ice stability 
still requires work (e.g., Lemieux et al., 2016). 

Partly, lack of research progress in this field may be tied to the lack of 
pressing, clearly defined information needs. For example, previous work 
on forecasting the decay and breakup of landfast ice at Utqiagvik in 
northern Alaska by Petrich et al. (2012) was motivated by a broader 
understanding of key processes, but did not address a specific applica-
tion. This past study identified absorption of solar shortwave energy by 
the coastal ice-ocean system – derived from the Weather Research and 
Forecasting (WRF) model – as a key predictor of in-situ break-up with 
lead times of up to 14 days. 

Here, we present a case study for seasonal-scale prediction of land-
fast ice formation, growth and decay at Foggy Island Bay, a semi- 
sheltered coastal site in the Alaska Beaufort Sea (Fig. 1). The need for 
long-range forecasts with lead times of weeks to months at this partic-
ular location was driven by the planned use of landfast ice to support 
transport of gravel for the construction of an artificial island (Liberty 
Island). Advance estimation of the start date and duration of an opera-
tions window, defined by the ability of the ice cover to safely support 
over-ice transport of a range of different heavy trucks and equipment, 
was explored as a measure to enhance planning of the effort and reduce 
costs. In our study, we drew on ice charts and SAR remote sensing data 
for a study of the seasonal landfast ice cycle and associated key dates at 
the study location. A single column ice-ocean model, forced with 
meteorological inputs from global climate models that produce seasonal 
forecasts, was used to predict ice formation, growth and decay. An ice- 
mass balance buoy deployed at the study site provided in-situ data for 
model validation. The specific predictand variables, the criteria defining 
safe operations windows, and the tolerable uncertainty in the pre-
dictions were identified based on the particular application, including 
types of transportation modes and heavy equipment used. 

1.2. Background 

The application that drove development of a seasonal landfast ice 
prediction approach was the proposed use of an ice road in the con-
struction of a gravel island. The operating season for such ice roads 
depends on the timing of freeze-up, evolution of the sea ice cover – 
specifically its thickness, and eventual breakup of the landfast ice in 
Foggy Island Bay. Forecast guidance weeks to months in advance, along 
with a more thorough understanding of the observational record of ice 
conditions in the region, were needed to inform planning and opera-
tional decision-making for upcoming seasons. In particular, long-range 
forecasts were needed to help plan and continuously update the de-
livery schedule of gravel and other materials to the artificial island 
construction site over the course of the winter construction season. With 
a lack of in-situ sea-ice measurements at this particular site, the project 
required a coordinated effort of field measurements, remote sensing 
data, modeled meteorological data and a single column ice model to 
address the feasibility of making seasonal forecasts (Fig. 2). 

Based on guidance provided by the operator, we established the need 
for a seasonal scale prediction of the date at which on-ice operations are 
safe to commence in the early ice season, and the date on which oper-
ations have to cease in the late ice season (Fig. 3). Such predictions, with 
lead times of >3 months prior to the season and continual updates weeks 
to months out, would inform planning of the construction season (E.g., 
can all gravel be moved within a single season?). The timing and length 
of the on-ice operations season would also determine timing and dura-
tion of leasing, staging and deployment of equipment and personnel. 

The predictand variables for such an application were identified as 
(i) the dates for which given landfast ice thickness thresholds as a result 
of ice growth are exceeded (persisting), (ii) the dates for which ice 
thickness drops below those same thresholds as a result of ice melt 
(ablation). The thickness criteria need to be satisfied along the entire 
length of the ice road from shore to the construction site. Here, we as-
sume that along an ice road perpendicular to shore, the landfast ice is 

Fig. 1. Location of proposed Liberty Island development (red star) in Foggy Island Bay and approximate locations of planned ice roads (arrows). Depth isobaths 
derived from NOAA Electronic Navigational Charts (gray contour lines) are in meters. The location of the study area is shown by the star in the inset map. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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thickest nearshore where it forms earliest in the season, and is thinnest 
at the construction site away from shore as a result of the general pattern 
of seaward advance and thickening of landfast ice at that location 
(Fig. 3). Also, both in the context of the development of a prediction 
model and potentially from an operations perspective, the dates that 
define the period of stable landfast ice absent of any ice breakout events 
were determined through analysis of remote-sensing imagery and ice 
charts (Fig. 3). For the purposes of this study, these two dates are 
referred to as first landfast ice and last landfast ice (Fig. 3). 

Nominal ice thickness thresholds that would need to be predicted 
were identified based on guidance from industry manuals and estab-
lished best practice for the region (BP and Golder Associates, 2013; E. 
Bashaw, personal communication, 2017) as summarized in Fig. 3: (i) the 
minimum ice thickness to allow operations of a grader (20 in./51 cm) to 
begin preparations for an ice road; (ii) the minimum ice thickness to 
support use of a medium sized tractor-trailer for gravel hauling opera-
tions (32 in./82 cm); (iii) the minimum ice thickness to support use of a 
heavy duty tractor-trailer (52 in./133 cm). As indicated schematically in 
Fig. 3 and discussed further below, the end of the ice-operations season 
is more difficult to define. Ice thickness as a criterion for operations may 
not be sufficient on its own given major changes in ice mechanical 
properties with ice warming and onset of melt. Hence, we identified the 
onset and end of the “cold” ice temperature regime as a relevant po-
tential predictand variable provided by the model employed in this 

study. Drawing on BP and Golder Associates (2013), the threshold for 
onset/end of the cold season was defined by an ice surface temperature 
of −5 ◦C (Fig. 3). 

The aim of the prediction system is to provide forecasts - in this study 
produced using a single column sea ice model driven by output from the 
National Oceanic and Atmospheric Administration (NOAA)’s Climate 
Forecast System model - for the critical dates identified in the operations 
timeline detailed in Fig. 3. The prediction uncertainty associated with 
the timing of each of these events (i.e., the length of the time interval 
that contains the observed event across a number of years relative to the 
spread of dates provided by the prediction system for those same years) 
is schematically illustrated in Fig. 3. The width of this uncertainty in-
terval is both a function of the prediction lead time (how far in advance 
of the event is a prediction issued?) as well as different types of errors 
inherent to the prediction approach (e.g., how well are key processes 
driving landfast ice formation and growth captured by the single column 
sea ice model?). In principle, for the present application one would as-
sume with a forecast issued on, e.g., June 1 of a given year, the uncer-
tainty in predicting dates defining the end of on-ice operations would be 
larger than the uncertainty in predicting dates defining the onset of on- 
ice operations. However, since the processes determining ice break-up 
are different from those constraining ice formation and growth, this 
may not necessarily be the case and is explored further below. 

Fig. 2. Overview of project component integration.  

Fig. 3. Schematic of landfast ice seasonal cycle and key operational thresholds based on ice thickness and ice temperature. Also shown are specific dates derived from 
remote sensing data. Note that for the purposes of this study, end of operations criteria were not defined beyond a notional “last landfast ice” date tied to ice thickness 
dropping below 90 cm as a result of surface and bottom ablation. 
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2. Data and methods 

2.1. Seasonal Ice Mass-balance Buoys (SIMBs) 

In 2018 and 2019 a seasonal ice mass-balance buoy (SIMB) was 
deployed near the proposed Liberty Island site in Foggy Island Bay (see 
location in Fig. 1) for the purpose of measuring changes in the thickness 
(i.e. mass) of sea ice during the growth and melt seasons. The SIMB was a 
self-contained buoy manufactured by Cryosphere Innovations, LLC that 
was designed to be deployed into a hole drilled into the ice and allowed 
to freeze-in. It measured snow depth using a down-looking acoustic 
altimeter to determine the vertical position of the snow surface. Once 
the snow has completely melted, the same sensor is able to measure the 
melt of the exposed ice surface. An upward-looking acoustic altimeter 
below the ice measures the vertical position of the ice bottom. Together, 
data from the two acoustic altimeters allows for the calculation of the 
thickness of the sea ice. Temperature sensors spaced every 2 cm along 
the hull of the SIMB provided a measurement of the temperature profile 
through the ice and snow from the ocean to the atmosphere. The SIMB 
was also equipped with additional sensors to measure air and water 
temperature for the purpose of sound-speed corrections. Table 1 lists the 
deployment dates and locations for each SIMB as well as initial snow and 
ice measurements and notes about recovery. 

2.2. Ice charts and remote sensing 

In a previous study, Mahoney et al. (2014) developed a compre-
hensive dataset (hereafter, referred to as the M2014 dataset) of the 
seasonal variability in landfast ice extent from 1996 to 2008, using 
publicly available Radarsat synthetic aperture radar (SAR) images of the 
coastal waters of northern Alaska. Here, we have extended the M2014 
analysis up to early 2020 for a study region around Prudhoe Bay and 
Foggy Island Bay using a combination of sea ice charts from the National 
Ice Center (NIC) and the National Weather Service’s Alaska Sea Ice 
Program (ASIP), together with our own analysis of open-access Sentinel- 
1 SAR imagery, which we refer to as the S1 dataset. Table 2 lists these 
data sources and the time spans they cover. 

All four data sources are primarily dependent on satellite-based SAR 
imagery, but the analysis methods to identify landfast are not consistent. 
In the M2014 and S1 datasets, we followed a semi-automated approach 
first described by Mahoney et al. (2007). In short, this approach relies on 
the comparison of 3 consecutive images to identify sea ice that meets 
two criteria: i) ice is contiguous with the coast; and ii) ice lacks 
detectable motion over the period spanned by the 3 images. The time 
period for criterion (ii) depends on the availability of the satellite data 
used. In the M2014 dataset, this time period is approximately 20 days. In 
the S1 dataset, this time period is approximately 28 days, owing to the 
14-day orbital period of the satellites. However, due to irregular avail-
ability of imagery over the study region, the dataset misses the freeze-up 
period in 2017 and the break-up period in all years except 2017. 

The NIC and ASIP ice charts are compiled using the best available 

data at the time the chart is produced, which may include visible and 
thermal imagery when SAR data are not available. Such data allow the 
detection of open water at the edge of landfast ice (e.g., Fraser et al., 
2012), but may not correctly identify the seaward edge of the landfast 
ice when there is no open water present. Additionally, analysts at NIC 
and ASIP may identify landfast ice based on appearance in SAR imagery 
in addition to, or instead of, any evidence of stationarity. The NIC ice 
charts are updated on a weekly basis, while the ASIP ice charts are 
updated daily from October 2015 onwards and on a weekly basis prior to 
that. 

From each data source, we generated binarized raster images indi-
cating the presence or absence of landfast ice within the study region at a 
resolution of 100 m. From these images, we determined the width of the 
landfast ice along a predefined set of coast-normal vectors (Fig. 4), 
following the approach of Mahoney et al. (2014). We then generated a 
time series capturing the annual cycle of the landfast advance and 
retreat along each vector for each year within our study period. In Fig. 4, 
the coast vectors in the neighborhood of the proposed Liberty Island site 
are highlighted in blue. For the purposes of the analysis that follows, we 
identified the calendar date each year when the average landfast ice 
width along these vectors extended beyond or retreated to within 10 km. 
This corresponds to the approximate distance of the Liberty Island site 
from shore and these dates therefore correspond to the first and last 
presence of landfast ice at the site. 

2.3. Single column model 

Version 5 of the Los Alamos Sea Ice (CICE) model (Hunke et al., 
2013) was used to simulate the seasonal changes of the ice thickness and 
snow depth from 1982 to 2019. The CICE model, designed for fully 
coupled global climate models, was run in standalone mode at one 
latitude/longitude location (at Liberty Island), with an idealized ocean 
mixed layer under sea ice. The CICE model was run on a single grid cell 
with 20 ice layers distributed across the ice thickness and one snow 
layer. The study location at Liberty (see Fig. 1) is shallow, with depths 
ranging from 3 to 5 m, and the simulations were initialized with the 
measured water depth and temperature, and salinity. The single column 
model was used and therefore had no ice dynamics. Mushy layer ther-
modynamics was used in the default setting. The CICE ocean mixed layer 
submodel uses fixed depth and only tracers (i.e. temperature and 
salinity) are updated through time by transport between the water and 
sea ice. The high vertical resolution provides a good representation of 
the steep salinity and temperature gradients near the top and bottom of 
the ice surface (Hunke, 2014). The model time step was 1 h. The CICE 
simulations were driven by meteorological input data (temperature, 
humidity, precipitation, winds, solar radiation, cloudiness, and surface 
pressure) from model output that will be described in later sections. 

2.4. Meteorological observations and forecast data 

Given the lack of in-situ meteorological observations in the vicinity 
of Liberty Island, this study made heavy use of atmospheric reanalysis 
data to provide baseline data for modeling ice growth with CICE. 
Reanalyses combine, in an optimal way, past short-term forecasts and 
observations to produce the most realistic state of the atmosphere. In 
this study we used the ERA5 reanalysis (Hersbach et al., 2020) which is 
produced by the European Centre for Medium-Range Weather Forecasts 

Table 1 
Deployment information for each SIMB deployed.  

Year Deployment 
date 

Deployment 
location 

Initial 
snow 
depth, 
m 

Initial ice 
thickness, 
m 

Recovery 
notes 

2018 March 27 70.27432◦N 
147.58157◦W 

0.25 1.40 Satellite link 
lost on May 
13 

2019 February 2 70.27540◦N 
147.58697◦W 

0.03 1.04 Recovered by 
boat on June 
24 after 
detachment 
of landfast ice  

Table 2 
Landfast ice extent data sources used in this study.  

Data source Time range 
Mahoney et al., 2014 (M2014) 1996–2008 
National Ice Center (NIC) 2000–2020 
NWS Alaska Sea Ice Program (ASIP) 2007–2019 
Sentinel-1 analysis (S1) 2016–2020  
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(ECMWF). ERA5 is one of the newest state-of-the-art reanalysis products 
currently available and has shown good performance in the Arctic 
(Graham et al., 2019). It is a global data set that spans 1979-present with 
hourly time resolution and approximately 30 km grid spacing. For this 
analysis and running CICE we interpolated the required meteorological 
variables (described in the previous section) to the location of Liberty 
Island. Besides the SIMB field measurements described above, limited 
meteorological station data was obtained from the Snow Telemetry 
(SNOTEL) weather station at Prudhoe Bay and the Deadhorse airport 
weather station to help ground truth the reanalysis. 

There are two major approaches to producing seasonal forecasts: 
statistical and dynamical. Statistical approaches often build regression, 
or similar, models based on past predictors to produce forecasts. 
Dynamical approaches use global climate models to simulate conditions 
in the coming months. This study evaluated the ability of a dynamical 
seasonal forecast model, in conjunction with CICE, to predict ice 
thickness at Liberty Island several months in advance. There are several 
modeling centers working in the area of seasonal prediction as it is a new 
and emerging field of forecasting. The Climate Forecast System (CFS) 
model version 2 is run by NOAA and provides operational seasonal 
predictions for the next 6–9 months (Saha et al., 2014). The CFS was 
selected for this study because it is the key seasonal forecast model used 
by NOAA and a member of the North American Multi-Model Ensemble 
(NMME) system (Kirtman et al., 2014). CFS includes a sea ice model, 
however landfast ice is not resolved/parameterized so the single column 
CICE model described in the previous section was employed in this study 
and driven by CFS meteorological outputs to simulate landfast sea ice 
thickness in the Foggy Island Bay. NOAA has produced a “hindcast” for 
CFS for 1982–2011 that is designed for the assessment of forecast skill. 
This hindcast is essentially a database of forecasts for past periods. The 
CFS also has an archive of operational forecasts since 2012 that now 
serve a similar purpose and were also analyzed. While several ensemble 
members were available from CFS for each forecast period, only the first 
ensemble member was used in our analysis for simplicity. 

The meteorological input parameters from CFS and ERA5 were used 
to drive the CICE model described in the previous section. In all cases the 
CICE was run continuously over 1982–2019. One run was conducted 
using ERA5 to represent observed conditions and is directly compared 

against the field observations and ice chart/remote sensing products for 
model validation and calibration purposes. Two CFS forecast runs were 
also produced based on one CFS ensemble forecast each starting in 
September and running through February (forecasting the growth of ice) 
and a second run beginning in March and ending in August (capturing 
the melt season). Both runs branched off of the ERA5 data during the 
months preceding the start of the forecast period. 

The accuracy of the ice thickness forecasts was primarily analyzed by 
standard metrics: the Root Mean Square Error (RMSE), Normalized 
RMSE (NRMSE) and skill score. The NRMSE metric normalized the root 
mean squared error of the CFS forecast to the ERA5 observed baseline as 
a percentage of the range of ERA5 results over the 1983–2018 period on 
each day. The mean square skill score used in this study was calculated 
as one minus the squared error of the forecast divided by that of a 
reference forecast. The reference forecast was the daily 1983–2018 long- 
term mean climatology produced by CICE using ERA5. So a skill value 
greater than zero indicates that the CFS forecast has less error than a 
simple forecast based on climatology. The Pearson’s correlation coeffi-
cient was also used to assess the forecasts when applicable. 

3. Results 

3.1. Annual cycle of landfast ice extent in Foggy Island Bay 

The 24-year record of landfast ice extent derived from satellite im-
ages and ice charts were used to quantify the typical extent of landfast in 
the region around Foggy Island Bay on a monthly basis (Fig. 5). This 
analysis shows that landfast ice typically forms at the location of the 
proposed Liberty Island site in November, although 10% of the time it 
was already present in October and in another 10% of years it did not 
form until December. At the other end of the annual cycle, our results 
indicate that landfast ice in Foggy Island Bay usually breaks-up in June. 
In 10% of years, it broke up in May, but it never persisted into July. 

Combining all four datasets of landfast ice extent, we measured the 
seasonal variability in landfast ice width in Foggy Island Bay over the 24 
annual cycles during the period 1996–2020 (Fig. 6). Apart from short- 
term variability during winter associated with the short-lived occur-
rences of “stable extensions” during which large areas of the Beaufort 

Fig. 4. The set of approximately coast-perpendicular vectors used to determine landfast ice width, with those representing Foggy Island Bay, shown in blue and the 
termination of the projected ice road indicated by a star. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Sea may be considered landfast (Mahoney et al., 2014), there is gener-
ally good agreement between the different data sources regarding the 
typical extent of landfast ice each year (Fig. 6). 

Using a measured width ≥ 10 km to indicate the presence of ice at the 
proposed Liberty Island site, we calculated the annual date of “first 
landfast ice” and “last landfast ice” each year (Fig. 7). Close inspection of 

Fig. 5. Monthly landfast sea ice extent near Prudhoe and Foggy Island Bay based on remote-sensing data and ice charts for the time period 1996–2020. The colored 
areas indicate the lower 10%, median and upper 10% extents for each month, as indicated in the legend. The black lines indicate the mean extent. The yellow stars 
show the proposed location of the Liberty Island site. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Average landfast ice width for the period 1996–2020 determined from coast vectors illustrated in Fig. 10 using four different data sources.  

Fig. 7. First and last dates each year that landfast ice width in Foggy Island Bay exceeded 10 km, corresponding to the approximate location of Liberty Island. The 
two black dotted lines indicate linear regressions based on all data points. These trends are significant at >95%. 
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these data indicates that the landfast ice typically advances rapidly from 
the shoreline to approximately 20 km offshore within approximately 1 
week of the first appearance of landfast ice at the coast (Fig. 6). The 
retreat of ice during breakup is similarly rapid. Thus, there appears to be 
no significant amount of time that the edge of the stable landfast is 
located near the Liberty Island location. However, the development of 
the island is likely to affect this situation and, while beyond the scope of 
this study, closer analysis of similar data in the vicinity of nearby 
Northstar Island may provide useful information regarding the potential 
effect of Liberty Island on surrounding landfast ice. 

There was a 20-year period from 2000 to 2019 when we were able to 
compare landfast ice observations from multiple datasets. More often 
than not, the datasets agreed on the timing of first ice within 14 days and 
the timing of last ice to within 10 days. However, there were some 
notable exceptions. In 2015, for example, the last ASIP ice charts to show 
landfast ice at the Liberty Island location was on May 24, while the NIC 
charts continued to show landfast ice at this location until June 25. Also, 
in 2007, the only year when three datasets overlap, the M2014 and ASIP 
charts both showed first ice formation in mid to late November 
(November 25 and 17, respectively), while the NIC charts suggested 
landfast formation over a month earlier on October 14. Some of these 
differences arise from different reporting frequencies between datasets 
over time (e.g., in 2015, ASIP ice charts are available on a daily basis, 
while NIC charts were produced weekly), but we assume that different 
practices between individual analysts must also contribute. 

Combining dates from all data sources with equal weight, we find 

significant linear trends (at >95% level) in both later formation and 
earlier retreat of landfast ice at the proposed Liberty Island site. Overall, 
from 1996 to 2020, we find that landfast ice is forming 1.6 days later (R2 

= 0.15, p = 0.006) and breaking-up 1.5 days earlier (R2 = 0.11, p =
0.016) per year, on average. 

3.2. Ice mass-balance observations 

The ice thickness, snow depth and the through-ice temperature 
profile recorded by the SIMBs captured a number of important seasonal 
events in 2018 and 2019 (Fig. 8). The deployment in 2018 resulted in 
only 46 days of data, during which time the ice thickened from 1.40 m to 
1.51 m. The record ends just after the snow pack had warmed to the 
melting point, representing the earliest stage of the melt season (Fig. 8a). 
The maximum ice thickness measured was therefore likely close to the 
maximum thickness achieved in 2019. 

The SIMB deployed in 2019 recorded 142 days of data, during which 
time the ice reached a maximum ice thickness of 1.53 m and a maximum 
snow depth of 0.25 m (Fig. 8b). The majority of the snow fell during a 
single event around March 14, after which time cold temperatures 
ceased penetrating the ice underneath, which remained above −10 ◦C. 
The maximum ice thickness was achieved May 21, shortly after the snow 
pack began thinning and coinciding with the arrival of warm water 
below the ice. Bottom melt began around May 26, but short-lived epi-
sodes of apparent rapid bottom growth suggest the formation of “false 
bottoms” (Notz et al., 2003), which may have masked an earlier onset of 

Fig. 8. SIMB measurements from a) 2018, and b) 2019. Solid white lines show snow depth, while dashed white lines show the position of the ice surface. Solid black 
lines show the position of the ice bottom. The colour scale illustrates the variation of the air-snow-ice-ocean temperature profile over time. 
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bottom melt. The snow at the SIMB completely melted June 13, marking 
the onset of surface ice melt. In total, the ice around the SIMB thinned by 
0.55 m before the buoy was recovered. Ablation included 0.19 m of 
bottom melt and 0.36 m of melt at the top of the ice. A marked increase 
in bottom melt on June 24 coincided with the detachment of landfast ice 
in which the SIMB had been deployed. The buoy was recovered 3 days 
later by boat. 

3.3. Modeling observed ice thickness 

To place the ERA5 data in the context of local station data, key 
variables of temperature, precipitation and cloud cover were evaluated 
against the limited weather station data record at Prudhoe Bay and 
Deadhorse (Fig. 9). Temperature compares well with the SNOTEL 
weather station at Prudhoe Bay with ERA5 being around 2–3 ◦C warmer 
in winter on average and 1–3 ◦C cooler in summer in 2004–2018. The 
ERA5 precipitation had larger deviations from the SNOTEL station with 
a wet bias approaching 7 mm in August. The reanalysis is also signifi-
cantly cloudier than the observations at the Deadhorse airport. The 
ERA5 mean cloudiness exceeded 70% in all months with the cloudiest 
months in winter while the station indicated the maximum cloudiness in 
May–October. These deviations from the available observations will be 
considered as we interpret the results of the analysis in later sections. 

The CICE model was run over the period of record driven by the 
inputs from the ERA5 reanalysis. This simulation provides the best es-
timate of observed ice thickness at Liberty Island in the absence of in-situ 
measurements. The results of this “observed” reanalysis simulation are 
compared with the field measurements of ice thickness and snow depth 
from the SIMB in winters 2017–18 and 2018–19 in Fig. 10. The 2017–18 
season had very limited SIMB data but the ice thickness and snow depth 
were broadly similar during April, when observations were available in 
both winters. The ice thickness in CICE captured the observed values 
quite well in February–June 2019 but was delayed in the timing of melt 
in July. The timing of the onset of snowmelt was well captured in 2019. 
The snow depth estimated from ERA5 in CICE built up more gradually 
than the sharp increases observed at the site in February and March 
2019, however both reached similar end-of-season snow depth. Abrupt 
increases in snow depth measured by the SIMB coincided with storm 
events, indicating that snow accumulation is sensitive to the occurrence 
of such events. Additionally, some care is needed when interpreting 
these short increases in snow depth, since storms do not typically 
distribute snow evenly on sea ice, with snow collecting instead in dunes 
and drifts. Given the importance of snow for insulating the ice and 
slowing ice growth in winter, it may be advisable to deploy additional 
sensors to better assess variability of snow depth at the site. While 
beyond the scope of this study, further analysis should directly examine 
the sensitivity of forecast skill to snow. One example of such future 
analysis or application might consider different perturbations of the 
snowpack that could be used to create an ensemble prediction with 
CICE. 

3.4. Seasonal forecasting 

The meteorological parameters used to drive CICE from CFS were 
first compared with those of the ERA5 reanalysis over the hindcast 
period to identify possible areas of uncertainty (Fig. 11). The CFS was 
generally warmer than ERA5 in the summer and early winter. This 
matches the enhanced solar radiation in CFS over the same seasons. The 
precipitation was quite comparable between the two data sets. 

The CFS had generally weaker winds throughout much of the year 
but best matches the ERA5 July–November. Atmospheric moisture is 
generally comparable, but cloudiness in CFS was significantly reduced 
relative to ERA5. In the previous section it was found that the observed 
cloudiness at Deadhorse was also much lower than what is found in 
ERA5, therefore CFS actually may have more reasonable cloudiness on 
average than the reanalysis at Liberty Island. Based on these findings 

hypothetical bias corrections were prepared for all variables. This 
correction was a simple adjustment of the values based on the long-term 
mean difference for each period and was performed for demonstration 
purposes. The results of the CICE shown in the rest of this section do not 
include such an adjustment of the forcing data but consider bias 

Fig. 9. Monthly ERA5 reanalysis (gray) and weather station (red) 2004–2018 
climatologies of temperature (a; ◦C), precipitation (b; mm), and cloud cover (c; 
%). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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adjustments of the output ice thickness. 
Two forecast periods were the focus of the evaluation of CFS: Sep-

tember–February to capture onset and establishment of sea ice; and 
March–August to forecast the onset of melt. Additional forecast periods 
are available from CFS and could be considered in an operational 
setting. The CICE model was run over 1983–2019 separately for each 
period with the ERA5 used to provide realistic conditions outside of the 
forecast period. This procedure produced one September–February ice 
thickness forecast each year and one similar for March–August for 
evaluation. Since ice thickness measurements were not available outside 
of 2018–19 the forecast evaluation used the ERA5 reanalysis CICE 
simulation as the baseline. An assessment of the daily average 
1983–2018 CFS vs. ERA5 CICE ice thickness revealed a general bias 
toward lower ice thickness, later ice formation onset, and earlier ice free 
conditions when using the CFS forcing data (not shown). Due to these 
biases, a simple correction was applied to the forecast ice thickness by 
adding difference of the long-term means to the daily forecast ice 
thickness (i.e. a delta method). The results of the bias-corrected forecasts 
for predicting daily sea ice thickness, their mean error relative to the 
ERA5 estimates and skill scores are shown in Fig. 12. Introducing bias- 
correction improves forecast skill throughout the year. In fact, skillful 
seasonal forecasts would not be possible without bias correction 
(Fig. 12b). The greatest error is during the time of onset but declines as 
the ice becomes stable. For instance, the error in the forecast initialized 
in March is relatively small while ice is stable in the winter but increases 
during the melt season when conditions become more variable. Forecast 
skill was greatest for the September forecasts during the early months of 
the ice formation/growth season and then declined in December and 

January. The forecast skill is very high for the March forecast period 
when the ice thickness is most stable in March–May but declines quickly 
before rebounding in July. This indicates that it is difficult for the March 
forecasts to capture the timing of onset of melt. Likewise, the seasonal 
forecasts of maximum ice thickness produced in September are highly 
uncertain. 

The forecasts were evaluated in the context of the ice chart/remote 
sensing-based data described earlier (Fig. 13). The September–February 
freeze-up date forecasts and ERA5 simulation (when the CICE modeled 
ice thickness first exceeded 1 cm) were compared with the ice chart/ 
remote-sensing first landfast ice dates. The reanalysis captures much 
of the observed variability of the first landfast ice dates with a correla-
tion of 0.56, while the forecast has an expectedly weaker correlation 
with observations at 0.07. The date of breakup or last ice (when the CICE 
modeled ice thickness fell below 90 cm) is less consistent with both 
modeled reanalysis and the test forecasts with correlations of −0.01 and 
0.13, respectively. Some deviation is expected since the remote sensing 
products are purely based on the presence/absence of ice in the vicinity 
of Liberty Island within 10 km of the coast while the CICE modeled dates 
were based on reaching specific ice thickness thresholds. 

A targeted evaluation of the forecasts of ice thickness thresholds 
outlined in Fig. 3 are needed, but in the absence of an observed record 
ERA5 was used as the baseline for comparison. The first and last date 
reaching specific ice thresholds were compared relative to the mean date 
(see mean dates in Table 3) for ease of comparison (Fig. 14). The CFS 
forecast RMSEs and skill scores for the threshold dates are shown in 
Table 3. The first date of 82 cm and 133 cm have the greatest year to year 
variability and have skill scores of 0.12 and − 0.39, respectively. The 

Fig. 10. CICE simulations of ice thickness (top row) and snow depth (bottom row) for winter 2017–18 (left) and 2018–19 (right). The model simulations were driven 
by the ERA5 reanalysis and are displayed as black lines, while the SIMB measurements are shown in red and direct measurement by personnel are in blue. The units 
of all parameters are cm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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best predicted threshold date was the first 51 cm and that has a skill 
score of 0.50. Skill scores were negative for the remaining threshold date 
forecasts. 

4. Discussion 

Planning for safe and efficient offshore operations in the Arctic re-
quires forecasts of relevant ice properties that are both skillful and 
seasonal in range. Prior work has shown that melt-driven breakup of 
landfast ice in northern Alaska can be accurately predicted 1–2 weeks in 
advance (Petrich et al., 2012), but this is too short-term to be useful for 
seasonal planning. The present study attempts to greatly expand the 
forecast window out to several months in advance, while maintaining as 
much forecast skill as possible. At broader spatial scales the CFS, 
considered in our evaluation, has shown predictive skill in seasonal- 
scale forecasts of Arctic sea ice concentration/extent (Liu et al., 2018; 
Merryfield et al., 2013). However, the CFS model does not resolve 
landfast ice on its own and therefore this study utilized a standalone 

single column CICE model to better capture the landfast ice conditions at 
Liberty Island. The CICE forecasts driven by the CFS were generally 
challenged with low predictive skill scores with the exception of the 
onset dates in November–December and the final melt out in July. Bias 
correction of the seasonal forecasts was found to be a necessary step to 
build forecast skill into those periods. Similar challenges have been 
identified more broadly for seasonal forecasting of the Arctic sea ice 
extent and concentrations (Zhao et al., 2020; Blanchard-Wrigglesworth 
et al., 2017). Bias corrections have also led to improvements in other 
Alaska seasonal forecasting applications of CFS related to wildfire 
danger ratings (Sampath et al., 2021). In this study, the CICE hindcasts/ 
forecasts over 1983–2019 were biased toward later onset of ice and 
earlier breakup dates. The bias correction during the start and end of the 
season therefore had the effect of bringing the forecasts much closer to 
climatology. This adjustment had a relatively large impact on the skill 
during these periods and was responsible for the rebound of skill in 
June–July in the March–August forecasts. 

Potential sources of seasonal-scale predictability of landfast ice 

Fig. 11. CFS and ERA5 1982–2011 daily climatologies with hypothetical bias corrections for CFS for key input variables for CICE.  
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thickness may come from teleconnections such as the El Niño Southern 
Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). While the 
links between teleconnection indices and landfast ice in the region have 

not been established, ENSO and PDO have each been tied with monthly 
and seasonal-scale variability in near-surface air temperature 
throughout the Alaska region (Papineau, 2001; Hartmann and Wendler, 

Fig. 12. CFS hindcast ice thickness (a) Normalized Root Mean Square Error (shading) relative to ERA5 climatological average and overall max/min ice thickness 
(black lines), and (b) mean square error skill scores for the hindcast with (solid lines) and without (dashed lines) bias corrections. 

Fig. 13. Observed, ERA5, and forecast date of freeze-up/first landfast ice (a) and last date of landfast ice (b). The date of freeze-up/first ice is defined as the date with 
first ice thickness >1 cm and the last date is the date <90 cm. The correlation (r) and statistical significance of the correlations (p) with the observations are shown for 
the CFS forecast and ERA5 reanalysis in the legends. 
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2005; Bieniek et al., 2014; Bieniek et al., 2011). Sea ice in the Beaufort 
Sea region has more broadly been linked with the PDO, ENSO, and other 
North Pacific teleconnection patterns (Clancy et al., 2021; Kim et al., 
2020; Yang et al., 2020; Zhang et al., 2019) and the Arctic Oscillation 
(Armitage et al., 2018; Stroeve et al., 2011; Liu et al., 2004; Rigor et al., 
2002). The PDO also influences sea ice variability in the nearby Bering 
Sea (Zhang et al., 2010). Specialized analysis of the large-scale atmo-
spheric drivers beyond the scope of this study would be needed to 
identify the physical mechanisms that link such teleconnections with the 
seasonal predictability of landfast ice in the Foggy Island Bay region. 
This is a priority topic for future research to advance understanding 
predictability of landfast ice in Alaska. 

The magnitude of the targeted uncertainty or the desired prediction 
skill has been loosely defined by the operator as an interval of +/− 1 
week around the observed date allowing for start of on-ice operations. 
This compares to a much larger window of uncertainty of +/− 4–6 
weeks associated with present practice that draws on climatology and 
proprietary operator data (J. Gardner, personal communication, 2020). 
The RMSEs for the onset and final dates for all key thresholds based on 
the CICE/CFS forecasts, except for the first 133 cm, are within +/−
8–18 days. While still outside the desired one-week window, this is a 
substantial reduction of the uncertainty associated with current prac-
tice. Nevertheless, the CFS model forecasts still lag the forecasts from 
climatology for many parameters. As noted in the previous paragraph, 
these error estimates are not based on in-situ observations such that 
additional uncertainties still exist. Considering this latter circumstance, 

there is great value in increasing the number of observations of landfast 
ice formation, growth, decay, and breakup at the specific study location. 
While SAR data have both temporal and spatial resolution sufficient to 
capture freeze-up and break-up processes (see Fig. 6), a larger number of 
time series of ice thickness from the point of landfast ice formation 
through its decay and break-up are needed to improve model perfor-
mance in the prediction system. Of particular value in this context are 
the following:  

(1) Data on the time lag between freeze-up and formation of landfast 
ice. Freeze-up is the annual event predicted by the CICE/CFS 
forecast, while landfast ice formation is the annual event 
captured by satellite data and ice charts and is most relevant to 
offshore operators. The lag between these events can add signif-
icant uncertainty also in the seasonal scale prediction. This lag 
has a thermal component (i.e. residual ocean heat that retards sea 
ice growth even after freeze-up) and a dynamic component, (i.e., 
the prevention of landfast ice attachment or anchoring by strong 
winds, currents, or waves). Moreover, the first landfast ice that 
does eventually form may be in the form of advected new or first- 
year ice which can lead to faster attainment of required load- 
bearing capacity. However, it is unclear as to how common this 
process is at the study site.  

(2) Time series data of snow depth on sea ice. Snow depth has a first 
order effect on ice growth. Snow depth on sea ice can also be 
highly variable at small scales (e.g. Nicolaus et al., 2021) and so 
multiple measurements at each forecast location would be ideal.  

(3) Ice growth and ice melt rate data in the early and late stages of 
landfast ice season when a number of factors, including ocean-to- 
ice heat fluxes, can increase model errors and uncertainties. If 
such data are not available, then information on upper ocean heat 
content and derived ocean-to-ice heat fluxes would be of value. 

Testing of an ensemble approach to prediction, while beyond the 
scope of this study, might help to improve the forecasts since multi- 
model ensembles can outperform the seasonal forecasting skill of indi-
vidual members (e.g. Kirtman et al., 2014; Merryfield et al., 2013; 
Palmer et al., 2004). This study used the single column CICE model to 
produce the ice thickness parameters based on CFS and ERA5 meteo-
rological forcing data; however, other models or configurations could 

Table 3 
Average dates of key ice thickness threshold exceedance in ERA5 CICE 
1983–2019 simulation and RMSE, and skill score metrics for CFS forecast vs. 
ERA5.  

Parameter Average date RMSE Reference RMSE Skill score 
First 51 cm November 20 10 14 0.50 
Last 51 cm July 2 8 7 −0.35 
First 82 cm December 16 18 19 0.12 
Last 82 cm June 26 8 7 −0.28 
First 133 cm February 13 36 31 −0.39 
Last 133 cm June 13 9 7 −0.72 

The Reference RMSE is for a forecast based on the long-term ERA5 climatology 
(average date). The units of the RMSEs are in days. 

Fig. 14. CICE CFS forecast vs. ERA5 reanalysis dates of key ice thickness thresholds relative to their mean date. Mean dates for ERA5 are given in Table 3.  
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also be considered. These include regional ocean modeling with ice 
thickness-based parameterizations of landfast ice attachment (e.g., 
Lemieux et al., 2015) or more simple degree day models. Besides sea-
sonal forecasting with dynamical models, statistical forecasting ap-
proaches, such as analogs, also show promising results in the region 
(Walsh et al., 2021) and could be an additional method to forecast 
landfast ice. However, in any approach a major source of uncertainty 
comes from the lack of long-term observations, in this case, near Liberty 
Island. Observations on ice thickness are especially important as they 
are needed to calibrate and validate the forecasts. This study only had 
limited direct field observations of ice thickness that did not capture the 
full seasonal cycle and had to rely heavily on modeled estimates pro-
duced using atmospheric reanalysis forcing data. Expanded long-term 
observations of ice thickness in the region would be necessary to bet-
ter evaluate forecast skill in a way that is most meaningful for operators 
who would build ice roads, etc. 

5. Conclusions 

This study implemented a scheme for seasonally forecasting the 
thickness of sea ice in the landfast ice zone of Foggy Island Bay for the 
purposes of planning offshore development activities. The location 
chosen for this study was the proposed Liberty gravel island site in 
northern Alaska. Our approach relied on the single column ice growth 
model, CICE in single column mode, forced by seasonal atmospheric 
forecast data from CFS. Results were validated against limited obser-
vational data from a SIMB deployed near the study location in 2018–19 
and 2019–20 as well as satellite and ice chart observations of landfast ice 
extent. Comparison with ERA5-forced CICE results was necessary for 
bias correction. The integration of multiple products was necessary due 
to the lack of long-term in-situ observations in the region and the 
absence of seasonal forecasting models that resolve landfast ice. Modest 
forecast skill relative to forecasts from climatology was possible during 
the early season and later in the melt season (using atmospheric forcing 
data from the CFS initialized in August and March, respectively). Bias 
correction of the forecasts was valuable and necessary to improve the 
skill. Skill was highest in mid-winter once the ice was fully established. 

Forecast skill for capturing the timing of reaching specific ice 
thickness thresholds for ice trafficability was mixed. The best skill was in 
forecasting the initial dates of landfast ice formation and forecasts based 
on ERA5 long-term climatology outperformed those based on CFS for the 
end-of-season thresholds. However, in all cases forecasts for these 
thresholds were better constrained than the current forecasting ap-
proaches typically used by industry. A major source of uncertainty for 
the evaluation of the seasonal forecasts in this region is the lack of in-situ 
observations of sea ice thickness and snow depth. Additional long-term 
observations will be necessary to better assess and calibrate forecasts in 
the future for operational use. Combining observations of landfast ice 
extent from all data sources, we find significant linear trends (at >95% 
level) in the start and end of the annual cycle, with landfast ice at the 
study site forming 1.6 days later and breaking up 1.5 days earlier each 
year, on average.This is in line with larger-scale trends in landfast ice 
seasonality (Mahoney et al., 2014) and freeze-up/break-up of coastal ice 
in northern Alaska (Johnson and Eicken, 2016). This is relevant from an 
operational perspective and likely implies a corresponding ice thickness 
trend toward thinner ice. 

Because of lack of suitable data to constrain model boundary con-
ditions, the current study assumed that ice growth proceeds with natural 
snow build-up. From an ice management perspective, snow removal and 
flooding of sections of ice for ice road build-up would increase the length 
of the operating season. Such snow and ice management may also in-
crease predictive skill of the long-range forecast through the removal of 
uncertainties associated with major snowfall events (such as those 
shown in Figs. 8 and 10) and greater variability in snow depth and 
thermal properties. Such management approaches are commonly 
employed by industry (BP and Golder Associates, 2013; Bashaw et al., 

2013) and could be incorporated into the ice growth model and pre-
diction system. 

The specific processes that are critical in terminating on-ice opera-
tions (e.g., onset of surface melt ponding or melt-out of wide cracks, see 
Fig. 3) require further study. Both, active ice management and assess-
ment of ice mechanical properties relevant to bearing strength may 
improve prediction through clearer delineation of the operations win-
dow, and may build on the finding of greater predictive skill toward the 
end of the ice season (Fig. 12). Such work would also provide better 
bounds on the predictand variable for end of on-ice operations, which is 
currently taken to be either a simple ice thickness or temperature 
threshold. 
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