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Landfast ice along the Arctic coasts plays an important role in supporting ecosystem services, local communities
and offshore activities by industry. Seasonal predictions of landfast ice conditions are generally lacking in current
seasonal forecasting products but are needed especially for planning of on-ice activities such as the construction
of ice roads. This study focuses on the planned offshore development of Liberty Island where there is a need to
generate seasonal forecasts for the construction of ice roads in Foggy Island Bay along the Beaufort Sea coast in
northern Alaska. Due to the lack of prior in-situ observations of ice thickness in the region, a combination of
newly obtained field measurements, remote sensing data analysis and modeling were employed to produce
prototype seasonal forecasts of ice thickness in the landfast ice around Liberty Island. Seasonal forecasts
initialized in September and March were built using Climate Forecast System seasonal forecast model data
coupled with a single column ice model to forecast ice thickness that capture the start and end of the operational
season, respectively. The results showed that the model forecasts had modest skill in capturing the timing of key
ice thickness thresholds needed to support vehicle traffic during the start of the season in November-December
but very limited skill with end of season and ice breakup forecasts. Much of the forecast skill was improved
through bias correction but such improvement was hampered by the lack of long-term observational data in the
region. Integration of the observational data and modeling is necessary to begin development of seasonal
forecasts in this data sparse region.

temporary or permanent structures (Potter and Walden, 1981; Dumas
et al., 2005; Bashaw et al., 2013). Many ice charting services routinely

1. Introduction

1.1. Motivation

Arctic landfast sea ice lines the vast majority of Arctic coastlines for a
significant part of the year and constitutes an important, seasonal
element of the coastal zone that supports a range of ecosystem services
(Dammann et al., 2019; Eicken et al., 2009; Yu et al., 2014). In many
parts of the Arctic and sub-Arctic, the landfast ice cover serves as an
important platform for a range of human activities, including over-ice
travel and transportation between communities (Makynen et al.,
2020) or the harvesting of marine living resources (Ford et al., 2019). Ice
roads across landfast ice also provide services to the natural resource
industry, including access to offshore production sites or the staging and
operation of heavy equipment associated with the construction of
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map the extent of landfast ice using an amalgamate of different remote
sensing techniques (Yu et al., 2014). Furthermore, recent advances in
synthetic aperture radar (SAR) remote sensing, in particular SAR inter-
ferometry, have greatly aided large-scale mapping of landfast ice extent
and stability at resolutions of hundreds of meters or less (Dammann
et al., 2019; Makynen et al., 2020).

There is a considerable interest in seasonal forecasting of sea ice and
most efforts have focused on capturing broader conditions such as sea
ice extent across the pan-Arctic (e.g. Sigmond et al., 2013; Blanchard-
Wrigglesworth et al., 2017). There is also growing interest in and efforts
at forecasting sea ice at regional scales (Bushuk et al., 2019). However,
the prediction of landfast ice formation, persistence and decay, in
particular on sub-seasonal to seasonal timescales has received less

Received 9 December 2021; Received in revised form 23 May 2022; Accepted 8 June 2022

Available online 14 June 2022
0165-232X/© 2022 Elsevier B.V. All rights reserved.



P.A. Bieniek et al.

attention. In principle, forecasting ice growth in the coastal ice-ocean
system or seasonal scale prediction of atmospheric forcing from
ensemble simulations does not present fundamental challenges,
although the resolving of key processes critical to landfast ice stability
still requires work (e.g., Lemieux et al., 2016).

Partly, lack of research progress in this field may be tied to the lack of
pressing, clearly defined information needs. For example, previous work
on forecasting the decay and breakup of landfast ice at Utqiagvik in
northern Alaska by Petrich et al. (2012) was motivated by a broader
understanding of key processes, but did not address a specific applica-
tion. This past study identified absorption of solar shortwave energy by
the coastal ice-ocean system — derived from the Weather Research and
Forecasting (WRF) model - as a key predictor of in-situ break-up with
lead times of up to 14 days.

Here, we present a case study for seasonal-scale prediction of land-
fast ice formation, growth and decay at Foggy Island Bay, a semi-
sheltered coastal site in the Alaska Beaufort Sea (Fig. 1). The need for
long-range forecasts with lead times of weeks to months at this partic-
ular location was driven by the planned use of landfast ice to support
transport of gravel for the construction of an artificial island (Liberty
Island). Advance estimation of the start date and duration of an opera-
tions window, defined by the ability of the ice cover to safely support
over-ice transport of a range of different heavy trucks and equipment,
was explored as a measure to enhance planning of the effort and reduce
costs. In our study, we drew on ice charts and SAR remote sensing data
for a study of the seasonal landfast ice cycle and associated key dates at
the study location. A single column ice-ocean model, forced with
meteorological inputs from global climate models that produce seasonal
forecasts, was used to predict ice formation, growth and decay. An ice-
mass balance buoy deployed at the study site provided in-situ data for
model validation. The specific predictand variables, the criteria defining
safe operations windows, and the tolerable uncertainty in the pre-
dictions were identified based on the particular application, including
types of transportation modes and heavy equipment used.
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1.2. Background

The application that drove development of a seasonal landfast ice
prediction approach was the proposed use of an ice road in the con-
struction of a gravel island. The operating season for such ice roads
depends on the timing of freeze-up, evolution of the sea ice cover —
specifically its thickness, and eventual breakup of the landfast ice in
Foggy Island Bay. Forecast guidance weeks to months in advance, along
with a more thorough understanding of the observational record of ice
conditions in the region, were needed to inform planning and opera-
tional decision-making for upcoming seasons. In particular, long-range
forecasts were needed to help plan and continuously update the de-
livery schedule of gravel and other materials to the artificial island
construction site over the course of the winter construction season. With
a lack of in-situ sea-ice measurements at this particular site, the project
required a coordinated effort of field measurements, remote sensing
data, modeled meteorological data and a single column ice model to
address the feasibility of making seasonal forecasts (Fig. 2).

Based on guidance provided by the operator, we established the need
for a seasonal scale prediction of the date at which on-ice operations are
safe to commence in the early ice season, and the date on which oper-
ations have to cease in the late ice season (Fig. 3). Such predictions, with
lead times of >3 months prior to the season and continual updates weeks
to months out, would inform planning of the construction season (E.g.,
can all gravel be moved within a single season?). The timing and length
of the on-ice operations season would also determine timing and dura-
tion of leasing, staging and deployment of equipment and personnel.

The predictand variables for such an application were identified as
(i) the dates for which given landfast ice thickness thresholds as a result
of ice growth are exceeded (persisting), (ii) the dates for which ice
thickness drops below those same thresholds as a result of ice melt
(ablation). The thickness criteria need to be satisfied along the entire
length of the ice road from shore to the construction site. Here, we as-
sume that along an ice road perpendicular to shore, the landfast ice is

Fig. 1. Location of proposed Liberty Island development (red star) in Foggy Island Bay and approximate locations of planned ice roads (arrows). Depth isobaths
derived from NOAA Electronic Navigational Charts (gray contour lines) are in meters. The location of the study area is shown by the star in the inset map. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dropping below 90 cm as a result of surface and bottom ablation.

thickest nearshore where it forms earliest in the season, and is thinnest
at the construction site away from shore as a result of the general pattern
of seaward advance and thickening of landfast ice at that location
(Fig. 3). Also, both in the context of the development of a prediction
model and potentially from an operations perspective, the dates that
define the period of stable landfast ice absent of any ice breakout events
were determined through analysis of remote-sensing imagery and ice
charts (Fig. 3). For the purposes of this study, these two dates are
referred to as first landfast ice and last landfast ice (Fig. 3).

Nominal ice thickness thresholds that would need to be predicted
were identified based on guidance from industry manuals and estab-
lished best practice for the region (BP and Golder Associates, 2013; E.
Bashaw, personal communication, 2017) as summarized in Fig. 3: (i) the
minimum ice thickness to allow operations of a grader (20 in./51 cm) to
begin preparations for an ice road; (ii) the minimum ice thickness to
support use of a medium sized tractor-trailer for gravel hauling opera-
tions (32 in./82 cm); (iii) the minimum ice thickness to support use of a
heavy duty tractor-trailer (52 in./133 cm). As indicated schematically in
Fig. 3 and discussed further below, the end of the ice-operations season
is more difficult to define. Ice thickness as a criterion for operations may
not be sufficient on its own given major changes in ice mechanical
properties with ice warming and onset of melt. Hence, we identified the
onset and end of the “cold” ice temperature regime as a relevant po-
tential predictand variable provided by the model employed in this

study. Drawing on BP and Golder Associates (2013), the threshold for
onset/end of the cold season was defined by an ice surface temperature
of —5 °C (Fig. 3).

The aim of the prediction system is to provide forecasts - in this study
produced using a single column sea ice model driven by output from the
National Oceanic and Atmospheric Administration (NOAA)’s Climate
Forecast System model - for the critical dates identified in the operations
timeline detailed in Fig. 3. The prediction uncertainty associated with
the timing of each of these events (i.e., the length of the time interval
that contains the observed event across a number of years relative to the
spread of dates provided by the prediction system for those same years)
is schematically illustrated in Fig. 3. The width of this uncertainty in-
terval is both a function of the prediction lead time (how far in advance
of the event is a prediction issued?) as well as different types of errors
inherent to the prediction approach (e.g., how well are key processes
driving landfast ice formation and growth captured by the single column
sea ice model?). In principle, for the present application one would as-
sume with a forecast issued on, e.g., June 1 of a given year, the uncer-
tainty in predicting dates defining the end of on-ice operations would be
larger than the uncertainty in predicting dates defining the onset of on-
ice operations. However, since the processes determining ice break-up
are different from those constraining ice formation and growth, this
may not necessarily be the case and is explored further below.
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2. Data and methods
2.1. Seasonal Ice Mass-balance Buoys (SIMBs)

In 2018 and 2019 a seasonal ice mass-balance buoy (SIMB) was
deployed near the proposed Liberty Island site in Foggy Island Bay (see
location in Fig. 1) for the purpose of measuring changes in the thickness
(i.e. mass) of sea ice during the growth and melt seasons. The SIMB was a
self-contained buoy manufactured by Cryosphere Innovations, LLC that
was designed to be deployed into a hole drilled into the ice and allowed
to freeze-in. It measured snow depth using a down-looking acoustic
altimeter to determine the vertical position of the snow surface. Once
the snow has completely melted, the same sensor is able to measure the
melt of the exposed ice surface. An upward-looking acoustic altimeter
below the ice measures the vertical position of the ice bottom. Together,
data from the two acoustic altimeters allows for the calculation of the
thickness of the sea ice. Temperature sensors spaced every 2 cm along
the hull of the SIMB provided a measurement of the temperature profile
through the ice and snow from the ocean to the atmosphere. The SIMB
was also equipped with additional sensors to measure air and water
temperature for the purpose of sound-speed corrections. Table 1 lists the
deployment dates and locations for each SIMB as well as initial snow and
ice measurements and notes about recovery.

2.2. Ice charts and remote sensing

In a previous study, Mahoney et al. (2014) developed a compre-
hensive dataset (hereafter, referred to as the M2014 dataset) of the
seasonal variability in landfast ice extent from 1996 to 2008, using
publicly available Radarsat synthetic aperture radar (SAR) images of the
coastal waters of northern Alaska. Here, we have extended the M2014
analysis up to early 2020 for a study region around Prudhoe Bay and
Foggy Island Bay using a combination of sea ice charts from the National
Ice Center (NIC) and the National Weather Service’s Alaska Sea Ice
Program (ASIP), together with our own analysis of open-access Sentinel-
1 SAR imagery, which we refer to as the S1 dataset. Table 2 lists these
data sources and the time spans they cover.

All four data sources are primarily dependent on satellite-based SAR
imagery, but the analysis methods to identify landfast are not consistent.
In the M2014 and S1 datasets, we followed a semi-automated approach
first described by Mahoney et al. (2007). In short, this approach relies on
the comparison of 3 consecutive images to identify sea ice that meets
two criteria: i) ice is contiguous with the coast; and ii) ice lacks
detectable motion over the period spanned by the 3 images. The time
period for criterion (ii) depends on the availability of the satellite data
used. In the M2014 dataset, this time period is approximately 20 days. In
the S1 dataset, this time period is approximately 28 days, owing to the
14-day orbital period of the satellites. However, due to irregular avail-
ability of imagery over the study region, the dataset misses the freeze-up
period in 2017 and the break-up period in all years except 2017.

The NIC and ASIP ice charts are compiled using the best available

Table 1
Deployment information for each SIMB deployed.
Year Deployment Deployment Initial Initial ice Recovery
date location snow thickness, notes
depth, m
m
2018 March 27 70.27432°N 0.25 1.40 Satellite link
147.58157°W lost on May
13

2019  February 2 70.27540°N 0.03 1.04

147.58697°W

Recovered by
boat on June
24 after
detachment
of landfast ice
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Table 2

Landfast ice extent data sources used in this study.
Data source Time range
Mahoney et al., 2014 (M2014) 1996-2008
National Ice Center (NIC) 2000-2020
NWS Alaska Sea Ice Program (ASIP) 2007-2019
Sentinel-1 analysis (S1) 2016-2020

data at the time the chart is produced, which may include visible and
thermal imagery when SAR data are not available. Such data allow the
detection of open water at the edge of landfast ice (e.g., Fraser et al.,
2012), but may not correctly identify the seaward edge of the landfast
ice when there is no open water present. Additionally, analysts at NIC
and ASIP may identify landfast ice based on appearance in SAR imagery
in addition to, or instead of, any evidence of stationarity. The NIC ice
charts are updated on a weekly basis, while the ASIP ice charts are
updated daily from October 2015 onwards and on a weekly basis prior to
that.

From each data source, we generated binarized raster images indi-
cating the presence or absence of landfast ice within the study region at a
resolution of 100 m. From these images, we determined the width of the
landfast ice along a predefined set of coast-normal vectors (Fig. 4),
following the approach of Mahoney et al. (2014). We then generated a
time series capturing the annual cycle of the landfast advance and
retreat along each vector for each year within our study period. In Fig. 4,
the coast vectors in the neighborhood of the proposed Liberty Island site
are highlighted in blue. For the purposes of the analysis that follows, we
identified the calendar date each year when the average landfast ice
width along these vectors extended beyond or retreated to within 10 km.
This corresponds to the approximate distance of the Liberty Island site
from shore and these dates therefore correspond to the first and last
presence of landfast ice at the site.

2.3. Single column model

Version 5 of the Los Alamos Sea Ice (CICE) model (Hunke et al.,
2013) was used to simulate the seasonal changes of the ice thickness and
snow depth from 1982 to 2019. The CICE model, designed for fully
coupled global climate models, was run in standalone mode at one
latitude/longitude location (at Liberty Island), with an idealized ocean
mixed layer under sea ice. The CICE model was run on a single grid cell
with 20 ice layers distributed across the ice thickness and one snow
layer. The study location at Liberty (see Fig. 1) is shallow, with depths
ranging from 3 to 5 m, and the simulations were initialized with the
measured water depth and temperature, and salinity. The single column
model was used and therefore had no ice dynamics. Mushy layer ther-
modynamics was used in the default setting. The CICE ocean mixed layer
submodel uses fixed depth and only tracers (i.e. temperature and
salinity) are updated through time by transport between the water and
sea ice. The high vertical resolution provides a good representation of
the steep salinity and temperature gradients near the top and bottom of
the ice surface (Hunke, 2014). The model time step was 1 h. The CICE
simulations were driven by meteorological input data (temperature,
humidity, precipitation, winds, solar radiation, cloudiness, and surface
pressure) from model output that will be described in later sections.

2.4. Meteorological observations and forecast data

Given the lack of in-situ meteorological observations in the vicinity
of Liberty Island, this study made heavy use of atmospheric reanalysis
data to provide baseline data for modeling ice growth with CICE.
Reanalyses combine, in an optimal way, past short-term forecasts and
observations to produce the most realistic state of the atmosphere. In
this study we used the ERAS5 reanalysis (Hersbach et al., 2020) which is
produced by the European Centre for Medium-Range Weather Forecasts
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Fig. 4. The set of approximately coast-perpendicular vectors used to determine landfast ice width, with those representing Foggy Island Bay, shown in blue and the
termination of the projected ice road indicated by a star. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

(ECMWF). ERAS is one of the newest state-of-the-art reanalysis products
currently available and has shown good performance in the Arctic
(Graham et al., 2019). It is a global data set that spans 1979-present with
hourly time resolution and approximately 30 km grid spacing. For this
analysis and running CICE we interpolated the required meteorological
variables (described in the previous section) to the location of Liberty
Island. Besides the SIMB field measurements described above, limited
meteorological station data was obtained from the Snow Telemetry
(SNOTEL) weather station at Prudhoe Bay and the Deadhorse airport
weather station to help ground truth the reanalysis.

There are two major approaches to producing seasonal forecasts:
statistical and dynamical. Statistical approaches often build regression,
or similar, models based on past predictors to produce forecasts.
Dynamical approaches use global climate models to simulate conditions
in the coming months. This study evaluated the ability of a dynamical
seasonal forecast model, in conjunction with CICE, to predict ice
thickness at Liberty Island several months in advance. There are several
modeling centers working in the area of seasonal prediction as it is a new
and emerging field of forecasting. The Climate Forecast System (CFS)
model version 2 is run by NOAA and provides operational seasonal
predictions for the next 6-9 months (Saha et al., 2014). The CFS was
selected for this study because it is the key seasonal forecast model used
by NOAA and a member of the North American Multi-Model Ensemble
(NMME) system (Kirtman et al., 2014). CFS includes a sea ice model,
however landfast ice is not resolved/parameterized so the single column
CICE model described in the previous section was employed in this study
and driven by CFS meteorological outputs to simulate landfast sea ice
thickness in the Foggy Island Bay. NOAA has produced a “hindcast” for
CFS for 1982-2011 that is designed for the assessment of forecast skill.
This hindcast is essentially a database of forecasts for past periods. The
CFS also has an archive of operational forecasts since 2012 that now
serve a similar purpose and were also analyzed. While several ensemble
members were available from CFS for each forecast period, only the first
ensemble member was used in our analysis for simplicity.

The meteorological input parameters from CFS and ERA5 were used
to drive the CICE model described in the previous section. In all cases the
CICE was run continuously over 1982-2019. One run was conducted
using ERAS to represent observed conditions and is directly compared

against the field observations and ice chart/remote sensing products for
model validation and calibration purposes. Two CFS forecast runs were
also produced based on one CFS ensemble forecast each starting in
September and running through February (forecasting the growth of ice)
and a second run beginning in March and ending in August (capturing
the melt season). Both runs branched off of the ERA5 data during the
months preceding the start of the forecast period.

The accuracy of the ice thickness forecasts was primarily analyzed by
standard metrics: the Root Mean Square Error (RMSE), Normalized
RMSE (NRMSE) and skill score. The NRMSE metric normalized the root
mean squared error of the CFS forecast to the ERA5S observed baseline as
a percentage of the range of ERAS results over the 1983-2018 period on
each day. The mean square skill score used in this study was calculated
as one minus the squared error of the forecast divided by that of a
reference forecast. The reference forecast was the daily 1983-2018 long-
term mean climatology produced by CICE using ERAS. So a skill value
greater than zero indicates that the CFS forecast has less error than a
simple forecast based on climatology. The Pearson’s correlation coeffi-
cient was also used to assess the forecasts when applicable.

3. Results
3.1. Annual cycle of landfast ice extent in Foggy Island Bay

The 24-year record of landfast ice extent derived from satellite im-
ages and ice charts were used to quantify the typical extent of landfast in
the region around Foggy Island Bay on a monthly basis (Fig. 5). This
analysis shows that landfast ice typically forms at the location of the
proposed Liberty Island site in November, although 10% of the time it
was already present in October and in another 10% of years it did not
form until December. At the other end of the annual cycle, our results
indicate that landfast ice in Foggy Island Bay usually breaks-up in June.
In 10% of years, it broke up in May, but it never persisted into July.

Combining all four datasets of landfast ice extent, we measured the
seasonal variability in landfast ice width in Foggy Island Bay over the 24
annual cycles during the period 1996-2020 (Fig. 6). Apart from short-
term variability during winter associated with the short-lived occur-
rences of “stable extensions” during which large areas of the Beaufort
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Fig. 5. Monthly landfast sea ice extent near Prudhoe and Foggy Island Bay based on remote-sensing data and ice charts for the time period 1996-2020. The colored
areas indicate the lower 10%, median and upper 10% extents for each month, as indicated in the legend. The black lines indicate the mean extent. The yellow stars
show the proposed location of the Liberty Island site. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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these data indicates that the landfast ice typically advances rapidly from
the shoreline to approximately 20 km offshore within approximately 1
week of the first appearance of landfast ice at the coast (Fig. 6). The
retreat of ice during breakup is similarly rapid. Thus, there appears to be
no significant amount of time that the edge of the stable landfast is
located near the Liberty Island location. However, the development of
the island is likely to affect this situation and, while beyond the scope of
this study, closer analysis of similar data in the vicinity of nearby
Northstar Island may provide useful information regarding the potential
effect of Liberty Island on surrounding landfast ice.

There was a 20-year period from 2000 to 2019 when we were able to
compare landfast ice observations from multiple datasets. More often
than not, the datasets agreed on the timing of first ice within 14 days and
the timing of last ice to within 10 days. However, there were some
notable exceptions. In 2015, for example, the last ASIP ice charts to show
landfast ice at the Liberty Island location was on May 24, while the NIC
charts continued to show landfast ice at this location until June 25. Also,
in 2007, the only year when three datasets overlap, the M2014 and ASIP
charts both showed first ice formation in mid to late November
(November 25 and 17, respectively), while the NIC charts suggested
landfast formation over a month earlier on October 14. Some of these
differences arise from different reporting frequencies between datasets
over time (e.g., in 2015, ASIP ice charts are available on a daily basis,
while NIC charts were produced weekly), but we assume that different
practices between individual analysts must also contribute.

Combining dates from all data sources with equal weight, we find

Cold Regions Science and Technology 201 (2022) 103618

significant linear trends (at >95% level) in both later formation and
earlier retreat of landfast ice at the proposed Liberty Island site. Overall,
from 1996 to 2020, we find that landfast ice is forming 1.6 days later (R?
= 0.15, p = 0.006) and breaking-up 1.5 days earlier R%2=011,p =
0.016) per year, on average.

3.2. Ice mass-balance observations

The ice thickness, snow depth and the through-ice temperature
profile recorded by the SIMBs captured a number of important seasonal
events in 2018 and 2019 (Fig. 8). The deployment in 2018 resulted in
only 46 days of data, during which time the ice thickened from 1.40 m to
1.51 m. The record ends just after the snow pack had warmed to the
melting point, representing the earliest stage of the melt season (Fig. 8a).
The maximum ice thickness measured was therefore likely close to the
maximum thickness achieved in 2019.

The SIMB deployed in 2019 recorded 142 days of data, during which
time the ice reached a maximum ice thickness of 1.53 m and a maximum
snow depth of 0.25 m (Fig. 8b). The majority of the snow fell during a
single event around March 14, after which time cold temperatures
ceased penetrating the ice underneath, which remained above —10 °C.
The maximum ice thickness was achieved May 21, shortly after the snow
pack began thinning and coinciding with the arrival of warm water
below the ice. Bottom melt began around May 26, but short-lived epi-
sodes of apparent rapid bottom growth suggest the formation of “false
bottoms” (Notz et al., 2003), which may have masked an earlier onset of
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bottom melt. The snow at the SIMB completely melted June 13, marking
the onset of surface ice melt. In total, the ice around the SIMB thinned by
0.55 m before the buoy was recovered. Ablation included 0.19 m of
bottom melt and 0.36 m of melt at the top of the ice. A marked increase
in bottom melt on June 24 coincided with the detachment of landfast ice
in which the SIMB had been deployed. The buoy was recovered 3 days
later by boat.

3.3. Modeling observed ice thickness

To place the ERAS5 data in the context of local station data, key
variables of temperature, precipitation and cloud cover were evaluated
against the limited weather station data record at Prudhoe Bay and
Deadhorse (Fig. 9). Temperature compares well with the SNOTEL
weather station at Prudhoe Bay with ERAS5 being around 2-3 °C warmer
in winter on average and 1-3 °C cooler in summer in 2004-2018. The
ERAS precipitation had larger deviations from the SNOTEL station with
a wet bias approaching 7 mm in August. The reanalysis is also signifi-
cantly cloudier than the observations at the Deadhorse airport. The
ERAS5 mean cloudiness exceeded 70% in all months with the cloudiest
months in winter while the station indicated the maximum cloudiness in
May-October. These deviations from the available observations will be
considered as we interpret the results of the analysis in later sections.

The CICE model was run over the period of record driven by the
inputs from the ERA5 reanalysis. This simulation provides the best es-
timate of observed ice thickness at Liberty Island in the absence of in-situ
measurements. The results of this “observed” reanalysis simulation are
compared with the field measurements of ice thickness and snow depth
from the SIMB in winters 2017-18 and 2018-19 in Fig. 10. The 2017-18
season had very limited SIMB data but the ice thickness and snow depth
were broadly similar during April, when observations were available in
both winters. The ice thickness in CICE captured the observed values
quite well in February-June 2019 but was delayed in the timing of melt
in July. The timing of the onset of snowmelt was well captured in 2019.
The snow depth estimated from ERA5 in CICE built up more gradually
than the sharp increases observed at the site in February and March
2019, however both reached similar end-of-season snow depth. Abrupt
increases in snow depth measured by the SIMB coincided with storm
events, indicating that snow accumulation is sensitive to the occurrence
of such events. Additionally, some care is needed when interpreting
these short increases in snow depth, since storms do not typically
distribute snow evenly on sea ice, with snow collecting instead in dunes
and drifts. Given the importance of snow for insulating the ice and
slowing ice growth in winter, it may be advisable to deploy additional
sensors to better assess variability of snow depth at the site. While
beyond the scope of this study, further analysis should directly examine
the sensitivity of forecast skill to snow. One example of such future
analysis or application might consider different perturbations of the
snowpack that could be used to create an ensemble prediction with
CICE.

3.4. Seasonal forecasting

The meteorological parameters used to drive CICE from CFS were
first compared with those of the ERA5 reanalysis over the hindcast
period to identify possible areas of uncertainty (Fig. 11). The CFS was
generally warmer than ERA5 in the summer and early winter. This
matches the enhanced solar radiation in CFS over the same seasons. The
precipitation was quite comparable between the two data sets.

The CFS had generally weaker winds throughout much of the year
but best matches the ERA5 July-November. Atmospheric moisture is
generally comparable, but cloudiness in CFS was significantly reduced
relative to ERAS. In the previous section it was found that the observed
cloudiness at Deadhorse was also much lower than what is found in
ERAS, therefore CFS actually may have more reasonable cloudiness on
average than the reanalysis at Liberty Island. Based on these findings
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hypothetical bias corrections were prepared for all variables. This
correction was a simple adjustment of the values based on the long-term
mean difference for each period and was performed for demonstration
purposes. The results of the CICE shown in the rest of this section do not
include such an adjustment of the forcing data but consider bias



P.A. Bieniek et al.

T T T T T T T T

150'—M0de| / 4
* SIMB2
* In-situ
S100f
a
[0
g
o
=
> 50|
o
0 1 1 1 I 1 I I
11 12 01 02 03 04 05 06 07
a) Month of 2017 to 2018
30 — . ; , ! ; . ;
= |\/0de| -
|| » simB2 P |
25 * In-situ * Ky
=20t ]
s
=
215} ]
[}
©
=
810} ]
n
5_ 4
O 1 i 1 1 1 1
11 12 01 02 03 04 05 06 07

b)

Month of 2017 to 2018

Cold Regions Science and Technology 201 (2022) 103618

200 F————— . . : . ‘
m |\0d€|
——SIMB ﬂ
150 AJ‘\ :
g . \
@ £
3 100 o \\ 1
: \
©
=
[0} |
L2 50+ f
\
0 1 1 I 1 1 1 1
11 12 01 02 03 04 05 06 07
Month of 2018 to 2019
30 — . r , . r . .
m— \0de|
o5 | [——SIMB | |
= v
§ 20 | ﬂ |
2.
<
a 15 | | 1
(0]
3 \
c;> 10 |
& U
5 AN W‘ g
1 |
0 1 1 L 1 L L
11 12 01 02 03 04 05 06 07

Month of 2018 to 2019

Fig. 10. CICE simulations of ice thickness (top row) and snow depth (bottom row) for winter 2017-18 (left) and 2018-19 (right). The model simulations were driven
by the ERAS5 reanalysis and are displayed as black lines, while the SIMB measurements are shown in red and direct measurement by personnel are in blue. The units
of all parameters are cm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

adjustments of the output ice thickness.

Two forecast periods were the focus of the evaluation of CFS: Sep-
tember-February to capture onset and establishment of sea ice; and
March-August to forecast the onset of melt. Additional forecast periods
are available from CFS and could be considered in an operational
setting. The CICE model was run over 1983-2019 separately for each
period with the ERA5 used to provide realistic conditions outside of the
forecast period. This procedure produced one September—February ice
thickness forecast each year and one similar for March-August for
evaluation. Since ice thickness measurements were not available outside
of 2018-19 the forecast evaluation used the ERA5 reanalysis CICE
simulation as the baseline. An assessment of the daily average
1983-2018 CFS vs. ERAS CICE ice thickness revealed a general bias
toward lower ice thickness, later ice formation onset, and earlier ice free
conditions when using the CFS forcing data (not shown). Due to these
biases, a simple correction was applied to the forecast ice thickness by
adding difference of the long-term means to the daily forecast ice
thickness (i.e. a delta method). The results of the bias-corrected forecasts
for predicting daily sea ice thickness, their mean error relative to the
ERAS estimates and skill scores are shown in Fig. 12. Introducing bias-
correction improves forecast skill throughout the year. In fact, skillful
seasonal forecasts would not be possible without bias correction
(Fig. 12b). The greatest error is during the time of onset but declines as
the ice becomes stable. For instance, the error in the forecast initialized
in March is relatively small while ice is stable in the winter but increases
during the melt season when conditions become more variable. Forecast
skill was greatest for the September forecasts during the early months of
the ice formation/growth season and then declined in December and

January. The forecast skill is very high for the March forecast period
when the ice thickness is most stable in March-May but declines quickly
before rebounding in July. This indicates that it is difficult for the March
forecasts to capture the timing of onset of melt. Likewise, the seasonal
forecasts of maximum ice thickness produced in September are highly
uncertain.

The forecasts were evaluated in the context of the ice chart/remote
sensing-based data described earlier (Fig. 13). The September—February
freeze-up date forecasts and ERA5 simulation (when the CICE modeled
ice thickness first exceeded 1 cm) were compared with the ice chart/
remote-sensing first landfast ice dates. The reanalysis captures much
of the observed variability of the first landfast ice dates with a correla-
tion of 0.56, while the forecast has an expectedly weaker correlation
with observations at 0.07. The date of breakup or last ice (when the CICE
modeled ice thickness fell below 90 cm) is less consistent with both
modeled reanalysis and the test forecasts with correlations of —0.01 and
0.13, respectively. Some deviation is expected since the remote sensing
products are purely based on the presence/absence of ice in the vicinity
of Liberty Island within 10 km of the coast while the CICE modeled dates
were based on reaching specific ice thickness thresholds.

A targeted evaluation of the forecasts of ice thickness thresholds
outlined in Fig. 3 are needed, but in the absence of an observed record
ERAS5 was used as the baseline for comparison. The first and last date
reaching specific ice thresholds were compared relative to the mean date
(see mean dates in Table 3) for ease of comparison (Fig. 14). The CFS
forecast RMSEs and skill scores for the threshold dates are shown in
Table 3. The first date of 82 cm and 133 cm have the greatest year to year
variability and have skill scores of 0.12 and — 0.39, respectively. The
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best predicted threshold date was the first 51 cm and that has a skill
score of 0.50. Skill scores were negative for the remaining threshold date
forecasts.

4. Discussion

Planning for safe and efficient offshore operations in the Arctic re-
quires forecasts of relevant ice properties that are both skillful and
seasonal in range. Prior work has shown that melt-driven breakup of
landfast ice in northern Alaska can be accurately predicted 1-2 weeks in
advance (Petrich et al., 2012), but this is too short-term to be useful for
seasonal planning. The present study attempts to greatly expand the
forecast window out to several months in advance, while maintaining as
much forecast skill as possible. At broader spatial scales the CFS,
considered in our evaluation, has shown predictive skill in seasonal-
scale forecasts of Arctic sea ice concentration/extent (Liu et al., 2018;
Merryfield et al., 2013). However, the CFS model does not resolve
landfast ice on its own and therefore this study utilized a standalone

10

single column CICE model to better capture the landfast ice conditions at
Liberty Island. The CICE forecasts driven by the CFS were generally
challenged with low predictive skill scores with the exception of the
onset dates in November-December and the final melt out in July. Bias
correction of the seasonal forecasts was found to be a necessary step to
build forecast skill into those periods. Similar challenges have been
identified more broadly for seasonal forecasting of the Arctic sea ice
extent and concentrations (Zhao et al., 2020; Blanchard-Wrigglesworth
et al., 2017). Bias corrections have also led to improvements in other
Alaska seasonal forecasting applications of CFS related to wildfire
danger ratings (Sampath et al., 2021). In this study, the CICE hindcasts/
forecasts over 1983-2019 were biased toward later onset of ice and
earlier breakup dates. The bias correction during the start and end of the
season therefore had the effect of bringing the forecasts much closer to
climatology. This adjustment had a relatively large impact on the skill
during these periods and was responsible for the rebound of skill in
June—July in the March-August forecasts.

Potential sources of seasonal-scale predictability of landfast ice
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thickness may come from teleconnections such as the El Nino Southern
Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). While the
links between teleconnection indices and landfast ice in the region have

not been established, ENSO and PDO have each been tied with monthly
and seasonal-scale variability in near-surface air temperature
throughout the Alaska region (Papineau, 2001; Hartmann and Wendler,
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Table 3

Average dates of key ice thickness threshold exceedance in ERA5 CICE
1983-2019 simulation and RMSE, and skill score metrics for CFS forecast vs.
ERAS.

Parameter Average date RMSE Reference RMSE Skill score
First 51 cm November 20 10 14 0.50

Last 51 cm July 2 8 7 -0.35
First 82 cm December 16 18 19 0.12

Last 82 cm June 26 8 7 —0.28
First 133 cm February 13 36 31 —0.39
Last 133 cm June 13 9 7 —0.72

The Reference RMSE is for a forecast based on the long-term ERAS5 climatology
(average date). The units of the RMSEs are in days.

2005; Bieniek et al., 2014; Bieniek et al., 2011). Sea ice in the Beaufort
Sea region has more broadly been linked with the PDO, ENSO, and other
North Pacific teleconnection patterns (Clancy et al., 2021; Kim et al.,
2020; Yang et al., 2020; Zhang et al., 2019) and the Arctic Oscillation
(Armitage et al., 2018; Stroeve et al., 2011; Liu et al., 2004; Rigor et al.,
2002). The PDO also influences sea ice variability in the nearby Bering
Sea (Zhang et al., 2010). Specialized analysis of the large-scale atmo-
spheric drivers beyond the scope of this study would be needed to
identify the physical mechanisms that link such teleconnections with the
seasonal predictability of landfast ice in the Foggy Island Bay region.
This is a priority topic for future research to advance understanding
predictability of landfast ice in Alaska.

The magnitude of the targeted uncertainty or the desired prediction
skill has been loosely defined by the operator as an interval of +/— 1
week around the observed date allowing for start of on-ice operations.
This compares to a much larger window of uncertainty of +/— 4-6
weeks associated with present practice that draws on climatology and
proprietary operator data (J. Gardner, personal communication, 2020).
The RMSE:s for the onset and final dates for all key thresholds based on
the CICE/CFS forecasts, except for the first 133 cm, are within +/—
8-18 days. While still outside the desired one-week window, this is a
substantial reduction of the uncertainty associated with current prac-
tice. Nevertheless, the CFS model forecasts still lag the forecasts from
climatology for many parameters. As noted in the previous paragraph,
these error estimates are not based on in-situ observations such that
additional uncertainties still exist. Considering this latter circumstance,
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there is great value in increasing the number of observations of landfast
ice formation, growth, decay, and breakup at the specific study location.
While SAR data have both temporal and spatial resolution sufficient to
capture freeze-up and break-up processes (see Fig. 6), a larger number of
time series of ice thickness from the point of landfast ice formation
through its decay and break-up are needed to improve model perfor-
mance in the prediction system. Of particular value in this context are
the following:

(1) Data on the time lag between freeze-up and formation of landfast
ice. Freeze-up is the annual event predicted by the CICE/CFS
forecast, while landfast ice formation is the annual event
captured by satellite data and ice charts and is most relevant to
offshore operators. The lag between these events can add signif-
icant uncertainty also in the seasonal scale prediction. This lag
has a thermal component (i.e. residual ocean heat that retards sea
ice growth even after freeze-up) and a dynamic component, (i.e.,
the prevention of landfast ice attachment or anchoring by strong
winds, currents, or waves). Moreover, the first landfast ice that
does eventually form may be in the form of advected new or first-
year ice which can lead to faster attainment of required load-
bearing capacity. However, it is unclear as to how common this
process is at the study site.

(2) Time series data of snow depth on sea ice. Snow depth has a first
order effect on ice growth. Snow depth on sea ice can also be
highly variable at small scales (e.g. Nicolaus et al., 2021) and so
multiple measurements at each forecast location would be ideal.

(3) Ice growth and ice melt rate data in the early and late stages of
landfast ice season when a number of factors, including ocean-to-
ice heat fluxes, can increase model errors and uncertainties. If
such data are not available, then information on upper ocean heat
content and derived ocean-to-ice heat fluxes would be of value.

Testing of an ensemble approach to prediction, while beyond the
scope of this study, might help to improve the forecasts since multi-
model ensembles can outperform the seasonal forecasting skill of indi-
vidual members (e.g. Kirtman et al., 2014; Merryfield et al., 2013;
Palmer et al., 2004). This study used the single column CICE model to
produce the ice thickness parameters based on CFS and ERA5 meteo-
rological forcing data; however, other models or configurations could
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also be considered. These include regional ocean modeling with ice
thickness-based parameterizations of landfast ice attachment (e.g.,
Lemieux et al., 2015) or more simple degree day models. Besides sea-
sonal forecasting with dynamical models, statistical forecasting ap-
proaches, such as analogs, also show promising results in the region
(Walsh et al., 2021) and could be an additional method to forecast
landfast ice. However, in any approach a major source of uncertainty
comes from the lack of long-term observations, in this case, near Liberty
Island. Observations on ice thickness are especially important as they
are needed to calibrate and validate the forecasts. This study only had
limited direct field observations of ice thickness that did not capture the
full seasonal cycle and had to rely heavily on modeled estimates pro-
duced using atmospheric reanalysis forcing data. Expanded long-term
observations of ice thickness in the region would be necessary to bet-
ter evaluate forecast skill in a way that is most meaningful for operators
who would build ice roads, etc.

5. Conclusions

This study implemented a scheme for seasonally forecasting the
thickness of sea ice in the landfast ice zone of Foggy Island Bay for the
purposes of planning offshore development activities. The location
chosen for this study was the proposed Liberty gravel island site in
northern Alaska. Our approach relied on the single column ice growth
model, CICE in single column mode, forced by seasonal atmospheric
forecast data from CFS. Results were validated against limited obser-
vational data from a SIMB deployed near the study location in 2018-19
and 2019-20 as well as satellite and ice chart observations of landfast ice
extent. Comparison with ERA5-forced CICE results was necessary for
bias correction. The integration of multiple products was necessary due
to the lack of long-term in-situ observations in the region and the
absence of seasonal forecasting models that resolve landfast ice. Modest
forecast skill relative to forecasts from climatology was possible during
the early season and later in the melt season (using atmospheric forcing
data from the CFS initialized in August and March, respectively). Bias
correction of the forecasts was valuable and necessary to improve the
skill. Skill was highest in mid-winter once the ice was fully established.

Forecast skill for capturing the timing of reaching specific ice
thickness thresholds for ice trafficability was mixed. The best skill was in
forecasting the initial dates of landfast ice formation and forecasts based
on ERAS long-term climatology outperformed those based on CFS for the
end-of-season thresholds. However, in all cases forecasts for these
thresholds were better constrained than the current forecasting ap-
proaches typically used by industry. A major source of uncertainty for
the evaluation of the seasonal forecasts in this region is the lack of in-situ
observations of sea ice thickness and snow depth. Additional long-term
observations will be necessary to better assess and calibrate forecasts in
the future for operational use. Combining observations of landfast ice
extent from all data sources, we find significant linear trends (at >95%
level) in the start and end of the annual cycle, with landfast ice at the
study site forming 1.6 days later and breaking up 1.5 days earlier each
year, on average.This is in line with larger-scale trends in landfast ice
seasonality (Mahoney et al., 2014) and freeze-up/break-up of coastal ice
in northern Alaska (Johnson and Eicken, 2016). This is relevant from an
operational perspective and likely implies a corresponding ice thickness
trend toward thinner ice.

Because of lack of suitable data to constrain model boundary con-
ditions, the current study assumed that ice growth proceeds with natural
snow build-up. From an ice management perspective, snow removal and
flooding of sections of ice for ice road build-up would increase the length
of the operating season. Such snow and ice management may also in-
crease predictive skill of the long-range forecast through the removal of
uncertainties associated with major snowfall events (such as those
shown in Figs. 8 and 10) and greater variability in snow depth and
thermal properties. Such management approaches are commonly
employed by industry (BP and Golder Associates, 2013; Bashaw et al.,
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2013) and could be incorporated into the ice growth model and pre-
diction system.

The specific processes that are critical in terminating on-ice opera-
tions (e.g., onset of surface melt ponding or melt-out of wide cracks, see
Fig. 3) require further study. Both, active ice management and assess-
ment of ice mechanical properties relevant to bearing strength may
improve prediction through clearer delineation of the operations win-
dow, and may build on the finding of greater predictive skill toward the
end of the ice season (Fig. 12). Such work would also provide better
bounds on the predictand variable for end of on-ice operations, which is
currently taken to be either a simple ice thickness or temperature
threshold.
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