
Robotic Telekinesis: Learning a Robotic Hand
Imitator by Watching Humans on YouTube

Aravind Sivakumar* Kenneth Shaw* Deepak Pathak
Carnegie Mellon University

Abstract—We build a system that enables any human to control
a robot hand and arm, simply by demonstrating motions with
their own hand. The robot observes the human operator via a
single RGB camera and imitates their actions in real-time. Human
hands and robot hands differ in shape, size, and joint structure,
and performing this translation from a single uncalibrated
camera is a highly underconstrained problem. Moreover, the
retargeted trajectories must effectively execute tasks on a physical
robot, which requires them to be temporally smooth and free
of self-collisions. Our key insight is that while paired human-
robot correspondence data is expensive to collect, the internet
contains a massive corpus of rich and diverse human hand
videos. We leverage this data to train a system that understands
human hands and retargets a human video stream into a robot
hand-arm trajectory that is smooth, swift, safe, and semantically
similar to the guiding demonstration. We demonstrate that it
enables previously untrained people to teleoperate a robot on
various dexterous manipulation tasks. Our low-cost, glove-free,
marker-free remote teleoperation system makes robot teaching
more accessible and we hope that it can aid robots in learning to
act autonomously in the real world. Video demos can be found
at: https://robotic-telekinesis.github.io

I. INTRODUCTION

Mimicking human behavior with robots has been a central
component of robotics research for decades. This paradigm,
known as teleoperation, has successfully been used to enable
robots to perform tasks that were unsafe or impossible for
humans to perform, such as handling nuclear materials [37]
or deactivating explosives [16]. Teleoperation has also been
used to enable the robotic automation of tasks that are easy for
humans to demonstrate but difficult to program. In industrial
robotics, for example, teleoperation can be used to demonstrate
a single trajectory (e.g. picking a box from a conveyor belt)
that the robot overfits to and repeats verbatim for months or
years thereafter. Teleoperation can alternatively be used as a
means to collect a large dataset of demonstrations, which can
then be used to learn a policy that generalizes to new tasks in
unseen environments [31, 30].

In this paper, we specifically study the problem of teleop-
eration for dexterous robotic manipulation. While there are
many promising current techniques (e.g. Kinesthetic Control
[6], Virtual Reality devices [3, 4], haptic gloves [1] and MoCap
[41]), each of them suffers from some shortcoming that has
limited its applicability. These setups typically involve expen-
sive hardware and specialized engineering, expert operators,
or an apparatus that impedes the natural fluid motion of the
demonstrator’s hand.

*Equal Contributions

Figure 1: Our system leverages passive data from the internet to
enable robotic real-time imitation in-the-wild. This low-cost system
does not require any special gloves, mocap markers or even camera
calibration and works from a single RGB camera.

The challenge of overcoming these shortcomings grows
exponentially with the complexity of the robot to be controlled;
multi-fingered hands are far more difficult to teleoperate than
two-finger grippers. Despite recent advancements, building an
easy-to-use, performant and low-cost teleoperation system for
high-dimensional dexterous manipulation has remained elusive.
Handa et al. recently proposed DexPilot [19], a low-cost
system for vision-based teleoperation that is free of markers
or hand-held devices. It lowers the cost and usability barrier,
but relies on a custom setup with multiple calibrated depth
cameras, and uses neural networks trained on images collected
in this controlled environment, which limits its use to a specific
lab setting.

The objective of this paper is to enable teleoperation of a
dexterous robotic hand, in the wild. This means our system
should be low-cost, work for any untrained operator, in
any environment, with only a single uncalibrated color
camera. One should be able to simply look into a monocular
camera of their phone or tablet and control the robot without
relying on any bulky motion capture or multi-camera rigs for
accurate 3D estimation. We call our system Robotic Telekinesis,
as it provides a human the ability to control a dexterous robot
from a distance without any physical interaction.

Unfortunately, building such a system poses a chicken-
and-egg problem: to train a teleoperation system that can
work in the wild, we need a rich and diverse dataset of
paired human-robot pose correspondences, but to collect this
kind of data, we need an in-the-wild teleoperation system.
However, while we lack paired human-robot data, there is
no shortage of rich human data, and our key insight is to

ar
X

iv
:2

20
2.

10
44

8v
2 

 [c
s.R

O
]  

24
 Ju

l 2
02

2

https://robotic-telekinesis.github.io


Figure 2: An operator completing a dice pickup task while watch-
ing the robot through a video conference. Video demos are at
https://robotic-telekinesis.github.io/.

leverage a massive unlabeled corpus of internet human
videos at training time. These videos capture many different
people from different viewpoints doing different tasks in several
environments, ensuring generalization by design.

We propose a method that conquers the human-to-robot
problem using two subsystems. The first subsystem uses
powerful computer vision algorithms trained to estimate 3D
human poses from 2D images, and the second subsystem uses
a novel motion-retargeting algorithm to generate a physically
plausible robot hand-arm action that is consistent with a given
human pose. During training, our method only uses passive
data readily available online and does not require any active
fine-tuning on our robot in our lab setup.

Our system is low-cost, glove-free, and marker-free, and it
requires only a single uncalibrated color camera with which
to view the operator. It allows any operator to control a four-
finger 16 Degree-of-Freedom (DoF) Allegro hand, mounted
on a robotic arm, simply by moving their own hand and
arm, as illustrated in Figure 1. We demonstrate the usability
and versatility of our system on ten challenging dexterous
manipulation tasks. We further demonstrate the generality and
robustness of our system by performing a systematic study
across ten previously untrained human operators.

II. RELATED WORK

The first section reviews relevant research in 3D human
pose estimation and the second section discusses related work
in kinematic motion retargeting, with a particular focus on
cross-embodiment retargeting and teleoperation.

Understanding Human Hands and Bodies Modeling
human bodies and estimating their poses are widely studied
problems, with applications in graphics, virtual reality and
robotics. The recent research most relevant to our work can
roughly be divided into four sub-areas. (1) Hand and body
modeling. MANO [32] is a low-dimensional parametric model
of a human hand, and SMPL [27] is an analogous model for the
human body. SMPL-X [28] is a single unified model of both
the body and hands. (2) Monocular human hand and body pose
estimation. Recent works in human pose estimation typically
estimate 2D quantities like bounding boxes [34] or skeletons
[10], or perform a full 3D reconstruction [39, 23, 17]. Rong et
al. [33] propose a method for integrated 3D reconstruction of
human hands and bodies. (3) Dataset curation: The advances

in human pose estimation crucially rely on large datasets of
human hand and body poses. FreiHand [42], Human3.6M
[22] and the CMU Mocap Database [2] are examples of
densely-annotated datasets in clean indoor settings. On the
other end of the spectrum, the 100 Days of Hands [34] and
Epic Kitchens [15] datasets are massive collections of raw
videos that span a rich and diverse set of hand poses and
motions but don’t contain pose annotations. (4) Understanding
human hand function. Brahmbhatt et al. [8] use thermal imaging
to capture impact heatmaps that reveal patterns in the ways
human hands interact with everyday objects. Taheri et al. [35]
study the problem of how human hands and bodies behave
while grasping and manipulating objects, and propose a method
to generate plausible human grasps for novel objects. Hasson
et al. [20] and Cao et al. [11] propose methods for joint hand
and object reconstruction, and Hampali et al. [18] present a
dataset of hand-object interactions with 3D annotations. Liu et
al. [26] builds a taxonomy of human grasps to understand the
cognitive patterns of human hand behavior [25].

Kinematic Retargeting and Visual Teleoperation Human
pose estimation only solves half of the visual teleoperation
problem. Mapping human poses to robot poses is itself a
difficult challenge, because humans and robots have very
different kinematic structures. Li et al [24] train a deep network
to map human hand depth images to joint angles in the
robotic Shadow Hand, and Antotsiou et al [5] combine inverse
kinematics and Particle Swarm Optimization to retarget human
hand poses to a high-dimensional robot hand model. Our system
follows the method of DexPilot [19], which minimizes a cost
function that captures the functional similarity between a human
and a robot hand.

The general problem of kinematically retargeting motion
in one morphology into another is also studied outside of
robotic manipulation. Villegas et al. [38] propose a cycle
consistency objective to transform motion between animated
humanoid characters of different body shapes. Peng et al [29]
use an approach based on keypoint matching to learn robotic
locomotion behaviors from demonstrations of walking dogs.
Zakka et al. [40] learn a visual reward function that allows
reinforcement learning agents to learn from demonstrators with
different embodiments.

III. ROBOTIC TELEKINESIS

Robotic Telekinesis is a system for real-time, remote visual
teleoperation of a dexterous robotic hand and arm. A human
demonstrates tasks to the robot just by moving their hand,
and the robot mimics the actions instantaneously. Our system
consists of an xArm6 robot arm, a 16-DoF Allegro robot hand,
and a single uncalibrated RGB camera capturing a stream of
images of the human operator. The operator must be in the
field of view of the camera and must be able to see the robot to
guide it, either in real life or through a video conference feed.
Each image is retargeted into two commands which place the
robot hand and arm in poses that match the hand-arm poses
of the human operator in real time. Figure 2 illustrates an

https://robotic-telekinesis.github.io/


Figure 3: A graphical description of our visual teleoperation pipeline. First, a color camera captures an image of the operator. Top: to
command the robot hand, a crop of the operator’s hand is passed to a hand pose estimator, and the hand retargeting network maps the
estimated human hand pose to a robot hand pose. Bottom: to command the robot arm, a crop of the operator’s body is passed to a body pose
estimator and cross-body correspondences are used to determine the desired pose of the robot’s end-effector from the estimated human body
pose. Finally, commands are sent to both the robot hand and arm.

operator solving a grasping task while monitoring the robot
through a video conference feed.

The problem of remote teleoperation from a single camera
is severely under-constrained for two reasons. One reason is
that the input images are in 2D while the robot is controlled in
3D: mapping from 2D to 3D is an ill-defined problem. While
this issue could be addressed with a multi-camera setup, in
this work our goal is to build a system usable with any one
uncalibrated camera, from a cell-phone camera to a cheap
webcam. The use of a single color-only camera leads to certain
failure modes, typically related to inter-hand occlusions and
ambiguous depth perception, but these are issues we attempt
to mitigate using our neural network based retargeter.

The second reason is the ambiguity caused by the differences
in morphology, shape and functionality, between human hands
and robot hands. To address both of these problems, we rely on
deep neural networks to learn priors from passively-collected
internet-scale human datasets to enable powerful human pose
estimation and human-to-robot transfer.

In the rest of this section, we describe our visual teleoperation
pipeline. As shown in Figure 3, we group the pipeline into
two branches: one branch for hand retargeting and the other
one for arm retargeting.

A. Hand Teleoperation: Human Hand to Robot Hand Pose

The problem of retargeting 2D human images to robot hand
control commands is broken into two sub-problems. The first
is to estimate the 3D pose of the human hand from a 2D
image, and the second is to map the extracted 3D human hand
parameters to robot joint control commands. We discuss each
of these two sub-problems below.

1) 2D Hand Image to 3D Human Hand Pose

The first step in hand retargeting is to detect the operator’s
hand in a 2D image and infer its 3D pose. To this end, we

exploit recent advances in computer vision. We rely on large
paired 2D-3D datasets, and high-quality models that leverage
this data to produce physically plausible 3D human pose
estimates from 2D images.

Our method first computes a “crop” around the operator’s
hand, based on a bounding box computed using an off-the-shelf
detector derived from OpenPose [10]. The resulting image crop
goes to a pose estimator from FrankMocap [33] to obtain hand
shape and pose parameters of a 3D MANO model [32] of the
operator’s right hand. See the “OpenPose” and “FrankMocap”
modules in the top row of Figure 3 for a graphical depiction
of this phase of the pipeline, and see the appendix for further
implementation details.

We emphasize that our human hand pose estimation module
works for any human operator, with any camera in any
environment, without any further fine-tuning. This strong
generalization is due to the diversity of millions of images on
which the neural network and pose estimators are trained.

2) 3D Human Hand to Robot Hand Pose

Next, estimated 3D human hand poses are retargeted to the
16 Allegro hand joint angles to place it in an analogous hand
pose (see the third panel on the top branch of Figure 3). This
has three challenges:

• Underconstrained: The Allegro hand and the human hand
have many DOF and very different embodiments: they
differ greatly in shape, size and joint structure.

• Generality: Our retargeter must work for any human
operator trying to perform any kind of task in any
environment.

• Efficiency: We require a real-time solution (>15 Hz).
A natural way to address these three challenges would be to

train a supervised learning model on a diverse dataset of paired
human-robot hand pose examples. However, collecting this
large scale dataset would be prohibitively expensive. Instead,



Figure 4: Control Pipeline. Description of our control stack. Raw
target poses are received from the visual retargeting modules, then
Inverse kinematics, low-pass filtering, sampling, and safety clipping
are performed. The smoothed commands are sent to the robot.

we train a deep human-to-robot hand retargeter network that
uses human data alone.

Dataset of YouTube Videos of Human Interaction We
leverage a massive internet-scale dataset of human hand images
and videos. We gather about 20 million images from the Epic
Kitchens [15] dataset, which captures ego-centric videos of
humans performing daily household tasks, and the 100 Days of
Hands [34] dataset, which is a collection of YouTube videos.
We run the hand pose estimator from [33] (the same one we
use at deployment time in our pipeline) to estimate human
hand poses for each image frame in these videos. We augment
this massive noisy dataset of estimated human hand poses with
the small and clean FreiHand dataset [42], which contains
ground-truth human hand poses for a diverse collection of
realistic hand configurations.

A Lack of Paired Data Our dataset contains millions of
human hand poses, but no ground-truth target robot poses to
regress onto. In most neural network regimes, at training time,
the network has access to paired examples (x 2 X , y 2 Y),
where X is the source domain, and Y is the target domain. In
our case, the source domain X is the set of all human hand
poses and the target domain Y is the set of all robot hand
poses, but we only have training data from the source domain.
Hence, we can not perform a direct regression.

Energy Function Formulation Instead, we formulate the
retargeting problem using a feasibility objective. We posit
that the optimal corresponding robot hand pose is the one
that best mimics the functional intent of the human. In order
for the robot hand to effectively mimic human actions, the
relative positions between the robot’s fingertips should match
those of the human’s. Following [19], we define a set of five
hand keypoints (4 fingertips (no pinky) and a palm), and ten
keyvectors which connect all pairs of keypoints.

These keyvectors are used in an energy function that captures
dissimilarity between a human hand pose (parameterized by
the MANO model parameters (�h, ✓h)) and an Allegro hand
pose (parameterized by the joint angles qa). First, for each
i 2 {1, . . . , 10}, the i-th keyvector is computed on the human
hand (call it vh

i ) and the Allegro hand (call it va
i ). Then, each

Figure 5: Human-to-robot Translations. The inputs and outputs of
our hand retargeting network. Each of the pairs depicts a human hand
pose, and the retargeted Allegro hand pose.

Allegro hand keyvector va
i is scaled by a constant ci. The i-th

term in the energy function is then the Euclidean difference
between vh

i and ci · va
i :

E( (�h, ✓h), qa ) =
10X

i=1

||vh
i � (ci · va

i )||22 (1)

where the scaling constants {ci} are hyperparameters. Critically,
this energy function is a fully differentiable function of the
Allegro joint angles (because of the differentiability of the
forward kinematics operation), which allows us to train the
hand retargeter network f via gradient descent, using the energy
function as a loss function.

This energy optimization formulation is different than the
prototypical IK problem, which solves for joint angles that
achieve target fingertip poses relative to a fixed base. Our end-
effector constraints are all relative to each other, which makes
it difficult to adopt open-source IK solvers such as [12].

Retargeter Network Our hand retargeter network is a Multi-
Layer Perceptron (MLP), f(.), with two hidden layers. It takes
as input a human hand pose (a vector x 2 R55 that denotes
the MANO hand shape and pose parameters) and outputs a
vector of Allegro joint angles y 2 R16. Since there is no
paired labels available for human to robot hand, our network is
trained to minimize the energy function E(x, y) in Equation 1
that captures the dissimilarity between the input 3D human
hand pose x and the network’s predicted robot hand pose y.
Per convention, a high energy means the two poses are highly
dissimilar. Formally, the neural network optimizes the following
objective:

argmin
f

Ex2X


E(x, f(x))

�
, (2)

At inference time, we simply pass the estimated hand
shape/pose vector to the network, which directly outputs
Allegro joint angles that we can command to the robot. A
key benefit of using a neural network is speed: the network’s
forward pass takes about 3ms (333Hz) – this is critical for
smooth real-time teleoperation.

3) Collision Avoidance via Adversarial Training

Using a neural network to perform human-to-robot hand
retargeting has another subtler advantage over an online
optimization approach: we can augment the energy function
with terms that are slow to compute. When training a neural



Figure 6: A trained self-collision classifier is used as an adversary that
penalizes self-colliding joint configurations. The blue arrows denote
the forward pass, and the red arrows denote the flow of gradients
during the backward pass.

network, we can run expensive operations in order to compute
the loss at each iteration. This allows us to use any energy
function, as long as it is differentiable. We simply absorb
the computation cost during training instead of incurring it at
deployment time.

We exploit this idea to address the problem of self-collisions.
Minimizing the keyvector-similarity energy function described
above can sometimes yield robot hand joint configurations
which orient the hand such that fingers collide with each other
or with the palm. It is difficult to add a term to the energy
function that penalizes such configurations, since “self-collision-
ness” is not a differentiable function of the robot’s joint angles.

To address this, we first train a classifier that takes in an
Allegro joint angle vector, and tries to classify whether or not
the joint configuration yields a self-collision. This classifier
is an MLP, and we generate its training data programatically
by repeatedly sampling a joint angle vector within the legal
joint limits, and querying a (non-differentiable) self-collision
checker to generate a ground-truth binary self-collision label.

Once our self-collision classifier is trained, we use it as
a “discriminator” to train our retargeter network. At every
training iteration, we pass the retargeter’s predicted robot
joint angle vectors to the self-collision classifier. Intuitively,
we want the predicted self-collision score to be as low as
possible, and therefore we use it as a term in the loss function
for the retargeter network. The gradient of the self-collision
score from the collision network is backpropagated through
the self-collision classifier, and used to update the weights
of the retargeter network, as shown in Figure 6. This leads
the retargeter network to avoid outputting Allegro joint angle
configurations that the self-collision classifier believes to be
illegal. Our retargeter network and self-collision classifier
are akin to the generator and discriminator respectively in
a Generative Adversarial Network (GAN), though in our case,
we pretrain and freeze the self-collision classifier so we don’t
suffer the instability of jointly optimizing a discriminator and
a generator, notorious in GAN training.

B. Arm Teleoperation: Human Body to Robot Arm Poses

A hand that can flex its fingers but does not have the mobility
of an arm will not be able to solve many useful tasks. The
second branch of our retargeting pipeline therefore focuses on
computing the correct pose for the robot arm from images of
the human operator.

At each timestep, we first compute a crop of the operator’s
body using a bounding box detector derived from OpenPose

[10], then pass the crop to the body pose estimator from
FrankMocap [33]. We model the human body using the
parametric SMPL-X model, and the body pose estimator
predicts the 3D positions of the joints on the human kinematic
chain.

Because we aim to build a system that operates from a single
“floating” color camera, there are two main problems that arise.
(1) Without a depth sensor or camera intrinsics, we cannot
accurately estimate how far from the camera the human’s hand
is. (2) Without camera-to-robot calibration, there is no known
transformation between the camera, robot and human. (With
a calibrated depth camera, we would simply mount a camera
with a fixed known transformation relative to the robot’s base
frame, localize the position and orientation of the operator’s
wrist in the 3D camera coordinate frame, and use the known
camera extrinsics to determine how the robot’s wrist should
be positioned and oriented.)

Instead, we estimate the relative transformation between
the human wrist and an anchor point on the human’s body.
We define the human’s torso as the origin, and manually
choose a suitable point to serve as the “robot’s torso”. We
posit that the relative transformation between the human’s
right hand wrist and torso should be the same as the relative
transformation between the robot’s wrist link and the robot’s
torso. By traversing the kinematic chain from the torso joint
to the right hand wrist joint, we compute the relative position
and orientation between the human’s right hand wrist and torso
(see Figure 3). The bottom row in Figure 3 depicts this pipeline
visually. This simple correspondence trick works surprisingly
well in practice and provides a natural user experience for even
a moving operator.

To handle minor errors in human body pose estimation and
ensure smooth motion, we reject outliers, and apply a low-pass
filter on the stream of estimated wrist poses. We then use an
IK solver [9] to compute arm joint angles that place the robot’s
end-effector (i.e. “wrist”) at the correct relative transformation
relative to the ”robot torso” coordinate frame. See the bottom
row of figure 4 for a depiction of our control stack, and see the
appendix for further details about the arm retargeting modules.

IV. EXPERIMENTAL RESULTS

We evaluate the strengths and limitations of our system
through experiments on a diverse suite of dexterous manipu-
lation tasks with an expert operator. We also demonstrate the
usability and robustness of the system through a smaller set of
tasks on a group of ten previously untrained operators. Videos
can be found at https://robotic-telekinesis.github.io/.

Baseline Our hand retargeter neural network is compared
to an online optimization procedure that runs online gradient
descent to minimize the energy function between the human and
robot hand. We call this baseline DexPilot-Monocular⇤:
the use of online optimization for retargeting is modeled after
DexPilot [19], but the overall system (including the single-
camera setup) is held constant between the baseline and our
method. At each timestep, given an estimated human hand

https://robotic-telekinesis.github.io/


Figure 7: Ten different teleoperation tasks. Top row, left to right: Pickup Dice Toy, Pickup Dinosaur Doll, Box Rotation, Scissor Pickup,
Cup Stack. Bottom row, left to right: two cup stacking, pouring cubes onto plate, cup into plate, open drawer and open drawer and pickup
cup. Please see videos at https://robotic-telekinesis.github.io/.

Success (rate) Completion Time (sec)
Task Ours DexPilot-Mono⇤ Ours DexPilot-Mono⇤ Description

Pickup Dice Toy 0.9 0.7 8.6 (2.65) 13.5 (5.47) Pickup Plush dice from table.
Pickup Dinosaur Doll 0.9 0.6 8.2 (3.49) 11.00 (3.95) Pickup Plush dinosaur from table.
Box Rotation 0.6 0.3 37.2 (12.6) 16.33 (10.69) Rotate box 90 degrees onto the smaller side
Scissor Pickup 0.7 0.5 28.6 (9.4) 27.66 (11.09) Remove Scissors from the box using fingers
Cup Stack 0.6 0.7 21.5 (7.6) 22.85 (16.57) Smaller cup must be placed inside the large cup.
Two Cup Stacking 0.3 0.1 27.3 (11.0) 45.00 (0.0) Small cup placed into medium cup into large cup.
Pouring Cubes onto Plate 0.7 0.5 36.80 (17.7) 13.8 (4.02) Five cubes in a cup must be poured onto a plate.
Cup Into Plate 0.8 0.7 10.6 (4.4) 13.71 (5.44) Place cup on the plate.
Open Drawer 0.9 0.9 23.6 (12.3) 14.88 (4.40) Open clear drawer.
Open Drawer and Pickup Cup 0.6 0.7 33.7 (8.1) 28.14 (11.48) Open clear drawer and pickup cup inside.

Table I: Success rate and completion time (mean and standard deviation) of a trained operator completing a variety of tasks using two
different methods. The DexPilot-Monocular⇤ baseline is nearly identical to our system, but uses online gradient descent for hand pose
retargeting (inspired by DexPilot [19]). Our system, which uses a neural network retargeter, outperforms the baseline in 7 out of 10 tasks.

pose x, a solver iteratively searches for the robot pose y⇤ that
minimizes the energy (cost) function L with respect to x, i.e.

y⇤ = argmin
y

L(x, y). (3)

The code for DexPilot’s [19] kinematic retargeting module is
not available, so we implement their online optimization solver
using the Jax GPU-accelerated auto-differentiation engine [7].

We do not compare our system to the full DexPilot
system. DexPilot is designed for use in a specific multi-
camera rig, but our system is designed to run anywhere.
The DexPilot-Monocular⇤ baseline is meant to enable
analysis of the tradeoffs between online optimization and neural
networks for kinematic retargeting, within a single-camera
setup. It uses the retargeting module from DexPilot [19], but
is otherwise identical to our system.

A. Success Rate: Trained Operator Study

A trained operator attempted a diverse set of tasks to test the
capabilities of our system and the DexPilot-Monocular⇤

baseline. These tasks are shown in Figure 7. They span a diverse
spectrum of arm and hand motions and involved interacting
with a variety of different objects. Each of the ten tasks was
run for ten trials with a timeout period of one minute. This
rigorously tested the system’s capabilities and limitations. These
tasks are described in Table I. The operator achieved good
success on all tasks – our system outperformed the baseline
on 7 out of 10 tasks, and performed similarly on the other
3 tasks. Grasping plush objects proved easy as these grasps
do not require much precision, but we observed that fine-
grained grasps of smaller, more slippery objects like plastic cups
occasionally proved difficult. See videos of the trained operator
completing these tasks at: https://robotic-telekinesis.github.io/.

https://robotic-telekinesis.github.io/
https://robotic-telekinesis.github.io/


Figure 8: Ten novice operators were asked to complete tasks: (1) picking up a plush dice, (2) opening a plastic drawer, and (3) placing a
cup onto a plate. For each task, the mean and standard deviation completion times were computed over seven trials.

Pipeline Stage Ours (Hz)

Open Pose Body (input from camera) 29
Open Pose Hand (input from camera) 29
Frank Mocap Body 16
Frank Mocap Hand 27
Body Pose Retargeter (output to robot) 16
Hand Retargeter (output to robot) 24

Table II: Runtime of each stage of our pipeline. Our hand retargeter
NN runs at 24 Hz (the online gradient-descent baseline runs at 10Hz).
Both systems use an AMD 3960x CPU and two 3080 Ti GPU’s.

During experiments, the expert found that our system was easier
to use and performed better than DexPilot-Monocular⇤.
The online gradient descent solver in the baseline occasionally
stayed stuck in local minima because it would use the previous
pose as a seed. This meant that the hand would often output
unnatural poses with the fingers digging into the palm, an issue
that the authors of DexPilot also noted. Our method, because it
was trained on YouTube data, learned to always output natural
hand poses which was useful for operators to use. Since it
is not seeded, our method did not get stuck in minima. This
data also masked the ambiguities and errors from our single
camera constrained setup. Our method also produced occasional
errors on uncommon hand poses unseen in the training set,
but these one-off errors did not propagate forward through
time. Additionally, the baseline ran at a slower rate and felt
delayed to the operator’s movements as benchmarked in table
II. This was jarring and hard to compensate for when trying
to complete dexterous tasks. Our system maintained fluidity
and felt very responsive when opening and closing the hand.

B. Usability: Human-Subject Study

To test usability and generality, we conducted a human-
subject study in which 10 previously untrained operators each
completed a set of 3 tasks, 7 times each. The first task was a
plush dice pickup task (30 second timeout), the second was
drawer opening (30 second timeout), and last was to place
a cup onto a plate (60 second timeout). The total time for
one human subject to learn about the system and complete
all tasks took approximately 15 minutes. Figure 8 reports the
completion times of each operator on each of the three tasks.

Although the underlying technology is complex, the user

interface was easy to understand and use for all operators.
Each operator differed in their style of motion, stances, and
appearances, but there were no noticeable discrepancies in the
behavior of the system or the distribution of results.

We found that subjects often struggled during the first
few trials. However, all subjects found it easy to adjust and
learn how to use the system very quickly. Our system was
often complimented on its responsiveness and fluidity: subjects
did not notice with any lag or jitter in the robot’s imitation.
Subjects enjoyed participating in the study, and some said
that teleoperation of the robot was similar to a video-game.
Additionally, subjects noted they felt safe and comfortable
during teleoperation.

The largest frustrations with the system was in periodic
errors in the retargeting of the human fingers to the Allegro
robot hand. Many subjects noted instances when they were
attempting complicated hand poses, but our system failed to
accurately imitate them. In particular, we noticed systematic
errors of our system in handling the flexion of the thumb. The
shape and joint axes of the Allegro hand thumb are particularly
different from that of the human thumb, and we suspect that
our energy function does not place enough weight on accurate
thumb retargeting. Some subjects observed that the system was
worse at tracking their hand when it was all the way open with
their palm parallel to the camera, this is a particular issue that
we cannot get around with a single camera setup.

V. ANALYSIS

A. Accuracy of retargeter network

We compare the accuracy of DexPilot-Monocular⇤’s
online optimization with our neural network retargeter that
relies on offline optimization during training. We gather a test
set of 500 sequences from the DexYCB video dataset [13],
which contains videos with annotated ground-truth human hand
poses. For each video, at each timestep, the poses are fed to
both our neural network and DexPilot-Monocular⇤ with
a (generous) time budget of 40ms to solve. We emphasize
that both retargeters optimize the same energy function, but in
different ways.

We do not, however, have access to “ground-truth” Allegro
joint angles against which to compare the output of the
two retargeters. To circumvent this, we design a version of



Figure 9: The contribution of an adversarial self-collision loss.
The red boxes highlight instances where the vanilla retargeting network
outputs Allegro hand poses that result in self-collision. The green
boxes depict the predictions of the network trained with self-collision
loss. These robot hand poses maintain functional similarity to the
human’s hand pose, but avoid self-collision.

DexPilot-Monocular⇤ that is allowed an infinite time
budget to run until convergence. We call this the pseudo-
ground-truth oracle, and our assumption is that its final output
is as close to optimal as possible.

We compare the root mean squared error (RMSE) between
the oracle’s outputs and the outputs of each of our two retar-
geters on the dataset. Our neural network retargeter outperforms
DexPilot-Monocular⇤ in matching the oracle. The neural
network retargeter achieves an RMSE of 0.17 radians (about 10
degrees) while DexPilot-Monocular⇤ achieves an RMSE
of 0.25 radians per joint (about 14 degrees).

B. Self-Collision Avoidance

We perform an ablation on the weight of the self-collision
classifier (Section III-A3) in the energy function, to see how
it affects the behavior of the hand retargeter. We use a test
set of 3000 held-out hand poses from the FreiHand dataset
[42] and consider 6 different hand retargeter networks, trained
with collision-loss weights of 0, 0.2, 0.4, 0.6, 0.8 and 1. (A
weight of 0.8, for example, means that the self-collision loss is
weighed 0.8 as heavily as the sum of all the other key-vector
matching loss terms in the energy function.) Each network
makes predictions on the data and we compute (1) the fraction
of resulting Allegro joint angle vectors that result in self-
collision, and (2) the average value of the key-vector energy
terms over the dataset.

We summarize the results in Figure 10. The plot shows there
is a trade off between minimizing self-collisions, and mini-
mizing key-vector dissimilarity. As we increase the weighting
term of the self-collision avoidance loss term in the energy
function, we produce fewer offending joint configurations but
minimization performance degrades for the other terms in the
energy function. We depict this trade off visually in Figure 9.

Figure 10: As the weight of the adversarial self-collision loss is
increased, the hand retargeter network produces fewer self-colliding
joint configurations (maroon), but incurs a higher energy with less
similar poses (blue). A higher energy means that the predicted robot
hand pose is dissimilar to the operator’s hand pose.

It is difficult to confidently assert that one is more valuable
than the other, and in practice, we find that a middle ground
works very effectively for the user.

VI. CONCLUSION

We present Robotic Telekinesis, a system for in-the-wild,
real-time, remote visual teleoperation of a dexterous robotic
hand and arm, in which a human operator demonstrates tasks
to the robot just by moving their own hands. We leverage
the latest advancements in 3D human pose estimation and
thousands of hours of raw day-to-day human footage on the
internet to train a system that can understand human motion,
and retarget it to corresponding robot actions. Our method
requires only a single color camera, and can be used out-of-the
box by any operator on any task, without any actively collected
robot training data. We show that our system enables experts
and novices alike to successfully perform a number of different
dexterous manipulation tasks. We hope that our system is used
as a starting point for future research, rather than as an end
product. We believe a powerful use of visual teleoperation is
to bootstrap autonomous robot learning, and by building an
intuitive and low-cost platform for humans to provide task
demonstrations, we hope to contribute to the democratization
of robot learning.

ACKNOWLEDGMENTS

We are grateful to Ankur Handa for initial feedback and
to Shikhar Bahl, Murtaza Dalal and Russell Mendonca for
feedback on the paper. We would also like to thank Murtaza
Dalal, Alex Li, Kathryn Chen, Ankit Ramchandani, Ananye
Agarwal, Jianren Wang, Zipeng Fu, Aditya Kannan, and Sam
Triest for helping with experiments. KS is supported by NSF
Graduate Research Fellowship under Grant No. DGE2140739.
The work was supported in part by NSF IIS-2024594, ONR
N00014-22-1-2096 and GoodAI Research Award.



REFERENCES

[1] Haptx. https://haptx.com/. 1
[2] Cmu graphics lab motion capture database. http://mocap.

cs.cmu.edu/. 2
[3] Oculus rift. https://www.oculus.com/rift/. 1
[4] Htc vive. https://www.vive.com/. 1
[5] Dafni Antotsiou, Guillermo Garcia-Hernando, and Tae-

Kyun Kim. Task-oriented hand motion retargeting for
dexterous manipulation imitation. In Proceedings of
the European Conference on Computer Vision (ECCV)
Workshops, pages 0–0, 2018. 2

[6] Aude G Billard, Sylvain Calinon, and Florent Guenter.
Discriminative and adaptive imitation in uni-manual and
bi-manual tasks. Robotics and Autonomous Systems, 54
(5):370–384, 2006. 1

[7] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax. 6

[8] Samarth Brahmbhatt, Cusuh Ham, Charles C. Kemp, and
James Hays. ContactDB: Analyzing and predicting grasp
contact via thermal imaging. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6
2019. 2

[9] Samuel R. Buss and Jin-Su Kim. Selectively damped
least squares for inverse kinematics. Journal of Graphics
Tools, 10(3):37–49, 2005. doi: 10.1080/2151237X.2005.
10129202. 5, 13

[10] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and
Yaser Sheikh. Openpose: realtime multi-person 2d pose
estimation using part affinity fields. IEEE transactions on
pattern analysis and machine intelligence, 43(1):172–186,
2019. 2, 3, 5, 11

[11] Zhe Cao, Ilija Radosavovic, Angjoo Kanazawa, and
Jitendra Malik. Reconstructing hand-object interactions in
the wild. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12417–12426,
2021. 2

[12] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno,
Joseph Mirabel, Florent Lamiraux, Olivier Stasse, and
Nicolas Mansard. The pinocchio c++ library – a fast and
flexible implementation of rigid body dynamics algorithms
and their analytical derivatives. In IEEE International
Symposium on System Integrations (SII), 2019. 4

[13] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov,
Ankur Handa, Jonathan Tremblay, Yashraj S. Narang,
Karl Van Wyk, Umar Iqbal, Stan Birchfield, Jan Kautz,
and Dieter Fox. DexYCB: A benchmark for capturing
hand grasping of objects. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.
7

[14] Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation for games, robotics and

machine learning. http://pybullet.org, 2016–2020. 13
[15] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,

Sanja Fidler, Antonino Furnari, Evangelos Kazakos,
Davide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. Scaling egocentric vision:
The epic-kitchens dataset. In European Conference on
Computer Vision (ECCV), 2018. 2, 4

[16] Roger Davies. Technology versus terrorism. Jane’s
International Defence Review, pages 36–43, 2001. 1

[17] Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios
Tzionas, and Michael J Black. Collaborative regression
of expressive bodies using moderation. arXiv preprint
arXiv:2105.05301, 2021. 2

[18] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and
Vincent Lepetit. Honnotate: A method for 3d annotation
of hand and object poses. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3196–3206, 2020. 2

[19] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang,
Yu-Wei Chao, Qian Wan, Stan Birchfield, Nathan Ratliff,
and Dieter Fox. Dexpilot: Vision-based teleoperation of
dexterous robotic hand-arm system. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 9164–9170, 2020. doi: 10.1109/ICRA40945.2020.
9197124. 1, 2, 4, 5, 6, 11

[20] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia
Schmid. Learning joint reconstruction of hands and
manipulated objects. In CVPR, 2019. 2

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.
03385. 11, 13

[22] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and
predictive methods for 3d human sensing in natural
environments. IEEE transactions on pattern analysis
and machine intelligence, 36(7):1325–1339, 2013. 2

[23] Angjoo Kanazawa, Michael J. Black, David W. Jacobs,
and Jitendra Malik. End-to-end recovery of human shape
and pose. CoRR, abs/1712.06584, 2017. URL http://arxiv.
org/abs/1712.06584. 2

[24] Shuang Li, Xiaojian Ma, Hongzhuo Liang, Michael
Görner, Philipp Ruppel, Bin Fang, Fuchun Sun, and
Jianwei Zhang. Vision-based teleoperation of shadow
dexterous hand using end-to-end deep neural network. In
2019 International Conference on Robotics and Automa-
tion (ICRA), pages 416–422. IEEE, 2019. 2

[25] Colin M Light, Paul H Chappell, and Peter J Kyberd.
Establishing a standardized clinical assessment tool of
pathologic and prosthetic hand function: normative data,
reliability, and validity. Archives of physical medicine
and rehabilitation, 83(6):776–783, 2002. 2

[26] Jia Liu, Fangxiaoyu Feng, Yuzuko C. Nakamura, and
Nancy S. Pollard. A taxonomy of everyday grasps in
action. 2014 IEEE-RAS International Conference on

https://haptx.com/
http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
https://www.oculus.com/rift/
https://www.vive.com/
http://github.com/google/jax
http://pybullet.org
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1712.06584
http://arxiv.org/abs/1712.06584


Humanoid Robots, pages 573–580, 2014. 2
[27] Matthew Loper, Naureen Mahmood, Javier Romero,

Gerard Pons-Moll, and Michael J Black. Smpl: A skinned
multi-person linear model. ACM transactions on graphics
(TOG), 34(6):1–16, 2015. 2

[28] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas,
and Michael J. Black. Expressive body capture: 3D hands,
face, and body from a single image. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 10975–10985, 2019. 2, 11

[29] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-
Wei Lee, Jie Tan, and Sergey Levine. Learning agile
robotic locomotion skills by imitating animals. arXiv
preprint arXiv:2004.00784, 2020. 2

[30] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and
Jitendra Malik. State-only imitation learning for dexterous
manipulation. arXiv preprint arXiv:2004.04650, 2020. 1

[31] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087, 2017. 1

[32] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and
bodies together. ACM Transactions on Graphics, (Proc.
SIGGRAPH Asia), 36(6), November 2017. 2, 3

[33] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmo-
cap: A monocular 3d whole-body pose estimation system
via regression and integration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV) Workshops, pages 1749–1759, October 2021. 2,
3, 4, 5, 11, 12, 13, 14

[34] Dandan Shan, Jiaqi Geng, Michelle Shu, and David
Fouhey. Understanding human hands in contact at internet
scale. In CVPR, 2020. 2, 4, 12

[35] Omid Taheri, Nima Ghorbani, Michael J Black, and
Dimitrios Tzionas. Grab: A dataset of whole-body human
grasping of objects. In European Conference on Computer
Vision, pages 581–600. Springer, 2020. 2

[36] Shinji Umeyama. Least-squares estimation of transfor-
mation parameters between two point patterns. IEEE
Transactions on Pattern Analysis & Machine Intelligence,
13(04):376–380, 1991. 12

[37] Jean Vertut and Philippe Coiffet. Robot technology. vol.
3a. teleoperation and robotics: evolution and development.
1985. 1

[38] Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak
Lee. Neural kinematic networks for unsupervised motion
retargetting. CoRR, abs/1804.05653, 2018. URL http:
//arxiv.org/abs/1804.05653. 2

[39] Jiayi Wang, Franziska Mueller, Florian Bernard, Suzanne
Sorli, Oleksandr Sotnychenko, Neng Qian, Miguel A
Otaduy, Dan Casas, and Christian Theobalt. Rgb2hands:
real-time tracking of 3d hand interactions from monocular
rgb video. ACM Transactions on Graphics (TOG), 39(6):

1–16, 2020. 2
[40] Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tomp-

son, Jeannette Bohg, and Debidatta Dwibedi. Xirl:
Cross-embodiment inverse reinforcement learning. arXiv
preprint arXiv:2106.03911, 2021. 2

[41] Wenping Zhao, Jinxiang Chai, and Ying-Qing Xu. Com-
bining marker-based mocap and rgb-d camera for acquir-
ing high-fidelity hand motion data. In Proceedings of the
ACM SIGGRAPH/eurographics symposium on computer
animation, pages 33–42, 2012. 1

[42] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. Freihand: A
dataset for markerless capture of hand pose and shape
from single rgb images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 813–
822, 2019. 2, 4, 8, 12

http://arxiv.org/abs/1804.05653
http://arxiv.org/abs/1804.05653


APPENDIX A
HAND/BODY BOUNDING BOX DETECTION

The first step in our retargeting pipeline is to detect two
bounding boxes in an image of the human operator; one for
the body and one for the right hand. These bounding boxes
needn’t be perfectly tight bounding boxes; it’s more important
that they contain the entire body/hand without truncations. We
use an implementation of OpenPose [10] from the authors
of FrankMocap [33]. First, a 2D body skeleton detector is
run over the entire image, and outputs the predicted pixel
locations for each of the 18 keypoints on the skeleton. The
tight bounding rectangle around the points is then computed,
and a fixed padding is applied on all sides to allow a margin
of error.

The right hand bounding box is heuristically extracted based
on the 2D body skeleton estimate. The bounding box is centered
at the pixel corresponding to the right hand wrist, and the side
length of the bounding box is conservatively chosen to ensure
that the bounding box contains the entire hand. For an image
of size 480x640, we use a side length of 150 pixels.

APPENDIX B
HAND POSE ESTIMATION

The next step is to estimate the pose of the operator’s
right hand from a crop of the hand. The crop of the right
hand is computed as described in the previous section, and
is resized to a shape of 224x224. The crop is passed to a
Convolutional Neural Network (CNN), which outputs a low-
dimensional representation of the hand configuration. We use an
implementation of the hand pose estimation network from [33].
This network uses a ResNet50 trunk [21], followed by a Multi-
Layer Perceptron (MLP) regression head, which outputs three
relevant parameters of the SMPL-X model [28]. (1) �h 2 R10

describes the shape of the hand (the dimensions of each finger
and the palm), (2) ✓h 2 R45 describes the pose of the hand
(how the fingers are arranged) and (3) �h 2 R3 describes the
global orientation of the hand (how the hand’s root coordinate
frame is rotated in the image coordinate frame). The SMPL-X
model maps the shape and pose parameters (�h and ✓h) into a
full 3D mesh of the hand, and the global orientation parameter
�h transforms the coordinate frame of the mesh so the axes
align with the axes of the image coordinate frame.

APPENDIX C
HUMAN-TO-ROBOT HAND RETARGETING

Here, we describe two implementations of the human-
to-robot hand retargeting module, one which uses online
optimization (via inference-time gradient descent), and one
which uses offline optimization (via a neural network). Both
implementations take a human hand pose as input, and outputs
joint angles for each of the 16 Allegro hand joints. The human
hand pose is parameterized by the tuple (�h, ✓h) as described
in the previous section. The global orientation �h is not used
in hand retargeting, because the Allegro hand has no wrist or
palm joints, and therefore, matching the global orientation of
the human hand is accomplished by the robot arm and not the

robot hand. We use qa to denote the vector of the 16 Allegro
hand joint angles.

A. Human-to-Robot Hand Energy Function.

Both implementations of the hand retargeting module mini-
mize the same energy function, so we describe this first. Inspired
by [19], the energy function aims to capture the functional
similarity between a human hand pose and a robot hand pose.
Five keypoints are defined on each hand: the index fingertip,
the middle fingertip, the ring fingertip, the thumb fingertip,
and the palm center. Each of these keypoints is associated
with a coordinate frame, and the keypoint is the origin of the
coordinate frame. Enumerating all pairs of keypoints yields ten
keyvectors. Four of them are finger-to-palm keyvectors (index-
to-palm, middle-to-palm, ring-to-palm and thumb-to-palm),
three are inter-finger keyvectors (index-to-middle, index-to-ring
and middle-to-ring), and three are finger-to-thumb keyvectors
(index-to-thumb, middle-to-thumb and ring-to-thumb). Notably,
each keyvector has one endpoint designated as the origin, and
the other as the destination. The keyvectors are expressed in
the coordinate basis of the origin keypoint’s coordinate frame.
We refer the reader to Figure 8 of [19], which elegantly depicts
the keypoint coordinate frames and the keyvectors on both the
human and Allegro hand.

The energy function between a human hand pose (param-
eterized by the tuple (�h, ✓h)) and an Allegro hand pose
(parameterized by the joint angles qa) is computed as follows.
First, for each i 2 {1, . . . , 10}, the i-th keyvector is computed
on the human hand (call it vh

i ) and the Allegro hand (call
it va

i ). Then, each Allegro hand keyvector va
i is scaled by

a constant ci. The i-th term in the energy function is the
Euclidean difference between vh

i and va
i :

E( (�h, ✓h), qa ) =
10X

i=1

||vh
i � (ci · va

i )||22 (4)

These scaling constants {ci} are hyperparameters that require
some tuning. If the goal is to produce aesthetically appealing
retargeted Allegro hand poses on generic hand gestures, one
should set each ci to around 0.625, in order to account for
the ratio in sizes between the average human hand and the
Allegro hand. If the goal is to maximize functional similarity,
in theory, one should set each ci to 1, to encourage perfect
matching of each keyvector. In practice, we find that setting the
constants ci to a value smaller than 1 is optimal for dexterous
manipulation teleoperation. This is because in order to stably
grasp an object, the fingers Allegro hand must exert forces
pushing into the object. This is achieved by commanding the
Allegro finger joints to positions that penetrate the object. These
joint angles are never actually reached because the fingers end
up colliding with the object, which is precisely the goal. For our
experiments, we use a scaling constant of 0.8 for each of the
finger-to-thumb and finger-to-finger keyvectors, and a scaling
constant of 0.5 for each of the finger-to-palm keyvectors. This
means that in order to ensure a stable grasp, operators must
squeeze their fingers closer together than they normally would

https://github.com/facebookresearch/frankmocap/blob/main/bodymocap/body_bbox_detector.py
https://github.com/facebookresearch/frankmocap/blob/main/handmocap/hand_mocap_api.py
https://github.com/facebookresearch/frankmocap/blob/main/handmocap/hand_mocap_api.py


when grasping, but through our human subject study, we find
that novice operators quickly realize this and naturally adjust.

B. Computing the keyvectors on the human hand.

Having described what the keyvectors are and how they are
used to define the energy function, we now describe how to
compute the keyvectors on the human hand, given the SMPL-X
model parameters (�h, ✓h). The first step is to use the SMPL-X
model to generate a full posed 3D mesh of the human hand.
Given �h and ✓h (and a template hand mesh), the SMPL-X
model generates a 3D mesh that correctly captures the shape
and pose of the human hand. The next step is to transform
these vertices into a canonical coordinate frame, centered at
the palm center, with the positive x axis pointing out of the
hand, the positive y axis pointing toward the thumb, and the
positive z axis pointing toward the middle fingertip. This
is done by applying a hand-coded transformation between
the SMPL-X coordinate frame and the canonical coordinate
frame. The next step is to compute the transformation between
each of the keypoint coordinate frames and the canonical
coordinate frame. This is done using the Kabsch-Umeyama
Algorithm [36] for estimating the transformation that best aligns
corresponding pairs of points. Concretely, for each keypoint,
we manually determine four vertices on the template hand
mesh: (1) the keypoint itself, (2) a vertex located along 0.05m
along the positive x axis from the keypoint, (3) a vertex
located 0.05m along the positive y axis from the keypoint,
and (4) a vertex located 0.05m along the positive z axis
from the keypoint. This is pre-computed once, up front. At
runtime, for a given posed human hand mesh, we gather
the 3D coordinates for each of these three points in the
canonical coordinate frame. We define a corresponding set of
four points: {[0, 0, 0], [0.05, 0, 0], [0, 0.5, 0], [0, 0, 0.5]}, which
denote the coordinates of these points in the coordinate frame
of the keypoint. Given these four correspondences, the Kabsch-
Umeyama computes the transformation between the keypoint
coordinate frame and the canonical coordinate frame that best
aligns these corresponding point pairs.

C. Computing the keyvectors on the Allegro hand.

Here, we describe how to compute the keyvectors on the
Allegro hand, given a vector of Allegro hand joint angles. The
key idea here is to exploit forward kinematics. The URDF
of the Allegro hand defines the kinematic skeleton of the
Allegro hand. The forward kinematics map takes as input a
joint angle vector and outputs the transformation between each
link’s coordinate frame and the root coordinate frame. Each
of our keypoints conveniently corresponds to a particular link
on the Allegro hand, so the keypoint coordinate frames can
simply be read off from the forward kinematics result.

D. The energy function is differentiable.

One critical point to note is that the forward kinematics
map is a fully differentiable function of the Allegro hand
joint angles. This is because forward kinematics is essentially
a chain of sines, cosines and matrix multiplications. This is

important because it means that the energy function is a fully
differentiable function of the Allegro joint angles (by the Chain
Rule). This is important because it allows us to compute the
gradient of the energy function with respect to the Allegro joint
angles, and use gradient descent to find the Allegro joint angles
that minimize the energy, with respect to a given human hand
pose. We now describe two ways to exploit this differentiability:
via online gradient descent and via offline gradient descent.

E. Retargeting via Online Gradient Descent.

We implement the online optimization retargeter by using
Stochastic Gradient Descent (SGD) to minimize the energy
function. At each iteration, we seed the Allegro joint angles
to an initial value. At the first iteration, that initial value is
the all-zero vector (which corresponds to an open palm with
outstretched fingers). At all subsequent iterations, the seed
vector is the result from the previous iteration. We then run a
fixed number of SGD steps with a learning rate of 0.05. The
number of gradient steps is a hyperparameter, and presents
a tradeoff between accuracy and speed. Running more steps
results in better convergence, but takes more time. We find
100 steps to be a good point on this spectrum.

F. Retargeting via Neural Networks.

We implement the offline optimization retargeter with
a neural network that takes as input a human hand pose
parameterization concat(�h, ✓h) 2 R55 and outputs a vector of
Allegro joint angles qa 2 R16. We use a Multi Layer Perceptron
(MLP) with three hidden layers of sizes 256, 256, 128, and
intermediate tanh activations. We apply a tanh to the final
output to squeeze the values from [�1,1]16 to [�1, 1]16,
and then scale the squeezed values to the appropriate values
within each of the joint’s ranges. (For example, joint 1 on the
Allegro hand has a range of [�0.196, 1.61] (in radians). If the
raw output of the network for this joint were 1.23, the tanh
operation would squeeze it to 0.84 and the rescale operation
would rescale it to 1.47 radians, which is 0.84 of the way
between �0.196 and 1.61.)

We train this network using a mixture of human hand
poses from the Freihand Dataset [42] and “in-the-wild” human
hand poses from the 100 Days of Hands dataset [34]. The
Freihand dataset contains ground-truth SMPL-X shape and
pose parameters for over 30,000 hand configurations, which
we use as inputs to the network. The 100 Days of Hands
dataset is simply a list of links to YouTube videos that depict
humans using their hands for everyday tasks. In total, these
span hundreds of millions of frames. We generate human hand
poses by running our Hand Pose Estimation module (built
on the CNN from [33]). Our final dataset consists of 30,000
samples from the FreiHand dataset and 30,000 randomly chosen
samples from the 100 Days of Hands dataset.

APPENDIX D
BODY POSE ESTIMATION

The body pose estimation pipeline consists of two steps.
The first is to estimate a rough body pose from a crop of the



operator’s body. The second is to refine the right-hand portion
of the rough pose estimate by fusing in the more accurate hand
pose estimate from the Hand Pose Estimation module.

A. Rough Body Pose Estimation via a CNN

This step takes as input a crop of the operator’s body,
resized to a shape of 224 x 224. The crop is passed to
a CNN, which outputs a low-dimensional representation of
the body configuration. We use an implementation of the
body pose estimation network from [33]. This network uses a
ResNet50 trunk [21], followed by a Multi-Layer Perceptron
(MLP) regression head, which outputs three relevant parameters
of the SMPL-X model. (1) �b 2 R10 describes the body shape
(the dimensions of the various body parts), (2) ✓b 2 R45

describes the pose of the body (how the limbs are arranged)
and (3) �b 2 R3 describes the global orientation of the body
(how the body’s root coordinate frame is rotated in the image
coordinate frame). The pose parameter ✓b is of shape (24, 3, 3),
and each of these 24 matrices denotes the 3 x 3 rotation matrix
of a particular joint in the human body skeleton. The SMPL-X
model maps the shape and pose parameters (�b and ✓b) into a
full 3D mesh of the body, and the global orientation parameter
�b transforms the coordinate frame of the mesh so the axes
align with the axes of the image coordinate frame.

B. Body-Pose Refinement via Hand Pose Integration.

The body pose estimate obtained via the CNN can fail
to capture the finer details of the hand pose, and crucially,
can produce incorrect estimates for the rotation of the right-
hand wrist relative to its parent in the human body kinematic
chain. The Hand Pose Estimation module, however, operates
on a zoomed-in crop of the operator’s hand, and often
produces much better estimates of the hand’s global orientation.
To exploit this fact, we use the “Copy-and-Paste” Body-
Hand Integration module from [33], which refines the local
orientation of the wrist based on �h, the global orientation of
the hand estimated by the Hand Pose Estimation module.

APPENDIX E
HUMAN-TO-ROBOT BODY RETARGETING

We now describe how to map from a body pose estimate
(�b, ✓b) to a target pose for the xArm6’s end-effector link,
relative to its base link. The first step is to define two pairs of
corresponding coordinate frames between the human and robot
“bodies”. The first pair is between the human torso and the
robot “torso”. We define the robot torso to be 25cm above the
robot base frame. Both torso frames are oriented such that the
positive x axis points out of the front of the torso, the positive
y axis points towards the left side of the body, and the positive
z axis points upwards toward the head. The second pair of
coordinate frames is between the human’s right hand wrist
and the robot’s wrist (i.e. end-effector). The wrist coordinate
frames are centered at the wrist center, with the positive x axis
oriented parallel to the vector originating at the palm center
and pointing out of the front of the palm, the positive y axis

pointing toward the thumb, and the positive z axis pointing
toward the middle fingertip.

The problem of determining the relative transformation
between the robot’s end-effector and its base coordinate
frame reduces to the problem of determining the relative
transformation between the end-effector and the torso (because
the torso coordinate frame is fixed relative to the robot’s base
frame). And this problem reduces to determining the relative
transformation between the human’s right hand wrist coordinate
frame and the human’s torso coordinate frame. In order to do
this, we start at the torso joint, and traverse the human body
kinematic chain (defined by the SMPL-X model) from the
torso to the wrist, chaining rotations along the path.

APPENDIX F
XARM6 INVERSE KINEMATICS CONTROLLER

The human-to-robot body retargeter module outputs target
poses for the xArm6’s end-effector, relative to it’s base
coordinate frame. The final step is to build a model that uses
this target pose to send a steady and smooth stream of joint
angle commands to the xArm6’s default controller. In practice,
we found that this module is crucial for performance and must
be carefully implemented with attention to details; if the robot
arm does not move smoothly, dexterous manipulation tasks
become impossible.

The first step is to handle outliers caused by erroneous
body pose estimates. This is done by computing the difference
between the arm’s current end-effector pose and the end-effector
pose output by the retargeting module. If the difference is
greater than a threshold, it is clipped. The next step is to
combine the (possibly clipped) end-effector pose target with a
running Exponentially Moving Average (EMA) of end-effector
poses. This helps ensure smooth motion in the presence of
noise in the pose estimation and retargeting modules. The
following update rule is used to update running average PEMA

to incorporate the new target pose Pnew:

PEMA = ↵ · Pnew + (1� ↵) · PEMA (5)

We find ↵ = 0.25 to work well. We note that a lower value of
↵ can introduce lag, but we find that because our system runs
at such a high frequency, this is not an issue in practice.

The next step is to compute the difference between the
robot’s current end-effector pose, and the (newly updated) pose
target, and to apply linear interpolation to divide that difference
into equally spaced waypoints. Each waypoint end-effector pose
is then passed to a Selectively Damped Least Squares (SDLS)
Inverse Kinematics (IK) solver [9], implemented in PyBullet
[14], which returns a vector of joint angles for the six joints
in the xArm6. These joint angle commands are sent to the
xArm6 servo controller.

APPENDIX G
SOFTWARE ARCHITECTURE

We now describe how we put together all of the aforemen-
tioned modules into a single system that efficiently retargets
human motion to robot trajectories. We found it natural to

https://github.com/facebookresearch/frankmocap/blob/main/bodymocap/body_mocap_api.py
https://github.com/facebookresearch/frankmocap/blob/main/bodymocap/body_mocap_api.py


design our system as a dataflow graph, with computation being
done at the nodes, and inputs/outputs travelling along the
edges. We first summarize the computation nodes we use, and
then discuss how we optimized runtime performance by using
parallel computation within a publisher-subscriber architecture.

A. The nodes in the dataflow graph.
Each node corresponds roughly to one of the modules

described in previous sections:
• CameraNode: captures RGB images of the operator at

30Hz.
• HandBoundingBoxDetectorNode: receives an operator

image, and computes a bounding box of the right hand.
• BodyBoundingBoxDetectorNode: receives an operator

image, and computes a bounding box of the body.
• HandPoseEstimationNode: receives a crop of the op-

erator’s right hand, and estimates the SMPL-X model
parameters (�h, ✓h,�h) that parameterize the hand’s shape,
pose and global orientation.

• BodyPoseEstimationNode: receives a crop of the opera-
tor’s body, and estimates the SMPL-X model parameters
(�b, ✓b,�b) that parameterize the body’s shape, pose and
global orientation.

• BodyHandIntegrationNode: receives a hand pose esti-
mate (�h, ✓h,�h) and a body pose estimate (�b, ✓b,�b),
and computes a refined body pose estimate by using the
Copy-and-Paste integration method from [33].

• HandRetargetNode: receives a hand pose estimate
(�h, ✓h,�h), and computes the Allegro joint angles qa
that maximizes similarity with the operator’s hand.

• BodyRetargetNode: receives a (refined) body pose es-
timate (�b, ✓b,�b), computes the relative transformation
between the right hand wrist and the torso, and converts
this to a target pose of the xArm6’s end-effector link,
relative to its base link.

• AllegroHandControllerNode: receives a target Allegro
hand joint angle vector from the HandRetargetNode,
interpolates the difference between robot’s current joint
angle values and the target into small fixed-size intervals,
and sends a stream of interpolated joint angle commands
to the robot’s controller at a fixed frequency.

• xArm6ControllerNode: receives a target end-effector
pose from the BodyRetargetNode, and commands a
smoothly interpolated stream of xArm6 joint angle con-
figurations to the robot’s controller at a fixed frequency.

B. Optimizing performance via parallel computation.
It is crucial that our system run as fast as possible, in order

to ensure smooth robot motion and to avoid lagging behind
the operator. Therefore, a key design decision was to opt for
a parallel computation paradigm. The first implementation of
our system sequentially chained together the various modules,
and achieved a runtime of approximately 3Hz. In this squential
implementation, the retargeting time was the sum of the time
taken by each module. Our optimized implementation instead
used the ROS publisher-subscriber architecture, with each node

running on a separate process. Nodes pass inputs and outputs
to each other via inter-process messages. With this approach,
the retargeting time was determined only by the slowest node,
and this achieved a runtime of approximately 25Hz, which
greatly improves usability.

APPENDIX H
HARDWARE ARCHITECTURE

Our setup consists of a Ufactory xArm6 robot arm mounted
to a Vention table, with a Wonik Robotics Allegro Hand
mounted as the end-effector. The Allegro Hand was upgraded
with four 3D printed fingertips that are skinnier than the default
tips. 3M TB641 grip tape is applied to the inner parts of the
hand and around the fingertip which allows the Allegro Hand
to better grip objects, as 3D printed components and the built
in metal/plastic parts are slippery. One Intel Realsense D415
camera tracks the operator; we use only the RGB stream. In
our experiments, the operator is standing near the robot, but
this is not a requirement. The operator only needs to be able
to see the robot, in order for them to adjust their movements
to effectively complete tasks. In the future, we hope to enable
this via internet webcams which would allow the operator to
be located anywhere in the world. Running the system is a
desktop system with an AMD Ryzen 3960x CPU, 128GB of
RAM and two NVIDIA GeForce RTX 3080TI GPU’s.

APPENDIX I
HUMAN SUBJECT STUDY DETAILS

The 10 subjects that participated in the study were volunteer
colleagues from the author’s lab. A few were familiar with this
project, but they were not intimately familiar with the details.
Critically, they had never used the system before. The human
subjects were assured that the data collected was anonymous,
the robot never interacted with them in any way, and if they
ever felt uncomfortable with the task for any reason they
could terminate the experiment early. The act of collecting
the data would fall under a Benign Behavioral Intervention:
verbal, written responses, (including data entry or audiovisual
recording) from adult subjects who prospectively agrees and the
following is met: Recorded information cannot readily identify
the subject (directly or indirectly/linked). This therefore gives
an exemption for IRB approval. Example of this category are
solving puzzles under various noise conditions, playing an
economic game, being exposed to stimuli such as color, light
or sound (at safe levels), performing cognitive tasks.

One author was the conductor of the study. The conductor
briefed each subject on how to operate the system. The subjects
were asked to stand and stay in frame of the camera during
the duration of the experiments. They were asked to not move
around too quickly as that would trigger safety limits of the
control system, but this was never an issue. No other significant
instructions were given. The conductor of the study also kept
an emergency stop switch next to them for the safety of the
robot system, but it was never used.

For the first few trials, many subjects were confused by the
system but quickly adapted to it. The conductor instructed them



to continually adapt to the system and try to complete the tasks
without giving them additional information. The conductor
took down notes on the compliments and complaints of the
system while the system was being used.

The conductor only verbally told each subject the goal of
the task but did not explain the best way to complete them.
The tasks were very simple and intuitive so the subjects were
not confused by them. For each task, a failure was recorded
when either the time expired, the task became impossible to
complete from the object state on the table, or the subject asked
for a reset. Between each trial within each task, the subjects
were asked to move the robot arm up away from the table to
allow the conductor to reset the object. Between each task, the
Telekinesis system was paused and subjects were allowed to
rest their arm for a few minutes. The dice pickup task and
drawer task was 30 seconds each for 7 trials. The last cup in
plate task was 60 seconds long for each of the 7 trials. The
total time to complete all three tasks was about 15 minutes.


