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Summary

The Cox proportional hazards model is commonly used to estimate the association
between time-to-event and covariates. Under the proportional hazards assumption,
covariate effects are assumed to be constant in the follow-up period of study. When
measurement error presents, common estimation methods that adjust for an error-
contaminated covariate in the Cox proportional hazards model assume that the true
function on the covariate is parametric and specified. We consider a semi-parametric
partly linear Coxmodel that allows the hazard to depend on an unspecified function of
an error-contaminated covariate and an error-free covariate with time-varying effect,
which simultaneously relaxes the assumption on the functional form of the error-
contaminated covariate and allows for non-constant effect of the error-free covariate.
We take a Bayesian approach and approximate the unspecified function by a B-spline.
Simulation studies are conducted to assess the finite sample performance of the pro-
posed approach. The results demonstrate that our proposed method has favorable
statistical performance. The proposed method is also illustrated by an application to
data from the AIDS Clinical Trials Group (ACTG) Protocol 175.
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regression, time-varying coefficient

1 INTRODUCTION

In survival data analysis, the Cox proportional hazards model is widely used to investigate the relationship between covariates
and censored survival time.1 In many biomedical applications, however, covariates are subject to measurement error and not
directly observable due to natural biological fulctuation and instrument error.2,3,4,5 Measurement errors of biomarkers in clinical
studies include both laboratory error and variations due to sampling, storage and within-subject variability.6,7 When covariates
are measured with error, characterizing the association between the survival time and the true underlying covariates is crucial
for drawing inference correctly. In practice, for regression analysis, it is common to naively use the mismeasured covariates,
which can lead to substantial bias to the estimates of the parameters of interest and yield misleading conclusions.8
For the recent decades, people have been exploring alternative strategies to account for the measurement error for the Cox pro-

portional hazards model. Among those methods, approximation methods like regression calibration and SIMEX are commonly
used.9,10 Score methods are also popular, including parametric corrected score, nonparametric corrected score, conditional score

0Abbreviations: Add if there is any abbreviations.
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and refined corrected score.11,12,13,14 There are some other widely used methods, such as Bayesian methods and seminonpara-
metric(SNP) likelihood.3,15 But the true function on the error-contaminated covariate is usually specified in the model.12,16,17,18
It is common to specify a linear term for the error-contaminated covariate.12,13,14,19 Some allow including a specified nonlinear
function of the error contaminated covariates.20,21 However, using a specified function for the unobserved covariate can incur
biased estimations when the function is misspecified. For example, when the true relationship between the error-contaminated
covariate and the log hazard is nonlinear, assuming a simple linear relationship has an unclear effect on the model parameter
estimates.
Under the condition of no measurement error presenting in the data, researchers have considered modeling the nonlinear

covariate effect using the partly linear additive Cox model, which allows flexibility on modeling the covariate effects.22,23,24,25
With measurement errors presenting, Bayesian approaches have been developed to deal with the measurement error under this
model.26,27 However, the linear covariate effect is assumed constant over time. But in practice, the covariate effect may change
over time and the constant effect assumption may not hold.28,29,30 A common example is that the treatment effect on survival
may fade over time. Statisticians have proposed using time-varying coefficients for such cases.29,31,32 Nevertheless, to the best of
our knowledge, no existing methods consider nonparametric error-contaminated covariate and time-varying error free covariate
effect simultaneously.
In this article, we develop a Bayesian approach for the partly linear Cox model that allows the hazard to depend on an unspec-

ified function of an error-prone covariate and a linear error-free covariate with time-varying effect. The unknown function is
approximated by a linear B-spline and the time-varying effect is approximated by a piecewise constant function. Our contribution
lies in two aspects. First, we simultaneously consider both nonparametric error-contaminated covariate and time-varying error-
free covariate effect, which is much more challenging than handling only one of these complexities. Second, we investigated
knot selection using the deviance information criterion (DIC), while existing Bayesian spline models for measurement-error
problems usually fix the number of knots. For example, Bhadra and Carroll33 set the number of knots at 25, and Cheng and
Crainiceanu26 experimented with fixing it at 10 and 20.
The remainder of this article is organized as follows: in Section 2, we present the model. The likelihood function, Bayesian

algorithm for parameter estimation andmodel selection criteria are described in Section 3. In Section 4, we present the simulation
studies. In Section 5, we illustrate the proposed method on AIDS Clinical Trials Group (ACTG) Protocol 175 data. Finally, in
Section 6, we present conclusions and discussions.

2 JOINT MODELS

In this section, we introduce joint models for measurement error and time-to-event outcome.

2.1 Measurement Error Model
We define n to be the sample size and mi to be the number of repeated measures for subject i for i = 1,… , n. For subject i, letXi
be an error-prone covariate,Zi be a vector of error-free covariates, andWil, l = 1,… , mi, be the replicated measurements ofXi.
For simplicity of presentation, we consider the case whereZi is one-dimentional. We consider a classical additive measurement
error model,

Wil = Xi + �il, (1)
i = 1,… , n, l = 1,… , mi,

and the errors �il are independently and identically distributed normal random variable with mean 0 and variance �2.

2.2 The Survival Model
Let T ∗i andCi denote the true event time and censoring time for subject i. The observed event time is defined as Ti = min(T ∗i , Ci).
The event indicator is defined as �i = I(T ∗i ≤ Ci).
We consider a partly linear Cox model and assume the hazard function as follows:

ℎ
(

t|Xi, Zi
)

= ℎ0(t) exp
(

g(Xi) + �(t)Zi
)

, (2)
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where ℎ0(t) is an unspecified baseline hazard, g(⋅) denotes an unknown function of Xi, and �(t) denotes the unspecified time
varying coefficient of Zi. For identifiability of the parameters, we set g(x0) = 0 for a fixed x0.

3 METHODS

In this section, we present the Bayesian algorithm for parameter estimation and inference. Combining the measurement error
and survival models, we derive the likelihood function for the joint models. We specify the prior distribution and derive the
conditional posterior distribution for each parameter. We present the method for selecting number of knots in B-splines, baseline
hazard, time-varying coefficient and how to place these knots accordingly.

3.1 Approximation
The baseline hazard ℎ0(t) and the time varying coefficient �(t) are approximated by piecewise constant functions ℎ∗0(t) =
∑J
j=1 I(t ∈ Ij)�j and �

∗(t) =
∑J
j=1 I(t ∈ Ij)�j , which are constants �j and �j , respectively, over time intervals Ij = (cj−1, cj],

j = 1,… , J , c0 = 0 < c1 <… < cJ < cJ+1 = ∞.
We use a degree one B-spline g∗(⋅) to approximate the unknown function g(⋅). The B-spline is defined on an interval [!0, !K ]

with !0 = minil(Wil) and !K = maxil(Wil) for i = 1, . . . , n, and l = 1,… , mi. And !1,… , !K−1 are K − 1 internal knots.
Then we have g∗(x) =

∑K+1
k=1 Bk(x)�k, where �1,… , �K+1 are coefficients of B-splines, B(x) = {B1(x),… , BK+1(x)} denotes

the basis-functions of degree one B-spline, and

B1(x) =
!1 − x
!1 − !0

I(!0 ≤ x < !1),

BK+1(x) =
x − !K−1
!K − !K−1

I(!K−1 ≤ x < !K ),

and
Bk(x) =

x − !k−2
!k−1 − !k−2

I(!k−2 ≤ x < !k−1) +
!k − x

!k − !k−1
I(!k−1 ≤ x < !k),

for k = 2, . . . , K .33
Then the hazard function is approximated as

ℎ
(

t|Xi, Zi
)

= ℎ0(t) exp
(

g(Xi) + �(t)Zi
)

≅ ℎ∗0(t) exp
(

g∗(Xi) + �∗(t)Zi
)

.

3.2 Joint Likelihood Function
The joint likelihood can be written as

L = L1 ⋅ L2, (3)
where the likelihood for the measurement error sub-model is written as

L1 ∝
n
∏

i=1

mi
∏

l=1

1
√

2��2
exp

[

− 1
2�2

(

Wil −Xi
)2
]

,

and the likelihood for the survival sub-model is written as

L2 ∝
∏

{i∶�i=1}
ℎ(ti)

n
∏

i=1
S(ti),

where
∏

{i∶�i=1}
ℎ(ti) ≅

J
∏

j=1
�djj

n
∏

i=1
exp

{

�i
[

g∗(Xi) + �∗(ti)Zi
]}

, (4)
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and
n
∏

i=1
S(ti) =

n
∏

i=1
exp

⎡

⎢

⎢

⎣

−

ti

∫
0

ℎ(t)dt
⎤

⎥

⎥

⎦

≅
n
∏

i=1
exp

⎡

⎢

⎢

⎣

−

ti

∫
0

ℎ∗0(t) exp
(

g∗(Xi) + �∗(t)Zi
)

dt
⎤

⎥

⎥

⎦

≅
n
∏

i=1
exp

[

exp
(

g∗(Xi)
)

(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

.

(5)

Combining (4) and (5), we have

L2 ∝
J
∏

j=1
�djj

n
∏

i=1
exp

{

�i
[

g∗(Xi) + �∗(ti)Zi
]}

⋅
n
∏

i=1
exp

[

exp
(

g∗(Xi)
)

(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

,

where for i = 1, . . . , n and j = 1,… , J , Δtij = 0 when ti ≤ cj−1, Δtij = ti − cj−1 when ti ∈ (cj−1, cj], Δtij = cj − cj−1 when
ti > cj , and dj is the number of events in the jth interval.

3.3 Bayesian Approaches for Joint Model with B-spline
The complete joint likelihood under Bayesian framework can be described by (3). The observed
data are D = {

(

Ti, �i,Wi1,… ,Wimi , Zi
)

: i = 1,… , n}, and the vector of parameters is Θ =
(

�2, �1,… , �J , �1,… , �J , �1,… , �K+1, X1,… , Xn
)T .

In Bayesian analysis, random walk priors can be used with spline models as local smoothers to avoid overfitting and enforce
smoothness across the coefficients.26,34,35,36 In the model fitting, we used the first-order random walk priors (RW1) for �∗(t) and
g∗(Xi). Specifically, for �∗(t) =

∑J
j=1 I(t ∈ Ij)�j , the prior of (�1,… , �J ) is set as follows: �1 ∼ N

(

0, v21
)

and �j − �j−1 ∼
N

(

0, �2�
)

for j = 2,… , J . Similarly, for g∗(x) =
∑K+1
k=1 Bk(x)�k, the prior of (�1,… , �K+1) satisfies �1 ∼ N

(

0, v22
)

and
�k − �k−1 ∼ N

(

0, �2�
)

for k = 2,… , K + 1. Consequently, the prior density of (�1,… , �J ) is

1
√

2�v21

exp

[

−
�21
2v21

]

⋅
J
∏

j=2

1
√

2��2�
exp

[

− 1
2�2�

(

�j − �j−1
)2
]

,

and the prior density of (�1,… , �K+1) is

1
√

2�v22

exp

[

−
�21
2v22

]

⋅
K+1
∏

k=2

1
√

2��2�

exp

[

− 1
2�2�

(

�k − �k−1
)2
]

.

To obtain conjugacy, we use the normal prior for the normal mean, the inverse-gamma priors for the normal variances and
gamma priors for the baseline hazard parameters.16,17,37 We chose the values of the hyperparameters following the common
practice in Bayesian analysis for vague and minimal informative priors, e.g. a normal distribution with zero mean and very large
variance or a gamma or an inverse-gamma distribution with very small shape and rate.16,17,37,38,39,40 For the measurement error
variance �2, we use an inverse gamma prior IG (e0, f0). For baseline hazard parameters �j (j = 1,… , J ), we use a gamma
prior G (e1, f1). For the random walk prior variances �2� and �2� , we use inverse gamma priors IG (e2, f2) and IG (e3, f3),
respectively. For unobserved Xi (i = 1,… , n), we use a normal prior N (�0, �20). The hyperprior for �0 is chosen as a normal
N (0, v20) and the hyperprior for �

2
0 is chosen as an inverse gamma IG (e4, f4). We set the values of the hyperparameters above

as e0 = 0.001, f0 = 0.001, e1 = 0.001, f1 = 0.001, e2 = 0.001, f2 = 0.001, e3 = 0.001, f3 = 0.001, e4 = 0.001, f4 = 0.001,
v0 = 1000, v1 = 1000, v2 = 1000. We derive the conditional posterior distributions as follows, where rest denotes the other
parameters in the model.

1.
(

�2 ∣ D, rest
)

∼ Inv− Gamma
⎛

⎜

⎜

⎝

e0 +
∑n
i=1 mi
2

, f0 +
∑n
i=1

∑mi
l=1

(

Wil −Xi
)2

2

⎞

⎟

⎟

⎠

(6)
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2.
(

�j ∣ D, rest
)

∼ Gamma

(

dj + e1,

( n
∑

i=1
Δtij exp

(

g∗(Xi) + �jZi
)

)

+ f1

)

(7)

3.
(�j ∣ D, rest) ∝ N

(

�j ∣ ⋅
)

L(�j ∣ ⋅), (8)
where N(�1 ∣ ⋅) ∝ N(�1 ∣ 0, v21)N(�2 − �1 ∣ 0, �

2
� ), N(�J ∣ ⋅) ∝ N(�J − �J−1 ∣ 0, �2� ), N(�j ∣ ⋅) ∝ N(�j+1 − �j ∣

0, �2� )N(�j − �j−1 ∣ 0, �
2
� ) for j = 2,… , J − 1, and

L(�j ∣ ⋅) ∝
∏

{i∶ti∈(cj−1,cj ]}
exp

{

�i
[

g∗(Xi) + �jZi
]}

⋅
n
∏

i=1
exp

[

exp
(

g∗(Xi)
)

(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

.

SinceN
(

�j ∣ ⋅
)

and L(�j ∣ ⋅) are both log-concave, (�j ∣ D, rest) is also log-concave.

4.
(

�2� ∣ D, rest
)

∼ Inv− Gamma
⎛

⎜

⎜

⎝

e2 +
J − 1
2

, f2 +

∑J
j=2

(

�j − �j−1
)2

2

⎞

⎟

⎟

⎠

(9)

5.
(

�k ∣ D, rest
)

∝ N
(

�k ∣ ⋅
)

L
(

�k ∣ ⋅
)

, (10)
where N(�1 ∣ ⋅) ∝ N(�1 ∣ 0, v22)N(�2 − �1 ∣ 0, �

2
� ), N(�K+1 ∣ ⋅) ∝ N(�K+1 − �K ∣ 0, �2� ), N(�k ∣ ⋅) ∝ N(�k+1 − �k ∣

0, �2� )N(�k − �k−1 ∣ 0, �
2
� ) for k = 2,… , K , and

L
(

�k ∣ ⋅
)

∝
n
∏

i=1
exp

{

�i
[

g∗(Xi) + �∗(ti)Zi
]}

⋅
n
∏

i=1
exp

[

exp
(

g∗(Xi)
)

(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

∝
n
∏

i=1
exp

{

�i

[K+1
∑

k=1
Bk

(

Xi
)

�k + �∗(ti)Zi

]}

⋅
n
∏

i=1
exp

[

exp

(K+1
∑

k=1
Bk

(

Xi
)

�k

)(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

.

SinceN
(

�k ∣ ⋅
)

and L
(

�k ∣ ⋅
)

are both log-concave,
(

�k ∣ D, rest) is also log-concave.

6.
(

�2� ∣ D, rest
)

∼ Inv− Gamma

(

e3 +
K
2
, f3 +

∑K+1
k=2

(

�k − �k−1
)2

2

)

(11)

7.
(

�0 ∣ �20 , X1,… , Xn
)

∼ N
(

(

n�−20 + v−20
)−1 nX�−20 ,

(

n�−20 + v−20
)−1

)

(12)

8.
(

�20 ∣ �0, X1,… , Xn
)

∼ Inv−Gamma

(

e4 +
n
2
, f4 +

1
2

n
∑

i=1

(

Xi − �0
)2
)

(13)

9.
(

Xi ∣ D, rest
)

∝ N
(

�0, �
2
0
)

L
(

Xi ∣ ⋅
)

, (14)
where
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L
(

Xi ∣ ⋅
)

∝
mi
∏

l=1

1
√

2��2
exp

[

− 1
2�2

(

Wil −Xi
)2
]

⋅ exp
{

�i
[

g∗(Xi) + �∗(ti)Zi
]}

⋅ exp

[

exp
(

g∗(Xi)
)

(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

∝
mi
∏

l=1

1
√

2��2
exp

[

− 1
2�2

(

Wil −Xi
)2
]

⋅ exp

{

�i

[K+1
∑

k=1
Bk

(

Xi
)

�k + �∗(ti)Zi

]}

⋅ exp

[

exp

(K+1
∑

k=1
Bk

(

Xi
)

�k

)(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

.

SinceN
(

�0, �20
)

is log-concave and L
(

Xi ∣ ⋅
)

is piecewise log-concave,
(

Xi ∣ D, rest) is also piecewise log-concave.

3.4 Bayesian Algorithm
Since �2, �1,… , �J , �2� , �

2
� , �0 and �

2
0 have conjugate priors, they can be sampled directly from their posteriors (6), (7), (9), (11),

(12), (13). For �1,… , �J , �1,… , �K+1, X1,… , Xn, since their corresponding conditional posterior densities are log-concave or
piecewise log-concave, they can be sampled using an adaptive rejection algorithm.41
Algorithm:

Step 0: Initialize parameters. Sample from the joint posterior

Θ =
(

�2, �j , �j , �k, Xi ∣ Ti, �i,Wi1,… ,Wimi , Zi
)

, i = 1,… , n, j = 1,… , J , k = 1,… , K + 1.

Step 1: Simulate �2 ∣ rest from posterior (6).

Step 2: Simulate �j ∣ rest from posterior (7).

Step 3: Simulate �j ∣ rest from log-concave posterior density (8).

Step 4: Simulate �2� ∣ rest from posterior (9).

Step 5: Simulate �k ∣ rest from log-concave posterior density (10).

Step 6: Simulate �2� ∣ rest from posterior (11).

Step 7: Simulate �0 ∣ rest from posterior (12).

Step 8: Simulate �20 ∣ rest from posterior (13).

Step 9: By numerical integration of (14), we first compute the posterior probability of Xi in each interval
[

w0, w1
]

,… ,
[

wK−1, wK
]

, and simulate the index k of the interval that Xi belongs to from the multinomial
distribution with the calculated probabilities. We then simulate

(

Xi ∣ rest) from the piecewise log-concave
posterior density (14) truncated by the interval

[

wk−1, wk
]

.

Repeat steps 1-9 until convergence is achieved.
We conducted parameter estimation via the Markov chain Monte Carlo algorithm under a Bayesian framework in R, version

3.3.4. Adaptive rejection algorithm was implemented via R package ‘Runuran’.42 We discarded the first 1000 Markov chain
Monte Carlo samples, and inference was conducted using a total of 4000 posterior samples after burn-in. Convergence was
evaluated on the basis of deviance and trace plots of model parameters. Convergence was achieved within the burn-in iterations.

3.5 Inference for Goodness-of-fit and Selection of Number of Knots
We used the DIC to assess the trade-off between model fit and complexity and to select the number of knots for B-splines.43
The DIC is defined in R2WInBUGS44 as

DIC = D(�∗) + pD,
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whereD(�∗) is the posterior mean deviance to summarize fit, pD is the additional term to summarize complexity. The posterior
mean deviance D(�∗) is a Bayesian measure of how well the model fits the data, the smaller it is, the better the model fits. The
term pD measures the effective number of parameters included in the model, the larger the effective number of parameters is, the
easier it is for the model to fit the data, and the larger deviance should be penalized. Therefore, DIC is considered as a Bayesian
measure of fit, penalized by an additional complexity term.43
Here, the deviance is defined as

D(�∗) = −2logL(Data|�∗),
the additional complexity term is defined as

pD = pv =
Var (D (�∗))

2
,

which is an alternative measure for model complexity.37,45,46 It is positive, invariant to parametrization and considered robust
and accurate in estimating the effective number of model parameters.37,45,46 For the proposed model, the likelihood used to
compute the deviance is the complete likelihood as in the DIC5 from Celeux et al. (2006)47:

L = L (W ,X,Z ∣ �∗)

=
n
∏

i=1

1
√

2��20

exp

[

− 1
2�20

(

Xi − �0
)2
]

⋅
n
∏

i=1

mi
∏

l=1

1
√

2��2
exp

[

− 1
2�2

(

Wil −Xi
)2
]

⋅
J
∏

j=1
�djj

n
∏

i=1
exp

{

�i
[

g∗(Xi) + �∗(ti)Zi
]}

⋅
n
∏

i=1
exp

[

exp
(

g∗(Xi)
)

(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

.

For the naive model, the likelihood used to compute the deviance is the same as the original definition in Spiegelhalter et al.
(2002)43:

L = L
(

W ,Z ∣ �∗
)

=
J
∏

j=1
�djj

n
∏

i=1
exp

{

�i
[

g∗(W i⋅) + �∗(ti)Zi

]}

⋅
n
∏

i=1
exp

[

exp
(

g∗(W i⋅)
)

(

−
J
∑

j=1
�j exp(�jZi)Δtij

)]

,

whereW i⋅ = m−1i
∑mi
l=1Wil is the mean of the replicated measures for subject i. For the ideal model, substituteW i⋅ with Xi.

One may choose knots that are equally-spaced or quantile-based. In this paper, we choose locations of knots on the quantiles
of the observed measurements of X with approximately equal number of events. To be more specific, for k = 1,… , K , the
number of events in the interval Ik =

[

wk−1, wk
]

is dk =
∑n
i=1

∑mi
l=1 �i ⋅ I(Wil ∈ Ik). Knots were placed accordingly such that

d1 ≈ … ≈ dK . We performed experiments with other knots placement strategies, such as equally-spaced or at the quantiles of
observed measurements of X. The current strategy worked best in our study.
For the piecewise constant functions that approximate ℎ0(t) and �(t), we set the number of intervals J proportional to the

square-root of the number of events. Denoting V as the number of events, we have J = c
√

V . By experiment, we found c = 0.3
works well in our study (see Section S.1 in the supplementary materials). The J − 1 internal knots were placed on the quantiles
of time with approximately equal number of events.

4 SIMULATION STUDY

We conducted Monte Carlo (MC) simulations to evaluate the performance of our proposed method. We compare our proposed
method with the ideal method that uses the true value of the unobserved latent covariate and the naive method that replaces Xi
byW i⋅.
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TABLE 1 Simulation Scenario (1): X is with normal error and independent of Z.

n=1000 n=2000

� Method Mean Bias Mean SE Emp. SE 95% CR MSE Mean Bias Mean SE Emp. SE 95% CR MSE

Ideal 0.064 0.157 0.129 96 0.022 0.039 0.124 0.101 97 0.013
0.3 Proposed 0.073 0.166 0.140 94 0.027 0.046 0.130 0.107 97 0.015

�(t) Naive 0.206 0.149 0.124 71 0.066 0.192 0.116 0.095 58 0.052
0.5 Proposed 0.078 0.175 0.143 95 0.028 0.048 0.138 0.110 97 0.015

Naive 0.338 0.147 0.123 35 0.142 0.330 0.114 0.094 22 0.128
Ideal 0.042 0.161 0.186 88 0.039 0.027 0.121 0.140 88 0.022

0.3 Proposed 0.058 0.243 0.231 93 0.061 0.055 0.179 0.179 89 0.038
g(x) Naive 0.157 0.166 0.178 75 0.069 0.139 0.123 0.133 71 0.049

0.5 Proposed 0.078 0.298 0.246 96 0.072 0.069 0.230 0.213 92 0.054
Naive 0.286 0.162 0.162 58 0.158 0.272 0.121 0.120 50 0.136

TABLE 2 Simulation Scenario (2): X is with non-normal error and independent of Z.

n=1000 n=2000

� Method Mean Bias Mean SE Emp. SE 95% CR MSE Mean Bias Mean SE Emp. SE 95% CR MSE

Ideal 0.064 0.157 0.129 96 0.022 0.039 0.124 0.101 97 0.013
0.3 Proposed 0.059 0.166 0.155 94 0.029 0.045 0.132 0.104 98 0.014

�(t) Naive 0.157 0.150 0.139 79 0.049 0.172 0.118 0.094 69 0.044
0.5 Proposed 0.062 0.176 0.163 93 0.032 0.050 0.140 0.112 98 0.016

Naive 0.269 0.148 0.138 52 0.103 0.291 0.115 0.090 28 0.102
Ideal 0.042 0.161 0.186 88 0.039 0.027 0.121 0.140 88 0.022

0.3 Proposed 0.072 0.249 0.227 93 0.060 0.067 0.185 0.185 90 0.043
g(x) Naive 0.126 0.170 0.200 77 0.063 0.114 0.122 0.133 74 0.039

0.5 Proposed 0.098 0.289 0.271 93 0.090 0.110 0.219 0.200 91 0.060
Naive 0.223 0.168 0.196 63 0.115 0.207 0.128 0.131 60 0.090

TABLE 3 Simulation Scenario (3): X is with normal error and correlated with Z.

n=1000 n=2000

� Method Mean Bias Mean SE Emp. SE 95% CR MSE Mean Bias Mean SE Emp. SE 95% CR MSE

Ideal 0.040 0.187 0.158 97 0.027 0.038 0.141 0.129 95 0.019
0.3 Proposed 0.044 0.203 0.173 96 0.033 0.047 0.152 0.139 95 0.022

�(t) Naive 0.231 0.181 0.160 76 0.082 0.246 0.136 0.129 54 0.080
0.5 Proposed 0.047 0.222 0.195 96 0.041 0.051 0.163 0.152 95 0.027

Naive 0.458 0.175 0.160 25 0.238 0.469 0.131 0.132 9 0.240
Ideal 0.066 0.196 0.220 87 0.060 0.053 0.143 0.171 86 0.038

0.3 Proposed 0.075 0.239 0.249 89 0.075 0.066 0.190 0.199 87 0.049
g(x) Naive 0.128 0.190 0.206 82 0.069 0.114 0.138 0.159 76 0.050

0.5 Proposed 0.100 0.289 0.296 89 0.107 0.085 0.216 0.223 88 0.063
Naive 0.198 0.183 0.194 70 0.125 0.188 0.130 0.151 65 0.113

For each data set, we simulated the time-to-event endpoint from a Cox model with a Weibull baseline hazard function ℎ0(t) =
abtb−1, where a = 0.1 is the rate parameter and b = 1.1 is the shape parameter. We set �(t) = c(t + 2)d for the time varying
coefficient for the baseline covariate, where c = −1.5 and d = 0.1. We set x0 = 0 and

g(x) =
3 sin(�x∕2)

1 + 2x2{2 − 1.5 sign(x)}
,

where sign(x) =1 if x >0, sign(x) =-1 if x <0, and sign(x) =0 if x =0.
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We consider three simulation scenarios as follows:

(1) X ⟂ Z, Xi
i.i.d.∼ N(0, 1), �il

i.i.d.∼ N(0, �2).

(2) X ⟂ Z, Xi
i.i.d.∼ N(0, 1), �il

i.i.d.∼ scaled t3 with variance �2 .

(3) If Zi = 0, Xi
i.i.d.∼ N(−1, 1), else Xi

i.i.d.∼ N(1, 1), �il
i.i.d.∼ N(0, �2).

Here the covariateZi was simulated from a Bernoulli distribution with the probability equals to pz = 0.5. These three scenarios
represent three situations where X is subject to normal error and independent of Z, X is subject to non-normal error and
independent of Z, and X is subject to normal error and correlated with Z. For the third scenario, to account for the correlation
between X and Z in the model, we assume that X has two different normal priors respectively for Z = 0 and Z = 1 in the
Bayesian estimation steps. We simulated the censoring times independently from a uniform distribution and truncated them
by the study endpoint. The censoring rate is around 40%. For each of the three scenarios, we consider sample sizes n=1000
and 2000, measurement error variances �2 = 0.32 and 0.52, and two repeated measures of Xi were simulated for each subject
based on (1). A total of 100 replicates were performed for each scenario. We used estimates from the naive method as the
initial values in our proposed approach. On average, the proposed Bayesian method converges fast. The modeling performance
is evaluated based on five metrics, including the mean bias, the mean standard error (SE), the empirical standard error (Emp.
SE), the coverage probabilities of the 95% confidence intervals (95% CR), where the confidence intervals are Bayesian highest
density interval (HDI), and the mean squared error (MSE). For each function of �(t) and g(x), we computed these metrics on an
equally-spaced 100 grid points. Specifically, for the mean bias, we first computed the mean bias at each of the 100 grid points
and then took the average of their absolute values; for the mean standard error, the empirical standard error, 95% CR, and the
MSE, we first computed the metrics at each of the 100 grid points and then took the average.
Tables 1-3 and Figures 1-3 present the simulation results. The naive approach had a moderate performance when variance

and sample size were small and its performance worsened as the error variance increased. On average, the naive estimates of
�(t) had large bias and the coverage probabilities of the 95% confidence intervals were far from the nominal levels as the error
variance increasing. In contrast, the proposed approach generally performed well in all scenarios. The estimated parameters had
small bias and the coverage probabilities were either better or comparable to the ideal method. Compared to the naive approach,
the MSEs of the proposed approach were usually smaller, but could be slightly larger for estimating g(x) when �2 is small since
the naive estimates had smaller variances. Figures 1-3 show that the estimated g(x) from the proposed approach are very close
to the true curve. The coverage probabilities of g(x) from the ideal approach were similar for n = 1000 and 2000 and ranged
between 86% and 88%, which were lower than the nominal level. One possible reason is that the variations from the model
selections were not taken into account in constructing the confidence intervals. In addition, the placement of the knots did not
take into account of the shape of g(x), which makes the coverage probabilities lower in intervals with high curvature in g(x)
and low event density. These aspects might also contribute to the decrease of the coverage probabilities of the proposed method
when sample size increased from 1000 to 2000. To explore the influence of the function shape, we conducted simulations when
g(x)was a function with lower curvature and obtained the ideal estimates. The coverage probabilities were closer to the nominal
level (see Section S.2 in the supplementary materials).

5 REAL DATA APPLICATION ON ACTG

We applied our proposed approach to the AIDS Clinical Trials Group (ACTG) Protocol 175 data.48 The ACTG 175 is a double-
blind randomized controlled trial evaluating different treatment regimens effectiveness in HIV-infected patients. It compared
four treatment regimens, zidovudine alone, zidovudine plus didanosine, zidovudine plus zalcitabine and didanosine alone, in
HIV-infected participants based on the time to progression to AIDS-defining event or death.48 A total of 2467 participants
were recruited in the study between December 1991 and October 1992. By following the participants until November 1994,
researchers recored a total of 308 events. Since the primary study suggested that zidovudine alone is less effective compared to
the other three treatment regimens, the aim of further investigations is to compare two treatment groups, which are zidovudine
alone and the combination of the other three.
We are interested in investigating the effect of treatment on survival time adjusted for baseline CD4 counts. CD4 counts are

commonly used as biomarker in clinical trials to assess HIV-infected patients for treatment eligibility and monitor antiretroviral
response to treatment.49 CD4 measurements is known to be measured with error, mainly due to physiologic biologic variation
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FIGURE 1 Simulation Scenario (1): Estimated �(⋅) left and g(⋅) right.



Pan ET AL 11

0 5 10 15 20

−
2

.2
−

2
.0

−
1

.8
−

1
.6

−
1

.4

t

β
(t

)

True Proposed Ideal Naive

−2 −1 0 1 2

−
1

.0
0

.0
0

.5
1

.0
1

.5
2

.0

x

g
(x

)

True Proposed Ideal Naive

n=1000, σ=0.3

0 5 10 15 20

−
2

.2
−

2
.0

−
1

.8
−

1
.6

−
1

.4

t

β
(t

)

True Proposed Ideal Naive

−2 −1 0 1 2

−
1

.0
0

.0
0

.5
1

.0
1

.5
2

.0

x

g
(x

)

True Proposed Ideal Naive

n=1000, σ=0.5

0 5 10 15 20

−
2

.2
−

2
.0

−
1

.8
−

1
.6

−
1

.4

t

β
(t

)

True Proposed Ideal Naive

−2 −1 0 1 2

−
1

.0
0

.0
0

.5
1

.0
1

.5
2

.0

x

g
(x

)

True Proposed Ideal Naive

n=2000, σ=0.3

0 5 10 15 20

−
2

.2
−

2
.0

−
1

.8
−

1
.6

−
1

.4

t

β
(t

)

True Proposed Ideal Naive

−2 −1 0 1 2

−
1

.0
0

.0
0

.5
1

.0
1

.5
2

.0

x

g
(x

)

True Proposed Ideal Naive

n=2000, σ=0.5

FIGURE 2 Simulation Scenario (2): Estimated �(⋅) left and g(⋅) right.
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and assay performance.50,51 Therefore, the measured CD4 counts may not reflect the true underlying CD4 counts. Most partic-
ipants in ACTG 175 study had replicated CD4 measurements before receiving treatment. After excluding 4 CD4 observation
outliners, for each participant, we used two repeated measurements between 3 weeks before randomization and 1 week after
randomization as replicates for the baseline CD4 measurements, those with only 1 measurement were also included. To achieve
approximate constant variance, we applied the logarithmic 10 transformation to the CD4 counts. We have a total of 2463 ana-
lytical participants, of which 307 events were observed and 2156 were censored. To investigate the normality assumption on
the measurement error, we produced a normal Q-Q plot for within-person CD4 measurement differences (Figure 4). It shows a
slight deviation from normality in the tails, which is similar to the t distribution.
We used DIC to select among models with g∗(⋅) being a B-spline of 1 to 9 internal knots or a linear function to determine

whether the true unknown g∗(⋅) for CD4 is linear or nonlinear, and with both ℎ∗(⋅) and �∗(⋅) being a piecewise constant function
of 1 to 5 internal knots. And Xi is the logarithmic 10 transformed CD4, Zi is the indicator variable I(treatment ≠ zidovudine
alone). We set x0 = 1.806, which is the minimum observed log10CD4.
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We compared models according to DIC: a smaller DIC suggests the model has a better fit. The model with 2 internal knots
for g∗(⋅) and 4 internal knots for ℎ∗(⋅) and �∗(⋅) has the smallest DIC (-4353). Denote this model byM�(t). The corresponding
estimated functions on the treatment effect and the unobserved true CD4 measures are presented in Figure 5. The estimated
measurement error variance is 0.0066 (95% CI: [0.0062, 0.0069]). We also fixed �∗(⋅) as a non-time-varying constant � and used
DIC to select among models with g∗(⋅) being a B-spline of 1 to 9 internal knots or a linear function and with ℎ∗(⋅) a piecewise
constant function of 1 to 5 internal knots. The model with 5 internal knot for g∗(⋅) and 4 internal knots for ℎ∗(⋅), denoted byM� ,
has the smallest DIC (-4273), which is larger than the DIC ofM�(t). To further evaluate the evidence of time-varying covariate
effect, we also compared the two modelsM�(t) andM� using the Bayes factor.52,53 The Bayes factor ofM�(t) toM� is 494. This
result indicates decisive evidence for the model with time-varying �(⋅).53
We found that the use of different treatment regimens is significantly associated with the risk of progression to AIDS-defining

events or death after adjusting for CD4 counts. The difference between the two treatment groups is stable at the early stage and
then decrease over time. A potential reason can be drug effect eliminating across time. It can be seen from Figure 5 that log
hazard decreases when log10CD4 count increases. There are obvious changes of rates when the log10CD4 count is between 2.4
to 2.5 or the CD4 count is between 250 to 315. We also repeat the above analyses using the naive method. The model with 1
internal knot for g∗(⋅) and 3 internal knots for ℎ∗(⋅) and �∗(⋅) was selected according to DIC (5866). The difference between the
two treatment groups seems to slightly increase at the early stage and then decrease over time. On average, we observe similar
results on the estimate of treatment effect compared to the proposed method. A potential reason could be that the measurement
error is relatively small in the real data. The naive estimate of g(⋅) is closer to a straight line. The estimated rate of log hazard
decrease with log10CD4 count is larger for low CD4 count (fewer than around 250) than the proposed estimate, and smaller for
median range CD4 count (between around 250 to 315), and similar for higher CD4 count (more than around 315).

6 CONCLUSION

We considered a Cox-typemodel that depends nonparametrically on an error-contaminated covariate and allows for time-varying
covariate effect. The nonlinear effect and time-varying covariate effect are estimated via nonparametric Bayesian approach.
The simulation study shows that our proposed method has significantly better modeling performance compared to the naive
method under all simulation scenarios. As it is shown in the simulation studies, our proposed method also works well when the
measurement error follows a t distribution with degree of freedom equals 3.
Our current work focused on survival models with normally distributed covariates contaminated with normal error. The

proposed method can potentially be extended to survival models with non-normally distributed covariates contaminated with
non-normal error. Other survival models such as frailty models and recurrent event models and other censoring mechanisms
such as interval censoring may also be explored. Another potential future research topic is to extend the proposed method to
allow for different measurement error models.
Our proposedmethod can be applied to a wide range of clinical trials and epidemiology studies wheremodeling the association

between the unobserved covariate and the survival outcome plays an important role.
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