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Abstract. Cancer cells at the tumor boundary move in the direction
of the oxygen gradient, while cancer cells far within the tumor are in a
necrotic state. This paper introduces a simple mathematical model that
accounts for these facts. The model consists of cancer cells, cytotoxic
T cells, and oxygen satisfying a system of partial di↵erential equations.
Some of the model parameters represent the e↵ect of anti-cancer drugs.
The tumor boundary is a free boundary whose dynamics is determined by
the movement of cancer cells at the boundary. The model is simulated for
radially symmetric and axially symmetric tumors, and it is shown that
the tumor may increase or decrease in size, depending on the “strength”
of the drugs. Existence theorems are proved, global in-time in the radially
symmetric case, and local in-time for any shape of tumor. In the radially
symmetric case, it is proved, under di↵erent conditions, that the tumor
may shrink monotonically, or expand monotonically.

1. Introduction

We consider a tumor region ⌦(t) in 3-D space with boundary @⌦(t) that
varies in time. Within ⌦(t) there are cancer cells with density C(x, t) and
other species with densities/concentrations Xi(x, t) (1  i  m). These
variables satisfy a system of partial di↵erential equations (PDEs) of the
following form:

@C

@t
� �Cr2C = �C(X)C

⇣
1� C

K

⌘
� F (X)C, (1.1)

@Xi

@t
� �Xir2Xi = �Xi(X,C)� dXi(X,C)Xi (i  i  m), (1.2)
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2 A CANCER MODEL WITH NONLOCAL FREE BOUNDARY DYNAMICS

where X = (X1, · · · , Xm), �C and �Xi are di↵usion coe�cients, �C and
�Xi are growing rates of C and Xi, F and dXi are killing rate of C and
death/degradation rates of Xi, and K is the carrying capacity of cancer
cells. The species Xi are cells, proteins or other molecules.

The variables C and Xi satisfy boundary conditions on @⌦(t), but the
boundary is unknown, it is a free boundary that needs to be determined
together with the solution of the PDE system. A fundamental question is
how to derive the law that governs the dynamics of the free boundary @⌦(t).

This question was addressed by Byrne and Chaplain [1], starting with the
assumption that

C(x, t) ⌘ const. for all x 2 ⌦(t), t � 0. (1.3)

They introduced variables � (externally-supplied nutrients), � (externally-
supplied inhibitors), and ! (internally-produced inhibitors) satisfying di↵u-
sion equations

r2� + F� = r2� + F� = r2! + F! = 0 in ⌦(t)

with appropriate boundary conditions on @⌦(t), and a proliferation rate
function S(�, �,!). Assuming that cancer cells move with velocity ~v(x, t),
and taking C(x, t) ⌘ 1, the mass conservation law yields the equation

r · ~v(x, t) = S(�, �,!)(x, t). (1.4)

Byrne and Chaplain [1] specify the dynamics of the free boundary ⌦(t)
by defining, for each (x, t) 2 @⌦(t), the velocity in the outward normal
direction, n(x, t), as

Vn(x, t) = ~v(x, t) · n(x, t). (1.5)

Eq. (1.5) alone does not, of course, define the vector ~v(x, t), except in the
case where the tumor and all variables are radially symmetric. In the non-
radially symmetric case, another condition is needed, such as Darcy’s law

~v = �rp,

where p is the pressure within cancer cells in ⌦(t), or Stokes equation which
relates ~v to rp by a PDE system.

The assumption (1.3) was extended to the general systems (1.1-1.2) with
cells X1, · · · , Xk, and proteins and molecules Xk+1, · · · , Xm, by taking

C(x, t) +
kX

i=1

Xi(x, t) ⌘ const. for all x 2 ⌦(t), t � 0;

see review in [2, Chapter 6]. This condition was used also in other free
boundary problems that arise in biology, for example in the growth of plaques
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in atherosclerosis [3, 4] and in multiple sclerosis [5] and in the growth of
granuloma in tuberculosis [6] and in leishmaniasis [7].

Motivated by the fact that the density of cancer cells is definitely far
from being constant throughout the tumor (see for instance [8, 9, 10]), we
develop in this paper an alternative approach to defining the velocity of the
free boundary. We denote the volume of ⌦(t) by V (t) and note that the
growth of V (t) is positively correlated to the growth of the total mass of
cancer cells in ⌦(t), so that

dV (t)

dt
= µ(t, C)

Z

⌦(t)

@C(x, t)

@t
dx, (1.6)

where µ(t, C) is a positively-valued function that depends on t and the ag-
gressiveness of the cancer. In Section 2 we explain how to use the system
(1.1)-(1.2) and boundary conditions to determine the relation between the
movement of @⌦(t) and dV (t)

dt , and this, in conjunction with Eq. (1.6), will
provide the nonlocal dynamics of the free boundary in terms of µ(t, C).

For clarity, we shall do this for a simple PDE system that includes just C
and two other species, namely, e↵ector T cells (T ) and oxygen (w).

In Section 2, we develop the mathematical model; the model includes sev-
eral parameters which represent the e↵ect of anti-cancer drugs. Simulations
of the model, under di↵erent drug treatments, are given in Section 3 in the
case of radially symmetric tumors, and, in Section 4, in the case of axially
symmetric tumors. In Section 5, we prove the existence of solutions of radi-
ally symmetric tumors, for all t > 0, and, in Section 6 we prove local-in-time
existence for the case of general shaped tumors. Section 7 is concerned with
the behavior of the free boundary r = R(t) of radially symmetric tumors.
Taking the killing rate of cancer cells by T cells as a parameter ⌘, we prove
that for ⌘ large, dR(t)/dt < 0, while, for ⌘ small, dR(t)/dt > 0, and the
tumor can grow to any size if ⌘ is arbitrarily decreased.

2. Mathematical model

The function µ(t, C) in Eq. (1.6) may depend on the specific cancer and
on the shape of the tumor. For simplicity we take it to be just a positive
function of t, µ(t), so that

dV (t)

dt
= µ(t)

Z

⌦(t)

@C(x, t)

@t
dx for t > 0. (2.1)

The concentration of oxygen, w(x, t), within the tumor decreases from the
tumor rim toward the tumor core. Hence, the tumor proliferation rate also
decreases from the rim toward the core. We account for this situation by
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taking the proliferation rate of C to be �C
[w�wh]+

w0�wh
, where w0 is the concen-

tration of oxygen in healthy tissue and wh is an hypoxic level below which
cancer cells do not proliferate; they are either in senescence or, if they died,
their debris remains in the tumor. Naturally, we have w0 > wh.

In addition to oxygen w(x, t), we introduce in the model also cytotoxic T
cells (CD8+ T cells), T (x, t), which kill cancer cells at some constant rate ⌘.
Hence the equation for C takes the following form:

@C

@t
� �Cr2C = �C

[w � wh]+

w0 � wh
C
⇣
1� C

K

⌘
� ⌘TC in ⌦(t), for t > 0. (2.2)

Dendritic cells, a professional antigen-presenting cells that link innate and
adaptive immunity, recognize cancer cells, and then activate the T cells.
Noting that T cells use primarily anaerobic respiration to support bioener-
getic needs [11, 12], we denote the proliferation rate of T by �TC for some
parameter �T , independent of w. Denoting by dT the death rate of T cells,
the equation for T cells then takes the following form:

@T

@t
� �Tr2T = �TC � dTT in ⌦(t), for t > 0.

We shall consider anti-cancer treatment with CAR-T therapy [13]. In this
treatment, the patient’s T cells are removed from the blood and undergo
genetic modification so that they produce proteins that directly recognize
proteins expressed on cancer cells: The modified T cells are then injected
back into the patient. We assume that, under CAR-T therapy, the parameter
�T is increased.

We shall also consider anti-cancer treatment by immune checkpoint block-
ade. T cells have receptors, such as PD-1, that serve as checkpoints, while
cancer cells express the ligands PD-L1. The complex PD-1/PD-L1 deacti-
vates T cells. A drug that inhibits PD-1, increases the anti-cancer activity
of T cells [14, 15, 16]. We represent the e↵ect of such a drug by an increase
in the parameter ⌘.

We shall finally consider cancer vaccines that serve to enlarge the pool of
tumor-specific T cells which are dormant in the lymph nodes [17]. GVAX
is a common cancer vaccine composed of tumor cells genetically modified to
secrete GM-CSF and then irradiated to prevent further cell division. GM-
CSF can activate dendritic cells [18, 19, 20] which then activate dormant T
cells. We represent the e↵ect of the vaccine by adding a source "dTT0 to
the T-equation, where T0 is the density of the inactive (naive or dormant)
T cells from the lymph nodes, so that

@T

@t
� �Tr2T = �TC � dT (T � "T0) in ⌦(t), for t > 0; (2.3)
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since, in steady state with C ⌘ 0, T should be no greater than T0, the
parameter " is restricted to the interval 0  "dT  1.

We assume that oxygen is consumed at constant rate by cancer cells, so
that

@w

@t
� �wr2w = �dwCCw � dww in ⌦(t), for t > 0, (2.4)

where dwC and dw are constants.
Since there are no cancer cells outside ⌦(t), C satisfies a boundary con-

dition of the from

↵
@C

@n
+ (1� ↵)C = 0 on @⌦(t), for t > 0,

for some 0  ↵  1, where n(x, t) is the outward normal to @⌦(t) at x. We
take ↵ = 1 so that

@C

@n
= 0 on @⌦(t), for t > 0, (2.5)

but all the analysis and simulation results of this paper can be extended to
the case where 0 < ↵ < 1. Since C > 0 on the tumor rim, the case ↵ = 0
can be excluded.

We assume that

@T

@n
+ �(t)(T � T0) = 0 on @⌦(t), for t > 0,

where �(t) > 0 if T < T0, �(t) = 0 if T � T0. (2.6)

Cancer cells under hypoxia secrete vascular endothelial growth factor
(VEGF) that induces the formation of new blood capillaries around the
tumor, resulting in increased oxygen concentration at the boundary @⌦(t)
to some level W above w0; W can be decreased by treatment with VEGF
inhibitor, a commonly used drug. We take

w = W on @⌦(t), for t > 0, where W � w0, (2.7)

assuming that W = w0 under e↵ective treatment with VEFG inhibitor.
We next consider the dynamics of the free boundary. We assume that

cancer cells that are on the boundary at time t = 0 remain on the boundary
for all t > 0; more precisely, that the movement of boundary points coincides
with the movement of cancer cells at these boundary points. We consider
first the case where ⌦(t) is increasing for 0  t  t0.

Cancer cells proliferate abnormally fast, and require increased supply of
oxygen. We assume that cancer cells at a point x = x(t) 2 ⌦(t) move in the
direction of the gradient rw(x, t) (of increased oxygen concentration) with
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velocity proportional to |rw(x, t)|, so that

dx(t)

dt
= ⇢(t)rw(x(t), t) in ⌦(t), t > 0; (2.8)

hence the movement of x(t) along the outward normal n(x(t), t) is given by

dx(t)

dt
· n(x, t) = ⇢(t)

@w(x(t), t)

@n(x, t)
on @⌦(t), t > 0, (2.9)

where the function ⇢(t) is to be determined.
During a small time interval (t, t+�t), the boundary points of @⌦(t) span

a region of volume approximated by

V (t+�t)� V (t) ⇡
Z

@⌦(t)

⇢(t)
@w(x(t), t)

@n(x, t)
dSx ·�t,

where dSx is the area element on @⌦(t). Taking �t arbitrarily small, we get

dV (t)

dt
= ⇢(t)

Z

@⌦(t)

@w(x(t), t)

@n(x, t)
dSx.

Substituting dV
dt from Eq. (2.1) and @C

@t from Eq. (2.2), and using the
non-flux boundary condition (2.5), we find that

⇢(t) =
µ(t)

R
⌦(t)

⇣
�C

[w�wh]+

w0�wh
C
⇣
1� C

K

⌘
� ⌘TC

⌘
dx

R
@⌦(t)

@w(x(t),t)
@n(x,t) dSx

. (2.10)

Since we assumed that ⌦(t) is increasing for 0  t  t0, we expect ⇢(t) to
be positive for 0  t  t0. If ⇢(t) < 0 for 0  t  t0 (for example when ⌘T is
large), it means that the ⌦(t) is actually decreasing. In this case we assume
that the T cells push back the points x on @⌦(t) in the reverse direction of
rw(x, t) with a velocity proportional to |rw(x, t)|, and we find, as before,
that the proportionality coe�cient is ⇢(t) given by the same equation (2.10).
Thus, regardless of whether ⌦(t) is increasing or decreasing, the dynamics
of the free boundary is given by the system (2.8)-(2.10).

To summarize: the surfaces @⌦(t), t > 0, are spanned by the points whose
velocity is given by Eq. (2.8), and, in the normal direction, by Eq. (2.9),
where ⇢(t) is defined by Eq. (2.10), and (w,C, T ) is the solution of the PDE
system (2.2)-(2.7) in

⌦t = {(x, ⌧) : x 2 ⌦(⌧) and 0  ⌧  t}
with prescribed initial conditions.

In the special case where ⌦(t), C, T and w are radially symmetric, we
have

⌦(t) = {0  r  R(t)}, @⌦(t) = {r = R(t)}, (2.11)
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and C = C(r, t), T = T (r, t), w = w(r, t) where r = |x|, and

dR(t)

dt
= ⇢(t)

@w(R(t), t)

@r
=

3µ(t)

R(t)2

Z R(t)

0

⇣
�C

[w � wh]+

w0 � wh
C
⇣
1� C

K

⌘
�⌘TC

⌘
r2dr.

(2.12)
Parameter values used in the model simulations are given in Table 1.

Table 1. Parameter description and value: Est=estimated
and TW=this work

Parameter Description Value
�C di↵usion coe�cient of cancer cells 8.64⇥ 10�7 cm2 day�1 [21]
�T di↵usion coe�cient of T-cell 8.64⇥ 10�7 cm2 day�1 [21]
�w di↵usion coe�cient of oxygen 2 cm2 day�1 [22]
w0 concentration of oxygen in healthy tissue 4⇥ 10�6 g/cm�3 [22]
wh hypoxic level of oxygen 2.5⇥ 10�6 g/cm�3 [22]
dT death rate of T cells 0.18/day [21]
dw consumption rate of oxygen 1.04/day [21]
dwC consumption rate of oxygen by cancer cells 2.08/day TW
�C proliferation rate of cancer cells 2.24 day�1 [21]
�T cancer-induced proliferation rate of T cells 4⇥ 10�3 day�1 [21] & Est
T0 level of naive T cells 10�3 g/cm�3 [21] & Est
K carrying capacity of cancer cells 0.4 [21]

3. Numerical results for radially symmetric tumors

The choice of µ(t) determines how fast the tumor volume grows. In the
numerical simulations, for radially symmetric tumors, we take

µ(t) = 2 + t/5, �(t) =

(
1 if T  T0,

0 if T > T0,

and the following initial conditions:

d = 0.1 cm, R(0) = 0.5 cm, C(r, 0) = 0.9K
([r �R(0) + d]+)2

d2
,

w(r, 0) = (W � wh)
([r �R(0) + d]+)2

d2
,

T (r, 0) = T0 min

⇢
([r �R(0) + 2d]+)2

d2
, 1

�
.
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In the following three figures, we consider the case where the tumor was
already treated with VEGF inhibitor, so that W = w0.

Fig. 1 with ⌘ = 100, �T = 4 ⇥ 10�3 shows the average density of C,
T and w over 180 days, and the corresponding growth of the tumor radius
from R(0) = 0.5 to R(180) = 1.8 cm. We see that as the tumor radius
increases, the average density of oxygen is decreasing, while the average
densities of C and T are increasing in the first 50 days and then remain
almost constant. We also see that, at t = 180 days, the spatial densities
of C, T , and w are increasing from the tumor center r = 0 to the tumor
boundary r = R(180). We note, in particular, that the necrotic core, where
w < wh, is approximately the region 0  r < 0.7 cm, and in this region
there are hardly any T cells; T cells are mostly present where the cancer
cells are proliferating, and their density correlates to the density of cancer
cells.

Fig. 1 with ⌘ = 100 and �T = 4⇥10�2, an increase of the parameter �T by
a factor of 10, represents a treatment by CAR-T therapy. Tumor radius was
substantially decreased, and, in particular, R(180) = 1.4 cm compared to 1.8
cm without CAR-T therapy. As a result, the average oxygen concentration
is much higher and, in particular, it is above the hypoxic level wh by day
180.

Treatment by anti-PD-1 means an increase in the e↵ective killing rate ⌘
of cancer cells by T cells. Fig. 1 with ⌘ = 500 and �T = 4 ⇥ 10�3 shows
that such treatment reduced R(180) from 1.8 cm to 0.9 cm, the oxygen
concentration has increased and the necrotic core decreased, from 0  r <
0.5 to 0  r < 0.2 cm.

In Fig. 2 we simulated the e↵ect of treatment with cancer vaccine (" = 2)
and gradually increasing anti-PD-1 (⌘). Starting with R(0) = 0.5 cm, we
see that the radius growth decreases as ⌘ increases. In the case where �T =
4 ⇥ 10�3, ⌘ = 500, the radius R(180) = 1.3 cm in Fig. 1 (when " = 0) is
significantly reduced to R(180) = 0.7 cm with vaccine treatment at " = 2.
We also see an initial oscillation in R(t) and in the cancer average density
C(t). Such oscillations were observed also in [23] and can be explained as
follows: If C(t) decreases then �TC, and hence T decreases, so the killing
rate ⌘T of C decreases and this may result in an increase in C soon after
time t.
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Figure 1. Treatment with VEGF inhibitor. W = w0 on the
free boundary, with " = 0 and di↵erent �T and ⌘. The first
four figures describe the dynamic of the average density of w,
T , C (in units of g/cm3) within the tumor, and the radius
growth during 180 days. The last three figures describe the
densities of w, T , C along the radius of the tumor at day
t = 180.
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Figure 2. Treatment with VEGF inhibitor, immune check-
point blockade, and cancer vaccine. W = w0 on the free
boundary, with �T = 4 ⇥ 10�3 and " = 2. The first four
figures describe the dynamic of the average density of w, T , C
(in units of g/cm3) within the tumor, and the radius growth
during 180 days. The last three figures describe the densities
of w, T , C along the radius of the tumor at day t = 180.
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4. 3D numerical results for axially symmetric tumors

In this section, we consider axially symmetric tumor, that is, all species
are functions of (r, z) where r =

p
x2 + y2, and

⌦(t) = {(r, z); |z|  R(r, t)}.
To simulate ⌦(t), t > 0, we discretize the spatial direction by using the finite
di↵erence method, solve the semi-discretized temporal system by using the
explicit Runge-Kutta 4th order scheme. In particular, we use the uniform
grid points on the ✓ direction with a stepsize �✓ = 2⇡

m , namely, ✓j = j�✓,
j = 0, . . . ,m � 1 where m is the number of grid points. For the radius on
each ✓j direction, we use the uniform grid points with a stepsize hj, namely,
ri,j = ⇢j + ihj with hj = R�⇢j

n and i = 0, 1, . . . , n, where n is the number
of grid points on each radius. Then we use the central di↵erence scheme to
approximate the derivatives for both r and ✓.

Fig. 3 shows 2 rows of tumors with µ(t) = 2 + t and �T = 4 ⇥ 10�3. In
the first row, ⌘ = 1000 and " = 0 and in the second row, ⌘ = 10000 and
" = 0.1. In the first row, tumor volume increases in time, and in the second
row, the tumor volume is decreasing.

If the oxygen concentration is linearly decreasing along the internal normal
to the boundary, then, as tumor volume increases, boundary points near a
reentrant corner should be moving with greater velocity than points away
from the reentrant corner, and this results in a decrease in the reentrant
corner. Indeed, this is clearly seen in the two simulations of the top row
in Fig. 3. Conversely, for the same reason, as tumor volume decreases,
boundary points near reentrant corner recede further than boundary points
elsewhere, as seen in the second simulation of the bottom row in Fig. 3.
Fingers, as in the first simulation of the bottom row of Fig. 3, are also
shrinking fast, for the same reason, in fact they recede so fast that the
nearby reentrant corner is even decreasing.
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Figure 3. Axially symmetric 3-D tumors with W = w0 and
�T = 4⇥10�3. The top row with ⌘ = 1000, " = 0, the bottom
row with ⌘ = 10000, " = 0.9. Tumor volumes increase in the
top row, and decrease in the bottom row.

5. Radially symmetric tumors: Existence of solutions

In this section we prove existence and uniqueness of global in-time so-
lutions in the case of radially symmetric tumors. Recall that the tumor
boundary r = R(t) satisfies the equation

dR(t)

dt
=

3µ(t)

R(t)2

Z R(t)

0

⇣
�C

[w � wh]+

w0 � wh
C
�
1� C

K

⌘
� ⌘TC

⌘
r2dr. (5.1)

We set

F1(C, T, w) = �C
[w � wh]+

w0 � wh
C
⇣
1� C

K

⌘
� ⌘TC,

F2(C, T ) = �TC � ↵T (T � "T0),

F3(C,w) = �dwCCw � dww,
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and rewrite the system (2.3)-(2.7) in the form

@C

@t
� �C

1

r2
@

@r

✓
r2
@C

@r

◆
= F1(C, T, w) in ⌦(t), t > 0, (5.2)

@T

@t
� �T

1

r2
@

@r

✓
r2
@T

@r

◆
= F2(C, T ) in ⌦(t), t > 0, (5.3)

@w

@t
� �w

1

r2
@

@r

✓
r2
@w

@r

◆
= F3(C,w) in ⌦(t), t > 0, (5.4)

with boundary conditions

@C

@r
(R(t), t) = 0 for t > 0, (5.5)

@T

@r
(R(t), t) = �(t)

⇣
T0 � T (R(t), t)

⌘
for t > 0, (5.6)

w(R(t), t) = W for t > 0. (5.7)

We take initial conditions

C(r, 0) = Cin(r), T (r, 0) = Tin(r), w(r, 0) = win(r) for 0  r  R(0).
(5.8)

We assume that Cin, Tin, win belong to C2+↵[0, R(0)] for some 0  ↵ < 1,
and satisfy

0  Cin  K, 0  Tin  T0, 0  win  W, (5.9)

@Cin

@r
(R(0)) = 0, win(R(0)) = W, and µ(t), �(t) are in C1+↵/2[0,1),

�(t) decreasing function, �(t) = 0 if T � T0 and �(t) > 0 if T < T0.
(5.10)

Theorem 5.1. The system (5.1) – (5.10) has a unique solution for all t > 0,
with dR

dt in C1+↵/2[0,1) and C, T , w in C2+↵,1+↵/2(⌦1), where

⌦1 = {(r, t) : 0  r  R(t), 0  t < 1}.

We need the following lemma.

Lemma 5.2. The following estimates hold for any solution of the system
(5.1) – (5.10):

0  w(r, t)  W, 0  C(r, t)  K for 0  r  R(t), t > 0,

and
0  T (r, t)  Tmax for 0  r  R(t), t > 0,

where Tmax := max
n

�TK�dT (1�")T0

dT
, T0

o
.
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The first two estimates follow directly by comparing w (respectively C)
with the constants W (respectively K) by the maximum principle, and the
last bound on T follows by noting that Tmax is a supersolution for T .

Proof of Theorem 5.1. We follow the proof of Theorem 2 in [24], and begin
with a change of variables

y =
r

R(t)
, û(y, t) = u(r, t) for u = C, T, w,

in order to convert the system (5.1) – (5.10) with free boundary r = R(t) to
a system with a fixed boundary y = 1:

@Ĉ

@t
� �C

1

y2R2

@

@y

 
y2
@Ĉ

@y

!
� yṘ

R

@Ĉ

@y
= F1(Ĉ, T̂ , ŵ), (5.11)

@T̂

@t
� �T

1

y2R2

@

@y

 
y2
@T̂

@y

!
� yṘ

R

@T̂

@y
= F2(Ĉ, T̂ ), (5.12)

@ŵ

@t
� �w

1

y2R2

@

@y

✓
y2
@ŵ

@y

◆
� yṘ

R

@ŵ

@y
= F3(Ĉ, ŵ), (5.13)

for 0  y  1, t > 0,

@Ĉ

@y
(1, t) = 0, (5.14)

1

R

@T̂

@y
(1, t) = �(t)[T0 � T̂ (1, t)]+, (5.15)

ŵ(1, t) = W, (5.16)

for t > 0, and

dR

dt
(t) = 3µ(t)R(t)

Z 1

0

F1(Ĉ(y, t), T̂ (y, t), ŵ(y, t))y2 dy. (5.17)

By Lemma 5.2,

0  Ĉ(y, t)  K, 0  T̂ (y, t)  Tmax, 0  ŵ(y, t)  W

and

|F1(Ĉ(y, t), T̂ (y, t), ŵ(y, t))|  �C(W � wh)

w0 � wh
K + ⌘TmaxK ⌘ Fmax. (5.18)

For any 0 < ⌧ < 1, we define a mapping R(t) 7! R̃(t) from C↵/2[0, ⌧ ] to
C↵/2[0, ⌧ ] as follows: Given R(t), we solve the system for Ĉ, T̂ , ŵ and take

d

dt
R̃(t) = 3µ(t)R̃(t)

Z 1

0

F1(Ĉ, T̂ , ŵ)y2 dy, R̃(0) = R(0).
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By (5.18), �����
dR̃

dt
(t)

�����  µ⌧FmaxR̃(t) for 0  t  ⌧, (5.19)

where µ⌧ = sup0t⌧ µ(t), and

R(0)e�µ⌧Fmaxt  R̃(t)  R(0)eµ⌧Fmaxt. (5.20)

By Schauder estimates,
���(Ĉ, T̂ , ŵ)

���
C2+↵,1+↵/2([0,1]⇥[0,⌧ ])

 M, (5.21)

where M depends only on the parameters of the system.
We introduce the subset in C↵/2[0, ⌧ ],

X =
�
R 2 C↵/2[0, ⌧ ] : R(0)e�µ⌧Fmaxt  R(t)  R(0)eµ⌧Fmaxt

 
,

and define the mapping �⌧ : X ! X by R 7! R̃. In view of (5.19) and
(5.20), � is a compact mapping from X into X.

We claim that �⌧ is a contraction mapping if ⌧ is small. To prove it we
take any two functions R1 and R2 in X and their corresponding solutions
(Ĉi, T̂i, ŵi) and R̃i = �⌧ (Ri), and consider the di↵erences C⇤ = Ĉ1 � Ĉ2,
T ⇤ = T̂1 � T̂2, w⇤ = ŵ1 � ŵ2, and the corresponding R⇤ = R̃1 � R̃2. Then8

>>>>>>>><

>>>>>>>>:

@C⇤

@t
� �C

1

R2
1y

2

@

@y

✓
y2
@C⇤

@y

◆
� yṘ1

R1

@C⇤

@y
= F ⇤

1 (y, t),

@T ⇤

@t
� �T

1

R2
1y

2

@

@y

✓
y2
@T ⇤

@y

◆
� yṘ1

R1

@T ⇤

@y
= F ⇤

2 (y, t),

@w⇤

@t
� �w

1

R2
1y

2

@

@y

✓
y2
@w⇤

@y

◆
� yṘ1

R1

@w⇤

@y
= F ⇤

3 (y, t),

where, as can be directly verified,

|F ⇤
i (y, t)|  A(|C⇤(y, t)|+ |T ⇤(y, t)|+ |w⇤(y, t)|+ |R1(t)�R2(t)|)

for some constant A. The C↵,↵/2 norm of F ⇤
i can be estimated in a similar

way. Then, by the Schauder estimates,

k(C⇤, T ⇤, w⇤)kC2+↵,1+↵/2([0,1]⇥[0,⌧ ])  AkR1 �R2kC↵/2[0,⌧ ]

and ����
d

dt
(log R̃1 � log R̃2)(t)

����  AkR1 �R2kC↵/2[0,⌧ ],

with another constant A.
Since R̃1(0) = R̃2(0), we easily deduce that

[R̃1 � R̃2]C↵/2[0,⌧ ]  ⌧ 1�↵/2AkR1 �R2kC↵/2[0,⌧ ]
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and
kR̃1 � R̃2kC0[0,⌧ ]  A⌧kR1 �R2kC↵/2[0,⌧ ].

Taking ⌧ su�ciently small we conclude that the mapping �⌧ is a contraction
mapping, hence it has a unique fixed point. This completes the proof of
existence and uniqueness in a small time interval 0  t  ⌧ .

The global existence follows from the a priori estimates
����
dR

dt
(t)

����  µ⌧FmaxR(t)

and
R(0)e�µ⌧Fmaxt  R(t)  R(0)eµ⌧Fmaxt.

⇤

6. General domains: local existence of solutions

In this section we consider general domains ⌦(t) with free boundary @⌦(t),
and prove existence and uniqueness of solutions of the model equations, for
some time interval 0  t  ⌧ , ⌧ > 0.

Equations (5.2) - (5.4) are replaced by the following equations

@C

@t
� �Cr2C = F1(C, T, w) in ⌦(t), t > 0, (6.1)

@T

@t
� �Tr2T = F2(C, T ) in ⌦(t), t > 0, (6.2)

@w

@t
� �wr2w = F3(C,w) in ⌦(t), t > 0, (6.3)

with the same functions Fj as in Section 5. We take boundary conditions

@C

@n
= 0,

@T

@n
+ �(t)(T � T0) = 0, w = W on @⌦(t), t > 0, (6.4)

with a decreasing function �(t), �(t) = 0 if T � T0, �(t) > 0 if T < T0, and
initial values

C(x, 0) = Cin(x), T (x, 0) = Tin(x), w(x, 0) = win(x) for x 2 ⌦(0).
(6.5)

We denote by U(x, t) the velocity of cancer cells at the boundary, so that,
by (2.8), the free boundary moves with velocity

U(x, t) = ⇢(t)rw(x, t) for x 2 @⌦(t), t > 0,

where ⇢(t) is defined in (2.10). However, in order to prove existence of
solutions, we need to modify the definition of the velocity function by ap-
proximating it by a smoother function: We accordingly define the velocity
of the free boundary by
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U(x, t) = ⇢(t)

Z
rw(x0, t)j⌫(x� x0)dx0, (6.6)

where j⌫(y) is C1 function, j⌫(y) > 0 if |y| < ⌫, j⌫(y) = 0 if |y| > ⌫, andR
j⌫(y)dy = 1. Here ⌫ is arbitrarily small but fixed.
We make the following regularity assumptions:

µ(t) and �(t) belong to C1+↵/2[0,1); (6.7)

@⌦(0) 2 C3+↵, (6.8)
8
>>><

>>>:

the functions Cin, Tin, win are in C2+↵(⌦(0)), and have

C2+↵,1+↵ extensions to "1 � neighborhood of ⌦(0)⇥ (0, "2),

for some "1, "2 > 0, for which the boundary conditions (6.4) are

satisfied at @⌦(0).
(6.9)

Assuming the initial free boundary to be star-shaped, we expect it to remain
star-shaped for a small time. We can then express the free boundary in the
spherical coordinates:

@⌦(t) = {x 2 R3 : x = Z(�, t)}, (6.10)

where � = (✓,') 2 ⇤ :=
⇥
�⇡

2 ,
⇡
2

⇤
⇥ [0, 2⇡], and

Z0(�) ⌘ Z(�, 0) 2 C3+↵(⇤).

We denote by er(�), e✓(�), e'(�) the local orthogonal unit vectors on the
boundary x = Z(�, 0) in the direction of increasing r, ✓,', respectively, and
write the surface x = Z(�, t) in the form

x = Z(�, t) = Z0(�) + h(�, t)er(�). (6.11)

Theorem 6.1. The system (6.1) - (6.9) has a unique solution for some time
interval 0  t  ⌧ (⌧ > 0) with free boundary of the form (6.11), such that

sup
0t⌧

�
kh(·, t)kC2+↵(⇤) + kht(·, t)kC1+↵(⇤)

 
< 1. (6.12)

Proof. The proof uses similar arguments to those used in [25] in a model of
wound healing. We first note that

8
><

>:

Zt(�, t) = ht(�, t)er(�),

Z✓(�, t) = Z0
✓ (�) + h✓(�, t)er(�) + h(�, t)e✓(�),

Z'(�, t) = Z0
'(�) + h'(�, t)er(�) + h(�, t)e'(�) cos ✓.

(6.13)

Taking scalar product with er(�), we get

ht(�, t) = Zt(�, t)er(�), (6.14)
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h✓(�, t) = Z✓(�, t)er(�)� Z0
✓ (�)er(�), (6.15)

h'(�, t) = Z'(�, t)er(�)� Z0
'(�)er(�). (6.16)

As in [25], we shall express the velocity of the free boundary by a first order
hyperbolic equation for h(�, t). To do that, consider the movement of a
point Z(�0, t+�t) with �0 = (✓0,'0) to a point Z(�, t+�t) with � = (✓,')
at the time t+�t, and set �00 = (✓00,'00). We can write

Z(�, t+�t)� Z(�, t) = [Z(�, t+�t)� Z(�0, t)]� [Z(�, t)� Z(�00, t)]

� [Z(�00, t)� Z(�0, t)],

and note that

lim
�t!0

Z(�, t+�t)� Z(�0, t)

�t
= U(Z(�, t), t) · er,

lim
�t!0

Z(�, t)� Z(�00, t)

�t
= lim

�t!0

Z(�, t)� Z(�00, t)

✓ � ✓0
· lim
�t!0

✓ � ✓0

�t

= Z✓(�, t)
U(Z(�, t), t) · e✓

|Z(�, t)| ,

lim
�t!0

Z(�00, t)� Z(�0, t)

�t
= lim

�t!0

Z(�00, t)� Z(�0, t)

'� '0 · lim
�t!0

'� '0

�t

= Z'(�, t)
U(Z(�, t), t) · e'
|Z(�, t)| cos ✓ .

Hence

Zt(�, t) = U(Z(�, t), t)er�Z✓(�, t)
U(Z(�, t), t)) · e✓

|Z(�, t)| �Z'(�, t)
U(Z(�, t), t) · e'
|Z(�, t)| cos ✓ .

Taking scalar product with er and using Eqs. (6.14) - (6.16), we obtain a
hyperbolic di↵erential equation for h:

ht(�, t) +
U(Z(�, t), t)) · e✓

|Z(�, t)| h✓(�, t) +
U(Z(�, t), t)) · e'
|Z(�, t)| cos ✓ h'(�, t) = G(�, t),

(6.17)

where

G(�, t) = U(Z(�, t), t) · er � Z0
✓ (�) · er

U(Z(�, t), t)) · e✓
|Z(�, t)|

� Z0
'(�) · er

U(Z(�, t), t)) · e'
|Z(�, t)| cos ✓ , (6.18)

and
h(�, 0) = 0. (6.19)
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To prove Theorem 6.1 we shall use a fixed point argument in a closed subset
of a Banach space,

X⌧M = {h(�, t) : h(�, 0) = 0, khk⌧  M} ,M > 0,

where

khk⌧ = sup
0t⌧

kh(·, t)kC2+↵(⇤) + sup
0t⌧

kht(·, t)kC1+↵(⇤).

From (6.6) (6.11) we can compute ht(�, 0), and note that khk⌧  1 if ⌧ = 0;
we choose M to be any number strictly greater than khk0. Given h 2 X⌧M ,
we define surfaces x = Z(�, t) by (6.11) and, using C2+↵,1+↵/2 Schauder
estimate, solve the system (6.1) - (6.5), (6.7) - (6.10). We use this solution
to define a function U(Z(�, t), t) by (6.6), where ⇢(t) is defined by (2.10).
We then introduce a function h̃(�, t) as the solution of the equation

h̃t(�, t) +
U(Z(�, t), t) · e✓

|Z(�, t)| h̃✓(�, t) +
U(Z(�, t), t) · e'
|Z(�, t)| cos ✓ h̃' = G(�, t), (6.20)

with h̃(�, 0) = 0.
We define a mapping A by Ah = h̃ and claim that if ⌧ is small enough

then A is a contraction mapping in X⌧M ; hence it has a unique fixed point,
which is the unique solution asserted in Theorem 6.1.

To prove the claim we view (6.20) as an hyperbolic equation of the form

ut + a(�, t) ·r�u = b(�, t) for � 2 ⇤, 0  t  ⌧, (6.21)

with u(�, 0) = 0, and

ka(·, t)kC2+↵(⇤) + kb(·, t)kC2+↵(⇤)  B, for 0  t  ⌧.

From the proof of [26, Lemma 2.2] or [27, Lemma 3.2] we conclude that
there exists a unique solution u of (6.21) with u(�, 0) = 0, satisfying the
estimate

ku(·, t)kC2+↵(⇤)  C0(B)⌧, (6.22)

where the constant C0(B) depends only on B.
We denote by ⌦⇤

t the domain bounded by the surface defined by h(�, t),
and by ⌦⇤⇤

⌧ the 3-d domain spanned by ⌦⇤
t , 0  t  ⌧ . Since the lateral

boundary of ⌦⇤⇤
⌧ has the same regularity as h(�, t), the C2+↵,1+↵/2 estimate

on the solution of (6.1) - (6.5), (6.7) - (6.10) imply, in particular, that

sup
0t⌧

kU(Z(·, t), t)kC2+↵(⇤), C1(M),

where here, and in the sequel, Ci(M) denote constants depending only on
M .
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We can therefore apply estimate (6.22) to the solution h̃(�, t) of (6.20)
(with h̃(�, 0) = 0) and conclude that

kh̃(·, t)kC2+↵(⇤)  C2(M)⌧.

From (6.20) it then follows that

kh̃t(·, t)kC2+↵(⇤)  C3(M)⌧.

Taking ⌧ such that [C2(M) + C3(M)]⌧ < M , we deduce that A : h 7! h̃
maps X⌧M into itself.

To prove that A is a contraction, we take h1, h2 in X⌧M with the corre-
sponding Zi(�, t), the solutions (Ci, Ti, wi) and Ui(Zi(�, t), t), Gi(�, t), and
domains ⌦⇤⇤

T,i (for i = 1, 2), and set

� = k(h1 � h2)k�.

We transform ⌦⇤
t,2 into ⌦⇤

t,1 by change of variables

r̃ = r � (h2 � h1)(�, t) ·  ,

where  is a C3 function with compact support that is equal to 1 in a
neighborhood of the initial domain. The functions C2, T2, w2 in the original
variables (r,�) in ⌦⇤

t,2 become functions C̃2, T̃2, w̃2 in the variables (r̃,�) in
⌦⇤

t,1 and they satisfy a similar system of equations and boundary conditions
as C1, T1, w1, but with somewhat di↵erent coe�cients, in such a case, we
have

kC1 � C̃2, T1 � T̃2, w1 � w̃2kC↵,↵/2(⌦⇤⇤
⌧,1)

 C4(M)k(h1 � h2)(·, t)kC2+↵(⇤)

 C4(M)�.

Using the Schauder estimates, we get

kC1 � C̃2, T1 � T̃2, w1 � w̃2kC2+↵,1+↵/2(⌦⇤⇤
⌧,1)

 C5(M)�. (6.23)

We can then extend the solutions (Ci, Ti, wi) to ⌦⇤⇤
⌧ = ⌦⇤⇤

⌧,1[⌦⇤⇤
⌧,2 so that the

estimate (6.23) yields the estimate

kC1 � C2, T1 � T2, w1 � w2kC2+↵,1+↵/2(⌦⇤⇤
⌧ )  C6(M)�. (6.24)

As before, the same estimate holds also for the �-derivative of the di↵erences,
so that

k(U1 � U2)(·, t), (G1 �G2)(·, t)kC2+↵(⇤)  C7(M)�. (6.25)

We now write the equations for h̃1 and h̃2 in integrated form along their
respective characteristics, and note that, by (6.25), the characteristic curves
are close to each other in the C2+↵-norm. Proceeding as in [26, 27], we can
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then successively estimate h̃1 � h̃2, r�(h̃1 � h̃2), r2
�(h̃1 � h̃2) in their C↵(⌦)

norm, for any fixed t, and thus derive the estimate

k(h̃1 � h̃2)(·, t)kC2+↵(⇤)  C8(M)�⌧.

From the di↵erential equations for h̃1, h̃2 we then also derive the estimate
����
@

@t
(h̃1 � h̃2)(·, t)

����
C1+↵(⇤)

 C9(M)�⌧.

Hence, if ⌧ is su�ciently small then

kh̃1 � h̃2k⌧  �

2
kh1 � h2k⌧ ,

so that the mapping A is a contraction, and the unique fixed point of A then
provides the unique solution asserted in Theorem 6.1. ⇤

7. Analysis of the radially symmetric case

Lemma 7.1. If " > 0, and

"T0  Tin(r)  Tmax and 0 < Cin(r)  Cmax := K

✓
1� ⌘"T0

�C

w0 � wh

W � wh

◆

in [0, Rin], then we have the following:

"T0  T (r, t)  Tmax,

✓
inf

[0,Rin]
Cin

◆
e�⌘Tmaxt  C(r, t)  Cmax (7.1)

for 0  r  R(t), t � 0.

Proof. It is easy to see that T (r, t) ⌘ "T0 is a sub-solution of the equation
of T :8

><

>:

@
@tT � �T�T  �TC(r, t)� ↵T (T � "T0) for 0  r  R(t), t > 0,
@
@rT (R(t), t) = 0  �(t)[T0 � T (R(t), t)]+ for t > 0,

T (r, 0)  Tin(r) for 0  r  Rin.

By comparison, and recalling the upper bound from Lemma 5.2, we have
"T0  T  Tmax. Next, we estimate C by observing that it satisfies the
inequality

@

@t
C � �C�C  �C · W � wh

w0 � wh
C


1� ⌘"T0

�C
·w0 � wh

W � wh
� C

K

�

with the Neumann boundary condition on r = R(t). We again deduce by
comparison the desired upper bound for C. Finally, the lower bound of
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C follows by observing that the function C⇤(t) = e�⌘Tmaxt min[0,R(t)] C(·, 0)
satisfies

d

dt
C⇤(t) = �⌘TmaxC⇤(t) for t � 0,

and is a subsolution for C(r, t). ⇤

Define �(r) = sinh(r)
r , and for R̃ > 0, define

�(r; R̃) =
W

�(
q

dwCK+dw
�w

R̃)
�(

r
dwCK + dw

�w
r).

Lemma 7.2. Suppose win � �(r;Rin) for 0  r  Rin, then

w(r, t) � w(r, t) := �(r;Rmax(t)) for 0  r  R(t), t > 0,

where Rmax(t) := max
0t0t

R(t0).

Proof. Indeed, using the facts that @
@tw(r, t)  0 and 0  C(r, t)  K, we

observe that w(r, t) satisfies
8
><

>:

@
@tw � �w�w  �dwCCw � dww for 0  r  R(t), t > 0,

w(R(t), t)  W for t > 0,

w(r, 0)  win(r) for 0  r  Rin.

It follows by comparison that w(r, t) � w(r, t). ⇤

7.1. R(t) is shrinking if ⌘ is large.

Theorem 7.3. If " > 0, "T0  Tin(r)  Tmax, and

⌘ >
�C
"T0

· W � wh

w0 � wh
,

then d
dtR(t) < 0 for all t � 0. In particular, lim

t!+1
R(t) 2 [0, Rin) exists.

Proof. Indeed,

d

dt
R(t) =

3µ(t)

R(t)2

Z R(t)

0

⇢
�C

[w(r, t)� wh]+

w0 � wh
C

✓
1� C

K

◆
� ⌘TC

�
r2 dr

 3µ(t)

R(t)2
C

⇢
�C

W � wh

w0 � wh
� ⌘("T0)

�
r2 dr < 0,

for t � 0. Here we used the estimates 0  w(r, t)  W (Lemma 5.2), and
T (r, t) � "T0 (Lemma 7.1). ⇤
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7.2. R(t) is increasing for 0  ⌘ ⌧ 1.

Lemma 7.4. Given Rin, there exists 0 < � < min{1, 2Rin/3} such that

inf
r2[R̃��,R̃]

�(r; R̃) � W + wh

2
for each R̃ 2 [Rin,1).

Proof. Since �(R̃; R̃) = W > W+wh
2 , and

sup
R̃2[Rin,1)

����
@�

@r
(·; R̃)

����
L1([0,R̃])

< +1,

the assertion follows for any su�ciently small � > 0. ⇤
Remark 7.5. Using the fact that � 2 (0, 2Rin/3), we have

R̃3 � (R̃� �)3

R̃2
> 3� � 3�2

R̃
� �, for R̃ 2 [Rin,1).

Lemma 7.6. Given Rin > 0 and µ(t) > 0 satisfying
R1
0 µ(t) dt = +1,

denote by G⌘(t), for any ⌘ > 0, the unique solution of

d

dt
G(t) = ⇤⌘(t, G(t)) for t 2 [0,1), and G(0) = Rin,

where

⇤⌘(t, G) = µ(t)�C
W � wh

2(w0 � wh)

�(1� Cmax/K)

R̂
e�⌘Tmaxt�⌘TmaxCmaxG. (7.2)

Then for each R̂ 2 (Rin,1), there exist ⌘̂, t̂ > 0 such that

d

dt
G⌘̂(t) > 0 in [0, t̂], and G⌘̂(t̂) = R̂.

Proof. Fix Rin < R̂. When ⌘ = 0, we can make use of the conditionR1
0 µ(t) dt = 1 to deduce G(t) ! 1 as t ! 1. Hence, for arbitrarily

large R̂, there exists t0 such that G0(t) > 0 in [0, t0] and G(t0) = R̂ + 1.
Since the solution depends continuously on the parameter ⌘, there exists a
small ⌘̂ such that for ⌘ 2 (0, ⌘̂], we have G0(t) > 0 in [0, t0] and G(t0) > R̂.
The lemma holds by choosing t̂ to be the unique point in (0, t0) such that
G(t̂) = R̂. ⇤
Theorem 7.7. Let µ(t) > 0 be given such that

R1
0 µ(t) dt = +1, and, for

any R̂ > Rin, let ⌘̂, t̂ be given by Lemma 7.6. Suppose

"T0  Tin(r)  Tmax, win(r) � �(r;Rin), Cin(r) �
1

R̂
in [0, Rin].
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Then, for any ⌘ 2 [0, ⌘̂], there exists t̂⌘ such that

d

dt
R(t) > 0 in [0, t̂⌘], and R(t̂⌘) = R̂. (7.3)

Proof. Define the set

I := {t0 2 [0, t̂] :
d

dt
R(t0) > 0 in [0, t0]}. (7.4)

It is clear that I is connected and is open relative to [0, t̂]. Next, we show
that I 3 0. Indeed, by (5.1), we have

d

dt
R(0) =

3µ(0)

R2
in

Z Rin

0

⇢
�C

[win � wh]+

w0 � wh
C

✓
1� C

K

◆
� ⌘TC

�
r2 dr

� 3µ(0)

R2
in

Z Rin

0

⇢
�C

[�(r;Rin)� wh]+

w0 � wh
C(r, 0)(1� Cmax/K)� ⌘̂TmaxK

�
r2 dr

� 3µ(0)

R2
in

(Z Rin

Rin��


�C

(W � wh)/2

w0 � wh
(1� Cmax/K)(inf Cin)e

�⌘̂Tmax·0
�
r2 dr

�
Z Rin

0

⌘̂TmaxCmaxr
2 dr

)

� µ(0)

(
�C

(W � wh)/2

w0 � wh

(1� Cmax/K)

R̂
� � ⌘̂TmaxCmaxRin

)
,

where we used C  Cmax, T  Tmax (see (7.1)) for the first inequality;
win � �(r;Rin), and Lemma 7.4 for the second inequality, and Remark 7.5
in the last inequality. By comparison, we have dR

dt (0) �
dG
dt (0) > 0, where G

is given in Lemma 7.6. This proves that I 3 0.
Since I is nonempty, t⇤ := sup I 2 (0, t̂] and dR

dt > 0 in [0, t⇤). We claim

that R(t⇤) � R̂. Suppose to the contrary, then that R(t) < R̂ for 0  t < t⇤.
By Lemma 7.2, w(r, t) � �(r;R(t)) for t 2 [0, t⇤]. Hence, we can repeat the
above argument to show that for t 2 [0, t⇤],

d

dt
R(t) � ⇤⌘̂(t, R(t)), (7.5)

where ⇤⌘̂ is given in (7.2). Since R(0) = G⌘̂(0) = Rin, we get, by comparison,

Rin  G⌘̂(t)  R(t) < R̂ for t 2 [0, t⇤].

This immediately yields t⇤ < t̂, since G⌘̂(t̂) � R̂. However, by Lemma
7.6, since ⇤µ̂(t, R(t)) > 0 as long as R(t)  R̂, we deduce from (7.5) that
d
dtR(t) > 0 in [0, t⇤], i.e., [0, t⇤] ⇢ I. Since I is open, we have sup I > t⇤, and
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this contradicts the fact that t⇤ = sup I. Having proved that R(t⇤) � R̂, we
conclude that there exists a t⇤ 2 (0, t̂] such that

d

dt
R(t) > 0 in [0, t⇤] and R(t⇤) � R̂.

We can then choose t̂⌘ to be the unique number in [0, t⇤] such that R(t̂⌘) = R̂,
and this completes the proof. ⇤
Corollary 7.8. If µ(t)  µ0(1 + t) for some µ0 > 0, then

t̂⌘ �
"

2(w0 � wh)

µ0�C(W � wh)K
log

R̂

Rin

#1/2

� 1. (7.6)

In particular, the interval where R(t) is increasing initially can be made
arbitrarily large by choosing R̂ large.

Proof of Corollary 7.8. Let t̂⌘ > 0 be given such that (7.3) holds. Using
(5.1) and that µ(t)  µ0(1 + t), we have

d

dt
logR(t)  µ0(1 + t)�C

W � wh

w0 � wh
·K.

Integrating from 0 to t̂⌘, we obtain

log
R̂

Rin
 µ0�C(W � wh)K

w0 � wh

 
t̂⌘ +

t̂2⌘
2

!
 µ0�C(W � wh)K

w0 � wh

(1 + t̂⌘)2

2
,

from which (7.6) follows. ⇤

8. Conclusion

Cancer cells within a tumor move toward sources of oxygen and nutrients;
cells in the tumor core are mostly in the necrotic state. As a result, the
density of cancer cells varies significantly within the tumor, and it increases
toward the tumor boundary. In this paper, we developed a simple mathe-
matical model that accounts for this density variability. The model includes,
in addition to cancer cells, cytotoxic T cells, and oxygen. The model con-
sists of three partial di↵erential equations, and the tumor boundary is a free
boundary. Some of the model parameters represent anti-cancer drugs. The
dynamics of the free boundary is determined by the assumption that cancer
cells at the boundary move in the direction of the oxygen gradient.

We simulated the model in cases of radially symmetric and axially sym-
metric tumors, and illustrated situations when the tumor volume grows when
treated with “weak” drugs, and shrinks when treated with “strong” drugs.
We next proved, by analysis, that the free boundary problem has a global
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solution in the radially symmetric case and local in-time solution for general
shaped tumors. Finally, in the radially symmetric case, we proved under
some (strong) assumptions, that the tumor radius may decrease monotoni-
cally or increase monotonically.

Future work should include additional immune cells as well as fibroblasts,
normal healthy cells, and cytokines that play a role in the interactions among
these cells and cancer cells. Another challenge is to extend the model by in-
cluding, in addition to oxygen, also glucose to which cancer cells are strongly
attracted.
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