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ON THE EVOLUTION OF SLOW DISPERSAL IN
MULTI-SPECIES COMMUNITIES

ROBERT STEPHEN CANTRELL1 AND KING-YEUNG LAM2

Abstract. For any N ≥ 2, we show that there are choices of diffusion
rates {di}Ni=1

such that for N competing species which are ecologically
identical and having distinct diffusion rates, the slowest diffuser is able to
competitive exclude the remainder of the species. In fact, the choices of
such diffusion rates is open in the Hausdorff topology. Our result provdes
some evidence in the affirmative direction regarding the conjecture by
Dockery et al. in [15]. The main tools include Morse decomposition of
the semiflow, as well as the theory of normalized principal bundle for
linear parabolic equations.

1. Introduction

Many organisms adapt to the surrounding environment through their dis-
persal behavior. It is important to determine the circumstances in which
organisms modify their dispersal strategies under the driving forces of evo-
lution. In a pioneering paper, Hastings introduced the point of view of
studying the effect of individual factors on the evolution of dispersal inde-
pendently, using mathematical modeling [20]. By analyzing the outcome of
invasion between two competing species, assuming they are identical except
for their dispersal rates, Hastings showed that passive diffusion is selected
against in an environment that is constant in time, but varies in space.
Subsequently, Dockery et al. [15] refined Hastings findings via a more ex-
plicit Lotka-Volterra model. They showed that it is impossible for two or
more ecologically identical species, moving randomly at different rates, to
coexist at an equilibrium. When the number of species is equal to two,
they determined the global dynamics of the competition system completely
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by demonstrating the faster disperser is always driven to extinction by the
slower disperser, regardless of initial conditions.

The work of Hastings and Dockery et al. have been highly influential in
prompting advances in both mathematical and biological aspects of the evo-
lution of dispersal. In [1] Altenberg showed a reduction principle, which says
that the growth bounds for certain class of linear operators exhibit monotone
dependence on the mixing coefficient. This principle gives a mathematical
explanation of the relative proliferative advantage of slower dispersers in a
static, but spatially varying environment.

The theory of habitat selection can also explain the evolution of slow dis-
persal among passive dispersers. As observed by Hastings, passive diffusion
transports individuals from more favorable locations to less favorable ones
in an average sense, rendering passive diffusion to be selected against. The
picture is different, however, if the dispersal is conditional on the local envi-
ronment. An important class of dispersal strategies consists of ones enabling
a population to become perfectly aligned with the heterogeneous resource
distribution, thus achieving the so called ideal free distribution [17]. In this
circumstance, it is shown that such a dispersal strategy is selected for, in the
sense that it is both an evolutionarily stable strategy and a neighborhood
invader strategy. See [3, 5, 12, 29] for results on reaction-diffusion models;
and [6, 7, 8, 14] for results in other modeling settings.

The work of Hastings and Dockery et al. has also stimulated substantial
mathematical analysis of competition models involving two species. We
mention the work of [21, 36, 38] for passive dispersal, and [2, 4, 11, 10, 26,
32, 33] for conditional dispersal. An interesting application concerns the
evolution of dispersal in stream populations, which are subject to a uni-
directional drift [44, 47]. It has been shown that in some circumstances,
faster dispersal is sometimes selected for [39, 42]. See also [19, 34, 41]. We
also mention the work [28] on the evolution of dispersal in phytoplankton
populations, where individuals compete non-locally for sunlight.

Most of the above results are restricted to the case when the number of
species is equal to two. In this case, the abstract tools of monotone dynam-
ical systems [27, 35, 49] can be applied to determine the global dynamics
of the competition system. Results for three or more competing species are
relatively rare [16, 30, 31, 40], and the question of global dynamics remains
an open and challenging problem. In the following, we will address two
conjectures of Dockery et al. concerning a model involving N competing
species, which are identical except for the passive dispersal rates.

1.1. Two conjectures of Dockery et al. The following Lotka-Volterra
model of N competing species, which are subject to passive dispersal, was
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introduced by Dockery et al. [15].
{

∂tui(x, t) = di∆ui(x, t) + ui(x, t)
[

m(x)−
∑N

j=1 uj(x, t)
]

∂νui(x, t) = 0
(1.1)

These N species are assumed to be identical except for their dispersal rates
0 < d1 < ... < dN . Here Ω is a bounded domain in Rn with smooth
boundary ∂Ω, ∆ =

∑n
j=1 ∂xjxj is the Laplacian operator, ∂ν is the outer-

normal derivative on ∂Ω. We also assume

m(x) ∈ Cα(Ω) is non-constant, and

∫

Ω

mdx ≥ 0.

In the following we denote

Ei = (0, ..., 0, θdi, 0, ..., 0) for 1 ≤ i ≤ N, and E0 = (0, ..., 0) (1.2)

to be the corresponding equilibria of (1.1), where for d > 0 the function
θd(x) denotes the unique positive solution of

d∆θd + θd(m(x)− θd) = 0 in Ω, and ∂νθd = 0 on ∂Ω. (1.3)

In case N = 2, Dockery et al. obtained a complete description of the
dynamics of (1.1) by applying the abtract tools of monotone dynamical
systems.

Theorem 1.1 ([15, Lemmas 3.9 and 4.1]). Suppose N = 2 and d1 < d2.
Then every positive solution of (1.1) converges to the equilibrium (θd1 , 0).
Furthermore, a Morse decomposition for InvK+ is given by

M(1) = {E1} M(2) = {E2}, M(3) = {E0},

where InvK+ denotes the maximal bounded invariant set of the dynamical
system generated in K+ = {(ui)Ni=1 ∈ [C(Ω)]N : ui ≥ 0} under (1.1).

Roughly speaking, we say that {M(1),M(2),M(3)} is a Morse decomposi-
tion of InvK+ if any bounded trajectory γ(t) converges to some equilibrium,
and that, if γ(t) is defined for t ∈ R, then γ(∞) ⊂ M(i) and γ(−∞) ⊂ M(j)
for some i < j. The precise definition of a Morse decomposition will be given
in Subsection 1.2, after some related dynamical system concepts are intro-
duced.

When N ≥ 3, it is conjectured in [15] that the slowest disperser continues
to win the competition.

Conjecture 1. Let N ≥ 3 and 0 < d1 < ... < dN . Then the equilibrium
E1 = (θd1 , 0, ..., 0) is globally asymptotically stable among all positive solu-
tions of (1.1).
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Another version of the conjecture, also due to Dockery et al., can be
formulated in terms of the concept of Morse Decomposition.

Conjecture 2. Let N ≥ 3 and 0 < d1 < ... < dN . Then a Morse decompo-
sition for InvK+ is given by

M(i) = {Ei} for 1 ≤ i ≤ N, and M(N + 1) = {E0}.

Define D to be the collection of all finite sets of positive real numbers such
that Conjecture 2 holds; i.e.

D = ∪∞
N=2{(di)

N
i=1 : Conjecture 2 holds.}.

We first observe that Conjecture 2 implies Conjecture 1, for any N .

Proposition 1.2. Let 0 < d1 < d2 < ... < dN be given. If (di)Ni=1 ∈ D, then
every interior trajectory of (1.1) converges to E1.

Moreover, if N = 3, the two conjectures are equivalent.

Proposition 1.3. Let 0 < d1 < d2 < d3 be given. Then (di)3i=1 ∈ D if and
only if every interior trajectory of (1.1) converges to E1.

The goal of this paper is to prove the following stability result.

Theorem 1.4. The collection D is open in the space of finite sets relative
to the Hausdorff metric.

By the theorem of Dockery et al., the family D contains any doubleton
sets of positive numbers. Our result thus gives a step towards an affirmative
answer to Conjectures 1 and 2.

As a corollary, we obtain some global stability results for (1.1) with no
restriction on the number of species N .

Corollary 1.5. Given 0 < d̂1 < d̂2, there exists ε > 0 such that for any
integer N ≥ 3 and any (di)Ni=1 such that

0 < d1 < d2 < ... < dN and distH((di)
N
i=1, {d̂1, d̂2}) < ε,

then for the problem (1.1) of N species, every positive solution converges to
the equilibrium E1 = (θd1 , 0, ..., 0). Here distH is the Hausdorff metric.

Finally, we also mention that the dynamics of arbitrary number of com-
peting species was considered in the paper [6] in the context of patch models,
which are discrete in space version of (1.1). When at least one of the patches
is a sink (which is equivalent to m(x) changes sign in the reaction-diffusion
context), they showed that the zero disperser can competitively exclude all
other species, by the construction a Lyapunov function.



ON THE EVOLUTION OF SLOW DISPERSAL 5

1.2. Definitions. Let X = [C(Ω)]N be the Banach space with norm ‖u‖ =
max
1≤i≤N

supΩ |ui|, and letK+ be the cone of non-negative functions inX . Then

the Neumann Laplacian operator ∆ is a sectorial operator with domain

D(∆) = ∩r>1{u ∈ W 2,r(Ω) : ∆u ∈ C(Ω), and ∂νu = 0 on ∂Ω};

and we denote the fractional power of ∆ by ∆ξ for some 0 < ξ < 1 (see
[43, Ch. 2]). It is a standard fact that the reaction-diffusion system (1.1)
generates a semiflow in X , which we will denote here by Ψ : [0,∞)×X , i.e.,
for the solution u(x, t) of (1.1) it holds that

u(·, t+ t0) = Ψ(t, u(·, t0)) for t, t0 ≥ 0.

We say that a function γ : R → X is a full trajectory if

γ(t + t0) = Ψ(t, γ(t0)) for all t ≥ 0, t0 ∈ R.

A subset A of X is an invariant set if every a ∈ A lies on a full trajectory
γ(t) such that {γ(t) : t ∈ R} ⊂ A. Let InvK+ denote the maximal bounded
invariant set in K+ under (1.1). It is not difficult to see that InvK+ is
compact, and attracts every trajectory in K+.

Recall also that the ω- and α-limit sets of a point u0 ∈ K+ are given by
{

ω(u0) = {ũ ∈ X : Φ̃(tj , u0) → ũ for some tj → ∞.},

α(u0) = {ũ ∈ X : Φ̃(tj , u0) → ũ for some tj → −∞.},

where the latter is well-defined if and only if u lies on a full trajectory.
Next, we define the concept of Morse decomposition, which is relevant in

considering the global dynamics of (1.1). We say that a finite collection of
disjoint compact invariant subsets of InvK+,

{M(i) ⊂ InvK+ : 1 ≤ i ≤ m},

is a Morse decomposition if, for every u0 ∈ K+ \ ∪m
i=1M(p) with bounded

trajectory, there exists i with 1 ≤ i ≤ m such that ω(u0) ⊂ M(i), and if
u lies on a full trajectory, then there exists j such that i < j ≤ m and
α(u0) ⊂ M(j).

1.3. Proofs of Propositions 1.2 and 1.3. First, we recall the statement
of [15, Lemma 3.9]. (See also Lemma 4.2.)

Lemma 1.6. Fix 0 < d1 < ... < dN . For any u0 ∈ IntK+, if the trajectory
Ψ(t, u0) converges to an equilibrium, i.e.

lim
t→∞

Ψ(t, u0) = Ei for some i ∈ {0, 1, 2, 3, ..., N},

then necessarily i = 1; i.e. Ψ(t, u0) → E1. Here Ei is defined in (1.2).
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Proof of Proposition 1.2. Suppose (d̂k)Kk=1 ∈ D, then the system (1.1) ad-
mits a Morse decomposition where the Morse sets consist of the (N + 1)
equilbria. Hence, every internal trajectory converges to an equilibrium Ei

(see (1.2)). By Lemma 1.6, it can only converge to E1. !

Proof of Proposition 1.3. It suffices to show the converse. Suppose 0 < d1 <
d2 < d3 are given such that all interior trajectories of (1.1) converge to E1.
We need to show that

M(1) = E1, M(2) = E2, M(3) = E3, M(4) = (0, 0, 0)

is a Morse decomposition of the semiflow.
For the trajectories starting at u0 ∈ K+ \ (IntK+), by strong maximum

principle, it either enters the IntK+ for all t > 0, or there is at least one
component that is identically zero for all t > 0. In the first case, the tra-
jectory also converges to E1. In the second case, the system reduces to the
two-species case, so that the solution converges to Ei, where i = 1, 2 is the
smallest integer such that the i-th component of u0 is non-zero. Moreover,
there is no cycle of fixed points, since if Ei is chained to Ej (i.e. there is a full
trajectory connecting from Ei to Ej), then the trajectory a positive solution
of either the full three-species system, or a two-species subsystem. In either
case, we have i > j. It therefore follows from [50, Theorem 3.2] that any
compact internally chain transitive set is an equilibrium point. Since any
omega (resp. alpha) limit set is internally chain transitive, it can only be
one of the Ei. The proof of the proposition is completed. !

1.4. Setting up the proof of Theorem 1.4. Suppose K ≥ 2 and a finite
increasing sequence (d̂k)Kk=1 ⊂ D are given. Consider, for a small ε > 0, any
N ≥ 2 and any finite increasing sequence (di)Ni=1 such that

N ≥ K and (di)i∈Ik ⊂ (d̂k − ε, d̂k + ε) (1.4)

for some partition {Ik}Kk=1 of {1, ..., N}. We introduce three closely related
dynamical systems.

Let Φ : [0,∞) × X → X be the semigroup operator generated by the
unperturbed problem of K species:

{

∂tÛk(x, t) = d̂k∆Ûk(x, t) + Ûk(x, t)
[

m(x)−
∑K

j=1 Ûj(x, t)
]

for 1 ≤ k ≤ K

∂νÛk(x, t) = 0 for 1 ≤ k ≤ K

(P̂0)
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Let ϕ : [0,∞)×X → X be the semigroup operator generated by the unper-
turbed problem of N species (with non-distinct diffusion rates):
{

∂tui(x, t) = d̂k∆ui(x, t) + ui(x, t)
[

m(x)−
∑N

j=1 uj(x, t)
]

for i ∈ Ik, 1 ≤ k ≤ K,

∂νui(x, t) = 0 for i ∈ Ik, 1 ≤ k ≤ K,
(P0)

Let ϕε : [0,∞) × X → X be the semigroup operator generated by the
perturbed problem of N species (with distinct diffusion rates):
{

∂tui(x, t) = di∆ui(x, t) + ui(x, t)
[

m(x)−
∑N

j=1 uj(x, t)
]

for 1 ≤ i ≤ N,

∂νui(x, t) = 0 for 1 ≤ i ≤ N.
(Pε)

Then, define the projection P : RN → RK by

[P(y1, ..., yN)]k =
∑

i∈Ik

yi for 1 ≤ k ≤ K. (1.5)

and denote U = Pu, i.e.

Uk :=
∑

i∈Ik

ui for 1 ≤ k ≤ K. (1.6)

Remark 1.7. Note that Φ(t,Pu0) = Pϕ(t, u0) for all t ≥ 0 and u0 ∈ K+.

1.5. Outline of the proof. Let (d̂k)Kk=1 and (di)Ni=1 be two finite subsets of
R+, which are close in Hausdorff topology such that (d̂k)Kk=1 ∈ D. We need
to show that (di)Ni=1 ∈ D by examining the semiflow generated by (Pε). The
strategy of our proof is to first obtain a rough Morse decomposition of the
flow of (Pε) by relating it to (P̂0). This is based on the existence of a complete
Lyapunov function for the unperturbed semiflow Φ corresponding to the
Morse decomposition (Section 2), and some a priori parabolic estimates
that imply uniform continuity of the intermediate and perturbed semiflows
(Section 3). Then the rough Morse decomposition implies that every interior
trajectory of the perturbed semiflow is ultimately dominated by the group of
slowest dispersers whose diffusion rates are in a neighborhood of d̂1 (Section
4). In Section 5 we define the notion of normalized principal bundle, which is
a generalization of the notion of principal eigenvalue for elliptic or periodic-
parabolic problems and observe its smooth dependence with respect to the
coefficients of the linear parabolic problem. This is the main technical tool to
refine the Morse decomposition and complete the proof of the main theorem
(Section 6). (A proof of the smooth dependence is provided in the Appendix.
We believe this tool will also be useful in the study of dynamics of general
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reaction-diffusion systems which are not necessarily of Lotka-Volterra type;
see, e.g. [9].) Some concluding remarks are presented in Section 7.

2. The complete Lyapunov function for the unperturbed

semiflow Φ

Since (d̂k)Kk=1 ∈ D, i.e. the semiflow Φ genereated by (P̂0) admits a Morse
decomposition {M(k)}K+1

k=1 , the classical theorem due to Conley [13, P. 39]
(see also [22, 46] and [15, Remark 1]) guarantees the existence of a continuous
function V : U ′ → R, in some neighborhood U ′ of InvK+ relative to K+,
with the following properties:

• M(k) ∈ V −1(k) for each k = 1, ..., K + 1,
• If Φ([0, T ], U0) ⊂ [U ′ \ ∪K+1

k=1 M(k)], then

V (U0) > V (Φ(t, U0)) for all t ∈ (0, T ]. (2.1)

By Remark 1.7, the function V is the Lyapunov function of the semiflows
Φ and ϕ, which are generated by (P̂0) and (P0). It will be the main tool
allowing us to control and compare the dynamics generated by the three
semiflows given in Subsection 1.4. In the following, we recall [15, Lemma
4.4].

Lemma 2.1. For given 0 < d̂1 < ... < d̂K, consider the semigroup operator
Φ generated by problem (P̂0). For any r > 0 and µ > 0, there exist T > 0
and a neighborhood U of InvK+ contained in U ′, such that if Φ(t, U0) is a
solution of (P̂0) such that

Φ([0, t], U0) ⊂ U \
[

∪K+1
k=1 Br(M(k))

]

for some t ≥ T,

then
V (U0)− V (Φ(t, U0)) > µ.

Proof. Let r > 0 and µ > 0 be given. We first prove that there exists a
neigborhood U of InvK+ such that

µ̃ := inf [V (U0)− V (Φ(1, U0)] > 0, (2.2)

where the infimum is taken over all initial data U0 satisfying

Φ([0, 1], U0) ⊂ U \ [∪K+1
k=1 Br(M(k))].

Suppose to the contrary that (2.2) fails for every neighborhood U of InvK+,
then there exist sequences {Un} ⊂ U ′ and {µn} ⊂ (0,∞) such that

Φ([0, 1], Un) ⊂ U ′ \ [∪K+1
k=1 Br(M(k))], dist(Un, InvK+) → 0, µn → 0.

and
V (Un)− V (Φ(1, Un)) ≤ µn. (2.3)
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By the compactness of InvK+, we may pass to a subsequence so that

Un → U ∈ InvK+ \ [∪K+1
k=1 Br(M(k))].

By continuous dependence on initial data, Φ([0, 1], U) ⊂ InvK+\[∪K+1
k=1 Br(M(k))],

hence

0 < V (U)− V (Φ(1, U))

= lim
n→∞

(V (Un)− V (Φ(1, Un))

≤ lim
n→∞

µn = 0,

a contradiction. This shows the existence of a neighborhood U of InvK+

and a positive number µ̃ > 0 such that (2.2) holds.
Finally, observe that for given µ > 0, if µ ∈ (0, µ̃], then we can take T = 1

and (2.2) implies the desired conclusion. In case µ > µ̃, it suffices to choose
T to be an integer such that µ̃T ≥ µ. !

3. Uniform continuity of the intermediate semiflow ϕ and

perturbed semiflow ϕε

Recall that ϕ is the semiflow generated by (P0) with diffusion rates (d̂k)Kk=1,
and ϕε is the semiflow generated by (Pε) with diffusion rates (di)Ni=1 satisfying
(1.4). The purpose of this section is to establish some parabolic estimates
and show that the trajectories of ϕ and ϕε stays close in any finite time
interval. (In the following, ‖ · ‖ = ‖ · ‖C(Ω) or ‖ · ‖[C(Ω)]n for some n, unless
otherwise specified.)

Lemma 3.1. Let (ui)Ni=1 be a non-negative solution of (Pε) (or (P0)), such
that

N
∑

i=1

‖ui(·, 0)‖L1(Ω) ≤ M,

then
{

supt≥0

∑N
i=1 ‖ui(·, t)‖L1(Ω) ≤ max{M, |Ω| supΩ m},

lim supt→∞

∑N
i=1 ‖ui(·, t)‖L1(Ω) < 2|Ω| supΩm.

(3.1)

In particular, the set N , given by

N = {u ∈ K+ :
N
∑

i=1

‖ui‖L1(Ω) < 2|Ω| sup
Ω

m}, (3.2)

is open in X and forward-invariant with respect to both (P0) and (Pε), and
hence contains the respective maximal bounded invariant sets InvK+ and
InvK+

ε .
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Proof. Integrate (Pε) over Ω and sum over 1 ≤ i ≤ N , we have

d

dt

∥

∥

∥

∥

∥

N
∑

i=1

ui

∥

∥

∥

∥

∥

L1(Ω)

=

∥

∥

∥

∥

∥

N
∑

i=1

uim(x)

∥

∥

∥

∥

∥

L1(Ω)

−

∥

∥

∥

∥

∥

N
∑

i=1

ui

∥

∥

∥

∥

∥

2

L2(Ω)

.

≤ (sup
Ω

m)

∥

∥

∥

∥

∥

N
∑

i=1

ui

∥

∥

∥

∥

∥

L1(Ω)

−
1

|Ω|

∥

∥

∥

∥

∥

N
∑

i=1

ui

∥

∥

∥

∥

∥

2

L1(Ω)

,

where we used Cauchy-Schwartz inequality for the last inequality. !

Lemma 3.2. Let (ûi)Ni=1 (resp. (ui)Ni=1) be a non-negative solution of (P0)
(resp. (Pε)) with initial data in N . If ε ∈ (0, d̂1/2), then there exists
C1 = C1((d̂k)Kk=1,Ω, m) (but otherwise independent of N and (di)Ni=1 sat-
isfying (1.4)) such that

N
∑

i=1

‖ûi(x, t)‖C1+α,(1+α)/2(Ω×[1,∞)) +
N
∑

i=1

‖ui(x, t)‖C1+α,(1+α)/2(Ω×[1,∞)) ≤ C1.

(3.3)

Proof. By Lemma 3.1, we have

sup
t≥1

N
∑

j=1

‖ui‖L1(Ω×[t−1,t+1]) ≤ 4|Ω| sup
Ω

m.

Since ∂tui − di∆ui ≤ m(x)ui, we can apply the local maximum principle to
deduce that

sup
t≥1

‖ui‖L∞(Ω×[t−1/2,t+1]) ≤ C sup
t≥1

‖ui‖L1(Ω×[t−1,t+1]). (3.4)

(It is essential that we have dropped the nonlinear terms involving uiuj and
work with the differential inequality when applying the local maximum prin-
cipal for strong sub-solutions, otherwise the constant in (3.4) may depend
on initial data.)

Applying parabolic Lp estimate to the parabolic equation ∂tui − di∆ui =
(m(x)−

∑

uj)ui (which can be regarded as a linear parabolic equation of ui

with L∞ bounded coefficients) and by the Sobolev embedding theorem, the
above can be improved to

sup
t≥1

‖ui‖C1+α,(1+α)/2(Ω×[t,t+1]) ≤ C ′ sup
t≥1

‖ui‖L1(Ω×[t−1,t+1]). (3.5)

And the desired conclusion follows by summing i from 1 to N ,
N
∑

j=1

‖ui‖C1+α,(1+α)/2(Ω×[1,∞)) ≤ C ′ sup
t≥1

N
∑

j=1

‖ui‖L1(Ω×[t−1,t+1]) ≤ C ′′′.
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Since di are uniformly bounded from above and below from zero, the con-
stants C,C ′, C ′′ in the above estimates can be chosen to be independent of
N and (di)Ni=1. This completes the proof. !

In summary, we have the following.

Corollary 3.3. Fix 0 < d̂1 < ... < d̂K , ε ∈ (0, d̂1/2) and consider arbitrary
N ≥ K and (di)Ni=1 satisfying (1.4). Then we have

(

InvK+ ∪ InvK+
ε

)

⊂ N ,

where InvK+ and InvK+
ε are the invariant sets generated by (P0) and (Pε)

respectively. Furthermore, there exists C0 (dependent on d̂k, but independent
of ε ∈ (0, d̂1/2), N and di) such that for any solution u of (Pε) (resp. û of
(P0)) with initial data u0 ∈ ϕ(1,N ) ∪ ϕε(1,N ), we have

N
∑

i=1

‖ui(·, t)‖C(Ω) +
N
∑

i=1

‖ûi(·, t)‖C(Ω) ≤ C0 for t ≥ 0, (3.6)

and for some 0 < ξ < 1/2,

N
∑

i=1

‖∆ξui(·, t)‖C(Ω) ≤ C0(1 + t−ξ) for t ≥ 0. (3.7)

Proof. Fix initial data u0 ∈ ϕ(1,N ) ∪ ϕε(1,N ). Then by Lemma 3.2, there
exists C1 depending on (d̂k)Kk=1,Ω, and m(x) but independent of N and
(di)Ni=1 such that (here (u0)j denotes the j-th components of u0)

N
∑

j=1

‖(u0)j‖C(Ω) ≤ C1 and ∂νu0 = 0 on ∂Ω.

We claim that

sup
0≤t≤1

N
∑

j=1

‖uj(·, t)‖C(Ω) ≤ C1e
supΩ m.

Indeed, by using the differential inequality










∂tui − di∆ui ≤ (supΩ m)ui in Ω× [0,∞).

∂νui = 0 on ∂Ω × [0,∞),

ui(x, 0) = (u0)i(x) in Ω,

(3.8)

we can compare each ui with the super-solution ui of (3.8), given by

ui(x, t) := e(supΩ m)t‖(u0)i‖C(Ω) in Ω× [0,∞),
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to deduce that

‖ui(·, t)‖C(Ω) ≤ esupΩ m‖(u0)i‖C(Ω) for t ∈ [0, 1].

Hence we have

sup
0≤t≤1

N
∑

i=1

‖ui(·, t)‖C(Ω) ≤ esupΩ m
N
∑

j=1

‖(u0)j‖C(Ω) ≤ C1e
supΩ m.

Combining with (3.3), we deduce the boundedness of supt≥0

∑N
i=1 ‖ui(·, t)‖C(Ω).

Since the proof for the boundeness of supt≥0

∑N
i=1 ‖ûi(·, t)‖C(Ω) is similar, we

omit the proof. This establishes (3.6).
Finally, we observe that each ui satisfies a non-autonomous linear para-

bolic equation with regular coefficients, so that (3.7) follows from [43, The-
orem 5.1.17]. !

Recalling that ϕ (resp. ϕε) is the semiflow generated by (P0) (resp. (Pε)),
we now prove the main theorem of this section.

Proposition 3.4. Fix (d̂k)Kk=1 ∈ D. For each T > 0 and η > 0, there exists
ε1 such that for ε ∈ (0, ε1), and arbitrary N ∈ N, (di)Ni=1 satisfying (1.4), we
have

‖Pϕ(t, u0)− Pϕε(t, u0)‖ < η for 0 ≤ t ≤ T, u0 ∈ ϕ(1,N ) ∪ ϕε(1,N ).
(3.9)

where P is the projection operator given in (1.5) and the open set N is
defined in (3.2).

Proof. Let InvK+ (resp. InvK+
ε ) denote the maximal invariant set in K+

of the semiflow ϕ generated by (P0) (resp. the semiflow ϕε generated by
(Pε)). Let N be the neighborhood of InvK+ specified by (3.2).

Let (ûi)Ni=1 = ϕ(t, u0) and (ui)Ni=1 = ϕε(t, u0). Since u0 ∈ ϕ(1,N ) ∪
ϕε(1,N ), we can apply Corollary 3.3 to obtain the estimates

N
∑

i=1

[‖ui(t)‖+ ‖ûi(t)‖] ≤ C and
N
∑

i=1

‖∆1/2ui(t)‖ ≤ C(1+t−1/2) (3.10)

for t ≥ 0, where C is independent of N .
We will estimate ui by the variation of constants formula. Recall the

partition {Ik}Kk=1 of {1, 2, ..., N} given in (1.4). For i ∈ Ik, we have










ûi(t) = etd̂k∆(u0)i +
∫ t

0 e
(t−s)d̂k∆[ûi(s)(m−

∑N
j=1 ûj(s))] ds,

ui(t) = etd̂k∆(u0)i +
∫ t
0 e

(t−s)d̂k∆[ui(s)(m−
∑N

j=1 uj(s))] ds

+(di − d̂k)
∫ t
0 e

(t−s)d̂k∆∆ui(s) ds

(3.11)
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Denoting Û = Pû, U = Pu, and W as follows

Ûk =
∑

i∈Ik

ûi, Uk =
∑

i∈Ik

ui, Wk =
∑

i∈Ik

di − d̂k
ε

ui, for 1 ≤ k ≤ K,

and then adding (3.11) over i ∈ Ik, we deduce










Ûk(t) = etd̂k∆(U0)k +
∫ t
0 e

(t−s)∆[Ûk(s)(m−
∑N

j=1 ûj(s))] ds,

Uk(t) = etd̂k∆(U0)k +
∫ t

0 e
(t−s)∆[Uk(s)(m−

∑N
j=1 uj(s))] ds

+ε
∫ t

0 e
(t−s)d̂k∆∆Wk(s) ds

(3.12)

Denoting Qk(t) = Uk(t) − Ûk(t), then by subtracting the first equation of
(3.12) from the second equation, we have

Qk(t) =

∫ t

0

e(t−s)d̂k∆[Uk(s)(m−
K
∑

%=1

U%(s))− Ûk(s)(m−
K
∑

%=1

Û%(s))] ds

+ ε

∫ t

0

e(t−s)d̂k∆∆Wk(s) ds

:= I1(k) + εI2(k).

Now, by the first estimate of (3.10), we have

K
∑

k=1

‖I1(k)‖ ≤ C1

∫ t

0

K
∑

k=1

‖Qk(s)‖ ds,

where we have used the uniform boundedness of trajectories inX . Moreover,
let ξ ∈ (0, 1/2) be as given in Corollary 3.3, then

K
∑

k=1

‖I2(k)‖ ≤
K
∑

k=1

∑

i∈Ik

|di − d̂k|
∫ t

0

∥

∥

∥
e(t−s)d̂k∆∆1−ξ

∥

∥

∥

∥

∥∆ξui(s)
∥

∥ ds

≤
N
∑

i=1

ε

∫ t

0

CT (t− s)−(1−ξ)
∥

∥∆ξui(s)
∥

∥ ds

≤ εCT

∫ t

0

(t− s)−(1−ξ)
N
∑

i=1

∥

∥∆ξui(s)
∥

∥ ds

where the constant CT can be chosen to be uniform for t ∈ [0, T ]. Note that

we used
∑K

k=1

∑

i∈Ik
=

∑N
i=1 and that

∥

∥

∥
e(t−s)d̂k∆∆1−ξ

∥

∥

∥
≤ CT (t − s)−(1−ξ)
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(see [43, Chapter 2]) to derive the first inequality. Then,
K
∑

k=1

‖Qk(t)‖ ≤ CT

[

∫ t

0

K
∑

k=1

‖Qk(s)‖ ds+ ε

∫ t

0

(t− s)−(1−ξ)
N
∑

i=1

∥

∥∆ξui(s)
∥

∥ ds

]

≤ C ′
T

[

∫ t

0

K
∑

k=1

‖Qk(s)‖ ds+ ε

∫ t

0

(t− s)−(1−ξ)(1 + s−ξ) ds

]

≤ C ′′
T

[

∫ t

0

K
∑

k=1

‖Qk(s)‖ ds+ ε

]

,

where we used (3.10). Hence, by the Gronwall’s inequality, we have

sup
0≤t≤T

K
∑

k=1

‖Qk(t)‖ ≤ εC ′′
T e

C′′

T T = εC ′′′
T . (3.13)

This proves Proposition 3.4. !

4. Ultimate bounds for the perturbed semiflow

Definition 4.1. Let d′ > 0 and h′ ∈ L∞(Ω), define µ1(d′, h′) to be the
principal eigenvalue of

d′∆ψ + h′(x)ψ + λψ = 0 in Ω, and ∂νψ = 0 on ∂Ω.

The following is adapted from [15, Lemma 3.9].

Lemma 4.2. Fix (d̂k)Kk=1. There exists δ > 0 such that for any ε ∈
(0, d̂1/2, (d̂2 − d̂1)/2), and any u0 ∈ IntK+, the omega limit set ω(u0,ϕε)
under the semiflow of (Pε) satisfies

Pω(u0,ϕε) ,⊂ Bδ(M(k0)) for any k0 ∈ {2, ..., K + 1}.

Proof. Suppose to the contrary that there is 2 ≤ k0 ≤ K + 1 and T0 such
that the solution (ui)Ni=1 = ϕε([T0,∞), u0) satisfies

Pϕε([T0,∞), u0) ⊂ Bδ(M(k0)). (4.1)

Define, h(x, t) := m(x)−
∑N

j=1 uj(x, t) and

hδ(x) := inf
(v̂k)∈Bδ(M(k0))

(m(x)−
K
∑

k=1

v̂k),

then h(x, t) ≥ hδ(x) for all t ≥ T0. We claim that µ1(d1, hδ) < 0 for all
sufficiently small δ.

We first discuss the case 2 ≤ k0 < K+1. By continuity, it suffices to show
that µ1(d1, m − θd̂k0

) < 0. Since d1 < d̂k0 (as d1 < d̂1 + ε < d̂2 ≤ d̂k0), we
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can apply the classical fact that µ1 is strictly increasing in d [45, Proposition
4.4], to deduce that

µ1(d1, m− θd̂k0
) < µ1(dd̂k0

, m− θd̂k0
) = 0.

(The last equality holds since 0 is the eigenvalue with a positive eigenfunction
θd̂k0

.)

In case k0 = K +1, then it suffices to show that µ1(d1, m) < 0. Indeed, if
ψ > 0 is the principal eigenfunction of µ1(d1, m), then

d1∆ψ +mψ + µ1(d1, m)ψ = 0 in Ω, and ∂νψ = 0 on ∂Ω.

Divide the above by ψ and integrate by parts, we have

d1

∫

Ω

|∇ψ|2

ψ2
dx+

∫

Ω

mdx+ µ1(d1, m)|Ω| = 0 (4.2)

Since (i)
∫

Ωmdx ≥ 0 and that (ii) m(x), and thus ψ(x), is non-constant, we
deduce from (4.2) that µ1(d1, m) < 0.

In conclusion, there exists δ > 0 such that the principal eigenvalue λ of

d1∆ψ + hδ(x)ψ + λψ = 0 in Ω, and ∂νψ = 0 on ∂Ω.

is negative. We also normalize the corresponding positive eigenfunction ψ
to ensure infΩ ψ = 1. Now, since h(x, t) ≥ hδ(x), we can show that u1(x, t)
and

u1(x, t) := 2δe−λ(t−t0)ψ(x),

where t0 ∈ [T0,∞) is to be specified, together form a pair of super- and
sub-solutions of the linear parabolic equation

∂tw − d1∆w = h(x, t)w in Ω× [T0,∞),

under the Neumann boundary condition. By taking t0 ≥ T0 sufficiently
large, we have also u1(x, T0) ≥ u1(x, T0). By the method of sub- and super-
solutions, u1(x, t) ≥ u1(x, t) for all t ≥ T0. However, when t = t0, we have

u1(x, t0) ≥ 2δψ(x) ≥ 2δ for all x ∈ Ω,

but this contradicts (4.1) when t = t0. !

Proposition 4.3. Given (d̂k)Kk=1 ∈ D and a sufficiently small r > 0, then
there exists ε > 0 such that for any N ∈ N and (di)Ni=1 such that (1.4) holds,
and any solution u of (Pε) with initial data u0 ∈ IntK+, we have

lim sup
t→∞

∥

∥

N
∑

i=1

ui − θd̂1(x)
∥

∥ < 2r, (4.3)
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Proof. Let ϕ (resp. ϕε) be the semiflow operator corresponding to (P0)
(resp. (Pε)), and denote its maximal bounded invariant set to be InvK+

(resp. InvK+
ε ). Fix µ = 3/4 and r ∈ (0,min{1/4, δ/2}) small enough (with

δ given by Lemma 4.2) so that

|V (U)−V (Ũ)| <
1

4
if U, Ũ ∈ B2r(M(k)), for some 1 ≤ k ≤ K+1. (4.4)

Since V (M(k)) = k, it follows that

V (B2r(M(k))) ⊂

(

k −
1

4
, k +

1

4

)

for each k. (4.5)

Having chosen µ and r, we then choose T > 1 and U so that the conclusion
of Lemma 2.1 holds. (Since InvK+ ∪ InvK+

ε ⊂ N , we can also assume that
U ⊂ N .)

By Lemma 3.2, Φ(1,N0) = Pϕ(1,N ) is compact, where

N0 := PN = {(Uk)
K
k=1 ∈ K+ :

K
∑

k=1

‖Uk‖L1(Ω) < 2|Ω| sup
Ω

m}.

Since U is a neighborhood of the maximal bounded invariant set of the K-
species problem (P̂0), there exists a finite time T0 > 1 such that Φ(T0,N0) ⊂
U . By Remark 1.7, this means Pϕ(T0,N ) ⊂ U and thus PInvK+ ⊂ U .

Claim 1. There exists ε1 ∈ (0, d̂1/2) such that for all ε ∈ (0, ε1) and any N
and (di)Ni=1 satisfying (1.4), we have

(PInvK+) ∪ (PInvK+
ε ) ⊂ U .

By Lemma 3.2, there exists a compact set K independent of ε ∈ (0, d̂1/2),
N and (di)Ni=1 such that

Pϕε(1,N ) ⊂ K ⊂ N and Pϕ(T0,K) ⊂ U .

Hence, we can apply Proposition 3.4 to show that there exists ε1 ∈ (0, d̂1/2)
so that for any N ∈ N and (di)Ni=1 satisfying (1.4),

Pϕε(T0 + 1,N ) ⊂ Pϕε(T0,K) ⊂ U .

In particular, the maximal bounded invariant set InvK+
ε of the semiflow ϕε

generated by (Pε) is also contained in U . We emphasize that such a choice
of ε1 is uniform across all possible N and (di)Ni=1 satisfying (1.4).

Next, by Proposition 3.4, there exists ε2 ∈ (0, ε1) such that for all ε ∈
(0, ε2) and u′

0 ∈ ϕ(1,N ) ∪ ϕε(1,N ), we have

sup
0≤t≤2T

‖Pϕ(t, u′
0)− Pϕε(t, u

′
0)‖ < r, (4.6)
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and, provided Pϕ([0, 2T ], u′
0) ⊂ U and Pϕε([0, 2T ], u′

0) ⊂ U , that

sup
0≤t≤2T

‖V (Pϕ(t, u′
0))− V (Pϕε(t, u

′
0))‖ <

µ

3
. (4.7)

Now, fix an arbitrary trajectory ϕε(t, u0) of (Pε) with initial data u0 ∈
IntK+. We will show (4.3). By Claim 1, we may perform a translation in
time and assume without loss of generality that

Pϕ(t, u0) ∈ U , and Pϕε(t, u0) ∈ U for all t ≥ 0.

Claim 2. Let ε ∈ (0, ε2). Suppose there is t1 ≥ 1 such that

V (Pϕε(t1, u0)) = k1 +
1

2
, for some k1 ∈ {1, ..., K + 1}, (4.8)

then

sup
t1<t<t1+T

V (Pϕε(t, u0)) < k1 +
3

4
, (4.9)

and

V (Pϕε(t2, u0)) ≤ k1 +
1

2
for some t2 ∈ (t1, t1 + T ]. (4.10)

Denote u′
0 = ϕε(t1, u0). Then (4.4) and (4.8) imply u′

0 ,∈ ∪K+1
k=1 Br(M(k)).

Then, we have

V (Pϕε(t, u
′
0)) < V (Pϕ(t, u′

0)) +
µ

3
≤ V (Pu′

0) +
µ

3
= k1 +

3

4
for t ∈ [0, T ],

where the first inequality is due to (4.7) and the second one is due to
Pϕ(t, u′

0) = Φ(t,Pu′
0) and the property of Lyapunov function. This proves

(4.9).
Next, we show (4.10) by dividing into two cases:

(i) Pϕ([0, T ], u′
0) ∩

[

∪K+1
k=1 Br(M(k))

]

= ∅
(ii) Pϕ([0, T ], u′

0) ∩
[

∪K+1
k=1 Br(M(k))

]

,= ∅

In case (i), we use (4.7) and then Lemma 2.1 to obtain

V (Pϕε(T, u
′
0)) < V (Pϕ(T, u′

0)) +
µ

3
< V (Pu′

0)−
2µ

3
= k1.

In case (ii), (2.1) implies there is an interger k′
1 and t′1 ∈ (0, T ] such that

Pϕ(t′1, u
′
0) ∈ Br(M(k′

1)). Furthermore, since V is decreasing along trajecto-
ries of Φ = Pϕ, we have k′

1 ≤ k1. Then,

V (Pϕε(t
′
1, u

′
0)) < V (Pϕ(t′1, u

′
0)) +

µ

3
< k′

1 +
1

4
+

µ

3
≤ k1 +

1

2
,

where the first and second inequalities are due to (4.7) and (4.4), respectively.
This proves (4.10) and completes the proof of Claim 2.
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Claim 3. There exists k0 and Tε such that

k0 −
1

2
< V (Pϕε(t, u0)) < k0 +

3

4
for all t ≥ Tε. (4.11)

Remark 4.4. It follows from (4.5) and (4.11) that for t ≥ Tε, we have
Pϕε(t, u0) ,∈ B2r(M(k)) for any k ,= k0.

Define

k0 = min

{

k ∈ N : V (Pϕε(t0, u0)) ≤ k +
1

2
for some t0 ≥ 1

}

.

By construction, V (Pϕε(t, u0)) > (k0 − 1) + 1/2 for all t ≥ 1 and the lower
bound of (4.11) holds. Moreover, there is Tε ≥ 1 such that V (Pϕε(Tε, u0)) ≤
k0+

1
2 . Denote, for simplicity, u′

0 = ϕε(Tε, u0). Suppose to the contrary that

V (Pϕε(t3, u
′
0) ≥ k0 +

3

4
for some t3 > 0.

Define the set

S =

{

t ∈ [0, t3) : V (Pϕε(t3, u
′
0)) ≤ k0 +

1

2

}

,

then S is non-empty since 0 ∈ S. Let t4 = supS. By (4.9) we have
t3 − t4 > T . By (4.10), we have t5 ∈ (t4, t3) such that t5 ∈ S. This
contradicts the definition of t4. This proves (4.11).

Claim 4. There exists ε3 ∈ (0, ε2) such that if ε ∈ (0, ε3), for any u0 ∈
IntK+ with a certain k0 guaranteed by Claim 3, it follows that

Pω(u0,ϕε) ⊂ B2r(M(k0)). (4.12)

Suppose to the contrary that there is a certain 1 ≤ k0 ≤ K+1, a sequence
ε → 0 and N = N ε and (dεi )

Nε

i=1 and u0 = uε0 such that the conclusions of
Claim 3 hold for that k0 but (4.12) is false. Let vε = ϕε(Tε, uε0). Then
Pω(vε,ϕε) ,⊂ B2r(M(k0)). Let wε ∈ ω(vε,ϕε) such that Pwε ,∈ B2r(M(k0)).

Thanks to the a priori estimates developed in Lemma 3.2, {Pwε} belongs
to a compact set. Therefore, we can pass to a sequence ε → 0 such that
Pwε → Ŵ . Taking (4.11) into account,

k0 −
1

2
≤ V (Pϕε(t, wε)) ≤ k0 +

3

4
for all t ∈ R.

As a result, we have Ŵ ∈ InvK+ and k0− 1
2 ≤ V (Φ(R, Ŵ )) ≤ k0+

3
4 , where

we implicitly used the observation in by Remark 1.7. However, since M(k0)
is the maximal invariant set in

{

W ∈ InvK+ : k0 −
1

2
≤ V (W ) ≤ k0 +

3

4

}

,
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we are led to the conclusion that {Ŵ} = M(k0). This is a contradiction
since Ŵ ,∈ B2r(M(k0)). The proves Claim 4.

Now, in view of Lemma 4.2, Pω(u0,ϕε) ,⊂ B2r(M(k)) for all k > 1. Hence,
for any u0 ∈ IntK+, (4.12) holds with k0 = 1. Since M(1) = {(θd̂1 , 0, ..., 0)},
this means

lim sup
t→∞

∥

∥Pϕε(t, u0)− (θd̂1 , 0, ..., 0)
∥

∥ < 2r.

This proves (4.3) and completes the proof of the proposition. !

5. The normalized principal bundle

In this section, we define the notion of a normalized principal bundle,
which is a generalization of the notion of principal eigenfunction of an ellip-
tic, or periodic-parabolic operator. We give a theorem concerning its smooth
dependence on parameters, which is crucial in the completion of the proof
of Theorem 1.4.

5.1. The normalized principal bundle. Given d > 0 and h(x, t) ∈
Cβ,β/2(Ω × R), we say that the pair (ψ1(x, t), H1(t)) is the corresponding
normalized principal bundle if it satisfies














∂tψ1(x, t)− d∆ψ1(x, t)− h(x, t)ψ1(x, t) = H1(t)ψ1(x, t) for x ∈ Ω, t ∈ R,
∂νψ1(x, t) = 0 for x ∈ ∂Ω, t ∈ R,
∫

D |ψ1(x, t)|2 dx = 1 for t ∈ R,
ψ1(x, t) > 0 for x ∈ Ω, t ∈ R.

(5.1)
The existence and uniqueness of (ψ1(x, t), H1(t)) is proved in Theorem A.1.

Remark 5.1. If h(x, t) = ĥ(x) for some time-independent function ĥ, then
ψ1 and H1 are time-independent, and coincide with the principal eigenfunc-
tion and principal eigenvalue (ψe(x),λ) of

− d∆ψe − ĥ(x)ψe = λψe in Ω, ∂νψe = 0 on ∂Ω. (5.2)

The main result of this section is the smooth dependence of the principal
bundle on the coefficients.

Proposition 5.2. The normalized principal bundle, as a mapping

(d, h) /→ (ψ1, H1)
R+ × Cβ,β/2(Ω× R) → C2+β,1+β/2(Ω× R)× C1+β/2(R),

is smooth.

Since the proof of Proposition 5.2 is self-contained, we will postpone it to
the Appendix. See Proposition A.3 for details.



20 R.S. CANTRELL AND K.-Y. LAM

Corollary 5.3. Let δ > 0 and ĥ(x) ∈ Cβ(Ω) be a non-constant function.
There exists r′ > 0 such that for any d > 0 and any function h(x, t) ∈
Cβ,β/2(Ω× R), if

δ < d < 1/δ, ‖h(x, t)− ĥ(x)‖Cβ,β/2(Ω×R) < r′, (5.3)

then the partial derivative ∂dH1(t) of H1(t), with respect to the diffusion
coefficient d, satisfies

inf
t∈R

∂dH1(t) ≥ r′.

Proof. Denote by (ψ1(x, t; d, h), H1(t; d, h)) the normalized principal bundle
satisfying (5.1) for some constant d > 0 and function h. By Remark 5.1, we
see that

(ψ1(x, t; d, ĥ), H1(t; d, ĥ) = (ψe(x),λ)

where (ψe(x),λ) is the principal eigenpair (5.2).
Next, we claim that ∂dλ > 0 for all d > 0. Indeed, if we differentiate (5.2)

with respect to d, (and denote the derivative as ′)
{

−d∆ψ′
e − ĥψ′

e −∆ψe = λψ′
e + λ′ψe in Ω,

∂νψ′
e = 0 on ∂Ω.

Multiplying the above by ψe and integrating by parts, we obtain

0 <

∫

Ω

|∇ψe|
2 dx = λ′

∫

Ω

|ψe|
2 dx.

Note that the strict inequality follows from the fact that ĥ is non-constant,
so that ψe is also non-constant. In particular,

r0 := inf
δ≤d≤1/δ

∂dλ > 0

Now it follows from Proposition 5.2 that there exists r′ ∈ (0, r0/2) such that
if (5.3) holds, then

‖∂dH1(·; d, h)−∂dH1(·; d, ĥ)‖Cβ,β/2(Ω×R) = ‖∂dH1(·; d, h)−∂dλ‖Cβ,β/2(Ω×R) <
r0
2
.

Hence

inf
t∈R

∂dH1(t; d, h) > ∂dλ−
r0
2

≥
r0
2
.

This proves the corollary. !
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6. Completion of the proof of main theorem

Proposition 6.1. Given δ > 0 and a non-constant function ĥ(x) ∈ Cβ(Ω)
that depends on x only, there exists r > 0 such that for any N ∈ N and
(di)Ni=1 satisfying

δ < d1 < ... < dN <
1

δ
,

if a positive solution u of (1.1) satisfies

lim sup
t→∞

∥

∥

(

m(x)−
N
∑

i=1

ui

)

− ĥ(x)
∥

∥

C(Ω)
< r,

then u → (θd1 , 0, ..., 0) as t → ∞.

Before we give the proof of Proposition 6.1, we give an immediate conse-
quence as follows.

Corollary 6.2. Given constants 0 < d̂1 < ... < d̂K such that (d̂k)Kk=1 ∈ D,
there exists r > 0 such that for any N ∈ N and (di)Ni=1 satisfying

distH((di)
N
i=1, (d̂k)

K
k=1) <

1

2
d̂1,

if a positive solution u of (Pε) satisfies (4.3), then u → (θd1 , 0, ..., 0) as
t → ∞.

Proof of Corollary 6.2. To apply Proposition 6.1, it suffices to check that,
for each d̂ > 0, the function ĥ(x) = m(x) − θd̂(x) is non-constant in x.
Suppose to the contrary that, m(x)− θd̂(x) = λ for some constant λ. Then

d̂∆θd̂ + λθd̂ = 0 in Ω, and ∂νθd̂ = 0 on ∂Ω.

i.e. λ/d̂ is an eigenvalue of the Laplacian operator in the domain Ω subject
to the Neumann boundary condition. Since the eigenfunction θd̂ is positive,
it must be the case that λ = 0 and θd̂ = C for some constant C. However,
this implies that m(x) = θd̂ = C as well. This is a contradiction to the
standing assumption that m(x) is a non-constant function. !

Proof of Proposition 6.1. Given δ > 0 and ĥ(x), let r′ > 0 be as given in
Corollary 5.3. We claim that there is r such that

lim sup
t→∞

∥

∥

(

m(x)−
N
∑

i=1

ui

)

− ĥ(x)
∥

∥

Cβ,β/2(Ω×[t,t+1])
< r′. (6.1)
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Indeed, in view of (4.3) and the a priori estimate (3.3), we can use interpo-
lation to estimate

∥

∥

(

m(x)−
N
∑

i=1

ui

)

− ĥ(x)
∥

∥

Cβ,β/2(Ω×[t,t+1])

≤ C
∥

∥

(

m(x)−
N
∑

i=1

ui

)

− ĥ(x)
∥

∥

γ

C(Ω×[t,t+1])
≤ Crγ for t 0 1,

where C and γ are some positive constants in the interpolation inequality.
Hence, we deduce (6.1) upon taking r ∈ (0, (r′/C)1/γ].

Next, define h(x, t) = m(x) −
∑N

j=1 uj(x, t). After an appropriate trans-
lation in time, we may assume without loss of generality that

‖h(·, t)− ĥ(·)‖Cα,α/2(Ω×[0,∞)) < r′. (6.2)

Extend h(x, t) evenly in t, so that it is defined for (x, t) ∈ Ω × R. Let
ψ1(x, t; d, h) and H1(t; d, h) be the normalized principal bundle guaranteed
by Section 5. By an application of Corollary 5.3, we have for any d ∈ [δ, 1/δ],

inf
t∈R

∂dH1(t; d, h) ≥ r′ > 0. (6.3)

For each i, we claim that there is ci > ci > 0 such that

cie
−

∫ t
0 H1(s;di,h) dsψ1(x, t; di, h) ≤ ui(x, t) ≤ cie

−
∫ t
0 H1(s;di,h) dsψ1(x, t; di, h)

(6.4)
for (x, t) ∈ Ω× R.

Indeed, the left and right hand sides of (6.4) satisfy the same equation
as ui. Hence we can choose ci large enough and ci small enough to deduce
(6.4) from classical comparison theorem of linear parabolic equations. This
proves (6.4).

By (6.3), we have

H1(t; di+1, h)−H1(t; di, h) ≥ (di+1−di)r
′ > 0 for all 1 ≤ i < N, and all t ∈ R.

Hence, we derive from (6.4) that, for i > 1,

ui(x, t)

u1(x, t)
≤ C exp

(

−

∫ t

0

(H1(s; di)−H1(s; d1)) ds

)

ψ1(x, t; di, h)

ψ1(x, t; d1, h)

≤ C exp (−(di − d1)r
′t) → 0 as t → ∞.

Note that we have used the Harnack inequailty (see also [24, Theorem 2.5])
which says that there is C = Cδ > 0 such that

1

Cδ
≤ ψ1(x, t; d, h) ≤ Cδ in Ω× R, d ∈ [δ, 1/δ].
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This follows from the facts that ψi(x, t) > 0 satisfies a linear parabolic equa-
tion with L∞ bounded coefficients in Ω×(−∞,∞), and that

∫

Ω |ψi(x, t)|2 dx =
1 for all t ∈ R.

Since we also have lim sup
t→∞

∑N
i=1 ‖ui‖ ≤ C1 (by Lemma 3.2), we deduce

that ui → 0 uniformly for i = 2, .., N . Hence the semiflow ϕε generated
by (Pε) is asymptotic to the single species model consisting of only the
first species u1. Since the trivial solution is repelling by our assumption
∫

Ω mdx ≥ 0 and m being non-constant (see Lemma 4.2), we deduce that
u1 → θd1 uniformly as t → ∞. !

Recall that a subset A of K+ is said to be internally chain transitive with
respect to the semiflow ϕ if, for two points u0, v0 ∈ A, and any δ > 0, T > 0,
there is a finite sequence

Cδ,T = {u(1) = u0, u
(2), ..., u(m) = v0; t1, ..., tm−1}

with u(j) ∈ A and tj ≥ T , such that ‖ϕ(tj , u(j))− u(j+1)‖ < δ for all 1 ≤ i ≤
m− 1. The sequence Cδ,T is called a (δ, T )-chain connecting u0 and v0. Let
E,E ′ be two equilibrium points. E is said to be chained to E ′, written as
E → E ′, if there exists a full trajectory ϕ(t, u0) (though some u0 distinct
from E,E ′) such that α(u0,ϕ) = E and ω(u0,ϕ) = E ′. We will henceforth
use Ei to denote the equilibrium (0, ..., 0, θdi , 0, ..., 0) of the semiflow ϕε.

Proof of Theorem 1.4. Let {d̂k}Kk=1 ∈ D. Then let r > 0 be given by Corol-
lary 6.2. By Proposition 4.3, there exists ε ∈ (0, d̂1/2) such that for any N ∈
N and any choice of diffusion rates (di)Ni=1 such that distH((di), (d̂k)) < ε,
the estimate (4.3) holds for all positive solutions. Hence by Corollary 6.2,
the equilibrium E1 attracts all solutions of (1.1) with initial data in IntK+.

It remains to verify that (di)Ni=1 ∈ D, i.e. that the semiflow ϕε under
(Pε) admits the desired Morse decomposition. This follows from similar
lines in the proof of Proposition 1.3. For the trajectory starting at u0 ∈
K+ \ (IntK+), by strong maximum principle, it either enters the IntK+ for
all t > 0, or there is at least one component that is identically zero for all
t > 0. In the first case, the trajectory also converges to E1. In the second
case, it suffices to repeat the proofs for a suitable subset (d̃j) of (di), to
deduce again the convergence to the equilibria Ei, where i is the smallest
integer such that the i-th component of u0 is non-zero. Moreover, there is no
cycle of fixed points, since if Ei is chained to Ej , then necessarily i > j. It
therefore follows from [50, Theorem 3.2] that any compact internally chain
transitive set is an equilibrium point. Since any omega (resp. alpha) limit
set is internally chain transitive, it can only be one of the Ei.
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In conclusion, for any choice of diffusion rates (di)Ni=1 that is sufficiently
close to (d̂k) in the Hausdorff sense, the set of equilibria with the obvious
ordering gives a Morse decomposition of the dynamics of (Pε). i.e. (di)Ni=1 ∈
D. !

7. Conclusion

In his seminal paper [20], Hastings showed that for two competing species
that are ecologically identical but having distinct diffusion rates, the slower
diffuser can invade the faster diffuser when rare, but not vice versa. Later,
Dockery et al. [15] proved that the slower diffuser always competitively
excludes the faster diffuser, regardless of initial conditions, and conjectured
that the same is true for any number of species.

In this paper, we show that for any number of competing species which are
ecologically identical and having distinct diffusion rates {di}Ni=1, there are
choices of {di}Ni=1 for which the slowest diffuser is able to competitive exclude
the remainder of the species. In fact, the choices of such diffusion rates is
open in the space of finite sets of R+ endowed with the Hausdorff topology.
Our result provdes some evidence in the affirmative direction regarding the
conjecture by Dockery et al. in [15].

Appendix A. The normalized principal bundle

A.1. Existence and uniqueness results. Let Ω ⊂ Rn be a smooth bounded
domain, and consider the linear parabolic operator of non-divergence form:

∂ψt − Lψ = ∂tψ − aij(x, t)∂
2
xixj

ψ − bj(x, t)∂xjψ − c(x, t)ψ

where the coefficients aij, bj , c are continuous in x, t and satisfy, for some
fixed Λ > 1 and β ∈ (0, 1),

‖a‖Cβ,β/2(Ω×R) + ‖b‖Cβ,β/2(Ω×R) + ‖c‖Cβ,β/2(Ω×R) ≤ Λ, (A.1)

where Ω is a smooth bounded domain in Rn, and

1

Λ
|ξ|2 ≤ aij(x, t)ξiξj ≤ Λ|ξ|2 for x ∈ Ω, t ∈ R, ξ ∈ R

n. (A.2)

In the following C denotes generic constants that depend on Λ but are
independent of the coefficients A := (aij , bj , c).
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Theorem A.1. There exists a unique pair (ψ1(x, t), H1(t)) ∈ C2+β,1+β/2
N (Ω×

R)× Cβ/2(R) satisfying, in classical sense,














∂tψ − Lψ = H(t)ψ for x ∈ Ω, t ∈ R,
∂νψ(x, t) = 0 for x ∈ ∂Ω, t ∈ R,
∫

Ω |ψ(x, t)|2 dx = 1 for t ∈ R,
ψ(x, t) > 0 for x ∈ Ω, t ∈ R.

(A.3)

Remark A.2. The uniform Harnack inequality [24, Theorem 2.5] says that
there exists some positive constant C ′ independent of the coefficients A and
t such that

sup
x∈Ω

ψ(x, t) ≤ C ′ inf
x∈Ω

ψ(x, t) for t ∈ R.

By the normalization
∫

Ω ψ(x, t)
2 dx = 1, it is not difficult to show that there

exists C such that

1

C
≤ ψ(x, t) ≤ C for all x ∈ Ω, t ∈ R. (A.4)

Proof. Let ψ̃(x, t) be the unique positive entire solution to














∂tψ̃ − Lψ̃ = 0 for x ∈ Ω, t ∈ R,
∂νψ̃(x, t) = 0 for x ∈ ∂Ω, t ∈ R,
∫

D |ψ̃(x, 0)|2 dx = 1,
ψ̃(x, t) > 0 for x ∈ Ω, t ∈ R.

(A.5)

The uniqueness of ψ̃(x, t) follows from [24, Proposition 2.7] (see also [48]),
while the existence follows by a limiting argument based on the existence of
solutions of suitable related periodic parabolic problems. For the details we
refer readers to [23, Section 4]. By the standard parabolic regularity theory,

ψ̃ ∈ C2+β,1+β/2
loc (Ω × R). Furthermore, the uniform Harnack inequality [24,

Theorem 2.5] holds, i.e. there exists C such that

sup
x∈Ω

ψ̃(x, t) ≤ C inf
x∈Ω

ψ̃(x, t) for all t ∈ R. (A.6)

We proceed to normalize the principal bundle ψ̃; i.e. if we define

H1(t) = −
d

dt

[

log ‖ψ̃(· , t)‖L2(Ω)

]

= −

∫

Ω ψ̃∂tψ̃ dx
∫

Ω ψ̃
2 dx

and

ψ1(x, t) = exp

(
∫ t

0

H1(s) ds

)

ψ̃(x, t)
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then it is obvious that H1 ∈ Cβ/2
loc (R) and ψ1 ∈ C2+β,1+β/2

loc (Ω × R) and that
(ψ1, H1) satisfies (A.3). To conclude the proof, it remains to show that

‖H1‖Cβ/2(R) ≤ C for some constant C. (A.7)

To this end, we claim that

inf
x∈Ω

ψ̃(x, t) ≥ e−‖c‖(t−t0) inf
x∈Ω

ψ̃(x, t0) for t > t0, (A.8)

where ‖c‖ is the supremum norm of the zero-th order coefficient of L in
Ω×R. Indeed, if we fix s, then ψ̃(x, t) and e−‖c‖(t−t0) infΩ ψ(·, t) form a pair
of super- and sub-solutions of (A.5). The inequality (A.8) thus follows by
comparison.

By parabolic estimates, there exists C independent of t such that

‖ψ̃‖Cβ,β/2(Ω×[t−1/2,t]) + ‖∂tψ̃‖Cβ,β/2(Ω×[t−1/2,t]) ≤ C‖ψ̃‖L∞(Ω×(t−1,t)) (A.9)

for all t ∈ R. Combining with (A.6) and (A.8), we have

‖ψ̃‖Cβ,β/2(Ω×[t−1/2,t]) + ‖∂tψ̃‖Cβ,β/2(Ω×[t−1/2,t]) ≤ C inf
x∈Ω

ψ̃(x, t).

for all t ∈ R. In particular, if we define

a(t) = −
∫

Ω

ψ̃(x, t)∂tψ̃(x, t) dx and b(t) =

∫

Ω

ψ2(x, t) dx,

then there is C independent of t such that

|a(t)|+
|a(t)− a(s)|

|t− s|β/2
+

|b(t)− b(s)|

|t− s|β/2
≤ Cb(t) for s ∈ [t− 1/2, t).

Since H1(t) = a(t)/b(t), we obtain ‖H1‖C0(R) ≤ C and

|H1(t)−H1(s)|

|t− s|β/2
≤

1

b(t)

|a(t)− a(s)|

|t− s|β/2
+

|a(s)|

b(s)b(t)

|b(t)− b(s)|

|t− s|β/2
≤ C

for s ∈ [t− 1/2, t). This proves (A.7). !

A.2. The decomposition and exponential separation. For fixed func-
tions aij, bj , c ∈ Cβ,β/2(Ω × R), let (ψ1(x, t), H1(t)) be given as in Theorem
A.1. Consider the non-autonomous problem







∂tu− Lu = H1(t)u for x ∈ Ω, t ≥ s,
∂νu = 0 for x ∈ ∂Ω, t ≥ s,
u(x, s) = u0(x) for x ∈ Ω.

(A.10)

We follow the notation of [43] and, for t ≥ s, let U(t, s) be the evolution
operator to (A.10) i.e. u(x, t) = U(t, s)[u0](x) is the unique solution to
(A.10). Then

U(t, s)ψ1(·, s) = ψ1(·, t) whenever t ≥ s.
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Define, for each t ∈ R, X1(t) := span {ψ1(·, t)}, and

X2(t) :=
{

u0 ∈ L2(Ω) : U(t̃, t)[u0](x) has a zero in D for all t̃ ∈ (t,∞)
}

Then X1(t) and X2(t) are forward-invariant under U(t, s), i.e.

U(t, s)(X1(s)) = X1(t) and U(t, s)(X2(s)) ⊆ X2(t) for t ≥ s.

Also, it follows by [24, 25] that

L2(Ω) = X1(t)⊕X2(t) for each t ∈ R, (A.11)

and there are constants C, γ > 0 that depend on the bound M in (A.1) and
(A.2) only, such that

‖U(t, s)u0‖L2(Ω) ≤ Ce−γ(t−s)‖u0‖L2(Ω) for any t ≥ s and u0 ∈ X2(s).
(A.12)

(Here we made use of [24, Theorem 2.1] and the fact that ‖U(t, s)u0‖L2(Ω) =
‖u0‖L2(Ω) for u0 ∈ X1(s), which follows by the definition of the normalized
principal bundle ψ1.)

A.3. Smooth dependence on coefficients. Proposition 5.2 is a particu-
lar case of the following result.

Proposition A.3. The quantities (ψ1, H1) depend smoothly on the coeffi-
cients A = (aij , bj, c) ∈ Cβ,β/2(Ω× R;RN2+N+1).

Proof. We consider general parabolic operator ∂t − L with coefficients A.
We denote ψ1 = ψ1(x, t;A) and H1 = H1(t;A) to stress the dependence
of the normalized principal bundle on the coefficients A = (aij, bj , c) of
L. First, the continuous dependence of (ψ1, H1) on A follows readily from
the uniqueness of the pair and standard parabolic regularity. (See [24] for
details.) In the following, we will prove the smooth dependence.

Consider the mapping

F : C2+β,1+β/2
N (Ω× R) × Cβ/2(R) × Cβ,β/2(Ω× R;RN2+N+1)

−→ Cβ,β/2(Ω× R)× C1+β/2(R)

defined by

F(ψ(x, t), H(t),A) :=

(

∂tψ(x, t)− Lψ(x, t)−H(t)ψ(x, t)
1
2

∫

Ω |ψ(x, t)|2 dx− 1
2

)

,

where

C2+β,1+β/2
N (Ω× R) = {u ∈ C2+β,1+β/2(Ω× R) : ∂νu = 0 in ∂D × R}.

Then for each fixed A = (aij , bj, c) ∈ Cβ,β/2(Ω × R;RN2+N+1) satisfying
(A.1) and (A.2),

F(ψ1(·, ·;A), H1(·;A),A) = 0.
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To prove the smooth dependence on A, it suffices to show that

D(ψ,H)F = D(ψ,H)F(ψ1(·, ·;A), H1(·;A),A), (A.13)

as a mapping from C2+β,1+β/2
N (Ω×R)×Cβ/2(R) to Cβ,β/2(Ω×R)×C1+β/2(R),

is invertible. To this end, given (f(x, t), G(t)) ∈ Cβ,β/2(Ω×R) × C1+β/2(R),

we need to prove the existence and uniqueness of (w(x, t), Y (t)) in C2+β,1+β/2
N (Ω×

R) × Cβ/2(R) such that
{

∂tw − Lw −H1w − Y (t)ψ1 = f(x, t) for t ∈ R, x ∈ Ω,
∫

D w(x, t)ψ1 dx = G(t) for t ∈ R,
(A.14)

where H1 = H1(t;A) and ψ1 = ψ1(x, t;A). First, we show the existence.
We start by choosing w⊥ as

w⊥(x, t) =

∫ t

−∞

U(t, σ)[P 2(s)f(·, σ)] dσ,

where, for i = 1, 2, P i : L2(Ω) → L2(Ω) is the projection operator corre-
sponding to the decomposition given in (A.11). We claim that w⊥ is well
defined. Indeed, by (A.12), we have

sup
t∈R

‖w⊥(·, t)‖L2(Ω) ≤ sup
t∈R

∥

∥

∥

∥

∫ t

−∞

U(t, σ)[P 2(σ)[f(·, σ)]] dσ

∥

∥

∥

∥

L2(Ω)

≤ C sup
t∈R

∫ t

−∞

e−γ(t−s) ‖f(·, σ)‖L2(Ω) dσ

≤ C sup
t∈R

‖f(·, t)‖L2(Ω) < ∞ (A.15)

Moreover, since it defines an entire solution of ∂tw⊥ − Lw⊥ − H1(t)w⊥ =
P 2(t)[f(·, t)] with Neumann boundary condition, it follows by parabolic reg-

ularity estimates that w⊥ ∈ C2+β,1+β/2
N (Ω×R). Next, define w ∈ C2+β,1+β/2

N (Ω×
R) to be

w(x, t) = w⊥(x, t) +

[

−

∫

Ω

w⊥(y, t)ψ1(y, t) dy +G(t)

]

ψ1(x, t).

Then w satisfies the second part of (A.14). Moreover, we have

∂tw − Lw −H1(t)w

= P 2(t)[f(·, t)] +

{

−
d

dt

[

∫

Ω

w⊥(y, t)ψ1(y, t) dy
]

+G′(t)

}

ψ1(x, t).

It therefore suffices to choose Y ∈ Cβ,β/2(Ω× R) such that

Y (t)ψ1(x, t)+P 1(t)[f(·, t)] =

{

−
d

dt

[

∫

Ω

w⊥(y, t)ψ1(y, t) dy
]

+G′(t)

}

ψ1(x, t).
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Then (w, Y ) ∈ C2+β,1+β/2
N (Ω × R) × Cβ,β/2(Ω × R) satisfies (A.14). This

proves existence.
For the uniqueness, set f = 0 and G = 0, then using the the variation of

constants formula for ∂tw − Lw −H1(t)w = Y (t)ψ1(x, t), we get

w(·, t) = U(t, s)w(·, s) +
∫ t

s

U(t, σ)[Y (σ)ψ1(·, σ)] dσ

= U(t, s)w(·, s) +

∫ t

s

Y (σ){U(t, σ)[ψ1(·, σ)]} dσ

= U(t, s)w(·, s) +
∫ t

s

Y (σ)ψ1(·, t) dσ

= U(t, s)w(·, s) +

[
∫ t

s

Y (σ) dσ

]

ψ1(·, t).

Hence, we deduce

w(·, t) = U(t, s)w(·, s) +

[
∫ t

s

Y (σ) dσ

]

ψ1(·, t) for any t, s ∈ R, t > s.

(A.16)
Next, apply the projection P 2(t) on both sides of (A.16),

P 2(t)[w(·, t)] = P 2(t)[U(t, s)w(·, s)] = U(t, s)P 2(s)[w(·, s)].

provided t, s ∈ R and t > s. This implies

‖P 2(t)[w(·, t)]‖L2(Ω) ≤ Ce−γ(t−s)‖P 2(s)[w(·, s)]‖L2(Ω) ≤ Ce−γ(t−s), (A.17)

where we used (A.12) for the first inequality and the fact that w ∈ C2+β,1+β/2(Ω×
R) for the second one. Letting s → −∞ in (A.17), we deduce that P 2(t)[w(·, t)] =
0 for each t ∈ R. Hence, w(·, t) ∈ X1(t) and thus w(·, t) = p(t)ψ1(·, t) for
some function p(t). Now, using G(t) ≡ 0, the second equation in (A.14)
gives

0 =

∫

Ω

w(x, t)ψ1(x, t) dx = p(t)

∫

Ω

|ψ1(x, t)|
2 dx = p(t)

for each t ∈ R. This implies w(x, t) ≡ 0. Substituting into (A.16), we have
∫ t

s

Y (σ) dσ = 0 for any t, s ∈ R, t > s,

which means Y (t) ≡ 0 as well. This proves uniqueness.
Having shown that D(ψ,H)F given in (A.13) is an isomorphism, we may

apply the implicit function theorem to conclude the smooth dependence of
the normalized principal bundle (ψ1(x, t), H1(t)) on the coefficients A. This
concludes the proof. !
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[26] V. Hutson, K. Mischaikow, P. Poláčik, The evolution of dispersal rates in a hetero-
geneous time-periodic environment, J. Math. Biol. 43 (2001) 501-533.

[27] S.B. Hsu, H.L. Smith and P. Waltman, Competitive exclusion and coexistence for
competitive systems on ordered banach spaces, Trans. Amer. Math. Soc. 348 (1996)
4083-4094.

[28] D. Jiang, Y. Lou K.-Y. Lam and Z. Wang, Monotonicity and global dynamics of a
nonlocal two-species phytoplankton model, SIAM J. Appl. Math., 79 (2019), 716-742.

[29] L. Korobenko, E. Braverman, On evolutionary stability of carrying capacity driven
dispersal in competition with regularly diffusing populations, J. Math. Biol. 69 (2014)
11811206.

[30] N. Lakos, Existence of steady-state solutions for a one-predator two-prey system,
SIAM J. Math. Anal. 21 (1990) 647659.

[31] A. Leung, A study of 3-species preypredator reactiondiffusions by monotone schemes,
J. Math. Anal. Appl. 100 (1984) 583604.

[32] K.-Y. Lam and Y. Lou, Evolutionarily stable and convergent stable strategies in
reaction-diffusion models for conditional dispersal, Bull. Math. Biol. 76 (2014) 261-
291.

[33] K.-Y. Lam and Y. Lou, Evolution of conditional dispersal: evolutionarily stable
strategies in spatial models, J. Math. Biol. 68 (2014) 851-877.

[34] K.-Y. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective envi-
ronments, J. Biol. Dyn. 9 (2015) 188-212.

[35] K.-Y. Lam and D. Munther, A remark on the global dynamics of competitive systems
on ordered Banach spaces, Proc. Amer. Math. Soc. 144 (2016) 1153-1159.

[36] K.-Y Lam, and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous
competition-diffusion systems, SIAM J. Appl. Math. 72 (2012) 1695-1712.

[37] G. M. Lieberman. Second order parabolic differential equations. World Scientific
Publishing Co., Inc., River Edge, NJ, 1996.

[38] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple
species, J. Differential Equations 223 (2006), 400426.

[39] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J.
Math. Biol. 69 (2014) 1319-1342.

[40] Y. Lou and D. Munther,Dynamics of a three species competition model, Discrete
Contin. Dyn. Syst. 32 (2012) 3099-3131.



32 R.S. CANTRELL AND K.-Y. LAM

[41] Y. Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-
diffusion-advection system in heterogeneous environments, J. Math. Pures Appl. 121
(2019) 47-82.

[42] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment:
the effect of boundary conditions, J. Differential Equations 259 (2015) 141-171.

[43] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. Mod-
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