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ABSTRACT

A Brownian bridge is a continuous random walk conditioned to end in a given region by adding an effective drift to guide paths toward the
desired region of phase space. This idea has many applications in chemical science where one wants to control the endpoint of a stochastic
process—e.g., polymer physics, chemical reaction pathways, heat/mass transfer, and Brownian dynamics simulations. Despite its broad appli-
cability, the biggest limitation of the Brownian bridge technique is that it is often difficult to determine the effective drift as it comes from
a solution of a Backward Fokker-Planck (BFP) equation that is infeasible to compute for complex or high-dimensional systems. This paper
introduces a fast approximation method to generate a Brownian bridge process without solving the BFP equation explicitly. Specifically, this
paper uses the asymptotic properties of the BFP equation to generate an approximate drift and determine ways to correct (i.e., re-weight)
any errors incurred from this approximation. Because such a procedure avoids the solution of the BFP equation, we show that it drastically
accelerates the generation of conditioned random walks. We also show that this approach offers reasonable improvement compared to other
sampling approaches using simple bias potentials.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION

Continuous random walks—i.e., diffusion with drift—are
omnipresent in a wide range of chemical fields, such as sampling
polymer conformations, ~ studying chemical reaction pathways,
and molecular/Brownian dynamics simulations.” In many practical
situations, one seeks to quantify random walks whose paths are con-
strained to stay in a given region, hit a region before another one, or
end in a given region.® Such ideas allow one to quantify rare events
in a chemical process or conversely quantify most probable config-
urations and reaction pathways. Because of these reasons, there has
been much interest in developing robust techniques that can sample
and control random paths efficiently.

We study a concept known as a Brownian bridge, which is a
random process whose start and end points are known.” A Brownian

bridge is created by adding an effective drift to a continuous random
walk such that the paths end in the desired region of phase space
with the correct conditional statistics ( ). This idea falls into
the broader class of “driven” processes that was introduced by Doob
in the 1950s (referred in the mathematics community as the Doob
h-transform™”) and has only recently experienced interest in the
chemical physics community to study rare events and understand
non-equilibrium thermodynamics under large deviation theory.
In fact, the effective drift for a Brownian bridge can be generalized
to create conditioned processes that stay in a given region for its
entire path or create random walks that hit one region of phase space
before another.

The Brownian bridge can condition any continuous random
walk to end in a given region and in many situations offer advan-
tages over other techniques. For example, when chemical physicists
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Bridge '

examine paths with two known endpoints, they often use a path-
integral formulation.' " This formulation does not work well if one
wants the process to end in a region rather than a point, but the
Brownian bridge allows for this flexibility. Similarly, many molec-
ular dynamics simulations at constant temperature use a Langevin
equation to describe the dynamics of all molecules involved. To sam-
ple the transition between two possibly rare states, one often uses
sampling techniques, such as umbrella/blue moon sampling,'””’
metadynamics,”' or adaptive forcing approaches,” to add a biasing
force/potential along a reaction coordinate. Although useful, these
techniques often struggle to sample rare events over a prescribed
length/time interval, which the Brownian bridge can implement
straightforwardly. Finally, Brownian bridges can be useful in barrier
crossing problems where one wants to examine the short-time bar-
rier crossing trajectories and ignore the uninteresting dynamics that
occur, while the system waits in a potential energy well.”

In our manuscripts,”"” we demonstrated how the Brownian
bridge idea could be used in polymer physics by examining a canon-
ical problem in polymer field theory—the conformation of an ideal
polymer in an external field. We demonstrated that one can use the
bridge methodology to efficiently grow polymer chains to end with
a given topology (e.g., rings or finite winding number) or end with a
given total energy. The latter is useful for sampling rare events (high
total energy) or most probable configurations (low energy). In the
situations we examined, the bridge methodology vastly outperforms
traditional sampling techniques, such as Rosenbluth techniques and
Metropolis Monte Carlo methods, in some cases simulating exceed-
ingly rare conformations with an order of magnitude fewer samples
than before.'® Furthermore, we showed that this methodology can
be extended to constrain paths to lie in a given region for its entire
path.'

Despite the applications of Brownian bridges and other
“driven” processes with a Doob h-transform, there is one glaring
limitation of these techniques that hamper their implementation in

Approximation
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FIG. 1. Brownian bridge samples the
stochastic paths that start from point
Xo € Q, (at s =0) and are conditioned
to end in domain xy € Q; (at s=1L).
In other words, out of all paths that
a continuous random walk can real-
ize (solid and dashed), the Brownian
bridge will only sample the subset that
ends in region Q; (solid lines). For a
random walk at a given intermediate
position x(s), the Brownian bridge is
implemented by adding a drift velocity
u =2D- 219 to bias the path, where D
is the diffusion matrix of the random walk
and q(x,s) = P(x(L) € Q/[x(s)) is
a hitting probability that satisfies the
Backward Fokker-Planck (BFP) equa-
tion (3). This paper introduces a method
to approximate the drift velocity u without
solving the BFP equation and how to cor-
rect (reweight) any errors incurred from
such an approximation.

the chemistry community. The drift used in the Brownian bridge
to drive paths to the correct regions in phase space is deter-
mined using the solution of a Backward Fokker-Planck (BFP)
equation, which is infeasible for complicated systems. The solu-
tion to the BFP equation becomes problematic due to the “curse
of dimensionality”—i.e., it scales unfavorably as the number of
dimensions increases. Thus, there is a need to develop and lever-
age approximation methods to calculate the drift in order to scale
up the methods for higher dimensions. This work will discuss a
novel approach to address this issue, and an approximation method
will be developed based on the asymptotic properties of the BFP
equation.

This work will show how to systematically generate approxi-
mations to the drift without solving the BFP equation and how to
correct (i.e., reweight) any errors incurred from this approximation.
In Sec. II, we begin by first defining the stochastic system and the
concept of a Brownian bridge. Next, we introduce the approximation
method based on ideas from path integrals and importance sam-
pling. There are two key elements in our scheme: (a) an approximate
solution to the BFP equation based on its asymptotic properties and
(b) a reweighting procedure. In Sec. III, we use our approximation
scheme to sample several 1D Wiener processes that are conditioned
to end at a given point or a region. These ideas are then extended to
higher dimensional systems. In Sec. I'V, we show that the approxima-
tion scheme offers an improvement in efficacy compared to alternate
importance sampling approaches where (a) one flattens the poten-
tial energy landscape, (b) one adds a constant drift toward the end
region, and (c) one adds a confining, harmonic potential centered
around the end region. In Sec. V, we perform a time and spatial
complexity analysis to show that the approximation method out-
lined here gains a significant computational edge over obtaining an
exact Brownian bridge via solution to the BFP equation from a finite
element method. In Sec. VI, we summarize our findings and discuss
the future developments.
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Il. PROBLEM SETUP AND METHODS

A. Stochastic differential equation for continuous
random walk

A stochastic differential equation is a mathematical description
of a continuous random walk. Let s be a coordinate that represents
the arc length of a random walk, where 0 < s < L, where L is the total
length. Let x, be the initial position of the walk and x(s) be the posi-
tion at arc length s. If the random walk has a drift A and a diffusion
tensor D = %B . BT, the stochastic differential equation in It6 form
that describes this process is

dx = A(s,x(s))ds + B(s,x(s)) - dAB, x(0)=x,, se(0,L). (1)

In the above equation, we note that the drift A and tensor B
can be functions of the arc length s and phase space coordinate
x. For instance, when A = -1 (B- B")-vU(x) = -D- VU, the sys-
tem represents an over-damped Langevin equation, where U(x)
is the dimensionless external potential. The above notation is
shorthand for the following: if we want to compute the random
walk position x(s+ ds) given the known position x(s), we per-
form a forward Euler-Maruyama integration:””> x(s+ ds) = x(s)
+ A(s,x(s))ds + \/dsB(s,x(s)) - Z, where Z is a normal, indepen-
dently distributed Gaussian random variable with mean zero and
covariance I (the identity matrix). The symbol d% = \/dsZ denotes
a Wiener process.”” For example, many polymer chains are repre-
sented using such random walks. A flexible polymer with no interac-
tions is simply dx = d98 if the coordinates are scaled properly. This
ideal random walk—i.e., a Gaussian chain—accurately describes
polymer conformations over distances larger than the persistence
length of the backbone.”*”” Ideal polymers that have backbone stiff-
ness can be represented by more complicated stochastic differential
equations (SDEs)—e.g., worm-like chain model.”® Other exam-
ples of continuous random walks include an Ornstein-Uhlenbeck
(UO) process™”’ (dx = —kxds + 0d® ) and geometric Brownian
motion®! (dx = kxds + oxd% ), where constants k represent the drift
constants of both systems, and constants ¢ are the volatility of the
random fluctuations that are modeled as Brownian motions.

B. Brownian bridge

Suppose that we have the random walk described in Eq. (1), but
now we want to condition the paths to end in a region Qp ats=1L
(Fig. 1). We note that for this paper, the total length of the walks (L)
is a specified input. For example, in simulating a polymer conforma-
tion, L represents the length of the polymer backbone. The stochas-
tic differential equation that samples the conditional probability
P(x(s)|x(0) = x0,x(L) € Q) is a bridge ™, which satisfies' """

dx* =dx+B-B". %(ln q)ds with x(0) = x,. (2)

The bridge is the same as the original random walk x but with
an additional drift term B - B” - % (Ing). The term g(x, s) is a hitting
probability (Fig. 1), which is a probability that the original ran-
dom walk reaches the desired end region Q; at s = L, given that its
earlier position is x(s) at arc length s. From a physics standpoint,
one can think of the extra drift as an “entropic drift” that drives
a path toward the end region'® since the entropic free-energy bar-
rier for reaching the end-state is proportional to TAS ~ —1n(q). To

ARTICLE scitation.org/journalljcp

compute the hitting probability g, one can invoke classic theories
from continuous Markov chains to show that it satisfies a backward
Fokker-Planck equation®” (€1 is the endpoint or designated region)
as follows:

0q oq 1 n  0%q
=14 214 2(B-B"): =0,
“4 Os * Ox * 2< ) Ox0x

1 erL,

0  otherwise.

(3)
g(x.s=1) = {

The above equation is integrated backward from s = L to s = 0. Fur-
thermore, if one wants to confine the whole path to a region rather
than just its endpoint (Brownian excursion'®), then one can add
boundary conditions to the above equation. Note that a numeri-
cal solution of a Backward Fokker-Planck (BFP) equation becomes
infeasible for high dimensional systems. In Sec. IT D, we will discuss
an approximation method that allows one to obtain the statistics
of the Brownian bridge without an explicit solution to the BFP
equation.

C. Probability of paths: Path integral approach

The probability of a specific path for the SDE dx = Ads
+ B-d% is expressed in a discrete manner (L = N - As),

1 N=l
p{x} ~exp (_E kz:(:) (Axi — A(xk)As)
) (B.BT)71 - (Axg —A(xk)As)), 4)

where Axy = xi,; — x;. For a Brownian bridge, the corresponding
probability is

PP {x} ~ exp (_ZLAS 2 (Axk — (A(xy) + ud)As)

. (1;.BT)‘1 : (Axk — (A(xg) + ud)As)), (5)

where the exact drift is expressed as u? = (B - B") - V,In(g). The
relationship between the probability of the Brownian bridge and the
original stochastic process can also be written as p* {x} ~ 1(x(L)
€ Qr) - p{x}, where 1 is the indicator function.

D. Method of approximation: Reweighting

Instead of solving the hitting probability g via the Backward
Fokker—Planck (BFP) equation (3), let us use an approximate hitting
probability y that satisfies the same boundary and end conditions
as g in the backward Fokker-Planck equation(3). Suppose that we
now add a drift to the original SDE that approximates the bridge:
dx = (A +u”)dt+ B-d%, where the approximated drift is u®
~(BB") - Vsln(y).

The probability of a path under this approximation is
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P {x} ~ exp(_iN 1 (Axi = (A(x) +u™)As)

. (B~BT o Axp — (A(xp) + u“P)As))

)
~ p{x} exp(g]\jz:_%1 (Axk . (B . BT)_I

-u“P+u""~(B~BT)

- Axg — AAs - (B . BT)_I Uy (B : BT)_I

AAs - u . (B . BT)_I : u“PAs)). (6)

If one uses Ito’s formula A In(y) = 2P ¥As+ 2R ¥Ax 41

(B-BT): 9gxlgxw As as As — 0 and uses the fact that exp(> A Iny)

~ 1(x(L) € Qr), one can obtain the following expression:

a r 81111// 6‘1n1//
p o B
Pt e 3 (a0

1 ry (@ lny Olnydlny
+2(BB)‘((9x8x T Tox  ox asl (@)

In the limit As — 0, the above expression can be written as

L
PP {x} ~ p¥ {x) exp(— fo ?[lnw]ds), ®)
where
o1 o1
linyl= atw A ar;w

1 T\ . #Iny dlnydlny _1
+z(BB)'(axax Yox ox ) O

In the above equation, £ is the Backward Fokker-Planck (BFP)
operator described in Eq. (3). Note that Eq. (9) shows that, for
the reweighting procedure, one needs to calculate the Hessian
2

matrix, aaxgx"’. Alternatively, one can avoid the second derivative
calculations by considering the following equation instead of Eq. (7):

N-1
paP{x} NpBr{x} eXP(— Z (A lnv/_ M . Axk
k=0 Ox
KELPNRPAREITLIN
+A ox As + 2B B : % O As )| (10)

As As — 0, the new reweighting function is expressed as

Olnydln
up T 1/’ V/
RV

LYony
+[0 ox .B.d(%’flnw(L)+lnu/(0)), (11)

which does not need the repetitive calculation of the Hessian matrix.
However, one should be cautious about the sampling efficiency of

ARTICLE scitation.org/journalljcp

this alternative formalism compared to the original equations (8)
and (9) as the uncertainty of ensembles is amplified by avoiding the
calculation of the Hessian matrix.

Equations (8) and (9) show that the process with the approx-
imate hitting probability y has the same statistics as the bridge

if we reweight each generated path by W= exp[ foLig l/lds]

= exp [ fOL? [lny] ds]. There are many consequences to this
reweighting scheme.

e One can now obtain the statistics of the bridge without
knowing the exact hitting probability.

o If y=gq (the exact hitting probability), the quantity
fo [Iny]ds = Ligu/ds =0. The weight W =1, and we
obtain optimal sampling.

o If y # g, the quantity foLig yds gives an idea of how good
or poor the approximation is. If there is a wide variation in
the weights W = exp( fOLiffl//ds), then one needs a better
estimate.

In Sec. IT E, we will design a good choice of y for various continu-
ous random walks. We first design y for endpoint control and then
extend the idea to controlling the end region. We will look at 1D
stochastic processes first and then extend to ./ dimensions.

E. Design principle for approximation

A good approximation of a hitting probability should
allow [()Liff yds ~ 0. Here, we use the asymptotic properties of
this operator to generate guidelines for an approximate hitting
probability y.

Let us look at the simple problem of a pure Wiener process
dx = d%8 conditioned to end at a particular point x(s = L) = xy. The
hitting probability is Gaussian—i.e.,

q(x.5) = P(x(L) = xnlx,5) = 271(1L - exp[_ (;(2 ’il\;)) ]
(12a)
Ing(x,s) = —% - %ln(L —-s) - %ln(Zn). (12b)

In this case, we see that Ing ~ O(7%;) as s — L, which exhibits
singular behavior. In fact, this scaling will hold for any SDE
dx = Ads+B-d% as long as B - B is full rank since the hitting
probability will always be diffusion dominant near the endpoint.
Therefore, one criterion we can learn is that any approximation
In y to the hitting probability must recover the asymptotic property
Iny ~O(;%)ass— L,aslongasB - B" is full-rank.

Another restriction on In ¢ comes from the fact that the weight

= exp( fo [lny] ds) cannot have too large of a dynamical range
for different paths x(s) that are sampled. At minimum, we need to
ensure that €[Iny] ~ O(1) or smaller as s — L. Thus, if we want to
guide process to an end region, the approximate hitting probability
y should at minimum satisfy the following two properties:

1. lnl//~0(%) as s —> L, (13)
-5
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2. Z[lny] ~O(1) orlessas s — L. (14)

If both conditions hold, we can safely reweight the paths to
obtain the correct statistics for the bridge. Note that this approxi-
mate principle is expected to be accurate as long as the stochastic
process is diffusion dominant. In Sec. V, we will show that it is much
faster than the conventional procedure that solves the BFP equation
directly.

F. Summary of the approximation method
for the Brownian bridge

Below, we summarize the procedure for the approximation
method.

1. Generate an approximate hitting probability y that satisfies
conditions (13) and (14).

2. Generate an approximate drift u” = B-B” - 2 ah;"’ and add it
to the SDE to guide paths to the endpoint or end region:
dx=(A+u?)ds+B-d%RB.

3. For each path {x}(s) generated in this process, calculate a
weight W = exp(fOL?[ln y]ds) using Eq. (9).

4. Paths reweighted by W now have the statistics of the condi-
tioned random walk. Thus, if we want to obtain an ensemble

ARTICLE scitation.org/journalljcp

average of an observable a, we compute () = ¥;,a;Wi/>; Wi,
where W; is the weight of sample i.

lll. RESULTS AND DISCUSSION
A. 1D Wiener process with a fixed endpoint

Let us look at a generic, one-dimensional SDE dx = A(x)ds
+ B(x)d% conditioned to end at a particular point x(s = L) = xn.
Because we know that the hitting probability will be diffusion dom-
inated near the endpoint, we can expect it to have similar asymp-
totic form as Eq. (12b) when s — L. Thus, we can state that the
approximate solution takes the form

lnw:—ﬁf(x)hg(x)—%ln(L—s), (15)
where f(x) and g(x) are unknown functions. Using the condition
that Z[Iny] ~ O(1) as s — L allows one to solve for the functions
f(x) and g(x), which gives the approximate hitting probability

to be
L (e ) R AY)
AT (fo B(y)) W B()°
+ %lnB - %ln(L -s). (16)

(a-1) (a-3) (a-4)
10 4000 60
Eou 1 Bridge-OU
5= 3000 $ Approximation-OU
- __ 40 /l—Analytic-O0U
S 2000 o
5 1000 20
Approximation
-10 0 ol
0 0.5 1 -8 0 5 10
1‘0
1(b-1) (b-2)
I 10000 100 | : ‘
I BGB 1 Bridge-GB
! $ Approximation-GB
! e —Analytic-GB
: 5000 ‘E” 50
| A
|
I M
‘ o 0 0
0 0.5 11 0.99996 0.99998 1 0 5 10
S/L : W To

FIG. 2. Comparison of the exact Brownian bridge to our proposed approximate solution for 1D Ornstein-Uhlenbeck (OU) and geometric Brownian (GB) processes. (a) For
an OU process, we present paths for different starting positions x, = —10, -5, 0,5, and 10 and endpoint xy = 2. (a-1) Approximate bridge and (a-2) exact Brownian bridge.
The parameters are o = k = 1, L = 1, and the number of runs for each instance = 100. (a-3) Distribution of normalized weight W for the approximate OU process (x, = 10;
number of runs = 10*). (a-4) Comparison of the ensemble of X2, which is (x?) at s/L = 1/2, for different starting positions x, (number of runs = 10%). (b) For the GB

2
process, we present (b-1) the distribution of normalized weight W from the approximate GB (x, = 10) and (b-2) the ensemble of x2 . For these runs, the endpoint is xy = 2.

2
The other parameters are L = 1, o = k = 1, and the number of runs = 10*. In (a-4) and (b-2), the error bars indicate the standard deviation of the sample mean.
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We will use this approximate hitting probability to sample
random walks that finish at the point x = xy. To do this, we first
generate an approximate entropic term u% = B 9 ;‘“" and add it to
the SDE to guide paths to the endpoint: dx = (A + u®)ds + Bd%.
For each path x(s) generated in this process, we calculate a weight

= exp( fo & [Iny]ds). Paths reweighted by W will now have the
statlstlcs of the condltloned random walk.

We will demonstrate this methodology for two different
stochastic processes: 1D Ornstein-Uhlenbeck (OU) process’””” and
geometric Brownian (GB) motion.”! For the OU process, the SDE is
written as dx = —kxds + 0d9% . According to Eq. (16), the approx-
imate hitting probability and the corresponding € [Ilny] value
are

1k 1 o
(x—xN)2+f?(x2—x§])+£ ln(f),

Iny=--
V= 2(L-s)0? 2

If the SDE is a geometric Brownian motion (dx = kxds + oxd% ), we
have

Iny = ﬁ[ln(x);)]z ) %ln(%) " %m(;fs), (18)

Z[lny] = const.

Figures 2(a-1) and 2(a-2) show sample paths for the OU pro-
cess starting at different points x, and conditioned to end at xy = 2.
The paths denoted “approximation” are paths constructed from the
approximate hitting probability discussed above, while the paths
denoted “bridge” are constructed using the exact hitting probability
q (known analytically for the OU process). The simulations from the
Brownian bridge and the approximate solution show different paths,
yet both reach the end point in Fig. 2(a). The weight distribution
for the approximate OU process is in the range of W ¢ (107%,10%),
showing that reweighting is necessary to capture the correct statis-
tics. For the GB process, the approximate solution is identical
to the exact bridge solution [see weight distribution for GB in
Fig. 2(b-1)].

In Figs. 2(a-4) and 2(b-2), we graph the quantity (x3 ), which is

the ensemble average of the second moment x* at the midpoint of the
path (s = L/2). The data points “bridge” are sampled from the exact
bridge process, while data points “approximation” are sampled from
the approximate bridge and reweighted. For both the OU and GM
processes, an analytic solution to {x% ) is known using the following

formula:

_ L2 (s = S so)p(oows L s = §)dx

L
2
D T p(os = T )pCon Los= Das - Y

In the above expression, p(x, s|xo,S,) is the probability at position x
and arc length s given a previous position x, and arc length s,. The
analytic solutions are
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(1= N (%0 +xn)e™*
T 2k(l+ek) T (1+ek)2

2 In(xoxn) +1
G () - ep(21nCm) 1)
(xz) exp o2

(20)

The ensemble statistics from the approximation method con-
firms the correct solution [see analytic solutions for OU and GB
in Figs. 2(a-4) and 2(b-2)]. We observe excellent agreement even
though we did not compute an exact hitting probability from a
backward Fokker-Planck equation.'®

B. 1D Wiener process that ends in a given region

Section 11 A demonstrates a systematic method to approximate
hitting probabilities for one-dimensional random walks conditioned
to end at a particular point. This approximate hitting probability
allows one to sample the conditioned random walk exactly, aslong as
one reweights each path accordingly. The advantage of this approach
is that one no longer needs to solve a backward Fokker-Planck equa-
tion, which allows one to sample constrained random walks for more
complicated systems where determining the Fokker-Planck solution
is difficult or infeasible.

Here, we would like to develop approximations for paths that
are constrained to end in a particular region rather than a point. Sim-
ilar to before, let us examine the hitting probability q(x, s) for a pure
diffusion (dx = d9 ) to gain intuition for its asymptotic properties
near the end of the path (s — L). If we examine paths conditioned
to end in the region xy € [a, 00), the hitting probability is

(v - x)?
2(L-5) ]

P(x(L) > alx(s)) = f - \/%exp[_

1 a—x
= —erfc| ———— |,
2er c[ 2(L—s)] (21)

where erfc(-) is a complimentary error function. When s — L,
Eq. (21) behaves like In(g) ~ —ﬁ(x— a)? —In(a-x) + 1In
(L —s) when x is far outside the hitting region

is a smooth variation in between these two regimes.

These expressions allow one to derive an approximate hitting
probability for a general 1D SDE: dx = Ads + BdZ . Since any condi-
tioned continuous random walk is dominated by diffusion near the
end of the path (s - L), one would expect that the hitting probabil-
ity would take a similar asymptotic form as the pure random walk.
We propose the form for the approximate hitting probability to be
In(y) = —ﬁf(x) +g(x) + 1 1In(L - s) for x far outside the hit-

ting region (57— > 1) and ln(t//) 0 for x far inside the hitting

[BIVI=s
region (—* 3 f > 1) To make sure that the these expressions do not

create large variations in sample weights W = exp( fo [lny]ds),
we enforce the condition ¥[lny]~O(1) as s—L in each of
these regions. This allows one to solve for functions f(x) and
g(x) and hence gives the approximate hitting probability in these
regions,
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A

ds

1
Eln[B(L—s)] —ln( B

oy )-/

>

In between these two regions, there should be a smooth vari-
ation in In(y). Below is an analytic expression that interpolates
between these two regions such that when x is close to the bound-
ary, i f ~ O(1). There are other interpolation expressions that

one can make, but we found that the following equation works fairly
well for our applications:

Iny=Ing- (1—¢)U —dx—flnB] (23)
1 A
In the above formula, ¢ = Eerfc(f \/;(L%S) .

In Fig. 3(a), we examine an Ornstein-Uhlenbeck (OU) process
starting at different initial conditions xo and conditioned to end in
a region xy € [4,00). Figure 3(a-1) generates paths from the exact
Brownian bridge using the exact hitting probability, and Fig. 3(a-2)
generates paths from the approximate bridge using the estimated
hitting probability in Eq. (23). Figure 3(b) shows the ensemble aver-
age of the first and second moments at the midpoint of the path

(a-1)
10 ¢

B>
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1
2(L-5s)

a—x

— > 1,
|BI[VL-s
i > 1
|BIlVL-s

([5)

(22)

(s=1L/2). This figure shows that the approximate solution after
reweighting gives the same results as the exact bridge even though
the approximate approach did not explicitly compute a full solution
of the backward Fokker-Planck equation. Next, we derive the theo-
retical solution for both first and second moments at the midpoint.
For the OU process, both solutions can be generally written as

S dx [, (205 = 5o, S0)p (2w, Lo s = 5 )k
T (s = T )pon s = L)
7 |2 2p(55 = Shinso )l L = L)
L7 dxn 52 p(%5 = Lxors0)p(xn, Lix,s = £ )dx

where a is the lower integral limit. For Eq. (24), the analytical for-
ward probability p(x, s|xo,s,) is known, and thus, direct numerical
integration is possible. In Fig. 3(b), sampling from the exact bridge
and approximate bridge compares well with the theoretical result
from Eq. (24). Furthermore, since the error bars are roughly the
same for the bridge and the approximation, there is little loss in

) =

(x

I

(24)

)=

(x

[N

Approx.

FIG. 3. Application of the Brownian
bridge to the 1D Ornstein-Uhlenbeck
(OU) process using the approximation
method for ending in a region. (a) Show-
case of OU paths (number of runs

=10 for each starting position x,) where
the target region is [4, c0): (a-1) exact
Brownian bridge and (a-2) approximation
method. (b) Comparison of the ensem-

ble of (b-1) (x) and (b-2) (x?) at s/L

£ Bridge £ Bridge
¢ Approximation

—Theory

30

—Theory

$ Approximation

= 1/2 (number of runs, 10*) for different
starting positions x,. For all runs, L =1
and x,=0,1,2,34,5and 6. Para-
meter specifications: ¢ = 1and k = 1.n

—I

‘/\
8 4t | N§IN20

10

(b-1) and (b-2), the uncertainties indicate
one standard deviation of the sample
mean.

0

Lo

Lo
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sampling precision. We should note that, for longer simulation tra-
jectories (larger L), the distribution of reweighting could become
wider, which could result in poorer sampling precision. If L becomes
larger (longer trajectory), the system would be drift dominant. Since
our approximate scheme is particularly suitable for the diffusion
dominant problems, the approximation method would likely show a
slower convergence rate as the trajectories become longer.

C. #-dimensional Langevin equation with constant
diffusion

Let us examine an /" dimensional Langevin equation as follows:

dx=-D-V.U(x)ds+ V2D -d3, (25)

where D=1B- B" is a constant diffusion matrix and U(x) is
the external potential energy. This type of equation is commonly
employed in Brownian dynamics simulations, where x represents
the coordinates of all particles. If one wants to condition the coor-
dinates to end at x = xy, one can develop an approximate hitting
probability y for this process using the same ideas discussed earlier.

IfoneletsIn(y) ~ O(7) and €[Iny] ~ O(1) as s - L, one obtains

Iny = —ﬁ(x—qu) D' (x-xv)
ln(L— s) + U(x)
1 (26)
Zllny] = _ED: (VU(x)VU(x) -vvU(x)).

The approximate bridge process is

dx*P"* = (-D-VU(x) +2D-V Iny)ds + V2D -d%B.  (27)

We note that, in Eq. (26), one needs to calculate the Hessian of
potential energy for the weight estimation (i.e., €[lny]). For a
large system (e.g., a folding polymer described by an empirical
force-field), the repetitive calculation of the Hessian matrix may be
expensive.

Next, we move to the case where we condition the paths to
end in a region Qy rather than a single point. Given the expression
in Eq. (26), the approximate hitting probability for an endpoint is
written as

P(xn|x(s)) » exp(Iny)
~ exp(—ﬁ(x —xn)" D7 (k- xN))
x exp(@)@ —5)™"2, (28)

Therefore, the approximate hitting probability for a region is

P(xn € Qn|x(s)) = fn dxn exp(— )(x —xn)"

v
4L~

D_l-(x—xN))exp( Ux ))(L $)"% (29)
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We perform the method of steepest descent (Bender and
Orsag™) to obtain the asymptotic properties of this integral as s — L.
Let us consider the following quantity, which represents a minimum,
non-dimensional mean-squared distance to the boundary 0Qy of
the hitting region:

1
P emin L
o~ (4(L )
When the position x(s) is far inside the boundary—i.e., x € Qx and
d > 1—the approximate hitting probability [Eq. (29)] satisfies In
~ 0. When the position x(s) is far outside the boundary—i.e., x ¢ Qn
and d > 1—the approximate hitting probability becomes

(x—xn)"-D! -(x—xN)). (30)

lan @

1. .0 1,

Just like before, we choose a function that interpolates smoothly
between these two limits and let In(y) ~ O(1) near the boundary.
One function we found that works well is

Iny = ln¢+(1—¢)(U(x)) (32)
where

g %erfc[;j] 33)

D. Application of the approximation method
for the A -dimensional Langevin equation
for rare events

Here, we illustrate how the approximation method improves
the efficiency of sampling rare events compared to a conventional
approach. To examine rare events, we study the Langevin equa-
tion (25) in two dimensions with a barrier crossing potential.”> Here,
we consider an asymmetric double well potential energy U(x,y)
= k(x* = 11/3x° = 2x* + 11x + 25/3 + 7.5y*) and a diffusion matrix
D= %azl. In Fig. 4(a), the potential has two minima of (x = -1,
y=0) and (x =2.75,y = 0) with a transition state at (x = 1,y = 0).
We examine paths that start at one of the minima (x,,y,) = (-1,0)
and are conditioned to end in a circle centered at the other minimum
(xe>9.) = (2.75,0) with radius R = 2. The potential energy U(x,y)
guides paths toward the initial state, preventing barrier crossing
[Fig. 4(a)]. The barrier height is modulated by the value of k: a large
value of k leads to a stronger barrier.

The approximation method involves adding a biasing drift
u? =2D- %}EW) to the Langevin equation, where In(y) is the
approximate hitting probability in Eq. (32). The generated paths
are reweighted accordingly using weights W = exp( fo [lny]ds)
described previously in Eq. (9). The conventional samphng
approach involves generating paths from the Langevin equation (25)
without a biasing drift and collecting the subset of samples that
satisfy the end condition.

In Fig. 4(b), we see that the approximation method will guide
all paths to the desired end region, while the conventional approach
will only have a subset of the paths satisfying the end condition. In
Fig. 4(c), we compare the statistics of the approximate method to
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FIG. 4. Comparison between the approximate Brownian bridge and conventional sampling for the Langevin equation conditioned to end in a region for barrier crossing
problems. The above fact examines a 2D Langevin equation (25) with the asymmetric double well potential energy U(x, y) = k(x* — 11/3x® — 2x% + 11x + 25/3 + 7.5)?),
starting at position (xo,y,) = (—1,0) and conditioned to end in the circular region (xc, y,) = (2.75,0) with radius R = 2. (a) Showcase of the asymmetric 2D double
well potential in the 1D slice (y = 0) with two minima (A: x = —1 and B: x = 2.75) and the transition state (C: x = 1). The barrier height is modulated by values of . (b)
Comparison of paths from the approximate Brownian bridge and conventional sampling for different values of k (k = 0.01,0.1) with color maps for potential energy U(x, y).
(c) Ensemble average of (r% ), i.e., the distance of the path’s midpoint from the origin, as value k increases (strong barrier). The approximation and conventional sampling

give the same statistics although the approximation has lower error and does not fail from sampling inefficiency for larger k values. For (b) and (c), o = v/2, L = 1, and the

number of runs is 10%.

the conventional approach, as we increase the barrier height. We
see that the both methods give the same ensemble average of (r% )R
which is the average distance of the path’s midpoint from the origin.
However, the approximation method yields much less uncertainty
in the ensemble value since the sampling efficiency is 100%. Fur-
thermore, the approximate method allows one to sample rare events
with strong barriers where the conventional approach will fail.

To further illustrate these points, we repeat the above calcu-
lation for an //-dimensional Langevin equation to show how the
approximate method allows one to sample conditional probabilities

in higher dimensions. We examine the .#-dimensional Langevin
equation (25) with potential energy U(x) = k(x] — 11/3x] — 2]
+11x +25/3) + 7.5k(Z,-/i/2x,-)2 and diffusion matrix D = %021. We
study paths that start at position xo = (-1,0,0,..,0) and are
conditioned to end in the region of the ./-sphere centered at
xc = (2.75,0,0,...,0) with radius R = 3. As the dimension of the sys-
tem increases, the conventional sampling approach again fails to
collect useful statistics. In Fig. 5(a), the conventional approach can-
not collect sufficient data to sample (r%) for # > 3. On the other

hand, the Brownian bridge using the approximation method enables
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FIG. 5. Comparison between the approximate Brownian bridge and conventional sampling for the .#-dimensional Langevin equation. The above examines an

V-dimensional Langevin equation with diffusion matrix D = 1 o/ and potential energy U(x) = k(x{ — 11/3x¢ — 2x2 + 11x; + 25/3) + 7.5k( 7, x)?, starting at position

Xo = (-1,0,0,...,0) and conditioned to end in the .#"-sphere centered at x, = (2.75,0,0, .. ., 0) with radius R = 3. (a) Ensemble average of (r: )—i.e., the distance of
2

the path’s midpoint from the origin for .4 : 2 — 10, as the number of dimensions increases. The approximation gives the same statistics as conventional sampling but can
sample a larger dimensional space where traditional sampling fails (.4~ > 5). (b) Ensemble average of (r: ) for /#" ~ O(100), where naive sampling spectacularly fails.
2

(c) Distribution of normalized weight from the approximate solution: .4 = 5, 10, 101. Parameter specifications: k = 0.001 and ¢ = \/2. The number of runs is 10°.

prediction for /" =10 or even higher [see /" =101 in Fig. 5(b)].
Since all the runs are counted in the approximation method, the
associated uncertainty of the ensemble of (r) from this technique is
significantly smaller than that of conventional sampling [Fig. 5(a)].
Next, we examine the weight distribution for different dimensions.
In Fig. 5(c), when the dimension /" increases from 5, 10 to 101, the
weight distribution broadens. This result indicates that as the dimen-
sion increases, the degradation of the sample weight will decrease
the convergence rate of the sampling method (i.e., more samples are
needed to obtain statistics within a given tolerance). In the future,
it will be interesting to improve sampling at higher dimensions
through a more accurate design of the drift based on the criteria
discussed in this paper.

IV. PERFORMANCE AGAINST OTHER BIASED
SAMPLING APPROACHES

It is important to compare the approximate bridge method-
ology to alternate sampling approaches. The alternate approaches
we will consider are situations where (a) one flattens the poten-
tial energy landscape, (b) one adds a constant drift toward the end
region, and (c) one adds a confining, harmonic potential centered
around the end region. In these alternate approaches, one gener-
ates sample paths along the biased energy landscape and reweights

the trajectories via importance sampling. First, we will provide the
derivation of the sample weight when one uses a biasing potential.
Next, we will compare the biased approaches to the approximate
bridge methodology.

Suppose that we add an extra drift to u? to the stochastic
differential equation (SDE) as follows:

dx’ = [A(s,x(s)) + ud(x(s))]ds + B(s,x(s)) - d%,
x(0) = x,, s€(0,L).

(34)

This extra drift will bias all paths toward the desired end region but
will not guarantee that the paths will end there. We also note that
u’ depends only on the spatial coordinate x. During the simulations,
the probability of the sample paths satisfies

exp(—%NZ_:I (Axk . (B . BT)_1

k=0

pix}
pH{x}

v (B~BT)71 - Axg — AAs- (B : BT)fl
. (B-BT)_I AAs—u’ . (B - BT)_1 : udAs)),

(35)
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where p{x} is the probability of the unbiased path (if u? = 0). If we ~ We note that the bridge process p* {x} ~ p{x}1(x(L) € Qr), where
let u®(x) = -(B-B")- VU (x), where U%(x) is the bias potential, the latter is the indicator function for the end region. Multiplying
Eq. (35) becomes both sides by this function gives us the weighting factor as follows:

pix} = d d d_ = d d
T ~exp( ). (Axi- VU - AAs- VU We=exp| > (Ax- VU’ - AAs- VU
pH{x} k=0 k=0
1 T d d 1 T d d
—E(B-B )-vU -vU%as) . (36) - 5(B-B )-VU vulas) J1(x(L) eqr).  (37)
(@) U “is a linear potential U “is a quadratic potential
10° ‘ 10° ‘ ‘
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FIG. 6. Comparison between the approximate Brownian bridge and the following biased sampling approaches: zero total potential (U +2U¢ = 0), linear bias poten-
tial, and quadratic bias potential. The above examines the biased sampling of a 2D Langevin equation (25) with the asymmetric double well potential energy U(x, y)
= k(x* = 11/3x3 = 2x% + 11x + 25/3 + 7.5y2), starting at position (xo,,) = (~1,0) and conditioned to end in the circular region (x.,y,) = (2.75,0) with radius R = 3.
The parameters are L = 1, k = 0.1, and o = v/2, with the number of runs being 10%. (a) 1D slice (at y = 0) of the total potential U = U + 2U¢, where U? is either a
linear biasing potential [Eq. (38)] or a quadratic biasing potential [Eq. (39)]. Adjusting the value ky in the bias potential adjusts its steepness. (b) Percentage of runs with
normalized sample weights W > W*, where the threshold weight takes the values W* = (10=3,10-2,10-1).
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If the sample path does not reach the desired end region x(L) € Qy,
the weight is identically equal to zero. Otherwise, the weight will be
the exponential term listed above. An ideal biasing potential U (x)
is one that will give a weight distribution that is not very broad.

To compare the performance of the bridge from our approxi-
mation scheme to the above approach of adding a biased potential,
we consider the //-dimensional Langevin equation with potential
U(x) = k(x} = 11/3x = 2x2 + 11x; + 25/3) + 7.5k(5,x:)? defined
in Sec. III, where there is a barrier in the direction of x;. We
are interested in examining paths that start at one minimum
x0=(-1,0,0,...,0) and end in a circular ball of radius R =3
centered around the other minimum x, = (2.75,0,0,...,0).

When adding a biased drift, we will consider the following three
potentials: (1) zero total potential (U™ = U +2U? = 0); (2) linear
potential

U (xkg) = —kq(x1 = ©), (38)

where k,; controls the strength of the biasing and c is a constant; and
(3) quadratic potential

N
Ud(x;kd,xb) de[(xl —xb)2+2x?:|, (39)

i=2

where k; again controls the strength of the biasing and
(xp,0,0,...,0) is the center of the target region. Figure 6(a) shows
the total potential energy U™ = U +2U" when the biasing drift
comes from the linear and quadratic potentials. For the linear poten-
tial, the resultant constant force will push all trajectories toward the
end region; however, one should note that too large of a forcing (k;)
could cause the random walks to be pushed past the end region.
On the other hand, for the quadratic potential, the trajectories will
always be confined around the end region.

Figure 6(b) quantifies the sample weights W from these
biased simulations. In particular, we quantify the percentage
of runs with normalized weight larger than a threshold value
W* = [107%,1072,107°] since these trajectories will be the ones that

ARTICLE scitation.org/journalljcp

dominate any ensemble average. For the first method, the total
potential is flattened (U™ = 0) such that trajectories undergo pure
diffusion. The quality of runs by such an approach is found to be
less efficient than the approximate bridge method proposed in this
paper. This observation intuitively makes sense as the approximate
bridge method [Eq. (27)] is equivalent to flattening the energy land-
scape followed by adding a time-dependent bias that pushes the
trajectories toward the end region.

For the linear potential, we find that the best performance
occurs when k; = 1 based on Fig. 6(b). The performance of the
weight deteriorates when further increasing the value of k. For
instance, if one set k; = 10, there are zero trajectories reaching the
end region. For the quadratic potential, the best performance occurs
when k; = 0.1. We should point out that, for a linear or quadratic
biasing potential, the selection of k, is highly dependent on the spe-
cific problem. Overall, for the problem described in Fig. 6(b), the
Brownian bridge using the approximation method outperforms all
three approaches.

Next, we consider the effect of dimension ./ Figure 7 compares
the method of the added drift using a quadratic potential (k; = 0.1)
to the approximate Brownian bridge approach. When k; = 0.1 is
fixed, the method using an added drift fails when /" > 6 [Fig. 7(a)].
Furthermore, we examine the weight distribution and find that both
approaches become less efficient as the dimension increases. How-
ever, the approximate bridge performs better than the added drift
method [Fig. 7(b)].

V. TIME AND SPACE COMPLEXITY ANALYSIS

This paper discusses an approximation method to generate
statistics of a continuous random walk conditioned to end in a
given region of phase space. The main advantage of this approach
is that it avoids an explicit solution to the Backward Fokker—Planck
(BFP) equation that is often needed to generate such random walks.
Here, we perform a time and space complexity analysis of the
approximation scheme and compare these results to the standard
Brownian bridge technique. We will examine the .4/-dimensional
Langevin Eq. (25), where U(x) is the potential energy function and

Bl Bridge-Approx, N = 3
Bl Quadratic, k; = 0.1

[IBridge-Approx, N = 6/]
Il Quadratic, k; = 0.1

(@) (b)
4 1.5
— Approximation
3 —+Quadratic, k; = 0.1 ®
o0 1k
o]
= £
\g> 2 <]
505
1 [l
0 0

2 4 6 8 10
N

| ¥ |

10 10
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FIG. 7. Effect of dimension .#" on the approximate Brownian bridge and biased sampling with a quadratic potential [Eq. (39)]. The above examines an
V~dimensional Langevin equation with diffusion matrix D = 1 o?/ and potential energy U(x) = k(x{ — 11/3x} — 2x2 + 11 + 25/3) + 7.5k(x2,%)?, starting at position

Xo = (=1,0,0,...,0) and conditioned to end in the .#/-sphere centered at x; = (2.75,0,0, . . ., 0) with radius R = 3. The parameters are L = 1, k = 0.1, and o = \/2,
and the number of runs is 10°. (a) Ensemble average of (r: )—i.e., the distance of the path’s midpoint from the origin for .4 : 2 — 10. (b) Percentage of runs with normalized
2

sample weights W > W*, where the threshold weight takes the values W* = (10~2%,102,10~"). We examine dimensions ./ = 3,6.
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D= %B -B" is a constant diffusion matrix. We will examine paths
that start at position x = x, at s = 0 and are conditioned to end in
region x € Qn at s=L. It is assumed that the cost of computing
the gradient of any function is O(N;,,) and the double gradient is
O(N3,,), where N, is the dimension of the phase space.

A. Standard Brownian Bridge

In the standard Brownian bridge technique, one adds a drift to
the SDE to bias all paths to end in the desired region,

dx = (—%B-BT-VU(x) +B-BT~%(‘Z))ds+B-d%, (40)
X

where g is the solution of the Backward Fokker-Planck (BFP) equa-
tion (3). The procedure for generating the conditioned random walk
is as follows:

1. Solve the BFP equation: Solve the BFP equation on a set of
meshpoints in space x ¢ R and along the arc-length coor-
dinate 0 < s < L. Use the stored solution to compute the drift
u-B-BT.2 812'7 on the meshpoints. There are typically Niime
meshpoints along the s-coordinate and N meshpoints along
each dimension for the x coordinates. Thus, there are N™én
meshpoints in space.

2. Generate Ito paths with modified drift: Generate N, paths
for the SDE using Euler-Maruyama integration. The integra-
tion will have Nype quadrature points over the coordinate
0<s<L. At any time step during integration, the addi-

tional drift u = B- B - % is computed by interpolating the
solution from the meshpoints in step 1.

3. Ensemble average: For an observable a, we compute the
ensemble average of this quantity via (a) = ﬁZf\’”‘"(xi, where
«; is the observable from run i.

From the above, the cost to perform the simulation is the cost for
each of the steps. The time and space complexity of each step is
described as follows:

1. Solving the BFP equation: A standard finite difference
scheme will yield a computational cost of (NiimeN") (N
+ Nﬁim) ~ O((N[,-WNN""" )N;im) as there are Nyme N 4" mesh-
points (space + time), and one needs to compute the gradi-
ent VU and double derivative ;ngx at the cost of O(Nyiy,)
and O(N3,) at each meshpoint, respectively. The space
complexity is the order of the number of meshpoints, i.e.,
O(N Naim Niime). If instead one uses a state-of-the art technique
to accelerate the solution of the Fokker-Planck equation, one
can reduce the computational load considerably. For example,
Proper Generalized Decomposition (PGD) approximates the
solution to the BFP equation as a series of modes that are sepa-
rable.’® The number of modes N4, < 10 for low dimensional
problems (N, < 2) will increase as the size of the dimensions
Ngim increases. Here, solving the BFP equation has a time
complexity of O(N2,, ;,,NNiimeN2Z,,)» and the space complexity
is O(NmodeNNtimeNdim)-

2. Generating Ito paths: The time complexity for generating
paths is O(ZNd""NmnNﬁme) when performing finite differences
in step 1. For each of the N, paths generated, there are
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Ntime steps in the Euler-Maruyama integration scheme with
each step taking O(2"“") operations to perform the inter-
polation of computed hitting probability at a given position
x. The space complexity is O(N i NyunNiime) for storing all
paths. When performing the PGD method, the time complex-
ity is O(ZNd"”ngdENm,,Nﬁme) and the space complexity is still
O(NdimNmnNtime)-

3. Ensemble average: The time complexity is O(Nyux), and the
space complexity is O(1).

B. Approximating scheme

In the approximating scheme, we add an approximate drift to
the original random walk as follows:

dx = (—%B-BT~VU(x) +B~BT-8127§”))ds+B-d%, (41)

where y is the approximate hitting probability computed from
Egs. (26) and (32) using the asymptotic properties of the BFP equa-
tion for the endpoint or end region, respectively. Since g # v, one
reweights each path according to

L
W = exp(/0 igwds), (42)

where & is the backward Fokker-Planck operator [Eq. (3)]. The
steps in performing this process are as follows:

1. Generate Ito paths: Generate Ny, paths for the above SDE
using the Euler-Maruyama integration with Ny, quadrature
points over the s-coordinate 0 < s < L. The time complexity
for performing this process is O(NrunNrimeN gir, ) as stated pre-
viously, with the space complexity being O(NimeN ginNrun).
Note that during the Ito integration, the time complexities for
standard Brownian bridge and Approximate Brownian bridge
are different, which is due to the fact that we are calculating
the effective drift instead of performing interpolation.

2. Generate weight: Compute the weight W for each path using
Eq. (9). The total cost is O(Nrun *N,,-meN;im) as we have N,
paths, the integral in Eq. (42) is over Niim. quadrature points,
and the evaluation of operator Zy involves the computa-
tion of double derivative % at cost O(NZ,,). The space
complexity is O(Nyun ).

3. Ensemble average: For an observable a, we compute (a)
_ I
ToDew,
and space complexity O(1).

over all runs with a time complexity of O(Nyun)

C. Summary

Table I summarizes the time and space complexity of the
approximating method and the standard Brownian bridge using
the proper generalized decomposition (PGD) and the finite differ-
ence method to solve the Backward Fokker-Planck (BFP) equa-
tion. Generally, in most applications, the number of meshpoints
along the s-coordinate and each spatial dimension are comparable
(N ~ Ntime). Figure 8 shows that if this is the case, the approximation
method has a time complexity that scales as O(N'), while the proper
generalized decomposition method (PGD)—the best case scenario
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TABLE . Time and space complexity of the approximation method, finite element algorithm with proper generalized decomposition (PGD),'® and traditional finite difference

method to solve the Brownian bridge problem.

Algorithm

Time complexity

Space complexity

Approximation method
PGD method O(N rznode
Finite difference method

O(NsimNmnsNtime)
NNtimeNsim + szimNmodeNtimeNrun)
O(NtimeNNdimNsim + 2NdimNtimeNmn)

O(NtimeNdimNmn)
O(NgimNtimeNpodeN + N gimNrunNiime )
O(NNdim Ntime + NdimNrunNtime)

Algorithm (Nyime » N > 1)

Time complexity

Space complexity

Approximation method O(N;imNmnsN ) O(NN 4N run )
Finite element method with PGD O(N2 . .N*N2. ) O(N i N*N ode)
Finite difference method O(NNan*INZ O(NNam*1y
dim
1 O3 —.° random walk by an approximate drift u” =2D- %}cv’) and
° PGD OC:A 2 reweights each path by weight W =exp [ foLig I//dS], one can
4 Approximation 0° 1 recover the exact statistics of the conditioned random walk. In these
S 102 ) expressions, D is the diffusion matrix, y is an approximate solu-
Q 0 00 © 0° tion to the BFP equation, and £ is the BFP operator. We find that
o in many situations, most of the variation in the sample weight W
g occurs near the endpoint, and hence, only an accurate solution of
= 1 ()1 ¥ near the endpoint is required to obtain a reasonable approxima-
N /AZ 1 tion scheme. We show that the approximation scheme accurately
N papatd 1 captures the statistics of many conditioned random walks while
0 A anl drastically accelerating the sampling speed and efficiency. We also
10 0 5 show that this approach offers reasonable improvement compared
10 10 to other approaches using simple bias potentials. Finally, a time
N and space complexity analysis demonstrates that the approxima-

FIG. 8. Running time for solving the 1D Langevin equation with U(x) = x? using
the Brownian bridge with two different solution methods: (1) approximation method
and (2) finite element method with Proper Generalized Decomposition (PGD).'%*
The running time is plotted with respect to the phase spatial resolution, N. Note
that, in this case, the number of time steps is equal to the number of space
steps (Nime = N). For the finite element method with PGD, the simulation time
is dominated by the solution of the Backward Fokker—Planck (BFP) equation. '®

for numerically solving the BFP—has a complexity of O(N?). The
approximation method clearly has advantages when scaling to larger
dimensions and more complex problems.

VI. CONCLUSION

Simulating stochastic processes with end control is critical in
a variety of chemistry applications, such as understanding polymer
conformations and characterizing reaction pathways. The Brownian
bridge is a useful technique to generate such processes by adding
a drift velocity to guide paths toward the correct regions in phase
space. This drift is calculated from a hitting probability that satis-
fies a Backward Fokker-Planck (BFP) equation (a PDE) in terms of
collective variables.

In this work, we continue to improve such bridge processes by
proposing an approximation scheme instead of directly solving hit-
ting probability from the BFP equation. If one biases a continuous

tion scheme scales well for higher dimensions and offers significant
advantages compared to the traditional Brownian bridge approach.
Finally, although we observe that the method can examine cer-
tain problems up to dimension /" ~ O(100), an examination of
the weight distribution shows that the weight generated by the
approximation method becomes wider with the increasing dimen-
sion and increasing trajectory length. Future research would focus
on refining such approximation methods for very high dimensional
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problems.”
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