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Abstract

Fiber networks are the primary structural components of many biological structures, including the cell
cytoskeleton and the extracellular matrix. These materials exhibit global nonlinearities, such as stiffening in
extension and shear, during which the fibers bend and align with the direction of applied loading. Precise
details of deformations at the scale of the fibers during strain stiffening are still lacking, however, as prior
work has studied fiber alignment primarily from a qualitative perspective, which leaves incomplete the
understanding of how the local microstructural evolution leads to the global mechanical behavior. To fill
in this gap, we studied how axial forces are transmitted inside the fiber network along paths called force
chains, which continuously evolve during the course of deformation. We performed numerical simulations
on two-dimensional networks of random fibers under uniaxial extension and shear, modeling the fibers using
beam elements in finite element software. To quantify the force chains, we identified all chains of connected
fibers for which the axial force was larger than a preset threshold and computed the total length of all such
chains. To study the evolution of force chains during loading, we computed the derivative of the total length
of all force chains with respect to the applied engineering strain. Results showed that the highest rate of
evolution of force chains coincided with the global critical strain for strain stiffening of the fiber network.
Therefore, force chains are an important factor connecting understanding of the local kinematics and force
transmission to the macroscale stiffness of the fiber network.

Introduction

Fiber networks are the primary structural components of biological structures like the cellular cytoskele-
ton [1-3], blood clots [4] and the extracellular matrix within tissues [5]. These networks exhibit hetero-
geneities in stiffness at the length scale of the fibers [6-9], which renders the deformation field to be non-
affine [10-18], meaning that deformations at the scale of the fibers differ considerably from deformations at
the scale of the global network. Fibers constituting these networks are slender and soft in bending, and their
local deformations are dominated by bending modes [19-21]. Globally, these networks exhibit strain stiff-
ening in both uniaxial extension and shear, causing the stress—strain curve to bend upward in the shape of the
letter J [22-27] (e.g., Fig. 1). This global nonlinearity is primarily attributed to realignment of fibers along
the direction of loading by means of fiber bending rather than inherent nonlinearity of the individual fibers.
Several attempts were made to describe strain stiffening by characterizing the local fiber deformations in
terms of excess lengths, defined as the difference between the fiber’s full length and its end-to-end distance
[19, 20, 28]. However, as we will show, the excess length of a fiber depends not only on the load applied but
also on the alignment of the fiber with respect to the loading direction, which causes wide variation in excess
lengths, meaning that such characterization does not provide a robust connection between the evolution of
the local microstructure and the mechanical behavior of the global network.

Despite the fact that deformations of the network are governed by fiber bending, strain stiffening of
the network is initially caused not by fiber bending but rather by axial forces in the fibers. Axial forces
in always exist in the fibers to satisfy force equilibrium at the nodes [29]. Bending of fibers passively
induces axial forces in neighboring fibers; these axial forces transmit from one fiber to the next along
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Figure 1: Global strain stiffening in fiber networks. (a) Schematic of a fiber network subjected to uniaxial extension. (b) Common
J-shaped stress—strain curve indicating three distinct regimes, which are typical in the deformation of fiber networks. The linear
regime I culminates at a critical strain (&, labeled with the “x” symbol), where the nonlinear regime II begins. Regime III is again
linear and occurs at large strains. The present study focuses on regimes I and II.

preferred routes, often referred to as force chains [29-33]. The concept of force chains is derived from
the physics of granular media, wherein grain-to-grain contacts transmit forces [34, 35], leading to chains
of force transmission that can explain global mechanical behaviors like the development of shear strength
[36, 37]. Given that fiber networks are analogous to granular media in that both have a bi-modulus response
to tension and compression [32, 38], a rigorous quantification of force chains in fiber networks may establish
a precise connection between the local mechanics and the global nonlinearity. In fiber networks, the force
chains form and continuously grow as the deformation progresses. A few studies, e.g., refs. [32, 33],
studied the structural features of force chains in fiber networks and their dependence on fiber properties
and connectivity, but a systematic quantification of their evolution with the deformation of network is still
lacking.

Here, we studied force transmission across fiber networks by quantifying the evolution of force chains
and mapping it to the global strain stiffening. We used two-dimensional (2D) numerical models of fiber
networks resembling the structure of type I collagen gels and applied displacement boundary conditions
to the models using finite element (FE) software to solve for the deformed states. We began our study by
quantifying excess lengths and demonstrating how excess lengths are insufficient to connect the local fiber
morphology and deformation to the global mechanical behavior of the network. We then turned to force
chains, using an algorithm to identify and quantify the force chains in the deformed fiber network. The total
lengths of all force chains and its first-order derivative with respect to the global engineering strain were
recorded during the course of deformation. The results showed that the highest rate of evolution of force
chains coincided with the onset of strain stiffening of the fiber network. Thus, force chains are an important
factor connecting local kinematics and microscale force transmission to the macroscale behavior of the fiber
network.

Methods

Network Generation

We employed simplified 2D models to study force transmission in biopolymer fiber networks like those
of type I collagen. Prior studies showed that the 2D network models exactly capture an observation of non-
linear stiffening of three-dimensional collagen gels, namely that the tangent modulus is linearly proportional
to the applied stress [19]. Further, noting that the collagen networks are intrinsically sub-isostatic [39, 40]



meaning that their nodal coordination number (z) is below Maxwell’s isostatic threshold of 2d (with d being
the dimension of the system) [41], we generated similar sub-isostatic 2D Voronoi and lattice-based random
fiber networks with average connectivity z = 3, which is below Maxwell’s 2D isostatic threshold of 4.

As the models based on a Voronoi network resemble type I collagen more closely [42, 43], they were
used for the majority of this study. Generation of Voronoi networks followed the method described in refs.
[40, 44]. In brief, random seeds were used in a 2D domain to generate a Voronoi tessellation. Fibers
were deposited along the edges of resulting polygons to generate the network, similar to the schematic
representation shown in Fig. 2a. As the fiber lengths in Voronoi networks are Poisson-distributed [45],
they can be fully characterized by the mean fiber length Lf. Where stated in the “Results” section, we also
explored force transmission on a 2D irregular hexagonal lattice-based network (Fig. 2b). Such networks are
qualitatively similar to certain types of collagen networks found in the lung tissues [46, 47]. This irregular
network was generated through random perturbations of the position of every node on a regular hexagonal
lattice (method similar to ref. [48]). The size of the network models were always > 25L¢, which was
considered to be large enough that the models were free of size effects, following the recommendations of
ref. [8].

Figure 2: Geometries used to model fiber networks. (a) A portion of the Voronoi network of random fibers. (b) A portion of the
random irregular hexagonal lattice-based network. Both models have average nodal coordination number z = 3.

Fiber Mechanical Properties

Similar to prior work [8, 49-51], we modeled the fibers as linear, elastic Timoshenko beams having
bending stiffness ky, axial stiffness k, and shearing stiffness k;. The most important quantity is the ratio
of bending stiffness to axial stiffness, often referred to as the dimensionless bending stiffness, kK = ky /k, =
(Exly)/ (EfAfL%), where Ef, Af and I; are the Young’s modulus, cross-sectional area, and moment of inertia
of each fiber [29, 49, 52, 53]. In this study, we used a value of k = 1 x 10~#, which is a typical value for
fibers in type I collagen networks [19, 20, 54, 55]. We kept the ratio of shearing stiffness to axial stiffness
of each fiber, ks /k,, constant at 1/2.

Finite Element Simulations

Different displacement boundary conditions were imposed on the fiber networks by performing 2D FE
simulations using the commercially available FE software Abaqus (Dassault Systeémes). Each fiber was
modeled using two three-noded quadratic beam elements, and connections between fibers were “welded”
such that they transmitted both forces and moments. The implicit dynamic quasistatic solver with the non-
linear geometry option was used, as in our prior work [56, 57]. To ensure that the solver converged to static
equilibrium amidst strong geometric nonlinearities prevalent in the system, we applied the displacement
boundary condition in small load steps following the recommendations of ref. [58]. The use of 0.05%
global strain at each load step eliminated the convergence bias for all practical purposes.



The global stress and strain measures reported in this study are the engineering stress and strain. The
engineering stress, quantified following the method in ref. [59], was computed by taking the sum of the
reaction forces in the loading direction at nodes subjected to boundary displacements and dividing by the
initial cross-sectional area.

Analysis of Force Chains

The data generated in the FE simulations were post-processed to analyze the force chains in the deformed
configurations of the network. We wrote an algorithm (similar to refs. [32, 60]) to quantify the force chains
at each deformed state, as described in the following three steps.

L,/ L=YL/L=2945

Figure 3: Analysis of force chains. (a, b) Identification of fibers constituting force chains in networks subjected to shear ¥ (a) or
extension € (b). The bold black lines inside the network denote the fibers above the chosen axial stress threshold and constitute
force chains. The individual force chains were then isolated (shown in the boxes on the right) and their lengths (L;) were calculated.
Finally, lengths of all the force chains were added to compute the parameter Lq¢s. The values of Legs were normalized by the fiber
length (Ly).

Step 1: Identification of fibers constituting force chains

We began by choosing a threshold for axial strain in the fibers. The threshold was chosen similarly to
ref. [32] and was the axial strain of the most stressed fiber at a chosen value of global normal strain. Precise
values of the global normal strain and threshold are described in the “Results” section. The algorithm
identified the subset of fibers with axial strains larger than the threshold. This subset of fibers constituted
the force chains, which was retained for the next steps of analysis.



Step 2: Detection of individual force chains

The next step was to identify individual force chains. The algorithm worked only on the subset of
fibers from Step 1 and searched for the neighboring fibers of a given fiber to detect continuous chains of
fibers experiencing axial strain above the threshold. The detected force chains sometimes contained several
branches.

Step 3: Quantification of force chains

The lengths of the individual force chains (L;) were determined (see Fig. 3). The lengths of all of the
force chains were added to obtain the parameter L.gs = Y ; L;, which is defined as the effective length of all
force chains occurring within the network under the load step of interest.

Evolution of Force Chains

With the force chain parameter L.; defined at every load step, the evolution of L.g with applied engi-
neering strain was obtained. We computed the rate of evolution of force chains by taking the derivative
of Leg with respect to the applied engineering strain, i.e., dLe/d€ in tension and dLes/dYy in shear. The
derivative at a given point was calculated by fitting a line to five points across the point of interest.

Results and Discussion

Strain Stiffening and Excess Lengths

The schematic stress-strain response of a typical sub-isostatic fiber network (Fig. 1) depicts three distinct
regimes: regime I is linear with a small amount of fiber bending, regime II is nonlinear with a large amount of
fiber bending, and regime III corresponds to stretching of the fibers [59]. Here we focus on regimes I and II,
wherein the fibers predominantly undergo bending-dominated deformations. The global strain at the onset
of regime 11, i.e., at the onset of nonlinear stiffening, is called the critical strain (represented by & in Fig.
1b). As a fiber bends, its excess length (the difference between contour length and node-to-node distance)
increases [61]. To investigate if excess lengths of the fibers are representative of the localized deformation
of fibers, we quantified the excess length & of all fibers in a network subjected to an intermediate uniaxial
extension of 10% engineering strain (Fig. 4a, b). The fibers that were aligned with the loading axis (angle
to loading axis 6 < 35°) exhibited excess lengths & close to zero (Fig. 4c). On the contrary, values of &
were large for fibers at larger angles (6 > 35°) to the loading axis. Thus, at a given applied global strain,
excess lengths depend at least in part on initial fiber alignment, and the range of excess lengths of fibers can
be large, indicating that quantification of excess lengths of fibers alone is not sufficient to understand the
microstructural evolution of fiber networks.

Force Transmission in Fiber Networks
Network geometry

We studied force transmission in a 2D Voronoi fiber network having domain width 25L¢ and height 50L¢
(Fig. 5a). This domain size was large enough for the network to be free of size effects (following ref. [8]),
and the rectangular shape, with a height-to-width ratio of 2, was chosen to minimize boundary effects.

Uniaxial extension

The first boundary condition studied was uniaxial extension, wherein a subset of nodes at the bottom
of the network was fixed and a subset of nodes at the top was translated in the positive y direction. The



(a) Reference (b) Deformed

£3
<3
2

& 0.45 high €
Q:ll'i« ° o
K

O7
KK
e :

W .
Noa%) 0.30 .
S .o
S Eroutiing -

BERARE
O .

Q"'Nr. =~ ° o
Q.Q:VQ s o o0
‘0‘:"%‘ O ° ®e
Rt 0.15 .

‘v“n‘ P o® A
0 . low ¢ 0.’ o
4,:} loading PN AL 1
:" direction ’i "“ﬁ" i..“ii
0
6/,
Y | — ’ fiber 0 30 60 90
A 0 0.43 ¢/L, alignment 6(°)

X, U

Figure 4: Quantification of excess lengths of fibers in a deformed network. (a) Reference configuration of a fiber network subjected
to uniaxial extensile strain € = 10%. (b) Deformed configuration of the network. The deformed fibers are color coded based on the
values of their excess lengths (£) normalized by the average fiber length (L¢). A small portion of this network is magnified to show
the varying magnitudes of excess lengths prevalent in the fibers. (c) Normalized excess length for each fiber is plotted against its
alignment 6 with the loading direction in the deformed configuration of the network. While & is small for fibers closely aligned to
the loading axis (6 < 35°), large values of £ are observed for non-aligned fibers.

regions where nodes were fixed or translated are shaded blue in Fig. 5a. As described in the “Methods”
section, translation was applied in small load steps, with 0.05% strain per step. We identified force chains
in the network at each load step. At each configuration, the fibers constituting force chains experienced
axial strains more than a threshold, 2.13 x 10~%, which was chosen to filter out the most stressed fiber at
0.5% global normal strain. The same threshold axial strain was used for identifying force chains when this
network was subjected to shear described later. Some representative deformed configurations are shown in
Fig. 5b—f with the force chains highlighted red. Qualitatively, there appears to be a small increase in the
number of force chains from € = 1.03% to 1.54% (Fig. 5b—c), a large increase from &€ = 1.54% to 3.08%
(Fig. 5c—e), and then again a small increase from € = 3.08% to 4.11% (Fig. Se—f).

The stress-strain response was recorded as deformation progressed (Fig. 6a, b), and at each current con-
figuration of this network, the sum of the length of all force chains L.¢ was calculated and normalized by the
average fiber length L¢. The dimensionless force chain parameter increased monotonically with the applied
strain € until it reached an asymptotic limit, which in the present case was ~ 10, which corresponded to
=2 53% of all fibers within the network (Fig. 6c). Recalling the uneven increase in the number of force
chains with applied € observed qualitatively in Fig. 5b—f, we wanted to explore the rate of growth of the
force chains by taking the first-order derivative of L. with respect to the applied global strain €, dLef/de.
This rate, normalized by the average fiber length L¢, monotonically increased at small strains until it reached
a peak at € =2.16%, followed by a decrease as strain increased further (Fig. 6d). Interestingly, the value of
strain corresponding to the highest rate of increase of force chains (¢ = 2.16%, labeled “x” in Fig. 6d) sep-
arated regime I from regime II on the stress-strain curve in Fig. 6b. Therefore, the highest rate of evolution
of force chains coincided with the onset of strain stiffening.

Next, we quantitatively verified that the maximal rate of increase in force chains corresponded to the
onset of strain stiffening. We fit the global tangent modulus E to the stress ¢ according to E ~ ¢, where
« is a fitting factor called the stiffening exponent. Fitting data in the linear regime I gave a ~ 0, and in
regime II, it gave o ~ 1 (see Fig. 7a). These values of o match the values reported in prior modeling
and experiments in gels of collagen fibers [19, 59]. Given that the transition from & ~ 0 to & ~ 1 occurs
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Figure 5: Identification of force chains in a fiber network under uniaxial extension. (a) A representative rectangular Voronoi
network was subjected to uniaxial extension. The nodes at the bottom of the network were fixed, and the nodes at the top of the
network were subjected to quasistatic, uniform, uniaxial extension €. (b—f) Force chains were identified and shown as bold red lines
on the deformed networks at several global normal strains €. Qualitatively, there appears to be a small increase in the number of
force chains from b to ¢ (i.e., from € = 1.03% to 1.54%) and e—f (i.e., from € = 3.08% to 4.11%). A large increase in the number
of force chains is observed from c to e (i.e., from € = 1.54% to 3.08%).

gradually, the transition from regimes I to II is also gradual, meaning there is no clear, distinct point at
which to define the onset of regime II. With this in mind, we ensured that the force chain-based prediction
of the onset of strain stiffening in Fig. 6d gives a reasonable representation of this transition. To this end,
we verified that the strain corresponding to the maximal rate of growth of force chains was robust to the
chosen value of threshold strain used to define the force chains. Recall that the threshold strain used in Fig.
6 was 2.13 x 10~#, which happened to be the axial strain in the most stressed fiber at € = 0.5%. Using this
threshold, the predicted onset of stiffening corresponded to oc = 0.33 (marked “x” in Fig. 7a). We repeated
the analysis for different thresholds. A smaller threshold, 1.05 x 10~* (corresponding to the axial strain in
most stressed fiber at € = 0.25%) predicted the onset of stiffening at & = 0.17 (marked “[J” in Fig. 7a). A
slightly larger threshold, 3.27 x 10~# (corresponding to the axial strain in most stressed fiber at € = 0.75%)
predicted the onset of stiffening at o = 0.46 (marked “>” in Fig. 7a). The stiffening exponents (¢) of 0.17
and 0.46 can be thought of as lower and upper bounds describing the gradual transition between regimes
I and II, and therefore the choice of our threshold (2.13 x 10~%) that predicted stiffening at o = 0.33 was
reasonable. The predictions of the onset of stiffening were marked on a logarithmic plot of global tangent
modulus (F) vs. strain (€) as well (Fig. 7b), as this representation is common in the literature (e.g., refs.
[20, 48]).

To ensure that the ability of force chains in estimating the onset of strain stiffening is not a characteristic
of only 2D Voronoi networks, we studied force chains on a 2D lattice network of similar characteristics
(Fig. 10, Appendix A). Again we observed that the highest rate of evolution of force chains coincided with
the onset of strain stiffening at 3.4% strain with a stiffening exponent o ~ 0.4. Additionally, considering
that fiber networks are subject to size effects wherein network size and boundary conditions can affect the
mechanics [8, 51, 62], we verified that force chains also describe the onset of stiffening in a network with
square geometry, designed to amplify the boundary effect (Appendix B and Fig. 11).

Simple shear combined with uniaxial tensile prestress

The presence of residual stress or prestress is common in biopolymer networks [63—66]. Several studies
(e.g., refs. [20, 48]) reported the shearing stress—strain response of 2D fiber networks subjected to shearing
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Figure 6: Quantification of force chains in a fiber network under uniaxial extension. (a) The Voronoi network (same dimensions
as Fig. 5) was subjected to uniaxial extension. The nodes at the bottom of the network were fixed, and the nodes at the top of the
network were subjected to quasistatic, uniform, uniaxial extension €. (b) Stress—strain (c—¢€) curve. The stress axis was normalized
by the small strain modulus (Ep). The inset shows the stress response at small € € [0,1%]. (c) Evolution of the total length of
force chains (Legr) with €. Insets show schematic diagrams of deformed networks with force chains shown in red. The force chain
parameter L.g was normalized by the average fiber length (Lg). (d) The rate of evolution of force chains, dL./de plotted against
the applied global strain €. The rate was normalized by the average fiber length (L¢). The peak rate observed at € =2.16% (marked
by “x”) corresponds to the onset of strain stiffening and separates regimes I and II in the 6—¢ curve in panel b. The symbol “x”
corresponds to the same strain in panels b and c.

with a uniaxial tensile prestress. Uniaxial tensile prestress decreases the critical shear strain and increases
the small strain shear modulus of network. Here we questioned if the quantification of force chains can
predict these global behaviors.

In our model, prestress was induced in an undeformed network by subjecting it to uniaxial extension €
and considering this prestressed configuration as the starting point, from which simple shear y was applied
in small steps (0.05% shear/step). Application of boundary conditions was done as follows. Displacement
boundary conditions were imposed on the nodes at the bottom and the top of the network (highlighted
blue in Fig. 8a). The subset of nodes at the bottom of network was fixed. The subset of nodes at the
top of network was translated in the positive y direction during pretension and, subsequently, the positive
x direction during shear (see Fig. 8a and 9a). We identified the fibers constituting force chains at each
load step during shear. The axial strain threshold in fibers used for the identification of force chains was
2.13 x 1074, which was the same value considered during the study of uniaxial extension on this network as
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Figure 7: Robustness of the chosen threshold axial strain used in identifying force chains for the prediction of the onset of strain
stiffening. (a) Tangent modulus (E) as a function of stress ¢ on the network under uniaxial extension described in Fig. 6. Both
axes were normalized by the small strain modulus Ej. Tangent modulus is independent of stress in the linear regime I (@ ~ 0) and
approximately proportional to stress in nonlinear regime II (o ~ 1). Stiffening is observed at the point marked by “x” (& = 0.33),
which was based on force chains defined by a threshold of 2.13 x 10™*. Altering this threshold to 1.05 x 107 or 3.27 x 10™*
changed the prediction of the onset of strain stiffening to the locations marked “[7” (ot = 0.17) and “>” (¢ = 0.46), respectively. All
predictions fall within the zone of gradual transition from regimes I to II. (b) Tangent modulus (£) as a function of applied strain €.
The tangent modulus was normalized by small strain modulus Ey. As in panel a, the corresponding points of the onset of stiffening
for the three different thresholds are labeled.

described earlier. Representative current configurations in shear with force chains are shown in Fig. 8b—f.
Here we again noticed the uneven increase in the number of force chains as deformation progressed (similar
to Fig. 5).

Shear stress—strain (7—y) responses of the network were “J-shaped” for all three levels of pretension
used, € = 0%, 0.5% and 1% (Fig. 9b). At a given value of pretension, force chains (quantified by Leg)
evolved monotonically with shear strain 7y until saturation (Fig. 9¢), and the rate of evolution of force chains
(dLegr/dy) consistently attained a peak at the onset of strain stiffening (marked “x” in Fig. 9d) which
separated regimes I and II in the stress—strain (7—Y, Fig. 9b) and modulus—strain (G—y, Fig. 9e) curves.
The recorded values of shear strain at the onset of stiffening were 6.69%, 6.17% and 5.14% for pretension
0%, 0.5% and 1%, respectively. The reduction in the magnitude of strain at the onset of stiffening with
increasing pretension was consistent with previously reported trends in prestressed networks [20, 48]. The
predicted points of onset of shear stiffening corresponded to stiffening exponents = 0.3-0.4 depicting the
transition between regimes I (o = 0) and II (@ ~ 1) (Fig. 9f).

Another noteworthy phenomenon was that the tangent shear modulus (G) of the network at small shear
(e.g., at ¥ < 2%) increased with applied pretension (Fig. 9e and inset in Fig. 9b), as has been reported
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Figure 8: Identification of force chains in a prestressed fiber network under shear. (a) The network was prestressed in uniaxial
extension € = 0.5% and then subjected to shear y. The nodes at the bottom of the network were fixed, and the nodes at the top of
the network were displaced first in the positive y direction and then in the positive x direction. (b—f) Force chains were identified
and shown as bold red lines on the deformed networks at several global shear strains . We observe a small increase in the number
of force chains from b to ¢ (i.e., from ¥y = 3.09% to 4.12%) and e—f (i.e., from Y = 8.23% t0 9.26%). A large increase in the number
of force chains is observed from c to e (i.e., from ¥ = 4.12% to 8.23%).

previously [20]. To investigate if the total length of force chains (L) could explain this, we calculated Leg
at ¥ = 2% for different values of prestress €. It was interesting to note that the tangent shear moduli at 2%
shear (Gt ) were positively correlated to the normalized total length of force chains (Fig. 9g), meaning that
the force chains could explain the increase in the small strain modulus with prestress.

To verify that these findings under pretension and shear were consistent for fiber networks of different
size, these simulations were repeated for a square fiber network. Results were consistent, with force chains
describing the onset of stiffening and corresponding to the small strain shear modulus (Appendix B and Fig.
12).

Conclusions

To better understand how the localized deformation of fibers within a network leads to global stiffening,
we studied how forces are transmitted across the fiber network. We quantified the evolution of force chains
in simulated 2D fiber network models subjected to extension and shear. Results indicated that the rate of
growth of force chains predicted the transition from linear to strain stiffening material behavior. In the initial
linear regime I, the growth of force chains accelerated, and the highest rate of growth corresponded with the
onset of the nonlinear strain stiffening regime II. This stiffening continued amidst a decelerating growth and
subsequent saturation of the number of force chains. These findings were consistent for different boundary
conditions (uniaxial tension, simple shear, and shear combined with pretension) and for different network
architectures and geometries. Therefore, the analysis of force chains in fiber networks offers a reasonable
quantitative means to define the global critical strain at the onset of strain stiffening. This study further
highlights the key role that the axial forces in fibers play in causing the nonlinear stiffening, irrespective of
their bending mode of deformation. Our findings on the importance of the rate of evolution of force chains
may be useful in studies of cell-matrix interactions, for example, by determining how force chains within the
extracellular matrix in the vicinity of a cell affect cell sensing and response to the surrounding environment
[32]. Our results could also aid in a more systematic understanding of the role of local fiber morphology
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Figure 9: Quantification of force chains in prestressed network under shear. (a) The prestressed network was subjected to shear.
The nodes at the bottom of the network were fixed, and the nodes at the top of the network were displaced to induce uniaxial
pretension (&) followed by shear (). (b) Shear stress—strain (7—7) responses of the network at pretension € = 0%, 0.5% and 1%.
The inset shows the stress responses at small shear strain, y € [0,5%]. The stress axis was normalized by the small strain shear
modulus of the network at zero prestress Gy. (c) Evolution of force chains (L) with shear y at pretension € = 0%, 0.5% and 1%.
(d) Normalized rate of evolution of force chains (d(Lefr/Ly)/d7y) with shear at pretension € = 0%, 0.5% and 1%. The peak rates
(marked “x”) correspond to the onset of strain stiffening. The quantities in the y axis of panels ¢ and d were normalized by fiber
length (L¢). (e) Tangent shear modulus (G) as a function of y. (f) Tangent shear modulus (G) as a function of stress T showing
regime I having & ~ 0 and regime II having o = 1. The stress was normalized by the small strain modulus of the network at zero
prestress Gg. In panels e and f, the tangent modulus was also normalized by Gy. The onset points of stiffening as predicted in panel
d are marked by “x” in panels b, ¢, e and f. (g) Tangent shear modulus at y = 2% at varying prestress (G ¢) are plotted against the
normalized total length of force chains (Lefr/Ly) in respective deformed states. Gt ¢ was normalized by the modulus corresponding
to e =0 (ie., Gryp).

and connectivity in the design of synthetic fibrous hydrogels with tunable critical strain [67, 68].
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Appendix A

Appendix A contains Fig. 10.
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Figure 10: Quantification of force chains in an irregular lattice network under uniaxial extension. (a) The lattice-based network of
rectangular domain (height/width = 2) was subjected to uniaxial extension. The nodes at the bottom of the network were fixed, and
the nodes at the top of the network were subjected to uniform uniaxial extension €. (b) Stress—strain (c—¢€) curve. The stress axis
was normalized by the small strain modulus (Ep). The inset shows the stress response at small strain, € € [0,1%]. (c) Evolution
of the total length of force chains (L) with €. Insets show schematic diagrams of deformed networks with force chains shown in
red. The force chain parameter L.gs was normalized by the fiber length (L¢). (d) Rate of evolution of force chains, dLefr/d€ plotted
against the applied global strain €. The rate was normalized by the fiber length (L¢). The peak rate observed at € = 3.4% (marked
by “Xx”) corresponds to the onset of strain stiffening and separates regimes I and II in the 6—€ curve in panel b. The symbol “x”
corresponds to the same strain in panels b, ¢, and d. (e) Tangent modulus (£) as a function of global stress o showing regimes I
and II having exponents o = 0 and ~ 1, respectively. The axes were normalized by the small strain modulus Ej. The highest rate
of evolution of force chains corresponds to a stiffening exponent & ~ 0.4 (marked “x”).

Appendix B: Prediction of Global Mechanics Amidst Boundary Effects

Proximity of a boundary can affect the mechanical response of sub-isostatic fiber networks [8, 51, 62].
Here we investigated if the force chain-based prediction of the onset of strain stiffening described so far
also occurs amidst an amplified boundary effect. For this study, we increased the effect of boundaries by
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reducing the ratio of height to width (h/w) of the network to 1 (square domain, Fig. 11a) from the prior value
of 2. In uniaxial tension, this change in aspect ratio resulted in a modest change in small strain modulus
(=~ 10% increase, Fig. 11b) and a larger change in the incremental Poisson’s ratio (= 33% increase, Fig.
11c), where the incremental Poisson’s ratio v; was calculated following ref. [69] according to

dlin(1 +&)]
YT (i ye)

where € and & are the strains in the loading and transverse directions respectively. These effects were
consistent with prior observations [8, 51, 70]. With the boundary effect established, we next applied uniaxial
tension and studied the force chains (Fig. 11d-f). As with prior observations, the highest rate of evolution
of force chains predicted the onset of strain stiffening, at a normal strain of 1.71% and a stiffening exponent
a =0.24 (Fig. 11g).

Boundary effects were also studied in shear (Fig. 12a), and it was interesting to observe a pronounced
boundary effect with a =~ 58% increase in the small strain shear modulus in the square network as compared
to rectangular (Fig. 12b), which is similar to a prior report [62]. Even in this network, the peak rate
of increase of Les corresponded to the onset of strain stiffening, and occurred at shear strains of 3.69%
(ax=0.18), 3.17% (ax = 0.14), and 2.70% (o = 0.11) for prestrains of 0%, 0.5%, and 1%, respectively
(Fig. 12c—g). Additionally, the small strain shear modulus was correlated to L.g for the different amounts
prestress (Fig. 12h), similar to Fig. 9g. Therefore, the force chain-based predictions of the global mechanics
also apply in the presence of boundary effects.
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Figure 11: Prediction of onset of normal stiffening amidst boundary effects. (a) The Voronoi network of square-shaped domain
(height-to-width ratio, ,/w = 1) subjected to uniaxial extension. The nodes at the bottom of the network were fixed, and the nodes
at the top of the network were subjected to uniaxial extension €. (b) Stress responses (o) at small strain, € € [0, 1%)], were compared
for both the square network (panel a) and the rectangular Voronoi network (2/w = 2) described in the Results section. Stress was
normalized by the small strain modulus of the rectangular network Ej. (c) Incremental Poisson ratio (Vv;) as a function of € for the
square and rectangular network. (d) Stress—strain (c—€) curve for the square network. The stress axis was normalized by the small
strain modulus (Ey). (e) Evolution of the total length of force chains (Les) with €. Insets show schematic diagrams of deformed
networks with force chains shown in red. The force chain parameter L.ss was normalized by the fiber length (Lg). (f) Rate of
evolution of force chains, dLg/d¢ plotted against the applied global strain €. The rate was normalized by the fiber length (L¢). The
peak rate observed at € = 1.71% (marked by “x”’) corresponds to the onset of strain stiffening and separates regimes I and II in the
o—¢ curve in panel d. The symbol “x” corresponds to the same strain in panels d, e, and f. (g) Tangent modulus (E) as a function
of stress o showing regimes I and II having exponents & ~ 0 and ~ 1, respectively. The axes were normalized by the small strain
modulus Ey. The highest rate of evolution of force chains corresponds to a stiffening exponent & = 0.24 (marked “x”’). Panels d—g
corresponded to the square network shown in panel a.
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