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Abstract. Margin-based classifiers have been popular in both machine learn-
ing and statistics for classification problems. Since a large number of classifiers
are available, one natural question is which type of classifiers should be used
given a particular classification task. We answer this question by investigating
the asymptotic performance of a family of large-margin classifiers under the two
component mixture models in situations where the data dimension p and the
sample n are both large. This family covers a broad range of classifiers includ-
ing support vector machine, distance weighted discrimination, penalized logistic
regression, and large-margin unified machine as special cases. The asymptotic
results are described by a set of nonlinear equations and we observe a close
match of them with Monte Carlo simulation on finite data samples. Our ana-
lytical studies shed new light on how to select the best classifier among various
classification methods as well as on how to choose the optimal tuning parameters
for a given method.
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1. Introduction

Classification is a very useful statistical tool that has been widely used in many disci-
plines and has achieved a lot of success. Its goal is to build a classification rule based on
a training set that includes both covariates and class labels. Then for new objects whose
covariates are available the classification rule can be used for class label prediction.

Since a large number of classifiers are available on the shelf, one natural question to
ask is which type of classifiers should be used given a particular classification task. It
is commonly agreed upon that there is no single method working best for all problems.
The choice of classifiers really depends on the nature of the data set and the primary
learning goal. Cross validation (CV) is a practically useful strategy for handling this
task; its basic concept is to evaluate the prediction error by examining the data under
control. Smaller values of the CV error are expected to be better in expressing the gen-
erative model of the data. However, the implementation of many classification methods
involves tuning open parameters for achieving optimal performances, e.g. for regularized
classification methods, one needs to deal with tuning parameters that control the trade-
off between data fitting and principle of parsimony. Therefore, conducting CV incurs
high computational costs, which makes it difficult in practice.

The purpose of this paper is to answer the above question by investigating the
asymptotic performance of a family of large-margin classifiers in the limit of both sample
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size n and dimension p going to infinity with fixed rate & = n/p. We are motivated by the
comparison between two commonly used classification methods: support vector machine
(SVM) and distance weighted discrimination (DWD).

SVM is a state-of-the-art powerful classification method proposed by Vapnik (1995).
Its has been demonstrated in Ferndndez-Delgado et al (2014) as one of the best perform-
ers in the pool of 179 commonly used classifiers. However, as pointed out by Marron et al
(2007), SVM may suffer from a loss of generalization ability in the high-dimension-low-
sample size (HDLSS) setting (where n is much less than p) due to data-piling problem.
They proposed DWD as a superior alternative to SVM. Both SVM and DWD are
margin-based classification methods in the sense that they build the classifier through
finding a decision boundary to separate the classes. DWD is different from SVM in that
it seeks to maximize a notion of average distance instead of minimum distance between
the classes. Thus, DWD allows all data points, rather than only the support vectors, to
have a direct impact on the separating hyperplane. It gives high significance to those
points that are close to the hyperplane, with little impact from points that are farther
away. DWD is specifically designed for HDLSS situations. Many previous simulations
and real data studies have shown that DWD performs better than SVM especially in
HDLSS cases, see e.g. Benito et al (2004); Qiao et al (2010); Qiao and Zhang (2015);
Wang and Zou (2016, 2018). However, all previous studies are empirical and there is no
theoretical justification about this phenomenon yet.

Recent rapid advances in statistical theory about the asymptotic performance of
many classic machine learning algorithms in the limit of both large n and p have shed
some light on this issue. There has been considerable effort to establish asymptotic
results for different classification methods under the assumption that p and n grow at
the same rate, that is, n/p — a > 0. The asymptotic results for SVM have been studied
in Huang (2017) and Mai and Couillet (2018) under mixture models in which the data
are assumed to be generated from a mixture distribution with two components, one for
each class. The covariance matrix is assumed to follow a structure consisting of a pure
background noise spiked with a few significant eigenvalues. The asymptotic results for
DWD and logistic regression have been studied in Huang (2018) and Mai et al (2019)
respectively. In Huang (2017, 2018), the spike eigenvector is assumed to be aligned with
the signal direction while in Mai and Couillet (2018); Mai et al (2019) this assumption
is relaxed. But all papers assume that the two classes have the same background
noise.

In the present work, we derive the asymptotic results for a general family of large-
margin classifiers in the limit of p,n — oo at fixed @ = n/p under the two component
mixture models. The family covers a broad range of margin-based classifiers includ-
ing SVM, DWD, penalized logistic regression (PLR), and large-margin unified machine
(LUM). The results in Huang (2017, 2018), Mai and Couillet (2018), Mai et al (2019);
Mai and Liao (2019), and Mai et al (2019) are all special cases of this general result.
We also consider more general settings in the sense that the signals are not necessarily
aligned with the spiked eigenvectors and the background noises of two classes are not
necessarily the same. We derive the analytical results using the replica method developed
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in statistical mechanics. All analytical results are confirmed by numerical experiments
on finite-size systems and thus our formulas are verified to be correct.

Related work. The sharp asymptotics for hard margin SVM and unregularized
logistic regression have been studied in Montanari et al (2019) and Candeés and Sur
(2020) respectively under the single Gaussian models in which the data are assumed to
be generated from a single Gaussian distribution. Dobriban and Wager (2018) provide
asymptotic analysis of the predictive risk of regularized discriminant analysis. Deng
et al (2019) studied hard margin SVM and unregularized logistic regression under
Gaussian mixture models in which the data are assumed to be generated from Gaus-
sian mixture distribution with two components, one for each class. Gerace et al (2020)
studied the classification error for PLR and SVM for single Gaussian model with two
layer neural network covariance structure. The analogous results for Gaussian mixture
models with standard Gaussian components was provided in Mignacco et al (2020).
Wang and Thrampoulidis (2021) studied both max-margin SVM classifiers and min-
norm interpolating classifiers under the popular generative Gaussian mixture model. The
sharp asymptotics of generic convex generalized linear models was studied in Gerbelot
et al (2020) for rotationally invariant Gaussian data and in Loureiro et al (2021a) for
block-correlated Gaussian data. The multi-class classification for mixture of Gaussians
was also provided in Loureiro et al (2021b) recently. Paralleling to classification, there
has been considerable effort to establish the sharp asymptotics for regression. Examples
include LASSO with i.i.d. setting (Bayati and Montanari 2011), LASSO with correlated
data (Berthier et al 2020; Celentano et al 2020), ridgeless least squares (Hastie et al
2019), generalized linear model (Barbier et al 2019), and many others.

Note that most of the results in aforementioned literature are rigorous under Gaus-
sian assumption. The rigorous analysis methods include convex random geometry
(Candes and Sur 2020), random matrix theorem (Dobriban and Wager 2018), message-
passing algorithms (Bayati and Montanari 2011; Berthier et al 2020; Loureiro et al
2021a, 2021b), convex Gaussian min-max theorem (Montanari et al 2019; Mignacco
et al 2020; Deng et al 2019), and interpolation techniques (Barbier et al 2019). The
present work focuses on mixture of two component under spiked covariance setting with-
out Gaussian assumption. While it remains an open problem to derive a rigorous proof
for our results, we shall use simulation on moderate system sizes to provide numerical
support that the theoretical formula is indeed exact in the high-dimensional limit.

The rest of this paper is organized as follows: in section 2, we state the general
framework for formulating the margin based classification methods. In section 3, the
asymptotic results of the margin-based classifiers in the joint limit of large p and n for
spiked population model are presented. Based on these asymptotic results, we study
the separability phase transition in section 4. A method for estimating data parameters
used in deriving the asymptotic results is provided in section 5. In section 6, we present
numerical studies by comparing the theoretical results to Monte Carlo simulations on
finite-size systems for several commonly used classification methods. An application of
the proposed method to the breast cancer dataset is presented in section 7. The last
section is devoted to the conclusion.
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2. The margin-based classification method

In the binary classification problem, we are given a training dataset consisting of n obser-
vations {(x;,¥,;):i =1,...,n} distributed according to some unknown joint probability
distribution P(x,y). Here x; € R? represents the input vector and y; € {+1, —1} denotes
the corresponding output class label, n is the sample size, and p is the dimension. There
are n, and n_ data in class + and — respectively.

The goal of linear classification is to calculate a function f(x) = x’w + w, such that
sign(f(x)) can be used as the classification rule. Here w € R? and w, € R are parameters
that need to be estimated. By definition of this classification rule, it is clear that correct
classification occurs if and only if yf(x) > 0. Therefore, the quantity yf(x), commonly
referred as the functional margin, plays a critical role in classification techniques. The
focus of this paper is on large-margin classification methods, which can be fit in the
regularization framework of loss + penalty. The loss function is used to keep the fidelity
of the resulting model to the data while the penalty term in regularization helps to
avoid overfitting of the resulting model. Using the functional margin, the regulariza-
tion formulation of binary large-margin classifiers can be summarized as the following
optimization problem

ggn{Z V(i w + o)) +ZJA<wj>}, 1)

i=1 j=1

where V() > 0 is a loss function, J,(-) > 0 is the regularization term, and A > 0 is the
tuning parameter for penalty.

The general requirement for the loss function is convex decreasing with V(u) — 0
as u — oo and V(u) = 0o as u — —oo. Many commonly used classification techniques
can be fit into this regularization framework. The examples include penalized logistic
regression (PLR; Lin et al (2000)), support vector machine (SVM; Vapnik (1995)),
distance weighted discrimination (DWD; Marron et al (2007)), and large-margin unified
machine (LUM; Liu et al (2011)). The loss functions of these classification methods are

PLR:V(u) = log(1 + exp(—u)),

SVM:V(u) = (1 —u),,

1—u if ué%
wig+ et LT g
1—wu if uglj
LUM:V(u) = 1 a a Cc’
if u>
1+c<(1+c)u—c+a> 1+c¢

where ¢,a > 0, and ¢ > 0. It can be easily checked that SVM and DWD loss func-
tions are special cases of the LUM loss function with appropriately chosen a and ¢
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Figure 1. Plots of various loss functions.

(Liu et al 2011). For example, if we choose a = ¢ = ¢, the LUM loss is the same as the
DWD loss; if a > 0 and ¢ — oo, the LUM loss is the same as the SVM loss. Besides the
above methods, many other classification techniques can also be fit into the regular-
ization framework, for example, the AdaBoost in Boosting (Freund and Schapire 1997;
Friedman et al 2000), the import vector machine (IVM; Zhu and Hastie (2005)), and
1-learning (Shen et al 2003).

The commonly used penalty functions include Jy(w) = %wQ for L, regularization and
Ja(w) = A|w| for sparse L, regularization. In this paper, we focus on the standard L,
regularization.

Figure 1 displays four loss functions: PLR, SVM, DWD with ¢ = 1, and DWD with
g = 0.1. Note that all loss functions have continuous first order derivatives except the
hinge loss of SVM, which is not differentiable at v = 1. Among the four loss functions,
PLR has all order derivatives while DWD only has first order derivative. As u — —o0,
V(u) — —u for all methods. As u — oo, V' (u) decays to 0 but with different speeds. The
fastest one is SVM, followed by PLR, DWD with ¢ = 1, and DWD with ¢ = 0.1. We
will see in section 6 that the decay speed of the loss function has a big influence on the
classification performance in situations where A is small. Also all classification methods
have the same performance when \ is large enough due to the fact that V' (u) can be
approximated by a linear function as v — 0 for all loss functions.

3. Asymptotic performance

Now let us specify the joint probability distribution P(x,y). Conditional on y = +1,
assume that x follows a multivariate distribution P(x|y = £1) with mean g and covari-
ance matrix 3. Here pu, € R?” and 3. denote a p x p positive definite matrix. Without
loss of generality, we take p, = p and p_ = —p.

We investigate the statistical behavior of the class separating hyperplane obtained
from the optimization problem (1) in the limit of n, p — oo with n/p — «. Let us begin by
introducing some notations. Denote ft = p/p, where p = ||p||. For a given loss function
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V(u), define the proximal operator

(a,b) = argmin, {V(u) + (“;76“)2} , (2)

where b > 0. It can be considered as the solution of equation

aV(u)+“;“ —0,
where 0V (u) is one of the sub-gradients of V(u). For convex V(u), this equation has

unique solution. Specifically, for SVM loss, we have closed form expression

a if a>1
¥(a,b) = 1 if 1-b<a<l.
a+b if a<l1l-—0

For DWD loss with ¢ = 1, we have

_Ja+b if a<1/2-0
W“’b)_{ i if a>1/2-b 7

where 1 is the solution of cubic equation 4u® — 4au® — b = 0. For other loss functions, we
have to rely on certain numeric algorithms. Particularly for logistic loss, we can easily
implement the Newton—Raphson algorithm because the loss function has closed form
second order derivatives.

Our main results are based upon the following Claim for the distributional limit of
estimators w obtained from (1).

Claim 1 The limiting distribution of w is the same as the limiting distribution of f,
which is defined as

ﬂ=(£+2++5‘2—+ﬂp>‘1< &=z, + 502”2z_+¢ﬁfzu), (3)

where I, is p-dimensional identity matrix and z, denote the vectors of length p whose
elements are i.i.d. standard Gaussian random variables independent of u, and

a: S H., and R= aJFuFJ, + “hp
q* q-

£ _ +_
¢ _\/ﬁini’ A pEE

Here G, H., and F. are functions of six quantities ¢3, ¢=, R, and w, defined as

F.=F, (ai—RM¢w0—\/CI§LZ>a
Gi:Ez{(ﬂi_RN:Fwo_\/qatz)z}7 (4)
2

H:I::Ez{<'&:|:_R,UJq:wO_\/QOiz> }a
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where z is a standard Gaussian random variable and the expectation FE, =

i \‘/izz—ﬂ exp (—%) The @ are also functions of ¢, ¢*, R, and wy defined using (2) as

Uy =1 (Ru:l:w0+ C]oizyqi)-

The values of ¢f,q*, R,wy, can be obtained by solving the following six nonlinear
equations:

1. .
% = ZSEZ(MTEM), (5)
R= LEz(/jl'T/j”)a (6)
VP
Q. . Q_
qu-l- - ti—a (7)
g
4 _ 1 8
o o’ (8)
D)
qOT - 1+a+G++Oé,G,. (9)
+

From (3), the limiting distribution of W is a multivariate normal with mean
(£, + & + M) <\/1_7Rﬁ> and covariance matrix (£7X, 46X+ ML)

(T, + 62 ) (678, 46X+ AMI,) !, where all the parameters can be determined
by solving a set of six nonlinear equations (5)—(9). Note that two types of Gaussian
random variables are introduced, i.e. primary variable {1 and conjugate variable @. The
variances of these two random variables are controlled by & and ¢i respectively. It is
interesting to see that & is determined by the expectation over a quadratic form of
i.e. (4), while g5 is determined by the expectation over a quadratic form of fi, i.e. (5).

The derivation of claim 1 is given in appendix A based on the replica method
developed in statistical mechanics. The replica method is a non-rigorous but highly
sophisticated calculation procedure that has been used to derive a number of fascinating
results in probability theory and information theory, see e.g. Tanaka (2002); Dongning
Guo and Verdu (2005); Wu and Verdu (2012).

Using the asymptotic statistical behavior of the classification estimators provided in
claim 1, we are able to retrieve the asymptotic performance of the classification method
(1). Denote W, 1, the solution of (1), the classification precision P{E(xLw + @) > 0}
has an asymptotically deterministic behavior as given by the following claim.

Claim 2 For x. generated from Class +, we have
P{E=(xiW + o) > 0} (), (10)
where ®(-) represents the cumulative distribution function of N (0, 1) and

- Ry + wy

“=E

https://doi.org/10.1088/1742-5468 /ac2edd 8
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The values of the quantities R, wy, and ¢; can be obtained from solving equations (5)—(9)
listed in claim 1.

Claim 2 allows us to assess the performance of different classification methods and
obtain the value of A that yields the maximum precision for a given method. If we
consider ¥, = 3_ and PLR loss V(u), claims 1 and 2 end up with the results of Mai
et al (2019).

Now we consider datasets generated from the spiked covariance models, which
are particularly suitable for analyzing high dimensional statistical inference problems.
Because for high dimensional data, typically only few components are scientifically
important. The remaining structures can be considered as i.i.d. background noise. There-
fore, we use a low-rank signal plus noise structure model (Ma, 2013; Liu et al 2008),
and assume the following:

Assumption 1 Each observation vector x; (resp. x_) from class +1 (resp. class —1)
can be viewed as an independent instantiation of the generative models

K K
Xy :u+20+\/)$vksk+e+ (resp. X_ = —M+Zo\/)\,;vksk+e_> , (11)
k=1 k=1

where )\f > 0 and v; € R? are orthonormal vectors for k =1,..., K, i.e. vlv; =1 and
vak/ =0 for k # k'. The random variables €1, ...,ex are i.i.d. with mean 0 and vari-
ance 1. The elements of the p-vector € = {¢f,..., €, } are i.i.d. random variables with

E(e) =0, E{(¢)*} = 0%, and E{(¢;)*} < oo. The €'s and &;s are independent from
each other.

In model (11), )\f represents the strength of the kth signal component, and o2
represents the level of background noise. The real signal is typically low-dimensional, i.e.
K < p. Here we use the most general assumption and allow different spiked covariances
for different classes, e.g. we can have ] =0 and ), # 0. Note that the eigenvalue \;;
is not necessarily decreasing in k and Ay is not necessarily the largest eigenvalue. From
(11), the covariance matrix becomes

K
3, =0 (Ip +> Akav;{) . (12)

k=1

The kth eigenvalue of X is 02 (1 + ) for k=1,...,K and o for k=K +1,...,p.
Although the e;.ts are i.i.d., we did not impose any parametric form for the distri-
bution of ey-i, which allows for very flexible covariance structures for x, and thus the
results are quite general. The requirement for the finite third order moment is to ensure
Berry—Esseen central limit theorem applies. The assumption 1 is also called spiked pop-
ulation model and has been used in many situations, see Marcenko and Pastur (1967);
Hastie et al (1995); Telatar (1999); Laloux et al (2000); Johnstone (2001); Sear and
Cuesta (2003); Baik and Silverstein (2006) for examples.

Denote the projections of eigenvectors on the signal direction @i as Ry, = vip for

k=1,...,K; Ry = \/I—ZleR%;ande=0fork=K—|—2,...,p. After integration

https://doi.org/10.1088/1742-5468 /ac2edd 9
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over z; in (5) and (6), we have the explicit formulas for ¢5 and R as

2K+1 + 2

i e 4O 14+ A\))R;

*—a.H, +a H +(—LCF +—=F § ( k7 k
dy = iy T & . + sz T

29
k=1 1— (hr)\;GJr _a A Go
Vi Vo

Qg a_puo = R?
R:(LF++—72+F_>Z k '
(o o 1 J1 — NGy a NG
NG NG
Note that if o, = o_, we get ¢* = ¢~ directly from (8). If we further assume ¥, = 3 _

and a, = a_, we get wy =0, qi =¢q,, ¢" =¢q from (5) and (7). In this case, we only
need to estimate three parameters and the results are much simpler.

Claim 3 Under assumption 1, assume that o4, A\, Ry, and K are fixed irrespective of
p. Further assume that ¥, =X =% o, =a_=a, 0, =0_=o0, and \] =\, = )\,
for k=1,..., K. Denote ¢" = ¢~ = q and ¢ = ¢q; = qo- Then the limiting distribution
of w is the same as that of

(€2 +L)" (V&= 2+ Voki)., (13)
which leads to the asymptotic precision
Ry
P{£(xiw) >0 —>q>(). 14
{£(xiw) = 0} N (14)

Here z denotes the vectors of length p whose elements are i.i.d. standard Gaussian
random variables, and

«

NG

where the three functions fi, f,, f5 are defined as

5 - = f2(qo7q’ R)7 50 = ;fii(qmq’ R)7 R = O;qu1<qo7Qa R)7
fl(q07Q7R) :Ez[(ﬂ_R/“L_ QOZ)]a
f2(qo; g, R) = E.[(& — Rpu — \/q02)],

f3(q,q, R) = E.[(& — Ry — /q02)*].

Here the expectation is with respect to the standard Gaussian measure z ~ N (0, 1) and

i = (R + /o, q).

https://doi.org/10.1088/1742-5468 /ac2edd 10
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The three parameters q,, ¢, and R are determined by the following three nonlinear
equations

R _ aﬁf1(Q0;QaR)]§ R} (15)
N o Vo 1 — A fa(q0, 4, R)/ /@0
1:af3(QO,Q»R)_I_{ w fi(q, g, R) QOaQa } Z (14 M\)R;, . (16)
qo o {1 —aX.f2(q, q, )/\/%}
qA 14 an(Q()7Qa R)‘ (17)

o2 N
Note that for SVM loss V(u), claim 3 is reduced to the results of Huang (2017)
and Mai and Couillet (2018) while for DWD loss V' (u), it is reduced to the results of
Huang (2018). Therefore, the results presented here are more general and can be used
to compare the performance of different classification methods for a given problem.

4. Phase transition

Based on the asymptotic results in section 3, in this section, we derive the phase transi-
tion for the non-regularized classification methods that solve the following optimization
problem

argming, cp, {Z V(yixfw)} ) (18)

i=1
As shown in Candes and Sur (2020), the existence for the non-regularized classification
methods undergoes a phase transition, i.e. the solution of (18) does not exist in situations
when the two classes of n data points (x;,y;) are completely linear separated and it
does exist if the data points overlap. This is equivalent to establishing the the maximum
number of training samples per dimensions below which the hard-margin SVM can have
solution as shown in Montanari et al (2019); Sifaou et al (2019); Deng et al (2019).
Consider the asymptotic regime where n, p — oo such that

p/n— kK € (0,71], (19)

where 7 > 0 and « is called the overparametrization ratio. To quantify its effect on the
test error, we study the problem of increasing dimensions as in (19) that further satisfy

u? = s’k T, o’ =s*(1—k/T). (20)

The following claim characterizes the phase transition of the model (18) in terms of x
and 7.

Claim 4 Define K, (7) as the solution of

1 2 1 K+1 R2 2 2
1=— .—2)D k / .—2)D 21
H/OO<Z ?) Z+/€(T—/€);1+>\k{ ,QO(Z ?) Z}’ (21)
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where Dz = \/% exp(—2%/2)dz and ®(z.) = k, i.e. 2. is the kth quantile of standard nor-
mal distribution. If the overparametrization ratio is smaller enough such that £ < Ky,
then the solution of equation (18) asymptotically exists with probability one. Conversely,
if K > K, then the solution does not exist with probability one.

Note that claim 4 generalizes the result of Deng et al (2019) for hard margin SVM,
which can be considered as a special case here if one chooses ¥ =1, where I, is p-
dimensional identity matrix.

5. Estimation of data parameters

So far we assumed that the design covariance 3. and other data parameters are known.
In practice, we need to estimate K, u,o., A;;, and Ry, for k=1,..., K from the data.
The problem of estimating covariance matrices in high-dimensional setting has attracted
considerable attention in the past. Since the covariance estimation problem is not the
focus of our paper, we will test the above approach using a simple covariance estimation
method based the application of random matrix theory to spiked population model.

To estimate the background noise level o2, we use a robust variance estimate based
on the full matrix of data values (Liu et al 2008); that is, for the full set of nyp entries
of the original n. x p data matrix X*, we calculate the robust estimate of scale, the
median absolute deviation from the median (MAD), to estimate o4 as

MADxi

S 22
MADy o, (22)

0+
Here MADy: = median(|z;; — median(X™)]) and MAD y(o,1y = median(|r; —
median(R)|), where R is a nip-dimensional vector whose elements are i.i.d. samples
from N (0, 1) distribution.
Denote 1, = X, — X_, where X, = izgl x.; and X_ = 3" x_; represent the
sample means for class +1 and class —1, respectively. Then, according to Huang (2017),
we estimate p as

1 o 62
No— 2 — 2t _ =
p 2\/I|ucll e

_ Denote >, the sample covariance matrix for class 1. Store all eigenvalues of
3. greater than (1 ++/1/ax)?—1 as [\],..., )\Iiﬁ] and their corresponding eigenvec-

tors as [V, ..., \7}2]. Let K = K, + K_. By concatenating the spiked eigenvalues and

eigenvectors from the two classes together, we obtain K spiked eigenvalues and their
corresponding K eigenvectors. Then we relabel them and assign label k € [1,.. ., K +]
to class +1 and label k € [K, +1,..., K] to class —1. To estimate A} and R; for
k=1,..., K , we use the results from Baik and Silverstein (2006). Define the function
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P(u,v) = /(1 = 1/uv®)(1 + 1/uv). For k € [1,..., K ], we have

ST
D eV
Ry= — ! (23)
el PV e )
and 5\,; =0. For k € [K++1,...,K], we have
NI B 1 < 1\> 4
N R \/(AK - z) T
_T~7
P FeVy i
R, = — e (24)
10PN, Tlas)
and A\t = 0.

If we consider homogeneous situation where the two classes have the same covariance
matrix, the results are much simpler. In this case, we need to combine two matrices X
and X_ together to get a common set of spiked eigenvalues and eigenvectors. Then
similar to (23) and (24), we use the results from Baik and Silverstein (2006) to estimate
the common eigenvalues )\, and projecting coefficients Ry.

6. Numerical analysis

In this section, we apply the general theoretical results derived in section 3 to several
specific classification methods by numerically solving the nonlinear equations for the
corresponding loss functions. We aim to exploring and comparing different types of
classifiers under various settings. Here we focus on homogeneous situations with 3, =
3 and o, = a_ because in these situations the Bayes optimal classifiers are also linear
and the classification performance can be exactly retrieved by the average precision
derived in claim 2.

To examine the validity of our analysis and to determine the finite-size effect, we
first present some Monte Carlo simulations to confirm that our theoretical estimation
derived in section 3 is reliable. The performance of a classification method is assessed
through the average precision computed based on (14). Figure 2 shows the comparison
between our asymptotic estimations and simulations on finite dimensional datasets.
We use the R packages kernlab, glmnet, DWD, and DWDLargeR for solving SVM,
PLR, DWD (¢ = 1), and DWD (¢ = 2) classification problem respectively. We did not
present simulation results for LUM and generalized DWD with non-integer ¢ because
we cannot find reliable software package for solving this problem. The software package
DWDLargeR that is based on the algorithm developed in Lam et al (2018) does not
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Figure 2. Theoretical and empirical precision as a function of A for SVM, DWD,_,,
DWD,—, and PLR with o = 1, p = 2. The empirical precision is taken by averaging
over 100 simulated datasets with p = 500. (Left panel) The spike vector is aligned
with g with K =2, A\ = Ay =4, Ry = 1, Ry = 0. (Right panel) The spike vector is
not aligned with p with K =2, \; = Ao =4, Ry = 1/v/2, Ry = 0.

provide the option for non-integer ¢q. Here the dimension of the simulated data is p = 500
and the data are generated according to (11) in assumption 1 with i.i.d. normal noise.
We repeat the simulation 100 times for each parameter setting. The mean and standard
errors over 100 replications are presented.

From figure 2, we can see that our analytical curves show fairly good agreement with
the simulation experiment. Thus our analytical formula (14) provides reliable estimates
for average precision even under moderate system sizes.

It is interesting to see that for small regularization parameter A, the four patterns
are quite different and SVM yields much smaller precision comparing to other three
methods. On the other hand, if the tuning parameter A is large enough, the precision
of all four methods approaches the same value. This is easy to understand because for
large A, the solution of (1) is determined by the behavior of the loss function V(u) at
values of u — 0, which turns out to be 1 — u for SVM, DWD, LUM, and log(2) — u/2
for PLR. Therefore, as A — oo, the asymptotic results of (1) are approximately equal to
the solution of

n p 2
w2
argmin,, {Z (e1 — coyixiw) + Z %} ; (25)

i=1 j=1
which is proportional to the weighted sample mean difference between two classes, i.e.
VAV ~ CY+}_(+ - Oé,}_(,. (26)

Here ¢; and ¢, are two constants, and X, and X_ are the sample means for class +1
and class —1 respectively. On the other hand, for small A, the solution of (1) is also
determined by the tail behavior of the loss function V(u) at large u values. Since the
decay rates of different loss functions are quite different, this ends up with different
behaviors at small \ values as shown in figure 2.

The difference between the settings of left panel and right panel of figure 2 is that in
the left panel, the spike vectors v (k =1,..., K) are either aligned with or orthogonal
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to p but in the right panel, the spike vectors are neither aligned nor orthogonal to p.
This discrepancy causes different patterns of the precision curves. In the left panel, the
Bayes optimal solution is proportional to p, which can be estimated using the difference
of sample means between two classes. In this situation, as A increases, all solutions
approach to the optimal one and thus we obtain increasing function for the precision.
More specifically, it was pointed out in Huang (2017), that the asymptotic value we can

u 2
achieve for the precision is ® (—LH>, where p. = o(2)

\/m g 1+a(§)2 ’
spiked eigenvalue in the p direction. In the right panel where v, is different in direction
from g, the Bayes optimal solution is proportional to ', thus the asymptotic solution
as A — oo is no long the optimal one. In this situation, we need to tune A so as to find
the maximum precision for different methods. Note that this is consistent with the
phenomenon observed in Dobriban and Wager (2018); Mignacco et al (2020), which
show that in the case Y, = I, with balanced clusters, A = oo gives the Bayes estimator,
while in the unbalanced case the optimal regularization is finite. Because in balanced
case, oy = o and (26) is the Bayes estimator of u, while in unbalanced case, o, # o
and (26) is not the Bayes estimator of pu.

In figure 3, we study the phase transition for the separability of two classes. The
(left panel) of figure 3 displays the phase transition boundary for the separability of
the two classes in the plane of x and 7, which are defined in (19) and (20). Above the
curve is the region where the probability of separating the two classes tends to 1 and
below is the region where the probability of separating the two classes tends to 0. The
prediction errors as a function of the overparametrization ratio x with fixed 7 = 1.5
for the four classification methods under small regularization A = 10~ are shown in the
right panel of figure 3. The double descent behavior are found for all methods with peaks
near the separability threshold Ky, (1.5). This phenomenon indicates that the prediction
error descends again after the threshold. A similar study has been given in Deng et al
(2019) for hard margin SVM and unregularized logistic regression under i.i.d. covariance
structure setting. The curves in the right panel of figure 3 also show that, as dimension
increasing, DWD and PLR perform better than SVM under the non-regularized setting,
i.e. A — 0. This is consistent with the previous empirical observations in Marron et al
(2007); Benito et al (2004). The reason is that the small A behaviors of classification is
determined by the decay speed of the corresponding loss function V' (u). The SVM hinge
loss vanishes for the entire region of u > 1 but all the other loss functions decay to zero
gradually as u — oo.

To further compare the performances of different methods, figure 4 plots the precision
as a function of the parameters p and « for optimal regularization, i.e. A is tuned to
obtain the maximum precision. We consider five different methods, which are SVM,
PLR, DWD (¢ = 1), DWD (¢ = 2), and LUM (a = 1, ¢ = 2). In figure 4, the left
panel plots the precision as a function of a with fixed p and the right panel plots the
precision as a function of u with fixed a. As it turns out, SVM performs worse than all
the other four methods, but the discrepancy at optimal A is smaller than at small A\ as
shown in figure 2. The performances of the other four methods are quite similar once A
is optimally tuned.

and A represents the
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Figure 3. (Left) Theoretical prediction for the phase transition curves. (Right)
Theoretical classification error against the number of features per sample kK = p/n
for four classification methods with fixed 7 = 1.5 under a small regularization set-
ting A = 107°. Here K = 3, \; = Ao = A\3 =4, Ry = Ry = 1/2, R3 = 0. The vertical
dashed line represents the threshold ki, (1.5) of linear separability of the dataset.
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Figure 4. Theoretical precision as a function of « and x at optimal A for five
different methods. Here K =3, Ay =\ =3 =4, Ry = Ry, =1/2,R3 = 0. (Left)
Theoretical precision as a function of a for fixed u = 2. (Right) Theoretical precision
as a function of y for fixed o = 1.

We have performed numeric analysis under many other settings and the conclusions
are quite similar. Overall, our analytical calculations agree well with the numerical
simulations for moderate system sizes, and claim 2 provides reliable estimates for average
precision. Our main observations from numeric analyses are

e All methods achieve the same performances for large enough .

e For situations where the spiked vectors are the same in direction with u, the optimal
solutions of all methods are the same, which is also equivalent to the limiting results
as A — 00.

e For situations where the spiked vectors are different in direction from g, DWD and
PLR are better than SVM especially when the regularization parameter A is small.
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This finding provides theoretical confirmations to the empirical results that have
been observed in many previous simulation and real data studies.

e The previous empirical observation that DWD is better than SVM only holds at
small X. After carefully tuning for A\, the performance of all methods is quite similar.
DWD, PLR, and LUM are slightly better than SVM at large «.

e The so-called double descent behaviors exist for all non-regularized margin-based
classification methods with a peak at the separability threshold.

Note that the analytical demonstrations about the superior performance of DWD
over SVM at small A\ are consistent with many previous empirical findings. However,
this does not mean that DWD is better than SVM at small A in all situations because
our numerical results are derived based on the spiked population assumption that may
not always hold in practice.

7. Real data

We apply our methods to a breast cancer dataset from The Cancer Genome Atlas
Research Network (TCGA 2010), which include two subtypes: LumA and LumB. As in
Liu et al (2008); Huang et al (2015), we filter the genes using the ratio of the sample
standard deviation and sample mean of each gene. After gene filtering, the dataset
contained 235 patients with 169 genes. Among the 235 samples, there are 154 LumA
samples and 81 LumB samples.

We consider LumA as class +1 and LumB as class —1. Assume the data are generated
based on model (11), using the method discussed in section 5, we obtain the following
parameter estimations: p = 4.81, 0 = 1.66, a = 1.39, p = 169, n = 235, n, = 154, n_ =
81, K =16, [\,..., \;g] = [25.67, 12.00, 10.10, 9.37, 6.41, 4.92, 4.38, 4.19, 3.63, 3.09,
2.45, 1.96, 1.87, 1.69, 1.57, 0.98], and [Ry,..., Ris] = [-0.67, —0.11, 0.57, 0.04, 0.18,
—0.06, —0.03, —0.03, —0.16, —0.32, 0.01, 0.03, —0.06, 0.06, 0.03, —0.05].

Figure 5 plots the analytical curves of the average precision as functions of A for three
classification methods SVM, PLR, and DWD (¢ = 1). For comparison, the CV precision
is computed by randomly splitting the data into two parts, 95% for training and 5%
for test. The mean and standard deviation over 100 random splitting are presented.
It can be seen that, at large A, there are some discrepancies between the theoretical
estimation and CV experiment. Note that, from (26), the solution of the margin based
classification method (1) can be approximated by the sample mean estimation if A
is big enough. However, it is well known that the sample mean estimation method
performs much worse than DWD and SVM if there are unbalanced sub-classes within
each class as shown in Liu et al (2009). Therefore, our results indicate that the data
might include more complicated sub-cluster structure than the mixture of two simple
components. On the other hand, at small A\, our theoretical estimation are quite close to
the CV analysis. Particularly, at optimal A, the theoretical estimations are 80.9% (SVM),
81.0% (DWD), 81.1% (PLR), which are very close to the corresponding results based
on CV analysis, which are 81.5% (SVM), 81.4% (DWD), 80.9% (PLR). Moreover, the
maximum theoretical estimation for the three methods occurs at quite similar A values
as the corresponding CV experiment. Overall, our theoretical results on the asymptotic
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Figure 5. The classification precision as a function of A based on theoretical esti-
mation and CV analysis. The solid curves represent the theoretical results based
on the parameters estimated from the breast cancer data. The error bars represent
the CV experiment over 100 splittings.

precision can still provide reasonable guidelines on how to choose classification methods
and tuning parameters for a given problem in practice.

8. Conclusion

Large-margin classifiers play an important role in classification problems. In this study,
we examine the asymptotic behavior of a family of large-margin classifiers in the limit
of p,n — oo with fixed « = n/p. This family includes many existing classifiers such as
the SVM, DWD, PLR, and LUM as well as many new ones that can be built from the
general convex loss function. Our focus is on the limiting distribution and classification
precision of the estimators. On the basis of analytical evaluation, a method of selecting
the best model and optimal tuning parameter is naturally developed for analyzing high
dimensional data, which significantly reduces the computational cost. Although our
theoretical results are asymptotic in the problem dimensions, numerical simulations have
shown that they are already accurate on problems with a few hundreds of variables.
Our analytical analyses provide deeper theoretical evidence to support the empirical
conclusion that hard margin DWD yields better classification performance than hard
margin SVM in high dimensions. Certainly, our observations may not be valid for all clas-
sification problems because we have applied the mixture of two components assumption
with spiked covariance structure in numerical studies, which cannot be true in all situa-
tions. Nevertheless, our analyses provide a convenient platform for deep investigation of
the nature of margin-based classification methods and can also improve their practical
use in various aspects as shown by the real data analysis in section 7. Note that our
numerical analysis focus on homogeneous cases where >, = 3. For non-homogeneous
cases, the Bayes optimal solution is nonlinear and one possible solution is to use kernel
based method. One of our future research topics is to derive the asymptotic behavior
for the kernel based large margin classification methods. In situations where the spiked
model cannot be applied or each class includes further sub-cluster structure, we plan to
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study the generalized spiked population model (Bai and Yao 2012) or the classification
methods that can incorporate the sub-cluster analysis.
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Appendix A

This appendix outlines the replica calculation leading to claim 1. Claims 2 and 3 are
just direct applications of claim 1. We limit ourselves to the main steps. For a general
introduction to the replica method and its motivation, we refer to Mezard et al (1987);
Mézard and Montanari (2009).

Denote X = [x1,...,%,])7, ¥y = (y1,--.,y,)’. Among the n samples, let the first n,

ones belong to class +1, i.e. y; =1 for i € {1,...,n.} and the last n_ ones belong to
class —1, i.e. y; = —1 for i € {n. +1,...,n}. We consider regularized classification of
the form

(W, W) = argmin, {ZV <y,\/2_9 + yﬂuo) + ZJ/\ w; } (A1)

After suitable scaling, the terms inside the bracket {-} are exactly equal to the objective
function of model (1) in the main text.

The replica calculation aims at estimating the following moment generating function
(partition function)

Z4(X,y) = /exp{—ﬁ _ZV (y,%w —}—ylwo> +Z;JA w; ] }dwdw0
Joofpo [ (o) £ ()
— Zi: Jk(wj)] } dw duy, (A2)

where > 0 is a ‘temperature’ parameter. In the zero temperature limit, i.e. 8 — oo,
Z3(X,y) is dominated by the values of w and wy, which are the solution of (A1).
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Within the replica method, it is assumed that the limits p — oo, § — co exist almost
surely for the quantity (pB3) 'logZs(X,y), and that the order of the limits can be
exchanged. We therefore define the free energy

1 1
F = —lim lim B log Z5(X,y) = — lim lim B log Z5(X,y). (A3)

f—00 p—=00 P p—00 f—00 P

Notice that, by (A3) and using Laplace method in the integral (A2), we have

1 a yix!Iw &
F = lim —mi V(|— i Tn(w;) ¢ -
Jlim prv?%u?{; ( Vi —|—yw0> ‘|‘Z A(wy)}

J=1

It is also assumed that p~'log Z5(X,y) concentrates tightly around its expectation so
that the free energy can in fact be evaluated by computing

o1
F = —lim lim ljﬂﬂog Z5(X, ¥ )%y (A4)
where the angle bracket stands for the expectation with respect to the distribution of
training data X and y.

In order to evaluate the integration of a log function, we make use of the replica
method based on the identity

. 0ZF .0 "
logZ—llgl(r)lW—llfl_Ig%logZ, (A5)

and rewrite (A4) as

R L
7= g =0 o

where
2(0) = 2Ky Wiy = [(ZX P [[Posudxidy. (AT

Equation (A6) can be derived by using the fact that lim , Z; (5) = 1 and exchanging
the order of the averaging and the differentiation with respect to k. In the replica
method, we will first evaluate Z;(f3) for integer k and then apply to real k and take the
limit of k — 0.

For integer k, in order to represent {Z3(X,y)}"* in the integrand of (A7), we use the
identity

( / f(x)V(dx))k = [ #@) . sopldn) .. vlda),

where v(dx) denotes the measure over x € R. We obtain
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N n y'XTWa
e
{(Z:X, )Y =] /eXp B>V ( \f + yiwé’)
a=1 i=1 p

+ zp: JA(w?)] } dw* dwg’] (A8)

where we have introduced replicated parameters

a

W a]T

p

[w],...,w and wy, fora=1,... k.

Exchanging the order of the two limits p — oo and k£ — 0 in (A6), we have

F =—lim 1 lim % (lim 1E;Jﬁ)) . (A9)

f—00 k—0 p—=o0 P

Define the measure v(dw) over w € R? as follows

v(dw) = /exp {—BZ JA(wj)} dw.

Similarly, define the measure v, (dx) and v_(dx) over x € R? as

vy(dx) = P(x|y = +1)dx and v_(dx)= P(x|y = —1)dx.

In order to carry out the calculation of Z.(3), we let v*(dw) = v(dw!) x - - - x v(dwF)
be a measure over (RP)*, with w!,..., wf € R?. Analogously v"(dx) = v(dx;) x - - - X
v(dx,) with xi,...,x, € R, v"(dy) = v(dy,) x - -+ x v(dy,,) with y,,...,y, € {-1,1},
and v*(dwy) = v(dw}) x - - x v(dwf) with w},...,wk € R. With these notations, we
have

n k y'XTWa'

EL(B) = /exp —ﬁZZV( . +y,,;w8’> VP (dw)F (dwy )" (dy)v" (dx)
i=1 a=1 VP
oy

:/ [/exp{—ﬁaﬁ;V(}f/_v;+wg>}l/+(dx)]

« [ / exp {—ﬁaz: v (_’jﬁwa - w3> } v <dx>] nu’f(dw)u’f(dwo)

= /exp{p(a+ log I, + a_ log I_)}v*(dw)v"(dwy), (A10)

where a. = n./p and
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I = /exp {—sz: 1% (ixjﬁwa + wg) } v (dx). (A11)

a=1

Notice that above we used the fact that the integral over (xi,...,x,) € (R?)" factors
into n, integrals over (R)? with measure v, (dx) and n_ integrals over (R)? with measure
v_(dx). We next use the identity

1 o] oo N _
=5 / / 2@ H9 g dQ. (A12)
TJ—00d —c0

We apply this identity to (All) and introduce integration variables du®, du® for 1 < a <
k. Letting v*(du) = du'...du* and v*(da) = da'. .. da"

T <xrQ

k k
I. = /exp {—BZ V (u* £ wg) + 1\/1_72 <u“ F X\/vg > ﬁ“} v (dx)vF (du)v® (da)
= /exp{ BZV u® £ wp) —|—1\/_Z u'u’ — 1z:(w“)TEiwbu“ub

a=1 a=1 ab

—iy (W)Tuaa} U (du)vF(da). (A13)

Note that, conditional on y = +1, x follows multivariate distributions with mean
+p and covariance matrices 3. In deriving (A13), we have used the fact that the
low-dimensional marginals of x can be approximated by Gaussian distribution based on
multivariate central limit theorem.

Next we apply (A13) to (A10), and introduce integration variables Q% Q% and

R*, R* associated with (w*)TX.w’/p and (w®)” p/\/p respectively for 1 <a,b< k.

Denote wo = (wj)i<a<k, Qi = (Q5)1<apers Qe = (QF)1<apers R = (R 1<0cr, and R =
(R")1<q<k- Note that, constant factors can be applied to the integration variables, and
we choose convenient factors for later calculations. Letting dQ™ = Habanb dQ. =

[L.s anb, dR =]], dR", and dR = HadR“, we obtain

=k(8) = / exp { ~pS1(Q., Qe R, R, wo) | dQ, dQ_dQ, dQ dR RV (duwy), (A14)

where

‘Sk(Qia Qia Ra Ra WO = _lﬁ <ZQ0}, aw T ZQJbQ(;b + ZRGVRQ>
ab a
-1 log €(Qu, R) — (Qu, R wo).

QR - [ exp{—lﬁzQ DTS W = EY QW) S W

ab ab

https://doi.org/10.1088/1742-5468 /ac2edd 22


https://doi.org/10.1088/1742-5468/ac2edd

Large dimensional analysis of general margin based classification methods
— i8S :\/ﬁR"'(W“)Tﬁ} v (dw),
a

£(Qs,R,wo) = ay logly +alogl, (A15)

where
A k
Ii:/exp{—ﬁZV(u“iw 1\/_Zu“ “
a=1

ZQab b — 1\/232 R“,uﬁ“} VP (du)vF(da). (A16)

Now we apply steepest descent method to the remaining integration. According to
Varadhan’s claim (Tanaka 2002), only the saddle points of the exponent of the integrand
contribute to the integration in the limit of p — oo. We next use the saddle point method

n (A14) to obtain

. 1,—\ * VK * TI* *
—lim —-E;(8) = Sp(QL, QL, R, R, w}),
p—=0 D

where Q7 ~:*t, R, f{*,wg is the saddle point location. Looking for saddle-points over
all the entire space is in general difficult to perform. We assume replica symmetry for
saddle-points such that they are invariant under exchange of any two replica indices
a and b, where a # b. Under this symmetry assumption, the space is greatly reduced
and the exponent of the integrand can be explicitly evaluated. The replica symmetry is
also motivated by the fact that S, (Q%, QL, R*, R*, w}) is indeed left unchanged by such

change of variables. This is equivalent to postulating that (wl)* = wy, R* = R, R® = iR,

+
o for = L
( ab) = + ) and ( ab) = Bci ) (A17)
o otherwise i—=0 otherwise

where the factor ¢/3/2 is for future convenience. The next step consists in substituting
the above expressions for Q%, Q%, R*, R*, w} in S;(Q%, Q%, R*, R*, w}) and then taking
the limit £ — 0. We will consider separately each term of S;(QZ, . 5 R R*, w}). Let us
begin with the first term

—w(E}%@;+§}%QM+§ZWRﬂ
ab a

W kB

= (G = Ga) + = (o — ) + kBRER. (A18)
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Next consider log & (Qi,ft). For p-vectors u,v € R? and p X p matrix 3, introducing
the notation [|v||§ = vI' v and (u,v) = 37", u;v;/p, we have

~ ~ 2 k 9
5(Qi=R)Z/exp{%(cf—CJ)lew"llé+5C Z IS W
a=1 a,b=1
k

2 O W + B S (e w
9 1 0 3 2 -

a=1 a,b=1

+Byp ZR } v (dw)

_E/exp{ Cl Co ZHW HE+ _}_5\/52 T21/2
C1 G ZHW(]HE +5\/az T21/2

a=1 a=1

NDS R(W"’)Tu} (dw), (419)

where expectation is with respect to z,,z_ ~ N(0, I,+,). Notice that, given z,,z_ € R?,

the integrals over w', w" factorize, whence

Y, R) — 6_2 " 2 o Tx1/2
Qs+, R)=F exXp 5 (¢ C())HWHZJ+ + B/ W Xz,

62 1/2
5 (G = )lIwls + B8y Gw 22

+ VRS v aw)] |

Finally, after integration over v*(da), (A16) becomes

L= [ e {—BZ V() — o S~ R)(Q2 (o — B

ab
— % log det Qi} VM (du). (A20)

We can next take the limit B — oo. The analysis of the saddle point parameters
a5, at, ¢G5, ¢ shows that g5, ¢ have the same limit with ¢ — g5 = (¢*/8) + o(87!) and
(i, ¢ have the same limit with (i — (G = (—=¢*/B) + o(87!). Substituting the above
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expression in (A18) and (A19), in the limit of £ — 0, we then obtain

o (ZQ it D QuQat ZRW)

ab ab
kp

B(Co g —CTay) + 7((661* —(qy) + kBRR, (A21)

and

- - + -
s(qi,m:E{Uexp{ P wliy, + By s - O wly

k
+ B\ WS e 4 ﬁ\/z_DRWTu} vh (dw)} } . (A22)
Similarly, using (A17), we obtain

BY (ut — Rp)®  BPqi{>,(u — Ru)}

q* (g*%)? ’

> — Ru)(QY) (s’ — Ru) =

ab

kBq;
g’

kqy
log det Q. = log ( _QO) I+ ———7+ =
41 — Q4

where we retain only the leading order terms. Therefore, (A20) becomes

I =exp ( KBy ) /Dzi </ exp {—BV(uiwo) _Alus R/;q_i 0 2)

k
Bay 22
+ ot du | ,

where the expectation D, = [

\%—ﬂ exp (—%) Substituting this expression in (A15), we
obtain

E(Qia R7 WU) = _kﬂE {CYJFHIJH V(U + wO) +

(u— Ru— /g5 2:)*
2qT

+ a_min
u

V= wp) + R’EJ qo_z)2] } , (A23)

where the expectation is with respect to z;,z_ ~ N(0,1). Putting (A21)—(A23) together
into (A14) and then into (A6), we obtain
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1 T _
F=§(Co+q+—<*qo*)+§(<oq -(q)+RR
(

2
_ (u — Ry — qJZ+>
+ a+E151€11{z1 V(u+wp) + o

1. . + N 1/2
+ —Emin {7”“’”2& + o Iwls — < G =,

P
+ C(]_El_/Qz, + \/ﬁéﬁ,w> + Z JA(w‘j)} : (A24)
J=1

where the expectations are with respect to z;,z_ ~ N(0,1), and z,,z_ ~ N(0,L,,),
with z,,2_ and z,,z_ independent from each other. Here ¢+, (7, ¢, ¢i, R, R are order
parameters that can be determined from the saddle point equations of F. Define the
functions F'., G4, and H. as

F,=F, (a:t_R:uq:wO_\/Q()iZ:t)a

G:t:Ez{<a:t_R,UJ:Fw()_\/quz:t> 2}7
2

Hi:Ez{<ﬂi—R/ﬁ:Fwo—\/%iZi> }:

where

(u— Ry F wo — qaﬂzgz}

Uy = argmin,.p {V(u + wp) + e

The result in (A24) is for general penalty function J)(w). For quadratic penalty J,(w) =
\w?, we get the closed form limiting distribution of w as

W= (T2, +& 2 4! ( &3z, + /62 2+ \/Hzp) . (A25)
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All of the order parameters can be determined by the following saddle-point equations:

Qo

+ _
50 - (qi)2Hi7 (A26)
o O (A27)
QG q"
1
@& = EEZHWH%iv (A28)
1
+ 1/2 A
qg = E(X/"z.,w (A29)
V¢ < >
1
R= "E.(jn, W), A30
7 (B, W) (A30)
R="tp +Fp (A31)
qr q-
(0% Q_
q—jﬂ = q—_F_. (A32)

The above formulas are for general positive definite covariance matrix .. Then after
applying the spiked population assumption (2) and integrating over z,, we obtain the
explicit nonlinear equations for determining six parameters ¢, ¢=, R, wy as

2K+1 + 9
« Q=4O 1+ X)R
C]oi:aJrHJr‘l‘aH"‘(qui‘*' ﬂé iFﬂF)Z : i 2
O+ 0z k=1 a A\ Gy a A G
L= 1 _ k _ k
NG NG
+1
_ R?
R= (O‘*“ﬂ a ‘;‘”F_> 3 k ,
(o — 1 1 a+)\;G+ a N G-
Vi NG
T _ 4
or o’
A
qo-—2 — 1 + OZ+G+ + a_G_.

Then, the other five parameters (;", ¢ * and R can be obtained using equations (A26),
(A27), and (A31).

Al. Derivation of claim 4

Let A = 0, from equations (15)—(17) in claim 3, we obtain
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R? R
do — ? = aE{(u - (I)Q},
% = auE(t — a),
1= ——=B{(ii - a)z},

Vo
where a = Ru+ \/qoz, @ =1v(a,q), and v*> = 'S 's. For SVM, define z, = (1 —
Ru)//@, © = q/ /%, and r = R/./gy, we have

2 Ze Ze—T
l1-—=a {/ (2. — 2)?Dz + x2/ Dz} (A33)
Dz

QM‘ =3

c—T -

r Zec Ze—T
- = au {/z_q;(ZC —2)Dz + ac/_oo } (A34)
l=af D= (A35)

(A33) and (A34) lead to

1:04{/1 (zc—z)zDz—}—a:Q/ l ‘Dz}
| Ze Ze—X 2
—|—{cw,u (/ (zc—z)Dz+x/ Dz))} :

For fixed «, p has upper bound in order for the above equation to have a solution.
Because of (A35), the biggest value for u we can achieve is when x — oo. Therefore, the
phase transition is determined by

Ze Ze 2
1= a/ (2. — 2)*Dz + {Oz’yu/ (z. — z)Dz} :

where ®(z.) = 1/a. Note that x = 1/«, substituting the spike covariance matrix (12)
and (20), we obtain (21). [ |
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