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Programming interactions in magnetic handshake
materials†
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The ability to rapidly manufacture building blocks with specific binding interactions is a key aspect of

programmable assembly. Recent developments in DNA nanotechnology and colloidal particle synthesis

have significantly advanced our ability to create particle sets with programmable interactions, based on

DNA or shape complementarity. The increasing miniaturization underlying magnetic storage offers a

new path for engineering programmable components for self assembly, by printing magnetic dipole

patterns on substrates using nanotechnology. How to efficiently design dipole patterns for

programmable assembly remains an open question as the design space is combinatorially large. Here,

we present design rules for programming these magnetic interactions. By optimizing the structure of the

dipole pattern, we demonstrate that the number of independent building blocks scales super linearly

with the number of printed domains. We test these design rules using computational simulations of self

assembled blocks, and experimental realizations of the blocks at the mm scale, demonstrating that the

designed blocks give high yield assembly. In addition, our design rules indicate that with current printing

technology, micron sized magnetic panels could easily achieve hundreds of different building blocks.

1 Introduction

A key feature of living materials is the inherent programmabi-
lity of their parts. Complex assemblies require that components
with low crosstalk bind to desired partners without binding to
others.1 Such programmability is at the core of biochemical
functionality, from protein folding2,3 to self assembly of
catalytic protein complexes4,5 or multicomponent molecular
machines.6,7 Biology has managed to create a robust inter-
action set from a limited set of nucleic and amino acids. Major
advances have been made in the engineering of specific inter-
actions that use these biological solutions, by either directly
programming nucleic acid assembly8,9 or by using them as
specific glues coating nanoparticles10,11 or colloids.12,13 How-
ever, these interactions can be hard to program as they are all
based on hydrogen bonds, which have a fixed binding energy
strength. An alternative solution for designing programmable
building blocks are magnetic handshake materials14 whose

interactions are governed by magnetic dipole patterns (Fig. 1).
Importantly, there is extensive prior literature on the phase
behaviors of magnetic spheres,22–25 network structure formation
by external driving forces26–29 and the influence of particle shape
on assembly.30 These studies, however, focused on building blocks
with a single magnetic dipole. In the magnetic handshake materi-
als studied here, multiple dipoles encode the information for
binding. Such materials can be made over a range of size scales,
extending to the nanoscale, where, bootstrapping off Moore’s law-
like advances in magnetic recording technologies,15–18 nanotech-
nology can be used to print magnetic dipoles on substrates. This

Fig. 1 Illustration of general design principle of magnetic handshake panels.
We encode information of specific binding by printing dipole patterns, specify-
ing location and orientation of magnetic dipoles, on substrates.
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technology offers an information rich substrate for programming
interactions between building blocks to create novel materials,
with a potentially large number of programmable building blocks.
Dipole patterns can vary in both their strength and their spatial
distribution. Over the past decade, bit sizes have approached
30 nm, the fundamental stability limit of magnetic domains,19–21

giving us a combinatorially large space to design interactions.
The major goal of this paper is to elucidate the basic rules

for programming building blocks frommagnetic printing. For a
given building block design, we need to determine the posi-
tions and strengths of the magnetic domains to maximize
programmability. We find these programming rules by com-
bining information theory31 with physical modeling. Magnetic
interactions are simple to describe mathematically and are easy
to model, in contrast to electrostatic and chemical interactions.
The absence of magnetic monopoles eliminates the complicated
screening charge configurations that plague quantitative modeling
of electrostatic systems. This simplification makes design iteration
computationally efficient and highly predictive.

2 Model and method
Information capacity formalism of lock-key binding pairs

The central design requirement for programmability is finding
building blocks with low crosstalk. For a system in thermo-
dynamic equilibrium, the yield of an undesired configuration
decays exponentially with its energy gap D from the desired
configuration.31 Designing for low crosstalk therefore requires
calculating the distribution of binding energies for the compo-
nents, and optimizing the D distribution to maximize the yield
of the desired configuration.

To formulate this optimization problem in terms of the
basic building blocks, we consider a set of lock and key pairs,
denoted as x1, x2,. . ., xM A X for locks, and y1, y2,. . ., yM A Y for
keys, with the binding energy matrix E, where Eij � E(xi, yj).
Assuming locks and keys have the same concentrations,
the equilibrium probability of the lock i to bind the key j is p
(xi, yj) = e�bEij/Z, where b is the inverse thermal energy and Z is
the partition function. A natural metric for quantifying cross
talk is mutual information,31 given by

IðX;YÞ ¼
X

xi2X ;yj2Y
pðxi; yjÞ log

pðxi; yjÞ
pðxiÞpðyjÞ

: (1)

Maximizing the mutual information I(X; Y) over the sets of
locks and keys X, Y minimizes the cross talk. The set with the
optimal information capacity Ic = max(I) has effectively Mc =
exp(Ic) non-crosstalking lock-key pairs.

Using the general theoretical framework developed in ref.
31, we lay out the information capacity computation here for
the magnetic handshake system. For a system with a well-
defined number of lock and key building blocks and binding
energy matrix E, we can directly calculate Mc from eqn (1).
For experimental systems without a set number of locks and
keys, we can calculate Mc by first computing the energy gap
distribution D based on binding energy matrices of random

sampled components (see details in (ESI†)). We define D as
Dij = Eij � sii, where sii is the strength of the on-target binding of
lock i and key i and Eij is the off-target binding energy between
lock i and key j. Denoting r(D) as the distribution of gap
energies between on target and off target binding, the maximal
number of non-crosstalking pairs (Mc) is given by31

Mc ¼
ð1þ he�bDiÞ2

hbDe�bDi � he�bDi þ he�bDi2; (2)

where h�i is the average with respect to r(D). This formula is
intuitive: if we consider the (exponentially weighted) average of
the gap D much larger than kBT so that bD c 1, then Mc

increases exponentially with D as

Mc B (hbDe�bDi)�1. (3)

Using this framework, we can directly formulate an optimi-
zation problem of how to encode dipole patterns for a set of
magnetic building blocks to maximize programmability. Here,
we measure programmability by evaluating Mc of a set of
magnetic patterns, the larger the Mc, the better the program-
mability. Given a potential design for a set of magnetic dipoles
on a substrate, we can compute the distribution of gap energies
r(D), and thus the effective number Mc of programmable
building blocks (eqn (2)).

Magnetic interaction model

Magnetic interactions between any two panels depend on the
spatial configuration of their dipoles, and in particular the ratio
d/a, where a is the center to center distance between adjacent
dipoles on the same panel, and d is the distance between the
centerlines of two panels (Fig. 2A). By summing over the
interactions between every dipole pair on different panels, we
can write down the binding energy for on-target binding
between two complementary magnetic panels (see (ESI†) for
detailed derivation).

V ¼ �m0m
2

2pd3
N þ k � d

3

a3
� 2d2=a2 � 1

ð1þ d2=a2Þ5=2 þF
d

a

� �� �
(4)

Fig. 2 1D Magnetic strand with fixed single dipole–dipole binding energy.
(A) Sample configuration of a magnetic strand with N = 8 dipoles. The
distance between any two nearest neighbor dipoles on the same strand is
denoted as a, while the interaction distance between two different strands
is denoted as d. (B) The largest effective number (Mc) of strands with no
crosstalk for magnetic strands of length N = 2–10 with different d/a ratio.
Beyond d/a = 0.7, we find that Mc rapidly decreases. Here, we use e =
6NkBT to show the maximum effect on Mc varying d/a ratio.
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Here m is vacuum permeability, m is the magnitude of the
magnetic dipole moments, N is the number of dipoles on a
single panel, k is the number of second-nearest neighbor
aligned dipole pairs minus the anti-aligned dipole pairs, and
F is the (negligible) effect of third or higher neighbor interac-
tions. eqn (4) implies that the second-nearest neighbor term
vanishes when 2d2/a2 = 1, corresponding to the case where a
dipole’s magnetic field is perpendicular to its next nearest
neighbor. Even though dipole–dipole interaction is long

range,32 at d=a ¼
ffiffiffi
2

p
=2, the majority of the binding energy

contributions between two magnetic panels come from nearest
neighbor interactions, while the higher order terms mark
around 2% of the binding energies (see (ESI†) for more detail).

1D magnetic strands

To test whether the separation ratio of d=a ¼
ffiffiffi
2

p
=2 gives rise to

a higher information capacity of magnetic panels, we first
consider a one dimensional chain of magnetic dipoles, where
we can systematically enumerate the entire configuration space
of 2N dipole strands with N dipoles. When generating the
distinct dipole strand, we remove palindromic sequences
corresponding to the same lock-key pair, such as NNNNSSSS
and SSSSNNNN. We enumerate the number of non-
palindromic strands for L A [2, 10] giving [2, 3, 7, 10, 21, 36,
78, 136, 327] distinct patterns. Using eqn (1), we directly
compute Mc as a function of d/a, by calculating the binding
energy matrices of all possible magnetic strands (Fig. 2B). We
find that the information capacity Mc decreases rapidly beyond
d/a B 0.7, confirming our hypothesis that the magnetic strand
system has higher information capacity by eliminating second-
nearest neighbor interactions.

Fig. 2B shows that Mc increases exponentially with the
number N of dipoles, arising due to the exponential depen-
dence of Mc on the energy gap D (eqn (3)). Since we computed
Mc values by fixing the strength of the individual dipoles, both
the on target binding energy and the distribution of energy
gap increases linearly with N, resulting an exponential increase
of Mc. This energy dependence highlights a fundamental

constraint for programmability. The timescale of unbinding
increases exponentially with interaction strength. Practical
design requires the unbinding timescale to be much smaller
than the experimental timescale, as otherwise the system will
be trapped in non-desired configurations. Given the timescale
of an experiment, we need to choose the binding strengths to
be small enough for this condition to be satisfied. Therefore,
the correct optimization problem is to maximize the number of
components for a fixed total binding energy.

2D magnetic panels

We now turn to the design of dipole configurations on two
dimensional panels. We fix the total on-target binding energy e
between any two building blocks to be 10kBT, so a panel with 3
dipoles has individual dipoles with a magnetic moment that isffiffiffiffiffiffiffiffiffiffi
10=3

p
the dipole moment in a 10-dipole panel. We consider

placements of dipoles on the plane, keeping the constraint

d=a ¼
ffiffiffi
2

p
=2. We compute r(D) by random sampling, over

configurations where every dipole has at least one nearest
neighbor of distance a, with no nearest neighbors smaller than
a (Fig. 3A). Using a randomly generated magnetic pattern
library, we calculate the equilibrium configuration and total
binding energy Eij for each pair of panels in the library.

Fig. 3B shows the cumulative distribution function for 2D
panels with N = 3–10 dipoles, where we fixed the total binding
energy between building blocks to be 10kBT. The energy gap
between on and off target binding increases with increasing N.
Fig. 3C compares Mc of 1D strands and 2D panels at fixed total
binding energy of e = 10kBT, where the 2D panels contain much
more information. In addition, the insert of Fig. 3C shows that
Mc B N1.5 for e = 10kBT, namely the number of effective
components increases super linearly with N. This scaling
means that even with fixed binding energy between compo-
nents, we can increase the programmability of our system by
printing more magnetic dipoles. This is important, as it sug-
gests that increase in magnetic storage information density can
directly result in an increase in information content of panels
for assembly without changing the timescale for unbinding.

Fig. 3 2D magnetic panel with fixed total binding energy. (A) Three sample dipole patterns with number of dipoles N = 4, 5, 8. The dipoles are placed
with the constraint that all nearest neighbor distances for any two dipole pairs must be the same. (B) The cumulative distribution functions of D for
magnetic panels with N = 3–10 dipoles with total binding energy e = 10kBT. (C) Mc of magnetic panels and strands with N dipoles for e = 10kBT. We see
that by allowing the placement of dipoles on a 2D plane, we increased information capacity of our system. The insert shows the scaling behavior of Mc as
a function of N dipoles for panels at e = 10kBT. We note that at e = 10kBT, Mc increases super linearly as a function of N.
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P ractically, the shortest side of a magnetic region must be
bigger that B30 nm to ensure permanence. This limit sets a
natural cutoff for the minimum size and strength of a domain.

3 Self-assembly results
Dimer self-assembly

To validate that the designed dipole patterns can accurately
assemble, we carry out both molecular dynamics simulations
and experiments comparing the yield of dimer assembly
between designed and randomly generated 3-dipole patterns.
In the simulations the total on-target binding energy was set to
10kBT. For the experiments, we used panels with N40 Neody-
mium magnets separated by a = 0.28 cm and binding distance
d = 0.2 cm, and varied the shaker acceleration to control the
effective temperature of the system. We find the best patterns
of 3 dipoles by iterating through randomly generated patterns,
selecting those with high information content. We then applied
symmetry analysis by measuring the opening angle y (Fig. 4A)
distribution on all the patterns and identified the optimal
symmetries for the best patterns (y peaks around 60, 100,
140, and 180 degrees). Lastly, we generated patterns with said
symmetries and iterated over different dipole configurations to
get the final designed patterns (Fig. 4B). The design protocol
yields 12 distinct lock-key pairs (Fig. 4B) with Mc = 3.46 at
e = 10kBT, implying that a theoretical binding yield of
about 68%.

We instantiate these designed configurations in both simu-
lations and experiments, printing the lock-key pairs onto
dimers. We carry out the simulations in HOOMD-blue,33–35

while we used Freud36 for data analysis, and Signac37,38 for data
management (More detailed description of the simulation
setup can be found in the (ESI†)). We program the interactions
between lock-key dimers by putting a small interaction patch
on a sphere with the computed binding energy (Fig. 4C). The
patch is small enough to ensure that only dimers can form in
our simulation (see (ESI†) for simulation snapshots). We carry
out an ensemble of five different runs of the dimer simulations
as a function of temperature, measuring the yield of the desired
configurations. We compare this yield curve to that computed
from 15 sets of randomly generated panels. Fig. 4D shows that
the designed panels have significantly higher yield than the
random panels, with a maximum yield nearly 80%.

For the experiments, we followed a similar protocol. We
super glued magnets into laser cut holders and made them into
cylindrical panels following the theoretical designs. We placed
these 4 copies of each lock-key pair into a shaker, and mea-
sured dimer assembly as a function of shaking amplitude. The
lock-key pairs are fabricated with specific dimensions so that
the binding energy is only substantial when they bind face to
face (see more detail in (ESI†)). The shaking is analogous to the
temperature of a thermal bath, providing uncorrelated noise to
the individual panels (more details for the shaker system setup
can be found in ESI†). The number of pairs of each dipole
pattern is determined to match the simulation area fraction of

Fig. 4 Dimer assembly: (A) The opening angle (y) distribution for the high information 3-dipole panels before optimization. (B) The binding energy matrix
of the designed 3-dipole panels. The binding energies are scaled with the strongest binding energy of the 12 lock-key pairs. (C) The coarse grain process
of converting a magnetic panel to a sphere with an attractive patch for simulation. (D) The self-assembly yield of the designed panels compare to the
randomly generated ones (not obeying fixed d/a ratio) as a function of simulation temperature. (E) Start and final state from shaker experiment. Dimers in
blue rectangles form the desired lock-key pairs. (F) The self-assembly yield of the designed panels as a function of shaker acceleration (unit in
gravitational acceleration g).
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0.2 comfined by an acrylic cylindrical boundary. To carry out
the experiment, we start the shaker at high shaking accelera-
tion to thermalize the panels, and slowly decrease the shaking
acceleration to a target amplitude where we count the number
of correctly and incorrectly assembled dimers (Fig. 4E and F).
For each shaking amplitude, we carry out five replicas of the
experiment. In Fig. 4F, we see the yield of dimer assembly from
the shaker experiment. The highest yield is around 80%, which
agrees with simulation (Fig. 4D).

We note a decrease in yield at lower temperature and
shaking acceleration for simulation and experiments respec-
tively. This arises from the non-equilibrium nature of the dimer
self-assembly process at low temperature, where the monomers
do not have the chance to freely explore space to find the
optimal binding pair, but would bind with anything nearby.39

Our dipole-pattern design strategy assumes equilibrium self-
assembly process, so in order to achieve better yield at low
temperatures, other strategies can be deployed.

Finite square self-assembly

To demonstrate the power of our designed interactions, we
show how the magnetic panels can enable finite heterogeneous
self-assembly. We aim to self-assemble a finite 3 � 3 square
(Fig. 5A), using 12 different lock key pairs to encode each of the
required binding sites. We instantiate this both using the 12
patterns from the 3-dipole system discussed above, and com-
pare this to a selection of 12 10-dipole patterns (see ESI† for

panel patterns) generated following the d=a ¼
ffiffiffi
2

p
=2 design

rule. We selected these 12 10-dipole patterns by identifying
the top 12 highest information content patterns from 150
different ones. For the simulations, we encode the required
binding strengths as binding sites on spheres with attractive
patches, with each square building block modeled with a rigid
assembly of spheres (Fig. 5B). We first find the optimal tem-
perature for the highest correct binding lock-key pairs by
sweeping through a range of different temperatures, and ran
100 independent replica runs at the optimal temperature to

measure the yield. Fig. 5C shows the measured percentage of
complete square assembly (blue solid line) and correct bonds
(yellow solid line) in our simulation. The correct bond yield is
approximately 83%, consistent with our dimer self-assembly. The
yield of perfectly assembled squares is closer to 40%, with the
majority of the errors arising from assemblies with 7 correctly
assembled squares, one square having an incorrect bond and one
free square. The 10-dipole panels are significantly more accurate,
with the success rate of complete square assembly increasing from
40% to 80%, and nearly 100% rate of correct bonds.

We also carried out experiments for assembling this
configuration using panels with three dipole patterns and the
shaker. Similar to simulation, we first performed the shaker
experiment at different shaking acceleration to identify the
optimal amplitude for square assembly (see experimental
details in ESI†), and we repeated the experiment 100 times at
the optimal shaking amplitude. These experiments yielded a
correct bond rate of 80%, whereas 25 out of 100 runs led to
perfectly assembled configurations. The correct bond rate is
similar to that seen in the dimer experiment and the simula-
tions, while the experimental yield is slightly lower.

4 Discussion

We demonstrate in this paper a simple design rule for max-
imizing the mutual information between lock and key pairs. By

fixing d=a ¼
ffiffiffi
2

p
=2, we maximize the dipole density while mini-

mizing both the cross talk between off-target binding pairs and
the distribution width for on-target binding energy over the
entire set of dipole patterns. Strikingly, our calculations
demonstrate that for two dimensional panels, we increase the
programmability by printing more magnetic dipoles, each of
which has weaker binding strength. Magnetic handshake mate-
rials allow us to take full advantage of this design rule, as we
can precisely control the strength and the location of the single
dipole domains being printed. Moreover, by printing the dipole
patterns on two dimensional surfaces – in contrast to one

Fig. 5 Finite square assembly: (A) Model of the 3 � 3 finite square assembly design. (B) How the fourth building block is represented in an experimental
setting and how it is being coarse grained into simulation. (C) The yield of the square assembly using the designed 3-dipole panels and the 12 chosen 10-
dipole panels.
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dimensional chains of e.g. DNA – we can increase the amount
of information that can be encoded in a given building block
(Fig. 3C). Finally, implementation of our theoretical designs for
self-assembly in mm-sized magnetic panels, highlights their
applicability to real experimental systems.

It is interesting to speculate about the number of potential
lock-key pairs that can be created using state of the art
nanofabrication technology. Fig. 3C shows that the number
of effective non-crosstalk patterns scale super linearly with the
number of dipole domains. In scaling magnetic handshake
materials down to micron-scale panels, it is important to
consider the maximum achievable density of non-crosstalking
lock-key pairs (Mc) given state-of-the-art magnetic recording
technology. The current areal bit density of perpendicular
magnetic recording media, where one bit represents a magnetic
moment oriented into or out of the plane of the disk, is
on the order of 1Tb/in2.40 At this density, one bit comprises
an area of 645 nm2, with typical recording layer thicknesses of
10–30 nm.41 Setting the interaction distance d between two
panels as the bit thickness, our d/a design rule dictates a
nearest neighbor distance a = 14–32 nm. With these con-
straints, we determine current recording technology could
easily achieve a density on the order of hundreds of non-
crosstalking lock-key interactions, Mc, per 1 um2 panels. Thus,
magnetic handshake materials offer a new powerful pathway
towards the rapid design and creation of programmable inter-
actions for self-assembly of increasingly complex structures.
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