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ABSTRACT: Fine control over the mechanical properties of thin
sheets underpins transcytosis, cell shape, and morphogenesis.
Applying these principles to artificial, liquid-based systems has led
to reconfigurable materials for soft robotics, actuation, and
chemical synthesis. However, progress is limited by a lack of
synthetic two-dimensional membranes that exhibit tunable
mechanical properties over a comparable range to that seen in
nature. Here, we show that the bending modulus, B, of thin
assemblies of nanoparticle surfactants (NPSs) at the oil—water
interface can be varied continuously from sub-kzT to 10° kyT, by
varying the ligands and particles that comprise the NPS. We find
extensive departure from continuum behavior, including enormous
mechanical anisotropy and a power law relation between B and the
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buckling spectrum width. Our findings provide a platform for shape-changing liquid devices and motivate new theories for the

description of thin-film wrinkling,
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S urface tension drives the assembly of nanoparticles (NPs)
at liquid—liquid interfaces." At sufficiently high densities,
the NPs solidify into two-dimensional elastic sheets made of
discrete building blocks.” These solid-like interfaces can be
combined with additive manufacturing techniques to produce
complex, hierarchical structures made entirely of liquids, such
as bicontinuous networks,” fibrils, and cellular materials.’
Bringing this morphological control together with the
enormous palette of functional nanomaterials that can now
be synthesized has led to novel platforms for cell culture,’
microfluidics,” and synthetic biology.” In these interface-rich
materials, structure is determined by a balance between surface
tension, adhesion energy, and the mechanical moduli of
material assembled at the oil—water interface.” Fine control of
these quantities inherently leads to shape control and
actuation, allowing for the development of all-liquid,
reconfigurable printed materials.'” At the same time, dimen-
sionally confined assemblies of NPs offer a system for testing
the breakdown of continuum theories in nanoscale, granular,
or high-aspect-ratio materials.'' Critical to advancing both
applied and fundamental aspects of these fields are interfacial
nanoparticle assemblies whose mechanical properties can be
readily tuned over orders of magnitude.'”"’

Here, we study the bending moduli of assemblies of
nanoparticle surfactants (NPSs) at the oil—water interface.
NPSs consist of NPs and polymer surfactants that are initially
dispersed in separate, immiscible liquids. Provided that the
functional groups on the NPs and surfactants are comple-
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mentary, e.g, ion pairing, the two components bind to one
another at the liquid—liquid interface to form NPSs.'* The
resulting NPSs are irreversibly trapped at the interface, unless
disassembled by an external stimulus. We used a Langmuir
trough to study a silica nanoparticle-based NPS system whose
adsorption kinetics and interfacial rheology we have extensively
characterized elsewhere (Figure 1a)."> The nonaqueous phase
consisted of silicone oil (kinematic viscosity, 5 cSt) and NH,-
functionalized PDMS-based polymer surfactants (Figure 1b).
Three different linear, amine-functionalized polymer surfac-
tants were chosen that differ in their number of amine groups.
PDMS-NH, has one terminal primary amine group, H,N-
PDMS-NH, is capped on both ends with primary amines, and
an amine-functionalized random copolymer (“RCP”) has
multiple, randomly located amine groups per molecule. The
aqueous phase contained 1 mg mL™" of —CO,H-functionalized
spherical silica NPs (average radius 7 nm, polydispersity <10%,
Figure 1c). A further system comprising rod-like, —CO,H-
functionalized cellulose nanocrystals (CNC, radius 5—10 nm,
length 100—200 nm) in the aqueous phase and RCP (6 mM)
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Figure 1. (a) Schematic of NPS formed at the oil—water interface in a
Langmuir trough and the buckling of the assembly in response to
confinement by a barrier. (b) NH,-functionalized PDMS polymer
surfactants dispersed in the nonaqueous phase. (c) CO,H-function-
alized silica nanoparticles and cellulose nanocrystals dispersed in the
aqueous phase. (d) In-situ AFM height images of assemblies of 1 mg
mL™! SiO, NP with 20 mM H,N-PDMS-NH, (scale bar, 100 nm)
and 1 mg mL™' CNC with 6 mM RCP (scale bar, 400 nm) at the oil—
water interface.

in the nonaqueous phase was also studied, motivated by its use
in all-liquid 3D printing and complementary AFM studies.”'°

The NPS assemblies were characterized in situ using liquid-
phase atomic force microscopy (AFM) at the oil—water
interface of an uncompressed, high-viscosity (kinematic
viscosity, 60 000 cSt) silicone oil droplet (Figure 1d). In all
but one case, AFM height images showed densely packed
assemblies of discrete particles with short-range in-plane order,
a narrow range of height variation smaller than a particle
diameter (root-mean-square (RMS) roughness, 3—5 nm), and
an absence of visible NPS in particle interstices, all of which are
indicative of a monolayer (SI Figure 1). In one case (H,N-
PDMS-NH,, 20 mM, SI Figure 1c) disordered assemblies with
large-scale surface roughness (amplitude SO nm, RMS
roughness 13 nm) on an in-plane length scale of ~100 nm
were observed, indicative of aggregation of the particles and
roughening of the assembly. After aging, extremely small
translations of the barrier (of order microns) caused interfacial
buckling and the formation of wrinkles in all cases. The
wavelength of these wrinkles did not change on the
experimental time scale and did not depend on the extent of
barrier translation.
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Translating the barriers of the trough led to the confinement
of the NPSs and, hence, a spatially varying out-of-plane
displacement of the assembly (Figure 2a—d; Videos S1—4
show representative data). The traditional, zero-temperature
framework used to describe the shape adopted by the film in
response to confinement considers the balance between the
bending energy of the NPS assembly and the energetic cost of
vertically displacing of the liquids.'”'® This model predicts
sinusoidal wrinkling patterns, in which a single, energetically
favored wavelength, 4, of the wrinkles is related to the bending
modulus, B, of the assembly as

1/4
2= (_]
Apg (1)

where Ap is the density difference between the two liquid
phases, and g = 9.8 m 572,

However, when confining our NPS assemblies, we did not
see a single buckling wavelength, but rather an approximately
Gaussian distribution of wavelengths (Figure 2e). The mean
wavelength, 2, which we treat as representing the bending
modulus of the assembly, varied from ~3 pm up to ~300 pm,
depending on the composition of the NPS studied. This
translates to a range of B from sub-ksT up to 10° kyT (Figure
2f). The lowest B in SiO, NP-based systems was found when
using RCP as a ligand, while the largest was ~10° kzT seen at
the highest concentrations of H,N-PDMS-NH,, for which
AFM topographs showed significant roughening of the
interface. Larger still was the bending modulus of the CNC
+ RCP monolayers (~10° kyT).

Reproducibility between measurements was generally good,
with most systems reproducing B to within around 50% of the
mean. We attribute this variability to variations in functional
group density on both NPs and polymer surfactants, as well as
variation between batches in terms of particle diameter,
molecular weight, and polydispersity. There was one notable
exception: at 4 mM H,N-PDMS-NH,, an enormous spread in
B was observed, from 10* kgT up to 3 X 10* kT, suggesting
that the significant roughening of the assembly seen in the
AFM height images in Figure 1d occurs near this
concentration. Wrinkling patterns at concentrations of RCP
below 4.5 mM were either transient or highly variable and so
not reported. Note that each data point in Figure 2f comprises
measurements of wavelengths made at multiple different
barrier translations for a single NPS film. This procedure was
repeated for multiple films for each experimental condition,
with each repeat yielding a single data point in Figure 2f (SI
Figure 2).

Comparison with literature values is striking. NP assemblies
at the liquid—fluid interface typically have extremely small
mechanical moduli: Ag, Au, and Fe;O, NP monolayers and
trilayers spread at the liquid—air interface have a B of 10 kgT or
less.'”” By contrast, B as high as 107 kT has been reported in
NP monolayers that have been processed into free-hanging
assemblies or embedded in polymer matrices.”"”* To our
knowledge, the intermediate values for B in our NPS
assemblies are not present in the literature. Measured B for
lipid bilayers are typically in the range 10—100 kT,”* while the
reported lower bound for thin polymer films is typically on the
order of 10’—10° kzT.** The judicious choice of ligands and
particles in the NPS allow us control over B across this entire
range.
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Figure 2. Wrinkles formed by confining NPS assemblies comprising SiO, NPs with (a) RCP (4.5 mM), (b) PDMS-NH, (25 mM), (c) H,N-
PDMS-NH, (20 mM), and (d) CNC with RCP (6 mM). Scale bars, 200 um. (e) Normalized histograms of wrinkle wavelengths measured from
different assemblies. Arrows indicate system composition, solid lines show Gaussian fits to the histograms. (f) Bending moduli for all systems
studied in this work as inferred from buckling wavelengths. Each data point shows data obtained from a newly prepared NPS assembly. Error bars

show =1 standard deviation.

This variation in B stands in sharp contrast to the surface
shear moduli, G, of the NPS assemblies (0.1—1 N m_l),15
demonstrating the enormous mechanical anisotropies of the

NPS assemblies. Classical continuum relations predict that
2

= %, where v is the Poisson ratio, overestimating the
lower bound of our measured B by as much as 3 orders of
magnitude. This anisotropy arises from the differing physical
origins of the in-plane and out-of-plane mechanical response.
Resistance to shear is due to the energetic costs of deforming
the particle assembly at constant surface area.”® By contrast, for
out-of-plane deformations, the origins of B are less obvious.
For the SiO, + H,N-PDMS-NH, NPS, large B at high
concentrations of polymer surfactant can be attributed to the
roughening of the interface, leading to bulk-like mechanical
properties. Capillary raft models, which predict that B derives
from surface tension and the geometrical constraints placed on
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the oil—water interface, may be relevant for our assemblies
with smaller bending modulus. These models predict B in the
range 10'—10? k3 T°° and 10'—10° kyT*’, respectively, for SiO,
NPS monolayers, which captures some of the range we see
here, but not the phenomenology. Most importantly, both of
these models predict an increase in B with surface tension;
however, we find here that B either increases or is invariant
with increasing polymer surfactant concentration (and, hence,
decreasing surface tension).” Importantly, capillary raft
models do not account for interactions between the polymer
surfactants bound to our NPS, which are likely critical in our
NPS, as they are asymmetrically coated by large (molecular
weight of 2 kDa or more) polymer surfactants. Experimental
studies have shown that ligand interactions significantly alter
in-plane and out-of-plane mechanical properties of NP

20,28

monolayers spread at the air—water interface. However,
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deviation.

models allowing quantitative predictions of the effects of
particle ligands on B are currently lacking in the literature.
The wide range in B we observe allows us to find further
departure from classical buckling by studying the distribution
of A for a given B. Typical analyses of particle monolayer
buckling predict the emergence of a single, energetically
favorable mode in response to confinement. In the range of B
studied in this work, however, approximately Gaussian
distributions of wavelengths were seen (Figure 2e). As B
decreases, the width of this distribution increases, and a broad
spectrum of buckling modes emerges as B becomes
comparable to thermal energies. Defining a buckling spectral

width, A = %,
measured distributions of wavelengths, it was found that A/l
obeyed a power law relation with A (Figure 3). Plotting A as a
function of B (SI Figure 3) produces an identical trend. This
relation is not a result of the palette of materials or solvents
selected for our work. Even in samples where measurements of
B varied significantly for each prepared assembly, such as 4
mM H,N-PDMS-NH, + SiO, NP, each distinct measurement
was found to lie on the trend line. Nor is the trend an artifact
of imaging resolution: analysis of high-resolution data from
Leahy et al."” (Au NPs spread at the air—water/ethanol and
air/glycerol interface, B < ksT), and Pocivavsek et al.”” (Au
NPs spread at the air—water interface, B & kzT) produce
spectral widths that fall onto the same trendline. This trend is
not described by existing theories of thin film buckling. The
classical theory of monolayer buckling at liquid—fluid
interfaces of Milner et al. predicts buckling at a single
wavelength.'” By contrast, descriptions of fluctuating mem-
branes predict that fluctuation amplitude will grow monotoni-
cally, reaching a maximum as the wavevector q — 0. By
contrast, our compressed monolayers buckle with a distribu-
tion of wavelengths that has a peak at nonzero wavevector and
a width that broadens as B approaches thermal energies.
Finally, we comment on the confinement field in our trough,
which exhibits qualitatively similar behavior independent of B
(Figure 4). In all systems studied here, buckling is confined to
within a few millimeters of the barrier that is being translated.
Close to this barrier, stresses in the system are concentrated

where o, is the standard deviation of the
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into highly curved folds. Moving away from the barrier, there
exists a narrow region of length ~/, where the film transitions
from folds to sinusoidal wrinkles. Beyond this, the amplitude of
the wrinkles slowly decays (greater variations in gray value
correspond to larger wrinkle amplitude). Far from the
translating barrier, the assembly is planar. Both the decreasing
amplitude of the wrinkles and the transition from folds to
wrinkles, which occurs in response to increasing confinement,
demonstrate that the effective degree of confinement of the
film decays with increasing distance from the barrier.

This spatial decay in the degree of confinement is due to
pinning of the NPS assembly at the edge of the trough. We
confirmed this by imaging the CNC—RCP assembly (which
had the largest 4) in dodecane, increasing the refractive index
mismatch between the solvents and allowing us to obtain clear
images of the system under reflection imaging without altering
B (SI Figure 4). We clearly observed contact line pinning and
large hysteresis effects at the edge of the trough upon reversing
the applied confinement (Videos SS and S6). It is important to
note that the physical origin of these decays is different from
that observed by Cicuta et al., which was attributed to frictional
interactions of a spread monolayer of granular particles with
the edges of the trough.31 In our case, NPS assemblies form a
network that spans the trough and are pinned at the wall of the
trough. Conservatively taking the roughness of the wall, 4,, to
be of order 0.1—1.0 ym, we estimate that the three-phase
contact line is pinned by capillary energies of order AE ~ yA?
~ 10°—107 kT, providing a significant barrier to relaxation of
the folds into wrinkles.

Our results have their most immediate applications in
microfluidics and reconfigurable, droplet-based materials. The
enhanced bending moduli of the assemblies presented here are
critical in balancing the overpressure produced by flows in all-
liquid microfluidic platforms,® as well as in preventing
structural failure due to Ostwald ripening.® In printed,
droplet-based constructs, in-situ alteration of interfacial
bending moduli could be used to drive shape changes and
actuation.”” Interfaces with tunable rigidity open the possibility
of complex shape transformations in droplets containing
synthetic cytoskeletons.”> Finally, our findings motivate the

https://doi.org/10.1021/acs.nanolett.1c01454
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Figure 4. Coexistence of wrinkles and folds in NPS assemblies. Light micrographs of nanoparticle surfactant assemblies under increasing
confinement, A’. Plots show gray-scale values after polynomial background subtraction. Note that the barrier was translated prior to experiment to
produce wrinkles and A’ refers to further translations of the barrier. Gray-scale values measured in the region indicated by the white dashed line.
Arrows indicate the location of a localized transition from a wrinkle to a fold. (a) 6 mM RCP, 1 mg mL™" CNC. (b) 20 mM H,N-PDMS-NH,, 1

mg mL™ SiO, NP. (c) 25 mM PDMS-NH,, 1 mg mL™" SiO, NP.

need for new theoretical tools that both account for the effects
ligand—ligand interactions during NP monolayer buckling and
describe the wrinkling of extremely thin materials made of
discrete objects. Descriptions of homogeneous thin films
buckling with multiple modes ex1st but do not capture the
phenomena we observe here.*® It may be that models that
account for the discrete nature of the NPs are more successful
in describing the mechanical properties of our assemblies.’”
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Materials and Methods and Figures S1—S4: AFM height
images, bending moduli calculations, spectral width vs
bending modulus, effect of solvent upon B (PDF)
Video S1: Compression of an NPS assembly. Aqueous
phase contains 1 mg/mL cellulose nanocrystals. Non-
aqueous is dodecane containing 6 mM amine-function-
alized PDMS random copolymer. (MP4)
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Video S2: Compression of an NPS assembly. Aqueous
phase contains 1 mg/mL SiO, nanoparticles. Non-
aqueous phase is 5 ¢St silicone oil containing 20 mM
H,N-PDMS-NH,. (MP4)

Video S3: Compression of an NPS assembly. Aqueous
phase contains 1 mg/mL SiO, nanoparticles. Non-
aqueous phase is 5 ¢St silicone oil containing 25 mM
PDMS-NH,. (MP4)

Video S4: Compression of an NPS assembly. Aqueous
phase contains 1 mg/mL SiO, nanoparticles. Non-
aqueous phase is S cSt silicone oil containing 4.5 mM
amine-functionalized PDMS random copolymer. (MP4)
Video S5: Compression of an NPS assembly showing
pinning of the interfacial assembly at trough corners/
edges. Aqueous phase contains 1 mg/mL cellulose
nanocrystals. Nonaqueous phase is dodecane containing
6 mM amine-functionalized PDMS random copolymer.
(MP4)

Video S6: Retraction of barrier after confinement of
NPS assembly showing pinning of the interfacial
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assembly at trough corners/edges. Aqueous phase
contains 1 mg/mL cellulose nanocrystals. Nonaqueous
phase is dodecane containing 6 mM amine-function-
alized PDMS random copolymer. (MP4)
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