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Abstract—Centered on modern C++ and the SYCL standard
for heterogeneous programming, Data Parallel C++ (DPC++)
and Intel’s oneAPI software ecosystem aim to lower the barrier
to entry for the use of accelerators like FPGAs in diverse
applications. In this work, we consider the usage of FPGAs
for scientific computing, in particular with a multigrid solver,
MueLu. We report on early experiences implementing kernels of
the solver in DPC++ for execution on Stratix 10 FPGAs, and we
evaluate several algorithmic design and implementation choices.
These choices not only impact performance, but also shed light
on the capabilities and limitations of DPC++ and oneAPI.

Index Terms—FPGA, OneAPI, Data Parallel C++, SYCL,
Multigrid, Conjugate Gradient, Sparse Matrix Vector

I. INTRODUCTION

Field Programmable Gate Array (FPGA) architectures have
proliferated in domains such as embedded computing, cryp-
tography, and multimedia processing. They allow for energy-
efficient, application-specific acceleration and rapid prototyp-
ing of novel algorithmic approaches. However, their adoption
in scientific high performance computing (HPC) has been lim-
ited, in part due to a lack of high-level programming language
support. Many HPC application programmers are unfamiliar
with hardware description languages (HDLs) like Verilog, and
HPC programs are often too complex to practically code
in such languages. OpenCL raises the level of abstraction
somewhat, but its C interface still retains vestiges of hardware-
level detail. Intel’s one API toolkit allows the use of the SYCL-
based Data Parallel C++ (DPC++) on its FPGAs, CPUs, and
GPUs. As DPC++ is based on a preferred HPC programming
language, C++, oneAPI presents an excellent opportunity to
revisit potential uses of FPGAs for HPC applications.

In this work, we consider the implementation of a multigrid
solver, MueLu, in DPC++ targeting Intel FPGAs. We use a
modified version of the high performance conjugate gradient
(HPCG) benchmark [1] and its sparse linear algebra routines
as a vehicle to test the solver with FPGAs. Section III explains
our modifications to the HPCG code to better resemble real
application use cases and to better suit the capabilities of
the DPC++ programming model and supported architectures.
The empirical results presented in Section IV compare the
performance of algorithmic and implementation choices for
key kernels in the code. Comparisons between CPU and FPGA
currently favor the CPU, but we evaluate reasons for this
performance gap and present strategies for narrowing this gap
through further DPC++ optimizations.
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II. BACKGROUND
A. Data Parallel C++

The oneAPI programming model [2] includes the Data Parallel
C++ (DPC++) dialect of the SYCL abstraction layer [3] for
heterogeneous device programming. SYCL leverages generic
programming capabilities of modern ISO C++ for cross-
vendor code portability, and DPC++ offers some additional
extensions particular to Intel devices. Kernels of work are ex-
pressed as C++ lambda expressions and submitted to a queue
for execution on the device. Interfaces are provided for both
explicit data management between host and device, and, where
available, unified shared memory. Intel’s LLVM-based oneAPI
toolkit compiles a fat binary comprising both host machine
code and device bitstream code, and the process requires no
knowlege of low-level (i.e., HDL) device programming.

B. HPCG

HPCG [1], [4] is a benchmark code which executes a
multigrid-preconditioned conjugate gradient (CG) method on
a structured mesh. HPCG itself provides a reference im-
plementation of the various kernels needed, while users are
encouraged to supply optimized versions for their particular
machine or architecture. Optimized HPCG benchmark per-
formance results are reported biannually at the International
Supercomputing Conference and the ACM/IEEE Supercom-
puting conference.

III. APPROACH
A. Modifications to HPCG

Some design decisions of the HPCG benchmark limit its abil-
ity to accurately represent certain classes of user applications.
While HPCG uses data structures for matrix storage inspired
by unstructured compressed sparse row storage, they are
subtly different. Moreover, its multigrid method is explicitly
structured with a very specific coarsening algorithm.

For this work, we modified HPCG to accept multigrid hi-
erarchies generated by the MueLu [5], [6] algebraic multigrid
library, which is part of the Trilinos [7] family of scientific
software libraries. The multigrid algorithm is shown in Al-
gorithm 1, where b represents the vector to which multigrid
is applied, x represents output vector and A represents the
matrix to which multigrid is applied. The restriction matrix, R
moves data from the input “grid” to a coarse approximation
space, while the prolongation matrix, P does the opposite.
The Smoother function represents a iterative method such as



Gauss-Seidel. We also modified HPCG to more closely reflect
real-world applications by enabling HPCG to:
o Use matrix-vector products for coarse grid transfers,
rather than injection via array indexing.
¢ Use Chebyshev relaxation [8] as an alternative to the
Gauss-Seidel smoother.
o Use a sparse direct solve via KLU [9].

Algorithm 1 x = Multigrid(A,b,level)

1: « <~Smoother(A, 0,b) [Pre-Smooth]

2: v+ b— Az [SPMV, WAXPBY]

3: re < Rr [SPMV-T]

4: if level == max then
5.z, + A~y [LUsolve]
6
7
8
9

: else
: x. +Multigrid(RAP, r, level + 1) [Recurse]
: end if
: x + x+ Px. [SPMV, WAXPBY]

10: = <—Smoother(A4, z,b) [Post-Smooth]

Having modified HPCG, we implemented the algorithm
in DPC++; For each vector and matrix operation within
the CG solve proper (i.e., not the matrix load and setup),
we implement a kernel that executes on the FPGA. Due to
high overhead, the kernels avoid host/device memory transfers
during the solve. The key, performance-relevant kernels are:

o WAXPBY - w = azx + By.

e SPMV - y = Azx.

e DotProduct - a = 27'y.

e SGS - Symmetric Gauss-Seidel smoothing

e ChebyCore - Core operation of Chebyshev smoothing,

w=oaw+ pdo (zr—v).

o LUsolve - From KLU, solve ATz = b.

o SPMV-T - y = ATz.

Here A is a matrix, d, v, w, x and y represent vectors, o and
B are scalars and ® indicates element-wise multiplication.

B. Kernel launch: parallel_for versus single task

DPC++ offers two kernel programming models that map to the
kernels listed in Section III-A: parallel_for and single_task.
Quoting the DPC++ reference, the former executes “a kernel in
parallel across a range of processing elements,” while the latter
executes “a single instance of the kernel with a single work
item” [10]. While most of HPCG’s kernels can be implemented
in either form, the exceptions are (a) DotProduct, which is
logically a parallel_reduce, but could also be implemented
with single_task, and (b) SGS and (c) LUsolve, neither of
which have a direct parallel_for implementation. The paral-
lel_for construct is commonly used in performance portability
libraries like Kokkos [11], while the oneAPI DPC++ FPGA
Optimization Guide [12] stresses the use of single_task to
maximize pipelining by the compiler. As we will show in
Section IV-A, the parallel_for model generates faster code in
all kernels we can implement with a parallel_for. Compilation
reports indicate that the single_task kernels were pipelined,
but we have not yet attempted manual optimizations.

C. Using stored transpose to avoid reordered writes

Sparse matrix-vector multiplication (SPMV), y = Az, forms
a key component of the multigrid method. It is used to
transfer matrices between different levels of the hierarchies
and can also be used in some classes of smoothers, such
as Chebyshev relaxation. For a matrix stored in compressed-
sparse row (CSR) format, the matrix is read sequentially, the
output vector, y, is written sequentially, and the input vector,
z, is effectively random access. On CPUs, read caching of the
x vector a key performance strategy. FPGAs can also utilize
read caching in this way.

For the restriction matrix, R, multigrid codes either explic-
itly store R and multiply with it directly, or implicitly store R,
by storing P and using a transpose-mode SPMV (SPMV-T). In
the implicit case, the matrix reads remain sequential, but now
the input vector, x, is sequential while the output vector, vy,
is effectively random access. CPUs then utilize write caching
of the output vector, y, to achieve good performance. Unfor-
tunately, oneAPI on FPGAs does not support write-caching—
only loads can be cached. As we show in Section IV-B, the
performance penalty is substantial. Thus, we advocate using
the explicit storage of R to improve performance and, as
MueLu does, extend HPCG to support this option.

D. Reducing resource usage for non-critical code sections

One of the strengths of FPGAs is that prefetching, coalescing
and caching behavior can be controlled at the level of indi-
vidual load-store units (LSUs). These features can be selec-
tively enabled to improve performance or disabled to decrease
resource usage via template parameters to the ext:intel::lsu
class. In our case, we focus on decreasing resource usage in
the LUsolve kernel. In the Laplace2D problem we consider in
Section IV, LUsolve represents 0.4% of the overall multigrid
application time (and even less of the overall application
time). We can thus economize resources in the LUsolve kernel
with minimal changes to the overall runtime. To that end,
we disable load caching for all operations in the LUsolve
kernels by explicitly requesting loads to be done via uncached
loads, ie ext:intel::Isu<ext::intel::cache<0>>::load(). The
effect of this choice on performance and resource utilization
is discussed in more detail in Section IV-C.

IV. RESULTS

We consider two test problems derived from Trilinos/MueLu
[5]. The first, Laplace2D, represents the discretization of a
5 point 2D Laplacian stencil on a 100 x 100 mesh, with a
total of 10,000 unknowns. The second, Brick3D, represents
the discretization of a 27 point 3D Laplacian stencil on a
40 x 40 x 40 mesh, with a total of 64,000 unknowns. Unless
stated otherwise, we use CG preconditioned with a three-
level multigrid method using a single sweep of Chebyshev
smoothing (pre and post) and a direct solve on the coarse level
using KLU [9]. With the exception of some of the results in
Section IV-B, we use the explicit transpose where we explicitly
store the R matrix. Each problem is run one hundred times
on the target machine. Within a run, each kernel is executed
roughly 500 times (depending on CG’s convergence behavior).



Each kernel execution is individually timed and a queue wait
is executed (for one API) before the end time is recorded.

Our CPU tests run on an 18-core Intel Xeon W-2295
(Cascade Lake) CPU with a 3.0GHz base frequency. Our
FPGA tests run on a machine with two 16-core Intel Xeon
Gold 6226R (Cascade Lake) CPUs, each with a base frequency
of 2.9 GHz, and an Intel Stratix 10 SX FPGA. The CPU tests
are compiled with the 2022.0 release of the OneAPI toolkit
while the FPGA tests are compiled with the 2021.4 release
with the FPGA toolkit for S10 programmable accelerator cards
(PAC).

The maximum reported frequency of our HPCG imple-
mentation is 350 MHz, as reported by OneAPI and Quartus
compilation reports. Based on empty kernel tests, we estimate
the cost of a oneAPI kernel launch to be 7.9 pus on the CPU
and 22.0us on our target FPGA while empty queue wait costs
are 2.0 pus on the CPU and 6.0 s on the FPGA. By contrast,
CPU function call overhead is measured in nanoseconds.

A. Kernel launch: parallel_for vs. single_task

We first consider the Laplace2D problem using two different
implementations of our kernels, one using single_task for all
kernels and the second using parallel_for for all kernels except
DotProduct and LUsolve (Section III-B). As the results are
similar across kernels, we show only the Chebyshev smoother
implemented with parallel_for and single_task in Table I.
For the Chebyshev smoother, parallel_for is 1.9x faster than
single_task.

[ Method [[ Mean time [ Std. Dev. |
Chebyshev parallel_for 7.52e-4 9.3e-6
Chebyshev single_task 1.43e-3 1.1e-5

TABLE 1
TIME PER CALL FOR CHEBYSHEV SMOOTHER USING PARALLEL_FOR AND
SINGLE_TASK IMPLEMENTATIONS ON THE FPGA FOR LAPLACE2D.

Second, we compare the performance of symmetric Gauss-
Seidel (SGS) and the Chebyshev smoothers on Laplace2D.
Since SGS cannot be implemented in a parallel_for frame-
work, we expect performance to be worse than Chebyshev,
which is shown clearly in Table II. Chebyshev times are
different for the pre-smoothing and post-smoothing operations,
due to an optimization in the pre-smoothing that avoids an
initial matrix-vector product.

[ Smoother [[ Mean time [ Std. Dev. |
Chebyshev-Pre 2.18e-4 1.93e-6
Chebyshev-Post 7.52e-4 9.29¢-6
Symmetric Gauss-Seidel 6.51e-2 1.78e-5

TABLE I
TIME PER CALL FOR CHEBYSHEV AND SYMMETRIC GAUSS-SEIDEL
KERNELS ON THE FPGA FOR LAPLACE2D.

B. Using stored transpose to avoid reordered writes

We consider the Laplace2D problem using two versions of
the SPMV-T kernel: 1) an “implicit” version where we call
a transpose-mode sparse matrix-vector multiplication routine

with the matrix, P = RT, and 2) an “explicit” version where
we do a regular SPMV operation with the R matrix. Table III
shows the mean time and standard deviation for the Laplace2D
problem. As we can see, the explicit transpose is 28.8x faster,
due in part to the sequential (as opposed to random) nature of
its writes.

[ Smoother [| Mean time | Std. Dev. ]

Explicit 5.17e-4 3.35e-5
Implicit 1.49¢-2 9.19¢-6
TABLE III

TIME PER CALL FOR SPMV-T KERNEL IN BOTH EXPLICIT AND IMPLICIT
MODE ON THE FPGA FOR LAPLACE2D.

C. Reducing resource usage for non-critical code sections

In addition to timing results following the methodology de-
scribed above, we also generated FPGA compilation reports
using oneAPI 2021.4 to explore resource utilization of the
LUsolve kernels for the direct solve at the bottom of the
multigrid hierarchy using our FPGA implementation of KLU
[9]. We use the oneAPI FPGA early image analysis tools to
get utilization estimates [12]. As these do not perform full
place and route, these tools enable fast design evaluation.
Table IV compares a default implementation with one that
explicitly disables caches on all LSUs. Within the kernel, we
see a 39.6%, 40.3%, and 76.5% decrease in utilization of
adaptive lookup tables (ALUT), registers (REG), and memory
(RAM), respectively. Digital signal processor block (DSP)
usage is unchanged and memory logical array blocks (MLAB)
usage increases by a modest 17.6%. These decreases, when
compared to the resource utilization of all other kernels
combined, are significant, especially the memory usage, where
the RAM usage of the total application decreases by 43.2%.

Resource Utilization
Method ALUT [ REG [ MLAB [ RAM [ DSP
Default LUsolve 99,959.5 | 179,195 607 | 2,691 54
Uncached LUsolve 60,404.5 | 106,851 714 632 54
All Other Kernels 216,602 | 409,132 958 | 3,525 126
TABLE IV

ESTIMATED RESOURCE UTILIZATION FOR DEFAULT LSU
IMPLEMENTATION AND UNCACHED LSUS FOR LUSOLVE.

We then compare the actual runtimes of the code with the
default and uncached LUsolve using the Laplace2D problem
on the FPGA in Table V. While the mean time is slightly
lower in the default version, the difference is not statistically
significant. Given the resource savings discussed above, we
decided that this very minor performance degradation was
acceptable.

[ Method [[ Mean time [ Std. Dev. |
Default LUsolve 4.25e-4 1.1e-5
Uncached LUsolve 4.35e-4 8.1e-6

TABLE V

TIME PER CALL FOR LUSOLVE KERNEL USING DEFAULT AND UNCACHED
IMPLEMENTATIONS ON THE FPGA FOR LAPLACE2D.



D. CPU vs. FPGA Comparison

We now compare CPU and FPGA execution time. For the
CPU execution we use four different configurations, two using
DPC++ (with 1 core and 18 cores, notated oneAPI-1 and
oneAPI-18), a serial version (Serial) that does not use oneAPI
and a raw OpenMP version using 18 cores (OpenMP-18). We
first consider the Laplace2D problem. Table VI shows the
total solve time for each approach. The FPGA is roughly 4.1x
slower than oneAPI-18 and 5.4x slower than oneAPI-1. The
Serial and OpenMP runs are 7.4x and 21.5x faster than those
done on comparable core counts using oneAPI. Launch/wait
latency in pus (oneAPI) rather than ns (serial) plays a part
here.

For Brick3D, the FPGA solve is significantly slower than
oneAPI-18 and oneAPI-1, at 199.6x and 70.5x, respectively.
However, the serial and OpenMP-18 runs are just 2.0x and
6.2x faster than their oneAPI counterparts. As Brick3D is 6.4x
larger than Laplace2D, we would expect this problem to be
less latency bound, more bandwidth bound, and benefit more
from the use of threads. We note that the FPGA design runs at
a frequency that is 8.6x slower than the tested CPU platform.

Laplace2D Brick3D
Method Mean time | Std. Dev. | Mean time | Std. Dev.
oneAPI-1 1.43e-3 3.47e-5 8.50e-3 3.87e-5
oneAPI-18 1.91e-3 1.18¢e-4 3.0le-3 1.49¢-4
Serial 1.92e-4 2.42e-6 4.22¢-3 2.06e-5
OpenMP-18 8.88e-5 6.05e-6 4.85e-4 2.74e-5
FPGA 7.76e-3 3.20e-4 6.00e-1 1.93e-4
TABLE VI

RUN TIME FOR MULTIGRID-PRECONDITIONED CG SOLVE FOR
LAPLACE2D AND BRICK3D ON CPU AND FPGA.

V. RELATED WORK

Our work lies at the intersection of algorithms (sparse multi-
grid solvers), programming models (DPC++), and heteroge-
neous computing (Intel FPGAs and the oneAPI toolchain).
Zeni et al. [13] demonstrate an HPCG implementation using
high-level synthesis on Xilinx FPGAs. That implementation
operates only on the matrices generated by the HPCG bench-
mark harness, with a fixed number of nonzeros per row. Ours
accepts arbitrary matrices as inputs and allows a variable
number of nonzeros per row. Greisen et al. [14] evaluate
sparse solvers on FPGAs in the context of video processing
applications. Tsai et al. [15] present a DPC++ implementation
of sparse linear algebra kernels, but using Intel GPUs rather
than FPGAs. The DPC++ benchmark suite by Bavarsad et
al. [16] targets FPGAs and includes a diverse set of appli-
cations including cryptography, image recognition, and 3D
rendering.
VI. CONCLUSIONS AND FUTURE WORK

DPC++ and the oneAPI toolkit raise the level of abstraction
for FPGA programming considerably compared to alternatives
such as Verilog, other HDLs, and even OpenCL. Our work
demonstrates its applicability to a multigrid solver, a common
scientific computing workload. We have shown how perfor-
mance is sensitive to algorithmic and implementation choices

and that some key challenges remain. The work of optimizing
the code is ongoing, and future work includes evaluation of
multinode execution and comparison to hand-coded low level
implementations. We plan to investigate the use of unified
shared memory to determine the impact on performance and
programmability compared to the buffer/accessor-based data
management used thus far. The early experiences reported in
this paper reflect a nascent oneAPI software ecosystem, and
we look forward to improvements in the components of that
ecosystem, including compilers, tools, and documentation.
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