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ABSTRACT
Serving deep learning models from relational databases brings sig-
nificant benefits. First, features extracted from databases do not
need to be transferred to any decoupled deep learning systems
for inferences, and thus the system management overhead can be
significantly reduced. Second, in a relational database, data man-
agement along the storage hierarchy is fully integrated with query
processing, and thus it can continue model serving even if the
working set size exceeds the available memory. Applying model
deduplication can greatly reduce the storage space, memory foot-
print, cache misses, and inference latency. However, existing data
deduplication techniques are not applicable to the deep learning
model serving applications in relational databases. They do not
consider the impacts on model inference accuracy as well as the
inconsistency between tensor blocks and database pages. This work
proposed synergistic storage optimization techniques for duplica-
tion detection, page packing, and caching, to enhance database
systems for model serving. Evaluation results show that our pro-
posed techniques significantly improved the storage efficiency and
the model inference latency, and serving models from relational
databases outperformed existing deep learning frameworks when
the working set size exceeds available memory.
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1 INTRODUCTION
In the life cycle of deep learning, serving models for inferences is
a vital stage and usually incurs significant operational costs. An
Amazon user study found that model serving is responsible for 45-
65% of the total cost of ownership of data science solutions [7]. One
important reason is that most of today’s platforms that serve deep
neural network (DNN) models, such as Nexus [56], Clipper [22],
Pretzel [42], TensorFlow Serving [54], and Rafiki [62], are stan-
dalone systems that are totally decoupled from the data manage-
ment systems. From the perspective of end-to-end applications, this
decoupling incurs significant costs as follows:
(1) Existing deep learning serving frameworks are compute-focused
and require models, input features, and intermediate feature maps
all fit in memory. Failing to meet such requirements leads to the
failing of the system. For largemodels with large working set, which
is common in applications such as natural language processing and
extreme multi-label classification [1], this problem significantly
impacts the availability of a model serving system.

(2) The physical decoupling of data serving and model serving
introduces management complexity and extra latency to transfer
input features from the databases where input features are extracted
to the deep learning frameworks.

Therefore, it is imperative to investigate the serving of deep
learning models natively from the relational database management
system (RDBMS) [12, 25, 31, 34, 36, 40, 53, 63, 66]. RDBMS has a long
history of optimizing the memory locality for computations (i.e.,
queries), whether the working set size exceeds memory capacity
or not, through effective buffer pool management. It also eases
the management of data through data independence, views, and
fine-grained authorization. All of these capabilities, if leveraged
for model serving, will significantly reduce the operational costs
and simplify system management for a broad class of real-world
workloads [55], such as credit-card fraud detection, personalized
targeting recommendation, and personalized conversational-AI for
customer supports. In such applications, the features are extracted
from various historical transaction records or customer profiles,
which are stored in RDBMS.

As aforementioned, unlike deep learning frameworks, workloads
in RDBMS are not expected to have a working set fit in the available
memory. The RDBMS buffer pool manager moves pages between
disk and memory to optimize the data locality while continuing
query processing. This allows more models to be served concur-
rently than deep learning frameworks such as TensorFlow with
the same memory capacity. Nonetheless, there is always a desire
to increase buffer reuse and minimize page displacement. To achieve
this in model serving, we look into model deduplication.

Serving multiple similar models, such as ensemble and personal-
ized model serving, can greatly improve the accuracy and customer
experiences, and thus becomes a common pattern of DNN model
serving [21, 22, 52]. Such DNNmodels contain abundant similar ten-
sor blocks that can be deduplicated without affecting the accuracy.
As a result, proper deduplication of such DNN models significantly
reduces the storage space, memory footprint, and cache misses, and
thus reduces the inference costs and latency.

However, existing deduplication techniques for tensors [59],
files [10, 24, 43, 51, 61, 70], relational data [9, 11, 14, 26, 29, 64, 65],
and MapReduce platforms [19, 37, 38], are not applicable to the
above problem, because: (1) They do not consider the impacts on
model inference accuracy; (2) They do not consider how existing
database storage functionalities, including indexing, page packing,
and caching, should be enhanced to better support the inference
and the deduplication of DNNmodels. The challenges that we focus
on in this work include:
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1. How to leverage indexing to efficiently detect similar parameters
that can be deduplicated without hurting the inference accuracy?
2. A database page can contain multiple tensor blocks. How to
pack tensor blocks into pages to maximize page sharing across
multiple models and minimize the total number of needed pages
for representing all tensors?
3. How to augment the caching policy to increase the data locality
for deduplicated model parameters, so that pages that are needed
by multiple models have a higher priority to be kept in memory?

To address these challenges, in this work, we propose a novel
RDBMS storage design optimized for tensors and DNN inference
workloads. We mainly leverage our previous works on Tensor Re-
lational Algebra [34, 66] to map deep learning computations to
relational algebra expressions. A tensor is partitioned and stored
as a set of tensor blocks of equivalent shape, where each block
contains the metadata that specifies its position in the tensor. A
tensor is similar to a relation and a tensor block is similar to a tuple.
A DNNmodel inference is represented as a relational algebra graph,
as detailed in Sec. 2. This high-level abstraction is also consistent
with many popular systems that integrate database and machine
learning, such as SystemML [12], Spark MLlib [50], SciDB [58],
SPORES [63], LaraDB [31], among others.

Similar to the classical physical representation of a relation, we
store a tensor as a set of database pages, with each page containing
multiple tensor blocks. The difference is that each tensor relation
consists of a set of private pages, and an array of references to
shared pages that belong to more than one tensor, as detailed in
Sec. 3. On top of such physical representation, we propose novel
and synergistic indexing, paging, and caching techniques as follows:
Tensor block index for fast duplication detection (Sec. 4). It
is widely observed that a small portion of model parameters (e.g.,
weights, bias) are critical to prediction accuracy. Deduplicating
these parameters will lead to a significant reduction in accuracy [41].
To address the problem, different from existing tensor deduplication
works [59], we propose to first measure each tensor block’s sensitiv-
ity to prediction accuracy based on weight magnitude or other post-
hoc analysis [28], and thus avoid deduplicating accuracy-critical
blocks. Because pair-wise similarity-based comparison across ten-
sor blocks exhibits inhibitive overhead, we used the Locality Sen-
sitive Hash (LSH) based on Euclidean (L2) distance [32, 69], to
facilitate the nearest neighbor clustering.
Packing distinct tensor blocks to pages for minimizing stor-
age size (Sec. 5). The problem is a variant of the bin-packing prob-
lem with different constraints: (1) Two bins (i.e., pages) can share
space if they contain the same set of items (i.e., tensor blocks) [39,
57]; (2) For each tensor, there must exist a set of pages that exactly
contain all blocks of that tensor. To address this problem, we pro-
pose a concept called equivalent class so that blocks that are
owned by the same set of tensors will be assigned to the same class.
Then, we propose a two-stage algorithm that first employs a divide-
and-conquer approach to pack tensor blocks in each equivalent
class to pages respectively, and later it adopts an approximation
algorithm to repack the tensor blocks from non-full pages.
Deduplication-aware buffer pool management (Sec. 6). Exist-
ing deduplication-aware cache replacement strategies [43, 61] do

not consider the locality patterns of different sets of pages, which
are important for model inference workloads where the input and
the output of each layer have different locality patterns. However,
existing locality-aware buffer pool management policies [18] do
not distinguish private pages and shared pages. To address this
problem, we propose a cost model for page eviction, which con-
siders the reference count of a page (i.e., the number of locality
sets/tensors that share this page) and gives pages that are shared
by more tensors higher priority to be kept in memory.

The key contributions of our work are as follows:
1. We are the first to systematically explore the storage optimization
for DNNmodels in RDBMS, with an overall goal of supporting deep
learning model serving (i.e., inferences) natively from RDBMS.
2. We propose three synergistic storage optimizations: (a) A novel
index based on L2 LSH and magnitude ordering to accelerate the
discovery of duplicate tensor blocks with limited impacts on the
accuracy; (b) A two-stage strategy to group tensor blocks to pages
to minimize the number of pages that are needed to store the tensor
blocks across all tensors; (c) A novel caching algorithm that recog-
nizes and rewards shared pages across locality sets. It is noteworthy
that our optimization can work together with other compression
techniques such as pruning [27, 28] and quantization [33] to achieve
a better compression ratio, as detailed in Sec. 7.6.
3. We implement the system in an object-oriented relational data-
base based on our previous work of PlinyCompute [71–74], called
netsDB 1. We evaluate the proposed techniques using the serving of
(1) multiple customized Word2Vec embedding models; (2) multiple
versions of text classification models; (3) multiple specialized mod-
els for extreme classification. The results show that our proposed
deduplication techniques achieved 2.7× to 3.6× reduction in storage
size, speeded up the inference by 1.1× to 4.7×, and improved the
cache hit ratio by up to 1.6×. The results also show that netsDB
outperformed TensorFlow for these workloads.

2 BACKGROUND AND RELATED WORKS
2.1 ML Model Inferences as Queries
Existing works [12, 45, 50] propose to: (1) Abstract the tensor as a
set of tensor blocks; (2) Encode local linear algebra computation
logics that manipulate single or a pair of tensor blocks, in user
defined functions (UDFs), also called as kernel functions, such as
matrix multiplication, matrix addition, etc.; (3) Apply the relational
algebra operators nested with these UDFs for performing linear
algebra computations. Based on the above ideas, tensor relational
algebra (TRA) [66] further introduces a set of tensor-oriented rela-
tional operations, such as tile, concat, rekey, transform, join,
aggregation, selection, etc. We found that most ML workloads
can be decomposed into linear algebra operations that are further
represented in such TRA.

For example, matrix multiplication is a join followed by
aggregation [12, 66]. The join pairs two blocks from the two
tensors if the first block’s column index equals the second’s row
index. Then each joined pair of tensor blocks is applied with a UDF

1https://github.com/asu-cactus/netsdb. Related documentation can be found in
https://github.com/asu-cactus/netsdb/tree/master/model-inference/.
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that multiplies these two tensor blocks. An output block has its row
index being the first block’s row index and its column index being
the second block’s column index. Then all tensor blocks output
from the transformation are grouped by their row and column
indexes, and all tensor blocks in the same group will be added
up in an aggregate/reduce UDF. Similarly, matrix addition is a
join. In addition, matrix transpose is a rekey [66]; activations
such as relu, tanh, and sigmoid are transforms; softmax and nor-
malization can be represented as an aggregation followed by a
transform.

Therefore, as illustrated in Fig. 1, a fully-connected feed-forward
network (FFNN) can be represented in relational algebra [34, 45].

✖
T
✚

Weight matrix:W

Input features: X

Bias: b

y = σ

λrelu

W

⨝(w.col = x.col, matrix_multiply)

X

∑((l1.row = l2.row) ∧ (r1.col = r2.col), matrix_add )
b

⨝((y’.row = b.row), vector_add)

Linear Algebra

Tensor RelaDonal Algebray

y’

(l, r)

λ: transform
⨝: join
∑: aggregate

Figure 1: Example of mapping linear algebra to relational algebra.

While the experiments in this work (Sec. 7), mainly used afore-
mentioned operators, other types of neural networks can also be
represented in relational algebra. For example, convolution can be
converted into a multiplication of two matrices [2, 3], where the
first matrix is created by spatially flattening every filtered area of
the input features into a vector, and concatenating these vectors,
and the second matrix is created by concatenating all filters and
bias. Long short-term memory (LSTM) consists of concat, matrix
multiplication, matrix addition, tanh, and sigmoid; and the trans-
former’s attention mechanism consists of matrix multiplication,
transpose, softmax, etc [60].

The storage optimization techniques proposed in this work can
be easily extended to other tensor/array-based machine learning
systems, which adopt a similar tensor representation that chunks a
tensor to blocks, such as SystemML [12], SparkMLlib [50], SciDB [58],
SPORES [63], LaraDB [31], etc. In contrast, Raven [36] and Hum-
mingBird [53] propose to transform relational data to tensors and
leverage deep learning frameworks to run tensor computations. We
will investigate how to apply proposed deduplication techniques to
such and other systems [25, 40] in the future.

2.2 Tensor Deduplication and Virtualization
Mistique [59] proposed a data store for managing and querying
the historical intermediate data generated from ML models. It opti-
mized the storage of fuzzy intermediate data using quantization,
summarization, and deduplication. However, these techniques are

designed for diagnosis queries, which are not linear algebra compu-
tations and have significantly less stringent accuracy and latency
requirements compared to model inferences. While they consid-
ered both exact and approximate deduplication for traditional ML
models, they only considered exact deduplication for DNN models,
which is another limitation. In addition, they didn’t consider page
packing and caching optimization.

Jeong and et al. [35] proposed to merge related models resulting
from ensemble learning, transfer learning, and retraining into a
single model through input-weight connectors, so that multiple
models can be served in one process and context switch overheads
caused by running multiple concurrent model processes can be
avoided. However, their method makes strong assumptions about
the model architecture, achieves only coarse-grained deduplica-
tion, and is not applicable to models that are owned by different
individuals and organizations.

Weight virtualization [41] is a recently proposed technique for
edge device environments. It merges pages across multiple hetero-
geneous models into a single page that is shared by these models.
However, their work relied on each weight’s fisher information that
must be extracted from the training process, which is usually not
available at the serving stage in production. It also models the page
matching and merging process as an expensive optimization pro-
cess, which may work for small-scale models on edge devices, but
not scalable to large-scale models. In addition, they didn’t consider
the integration with relational databases.

2.3 Other Existing Deduplication Techniques
Deduplication of relational data in RDBMS, also known as record
linkage, identifies duplicate items through entity matching [26], us-
ing various blocking techniques to avoid the pair-wise comparison
for dissimilar items [9, 11, 14, 29]. Various distributed algorithms
were proposed to further accelerate such deduplication [19]. For
example, Dedoop [37, 38] leveraged the MapReduce platform, and
Dis-Dedup [19] provided strong theoretical guarantees for load
balance. In addition, various similarity join techniques were pro-
posed to identify pairs of similar items, which leveraged similarity
functions to filter out pairs that have similarity scores below a
threshold [64] or used LSH to convert similarity join to an equi-
join problem [65]. While these works are helpful for cleaning data
in RDBMS, they are not optimized for numerical tensor data. For
example, they never considered how deduplication of tensor data
will affect the accuracy of ML applications.

There exists abundant work in storage deduplication to facili-
tate the file backup process [51]. Bhagwat et al. [10] proposed a
two-tier index managing the fingerprints and file chunks. Zhu et
al. [70] proposed RAM prefetching and bloom-filter based tech-
niques, which can avoid disk I/Os on close to 99% of the index
lookups. ChunkStash [24] proposed to construct the chunk index
using flash memory. CacheDedup [43] proposed duplication-aware
cache replacement algorithms (D-LRU, DARC) to optimize both
cache performance and endurance. AustereCache [61] proposed a
new flash caching design that aims for memory-efficient indexing
for deduplication and compression. All such works focus on exact
deduplication of file chunks, because information integrity is re-
quired for file storage. However, the storage of model parameters
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Figure 2: Overview of the proposed model deduplication workflow.

for model serving can tolerate a certain degree of approximation if
such approximation will not harm the inference accuracy.

3 SYSTEM OVERVIEW
Leveraging tensor relational algebra [34, 66], a tensor is represented
as a set of tensor blocks2. Without deduplication, the set is phys-
ically stored in an array of pages of equivalent size, where each
page consists of multiple tensor blocks. With deduplication, certain
pages will be shared by multiple tensors. These shared pages are
stored separately in a special type of set. Each tensor not only stores
an array of private pages, but also maintains a list of page IDs that
points to the shared pages that belong to the set.

Given a set of models, we propose a novel deduplication pro-
cess, as illustrated in Fig. 2 and described below:

(1) An LSH-based index is incrementally constructed to group
tensor blocks based on similarity, so that similar tensor blocks
can be replaced by one representative tensor block in their group,
with limited impacts on the model inference accuracy. To achieve
the goal, the main ideas include: (a) Always examining the tensor
blocks in the ascending ordering of their estimated impacts on the
accuracy; (b) Periodically testing the deduplicated model inference
accuracy along the duplication detection process, and stopping the
deduplication for tensor blocks from a model, if its accuracy drops
below a threshold. ( Sec. 4)

(2) Each set of tensor blocks is physically stored as an array
of pages of fixed size on disk. Distinct tensor blocks identified by
the indexing are carefully grouped to pages so that each tensor
is exactly covered by a subset of pages, and the number of pages
that are required by all models is minimized. We optimize these
objectives by assigning distinct tensor blocks that are shared by
the same set of tensors to one equivalent class. Then blocks in the
same equivalent class are grouped to the same set of pages. After
this initial packing, tensor blocks from non-full pages are repacked
to further improve the storage efficiency. (Sec. 5)

(3) The pages are automatically cached in the buffer pool. When
memory resources become insufficient, the buffer pool manager
will consider the locality patterns of each tensor and give hot pages
and shared pages higher priority to be kept in memory through a
novel cost model. (Sec. 6)

Block Metadata. A major portion of overhead of the proposed
deduplication mechanism is incurred by the additional metadata

2Luo et al [46] proposed an auto tuning strategy for blocking tensors for TRA [66].

used to map each tensor block in these shared pages to the correct
position in each tensor. Each tensor block needs 𝑚 × 𝑑 integers
to specify such mapping, where𝑚 is the number of tensors that
share the block and 𝑑 is the number of dimensions of the tensor.
The metadata size is usually much smaller than the block size. For
an 8 megabytes block (e.g., 100 × 10000 with double precision), its
metadata for position mapping is merely 400 bytes, supposing such
a 2D block is shared by 100 tensors, using short type to store block
indexes. Even when we use small block sizes such as 100 × 100, the
block size is hundreds times larger than the metadata size.

As aforementioned, an important pattern of model serving in-
volves multiple versions of models that have the same architec-
ture, e.g., obtained by retraining/finetuning a model using different
datasets. We found that the deduplication of such models does not
require tensor block remapping at all, as a shared tensor block
is often mapped to the same position of all tensors it belongs to.
That’s because during the process of finetuning and retraining, only
partial weights will change. For a tensor block in such scenarios,
we only need𝑚 integers to specify the IDs of tensors that share it.

Model Removal and Updates. To remove a tensor, all private
pages belonging to the tensor will be removed, and then, for each
shared page belonging to this tensor, its reference count will be
decremented. Once a shared page’s reference count is dropped to
1, this shared page will be moved from the shared page set to the
private set of the tensor that owns the page. Given that the models
in a serving scenario are less frequently updated than models in
a training scenario, an update is implemented as a removal of the
old tensor followed by an insertion of the new tensor. However,
the index can be easily extended to facilitate model updates at a
fine-grained level, as discussed in Sec. 4.

4 INDEX FOR DUPLICATION DETECTION
4.1 Problem Description
In this section, we focus on one problem: For the tensors with same
blocking shapes, how to divide all tensor blocks of these tensors into
distinct groups, so that the tensor blocks in each group can replace
each other without a significant drop in the inference accuracy of
each model? We can further pick one block, i.e., the first identified
block, in each group as a representative tensor block to replace
other blocks in its group, without significant accuracy drop. The
problem is formalized as follows:
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Given 𝑘 tensors:𝑇 = {𝑡1, ..., 𝑡𝑘 }, the 𝑖-th tensor 𝑡𝑖 is split into
𝑛𝑖 tensor blocks: 𝑡𝑖 = {𝑏1, ..., 𝑏𝑛𝑖 }. The question is how to divide
all tensor blocks, 𝐵 = ∪𝑖𝑡𝑖 , into 𝑚 clusters: 𝐶 = {𝑐1, ..., 𝑐𝑚}, so
that (1) ∀𝑐 ∈ 𝐶, 𝑐 ⊂ 𝐵; (2) ∀𝑐𝑖 , 𝑐 𝑗 ∈ 𝐶 , 𝑐𝑖 ∩ 𝑐 𝑗 = 𝜙 ; (3) ∀𝑐 ∈ 𝐶 ,
∀𝑏𝑖 , 𝑏 𝑗 ∈ 𝑐, 𝑏𝑖 ≈ 𝑏 𝑗 . Here, 𝑏𝑖 ≈ 𝑏 𝑗 means that 𝑏𝑖 can be replaced by
𝑏 𝑗 so that the drop in model accuracy is smaller than a threshold 𝑡 .

4.2 Main Ideas
4.2.1 Magnitude-aware Duplicate Detection. Existing works about
deduplication [9, 11, 14, 19, 26, 29, 37, 38, 43] and tensor chunk
deduplication [59], include exact page deduplication and similar/ap-
proximate page deduplication, as detailed in Sec. 2.2 and 2.3. How-
ever, we found these works cannot be directly applied to tensor
block deduplication for model serving applications:

(1) Exact deduplication of tensor chunks does not consider the
fuzziness or similarity of model weights. In fact, the number of
tensor blocks that can be deduplicated based on exact match is
significantly lower than similarity-based match.

(2) We also found it ineffective to perform deduplication solely
based on the similarity, without considering the impact of model
weights on the prediction accuracy. For example, we found that
deduplicating similar blocks in a batch normalization layer in a
ResNet50 model (two blocks with less than 0.1% different weights
were considered as similar), without considering the importance of
weights, will reduce accuracy from 81% to 8%.

Therefore, it is critical to develop newmethods to identify tensor
blocks that can be deduplicated with limited impacts on accuracy.

Motivated by the iterative pruning process [27, 28], in which
weights with small magnitude are pruned first, we developed a
process of magnitude-aware duplicate detection, where blocks of
smaller magnitude are deduplicated first, and the model accuracy
is periodically validated after deduplicating every 𝑘 blocks.

4.2.2 LSH-based Approximate Tensor Block Deduplication. To re-
duce the pair-wise similarity comparison overhead, we consider
leveraging Locality Sensitive Hash (LSH), which is a popular tech-
nique to solve nearest neighbor problems. LSH based on Hamming
distance [23], Euclidean distance [32], and cosine similarity [16]
are designed to identify similar numerical vectors with fixed dimen-
sions, and can be directly applied to detect similar tensor blocks. In
addition, the MinHash based on Jaccard similarity [15] is designed
to identify similar binary vectors or similar sets of items. In this
work, we mainly use the LSH based on Euclidean distance [17, 32],
which we call L2 LSH, because it is easy to compute (e.g., it does
not require an expensive numeric value discretization process like
MinHash) and it can be linked to the JS-divergence [44] of weights’
probability distributions of two tensor blocks [17].

For each block, its LSH signature is computed and used as the
search key, and the identifier of the block (TensorID, BlockID) is
used as the value. The key-value pair is sent to an index to look
up a group of similar blocks that collide on the signature. For each
group, the first indexed block is used as the representative block
of this group, and other blocks are replaced by this representative
block if accuracy drop is tolerable. If another block in the group
has the same BlockID with the representative block, the BlockID
field, which encodes the block’s position along all dimensions of
the tensor, can be omitted to save space.

4.3 Index Building
Given a set of models, we execute following steps for each model:
Step 1. Calculate an aggregated magnitude value (e.g., average,
median, 1st percentile, 3rd percentile, etc.) for each tensor block
in the tensors of the model. We use the 3rd percentile, because
even if the block contains only a few large magnitude weights, it
may impact the inference accuracy significantly and should not
be deduplicated. 3rd percentile can better reflect the magnitude of
large weights in this block than aforementioned alternatives.
Step 2. Order all tensor blocks in the model by their magnitude
values in ascending order.
Step 3. Select 𝑘 blocks that have the lowest magnitude values, and
for each block, its LSH signature is computed and used to query
the index. If the index has seen similar blocks before, the block’s
identifier will be added to the corresponding group and this block
will be replaced by the representative block, which is the first in-
dexed block in this group. If the index hasn’t seen similar block
before, a new group will be created, and this block becomes the
representative block in the group.
Step 4. We will test the model using a validation dataset to check
whether its inference accuracy drop is less significant than a thresh-
old 𝑡 . If so, the algorithm repeats Step 3 and 4. Otherwise, it will
stop deduplication for this model. That said, it simply adds each
remaining block to the corresponding group, but such block will
NOT be replaced by the representative block in the group. Such
remaining blocks as well as the representative blocks are called as
distinct blocks 3, each of which has only one physical copy.

We repeat the above process for each model to incrementally
construct the index, as illustrated in Alg. 1. The inputs of the algo-
rithm include: (1)𝑇 = {𝑡1, ..., 𝑡𝑘 }, which is a set of tensors belonging
to the model; (2) 𝑖𝑑𝑥 , which maps an LSH signature to a represen-
tative block 𝑑𝑐 and a cluster 𝑐 consisting of the identifiers of blocks
of which the signatures collide and thus are similar to the represen-
tative block; (3) 𝐿, which is a list of distinct tensor blocks derived
from previous models. The 𝑖𝑑𝑥 and 𝐿 are shared by all models and
will be updated during the execution of the algorithm.

The output of the algorithm is 𝐹𝑇 = {𝑓1, ..., 𝑓𝑘 }. Each 𝑓𝑖 is a map-
ping for the 𝑖-th tensor in the model, which specifies the identifier
of the distinct tensor block corresponding to each (logical) block
in the tensor. The deduplication is achieved by allowing multiple
tensor blocks across models mapped to one distinct block. The out-
put information is needed to pack distinct tensor blocks to pages
as detailed in Sec. 5.
Further Optimizations. In order to further improve the accuracy,
after deduplicating the models based on the constructed index, an
additional parameter finetune stage can be carried out to optimize
the accuracy after deduplication. In our implementation, for simplic-
ity, during the finetune process, the tensor blocks that are shared by
multiple models will be frozen, and only the weights in the private
pages will be tuned for each model.
Removal and Updates. If a tensor block in a model needs to be
removed, the LSH signature of the block is computed to query the
index. If there exists a match and the block’s identifier exists in
the corresponding group, the identifier will be removed from the
group. Adding or removing blocks from the group will not affect

3It is possible a remaining block is also a representative block in its own group.
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Algorithm 1 Index Building
1: INPUT1:𝑇 = {𝑡1, ..., 𝑡𝑘 } (A set of parameter tensors in a model)
2: INPUT2: 𝑖𝑑𝑥 (The index that has been constructed for previous models,

and will be updated by this model.)
3: INPUT3:𝐿 = {𝑑1, ..., 𝑑𝑚 } (A set of distinct blocks derived from previous

models, which will be updated by this model.)
4: OUTPUT: 𝐹𝑇 = {𝑓1, ..., 𝑓𝑘 } (𝑓𝑖 maps each tensor block in 𝑡𝑖 to a distinct

block)
5: 𝐵 = {𝑏1, ..., 𝑏𝑛 } ← ∪𝑘𝑖=1𝑡𝑖
6: 𝑎0 ← 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑀𝑜𝑑𝑒𝑙𝐵 )
7: for 𝑖 = 1, ...𝑛 do
8: (𝑏𝑖 , 𝑣𝑖 ) ← (𝑏𝑖 , 𝑔𝑒𝑡𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (𝑏𝑖 ))
9: end for
10: 𝐵′ = {𝑏′1, ..., 𝑏′𝑛 } ← sort 𝐵 by 𝑣𝑖 in ascending order
11: 𝑖 ← 0
12: while 𝑖 ≤ 𝑛 do
13: for 𝑗 = 𝑖 + 1, ..., 𝑖 + 𝑘 do
14: 𝑠 𝑗 ← 𝑙𝑠ℎ (𝑏′

𝑗
)

15: if 𝑖𝑑𝑥 .count(𝑠 𝑗 ) > 0 then
16: (𝑏𝑐 , 𝑐) ← 𝑖𝑑𝑥 .look_up(𝑠 𝑗 )
17: 𝑐 ← {(𝑡𝑒𝑛𝑠𝑜𝑟𝐼𝐷 (𝑏′

𝑗
), 𝑏𝑙𝑜𝑐𝑘𝐼𝐷 (𝑏′

𝑗
)) } ∪ 𝑐

18: 𝑖𝑑𝑥 .update(𝑠 𝑗 , (𝑏𝑐 , 𝑐))
19: 𝑏′

𝑗
← 𝑏𝑐 //use representative block 𝑏𝑐 to replace 𝑏′

𝑗

20: 𝑓𝑡𝑒𝑛𝑠𝑜𝑟𝐼𝐷 (𝑏′
𝑗
) [𝑏𝑙𝑜𝑐𝑘𝐼𝐷 (𝑏′𝑗 ) ] ← 𝐼𝑛𝑑𝑒𝑥𝐼𝑛𝐿 (𝑏𝑐 )

21: else
22: 𝑖𝑑𝑥 .insert(< 𝑠 𝑗 , (𝑏′𝑗 , {(𝑡𝑒𝑛𝑠𝑜𝑟𝐼𝐷 (𝑏′𝑗 ), 𝑏𝑙𝑜𝑐𝑘𝐼𝐷 (𝑏′𝑗 )) } >)
23: 𝐿.push_back(𝑏′

𝑗
)

24: 𝑓𝑡𝑒𝑛𝑠𝑜𝑟𝐼𝐷 (𝑏′
𝑗
) [𝑏𝑙𝑜𝑐𝑘𝐼𝐷 (𝑏′𝑗 ) ] ← 𝐼𝑛𝑑𝑒𝑥𝐼𝑛𝐿 (𝑏′

𝑗
)

25: end if
26: end for
27: 𝑎 ← 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑀𝑜𝑑𝑒𝑙𝐵 )
28: if 𝑎0 − 𝑎 > 𝑡 then
29: for 𝑢 = 𝑗 + 1, ..., 𝑛 do
30: 𝑖𝑑𝑥 .insert(< 𝑙𝑠ℎ (𝑏′𝑢 ) , (𝑏′𝑢 , {(𝑡𝑒𝑛𝑠𝑜𝑟𝐼𝐷 (𝑏′𝑢 ), 𝑏𝑙𝑜𝑐𝑘𝐼𝐷 (𝑏′𝑢 )) } >)
31: 𝐿.push_back(𝑏′𝑢 )
32: 𝑓𝑡𝑒𝑛𝑠𝑜𝑟𝐼𝐷 (𝑏′𝑢 ) [𝑏𝑙𝑜𝑐𝑘𝐼𝐷 (𝑏

′
𝑢 ) ] ← 𝐼𝑛𝑑𝑒𝑥𝐼𝑛𝐿 (𝑏′𝑢 )

33: end for
34: return 𝐹𝑇

35: end if
36: 𝑖 ← 𝑖 + 𝑘
37: end while

the representative block of the group. If the representative block
is the only block in the group, and it is to be removed, the group
will be removed. The update of a tensor block can be regarded as a
removal followed by an insertion.

5 GROUPING TENSOR BLOCKS INTO PAGES
Based on Sec. 4, we obtained a mapping from each (logical) tensor
block to a (physical) distinct block. Each tensor may consist of both
private distinct blocks that belong to only one tensor and shared
distinct blocks that belong to multiple tensors. Now we investigate
the problem of how to pack multiple tensor blocks to database
pages, so that we can maximize the sharing of pages and minimize
the total number of pages that are needed.

5.1 Inconsistent Pages and Tensor Blocks
Database storage organizes data in pages, so that a page is the
smallest unit of data for I/O read/write and cache load/evict op-
erations. Analytics databases usually use a page size significantly
larger than a tensor block (e.g., Spark uses 128 megabytes page size
and 1024× 1024 block shape by default [50]). As a result, a database
page may contain multiple tensor blocks. Each tensor consists of
a set of pages that should contain exactly the set of tensor blocks
belonging to the tensor: no more and no less. If these pages contain
tensor blocks that do not belong to the tensor, it will significantly
complicate the scanning and various operations over the tensor.

However, the default paging process used in database systems
cannot work well with deduplication. By default, tensor blocks
are packed into pages based on the ordering of the time when
each block is written to the storage. If a page can hold up to 𝑙

tensor blocks, every batch of 𝑙 consecutive tensor blocks are packed
into one page. Then a page deduplication process is performed, so
that each distinct page will be physically stored once. However,
such default packing with page-level deduplication is sub-optimal,
because deduplicable tensor blocks may not be adjacent to each
other spatially. As illustrated in Fig. 3, the default packing requires
8 pages, while the optimal packing scheme requires only 5 pages.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 2 3 4

5 18 7 8

9 10 19 12

13 14 15 20

Tensor 1 Tensor 2

Default page packing:
8 pages

Optimal paging packing:
5 pages

20 distinct tensor blocks
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page 1

page 2

page 3

page 4

page 5

page 6

page 7
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page 1

page 2

page 3

page 4
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Figure 3: Motivation of page packing optimization

5.2 Problem Formalization
The problem is: How to group the tensor blocks across all models to
pages to satisfy that: (1) For each tensor, we can find a subset of pages
so that the set of tensor blocks contained in the pages is exactly the
set of all tensor blocks that belong to the tensor; (2) The total number
of distinct pages that need to be physically stored is minimized.

Here we formalize the problem definition as a variant of the bin
packing problem, where each bin represents a page that holds a
limited number of tensor blocks, and each distinct tensor block rep-
resents an item. Given 𝑘 tensors𝑇 = {𝑡1, ..., 𝑡𝑘 } and a set of distinct
tensor blocks 𝐼 = {𝑖𝑡𝑒𝑚1, ..., 𝑖𝑡𝑒𝑚𝑚} derived from these tensors, a
Boolean value 𝑎𝑖 𝑗 specifies whether 𝑖𝑡𝑒𝑚𝑖 exists in the 𝑗-th tensor.
∀𝑡𝑖 ∈ 𝑇 , 𝑡𝑖 ⊂ 𝐼 , as described in Sec. 4. The problem is to look for a
bin-packing scheme that packs the items (i.e., distinct tensor blocks)
to 𝑛 bins (i.e., pages), denoted as 𝑏𝑖𝑛𝑠 = {𝑏𝑖𝑛1, ..., 𝑏𝑖𝑛𝑛}, where each
bin can hold at most 𝑙 items and each item can be allocated to one
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or more bins, denoted as 𝑏𝑖𝑛𝑖 ⊂ 𝐼 and |𝑏𝑖𝑛𝑖 | ≤ 𝑙 . Boolean value
𝑝𝑖 𝑗 denotes whether 𝑖𝑡𝑒𝑚𝑖 exists in 𝑏𝑖𝑛 𝑗 . The bin packing mech-
anism 𝑃 = {𝑝𝑖 𝑗 } must satisfy conditions as follows: (1) the total
number of bins,

∑︁𝑛
𝑗=0 𝑦 𝑗 , is minimized, where the Boolean value 𝑦 𝑗

denotes whether the 𝑏𝑖𝑛 𝑗 is used; (2) ∀𝑡𝑖 ∈ 𝑇, ∃𝑏𝑖𝑛𝑠 ′ ⊂ 𝑏𝑖𝑛𝑠 , so that
𝑡𝑖 = ∪𝑏𝑖𝑛∈𝑏𝑖𝑛𝑠′𝑏𝑖𝑛, which means the set of distinct items contained
in a tensor 𝑡𝑖 is equivalent to the set of distinct items contained in
all bins belonging to 𝑏𝑖𝑛𝑠 ′.

min
𝑛∑︂
𝑗=0

𝑦 𝑗 (1)

𝑦 𝑗 =

{︄
1 𝑖 𝑓

∑︁𝑚
𝑖=0 𝑝𝑖 𝑗 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

∀𝑏𝑖𝑛 𝑗 ∈ 𝑏𝑖𝑛𝑠, 𝑏𝑖𝑛 𝑗 ⊂ 𝐼 , 𝑝𝑖 𝑗 =

{︄
1 𝑖 𝑓 𝑖𝑡𝑒𝑚𝑖 ∈ 𝑏𝑖𝑛 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

𝑠 .𝑡 . ∀𝑗,
𝑚∑︂
𝑖=0

𝑝𝑖 𝑗 ≤ 𝑙 (4)

∀𝑡 𝑗 ∈ 𝑇, 𝑡 𝑗 = {𝑖𝑡𝑒𝑚𝑘 |𝑎𝑘 𝑗 = 1}, ∃𝑏𝑖𝑛𝑠 ′ ⊂ 𝑏𝑖𝑛𝑠, 𝑡 𝑗 = ∪𝑏𝑖𝑛∈𝑏𝑖𝑛𝑠′𝑏𝑖𝑛
(5)

Problem Importance and Hardness. It is an important problem,
because large page sizes up to hundreds of megabytes, are widely
adopted in analytics databases [67] and when memory resource
becomes insufficient, even saving only a few pagesmay significantly
reduce the memory footprint and improve the performance.

The problem is a variant of the bin-packing problem where
items (i.e., distinct blocks) can share space when packed into a bin
(i.e., pages) [39, 57], which is NP-hard. A dynamic programming
strategy, which searches packing plans for one tensor first, and
then repeatedly pack for more tensors based on previously searched
packing plans, will easily fail with exploded search space.

5.3 Equivalent Class-based Packing
While approximation algorithms [20], such as Best-fit, First-fit,
Next-fit, are widely used for general bin-packing problems, they
are suboptimal for the above problem, because they didn’t consider
how tensor blocks are shared by tensors.

To solve the problem, we propose to group tensor blocks that are
shared by the same set of tensors together into equivalent classes.
Different tensor blocks that are shared by the same set of tensors
are regarded as equivalent in terms of page packing.

As illustrated in Fig. 4, which depicts the tensor sharing rela-
tionship for the example in Fig. 3, 12 distinct blocks are shared by
Tensor 1(𝑡1) and Tensor 2(𝑡2), these distinct tensor blocks can be
grouped to the same equivalent class𝐶3. Four distinct tensor blocks
are private to 𝑡1 and they can be grouped to the same equivalent
class 𝐶1, and so do the blocks private to 𝑡2 (𝐶2).

It is beneficial to use a divide and conquer strategy to pack for
each equivalent class in parallel by grouping the blocks falling
into the same equivalent class to the same page(s). That’s because
each page can be shared by all tensors associated with the page’s
corresponding equivalent class. By doing so, in the above example
(Fig. 3 and Fig. 4), the 12 distinct blocks in equivalent class𝐶3 will be
packed to three pages, the four distinct blocks in 𝐶1 will be packed

to one page, and the four distinct blocks in 𝐶2 will be packed to
one page, which leads to the optimal plan, as shown in Fig. 3. The
algorithm is illustrated in Alg. 2.

t1 t2

C1={1, 6, 11, 16}: 
private to t1

C3 ={2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15}: 
tensor blocks shared by t1 and t2

C2={17,18,19,20}: 
private to t2

Figure 4: Illustration of equivalent classes of tensor blocks for
page packing for the example in Fig. 3.

Algorithm 2 Equivalent Class-Based Greedy Strategy
1: INPUT1:𝑇 (a list of tensors)
2: INPUT2: 𝑙 (the maximum number of items for each bin)
3: OUTPUT: 𝑃 = {𝑝𝑖 𝑗 } (a bin-packing scheme)
4: {𝐶1, ...,𝐶𝑚 } ← 𝑇 {divide 𝐼 into multiple equivalent classes, so items

in each class are shared by the same set of tensors}
5: 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 ← 0
6: for k=0..m do
7: for 𝑖𝑡𝑒𝑚 :𝐶𝑘 do
8: 𝑖 ← 𝑖𝑛𝑑𝑒𝑥𝐼𝑛𝐼 (𝑖𝑡𝑒𝑚)
9: 𝑗 ← 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 + ⌈𝑖𝑛𝑑𝑒𝑥𝐼𝑛𝐶𝑘 (𝑖𝑡𝑒𝑚)/𝑙 ⌉
10: 𝑝𝑖 𝑗 ← 1
11: end for
12: 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 ← 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 + ⌈|𝐶𝑘 |/𝑙 ⌉
13: end for
14: return 𝑃 = {𝑝𝑖 𝑗 }

5.4 A Two-Stage Page Packing Strategy

t1 t2

t3

C0={}: 
shared by t1, t2, t3

C1={item5}: 
shared by t2, t3

C2={item7}: private to t3

C3 ={}: 
shared by t1 and t3

C4={item2, item4}: 
private to t1

C5 ={item1, item3}: tensor blocks shared by t1 and t2

C6={item6}: 
private to t2

Figure 5: Another example: the equivalent class-based greedy
strategy leads to three non-full pages for𝐶1,𝐶2,𝐶6.

The problem with the equivalent class-based packing is that
it may lead to non-full pages, because items in certain equivalent
classes may not fully fill the bins. For another example as illustrated
in Fig. 5, if a bin can maximally hold two items, the items in 𝐶1, 𝐶2,
𝐶6 will be packed to three non-full bins respectively. However, a
better scheme is to pack these items into two bins: 𝑏𝑖𝑛1 = 𝐶1 ∪𝐶6
and 𝑏𝑖𝑛2 = 𝐶1 ∪ 𝐶2. Considering that a page may have a size up
to tens or hundreds of megabytes, and repacking non-full pages
will enable significant improvement in storage efficiency, memory
footprint, and data locality. Therefore, we propose a two-stage
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strategy for optimizing page packing schemes. At the first stage,
items from each equivalent class are packed to bins separately, and
no bin is allowed to mix items from different non-equivalent classes.
Then, at the second stage, we repack items from non-full bins,
by applying an approximation algorithm based on the following
heuristics: (1) Largest-Tensor-first. A tensor that contains more
tensor blocks to be repacked is more likely to generate pages that
can be reused by other tensors. (2) Hottest-Block-First. Frequently
shared tensor blocks, if packed together, are more likely to generate
pages that can be reused across multiple tensors.

The approximation algorithm picks the tensor that has the most
tensor blocks in non-full pages to repack first. When it repacks for
a given tensor, it first attempts to identify and reuse packed pages
that cover as many blocks to repack as possible. Then it orders the
remaining tensor blocks based on their sharing frequency (i.e., the
number of tensors a block is shared by), and simply packs these
blocks to pages in order, without leaving any holes in a page except
for the last page. We formalized the algorithm for the second stage
as Alg. 3. The algorithm for the first stage is the same with Alg. 2.

Algorithm 3 Approximation Strategy
1: INPUT1:𝑇 = {𝑡1, ..., 𝑡𝑘 } (A set of tensors for packing to pages. When

applied to Stage-2, each tensor only contains items from non-full bins
resulted from Stage 1)

2: INPUT2: 𝑙 (the maximum number of items for each bin)
3: OUTPUT: 𝑃 = {𝑝𝑖 𝑗 } (a bin-packing scheme)
4: 𝑇 ← 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝑁𝑢𝑚𝑇𝑒𝑛𝑠𝑜𝑟𝐵𝑙𝑜𝑐𝑘𝑠𝐷𝑒𝑠𝑐𝑒𝑛𝑑 (𝑇 )
5: 𝐼 ← 𝜙

6: while 𝑡𝑖 ∈ 𝑇 do
7: 𝐼 ← 𝐼 ∪ 𝑡𝑖
8: end while
9: 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 ← 0
10: for 𝑖 = 1, ..., 𝑘 do
11: if i > 1 then
12: 𝑏𝑖𝑛𝑠 ← a set of existing bins that form a maximal subset of 𝑡𝑖
13: 𝐼𝛿 ← 𝑡𝑖 − ∪𝑏𝑖𝑛∈𝑏𝑖𝑛𝑠𝑏𝑖𝑛
14: if 𝐼𝛿 = 𝜙 then
15: continue
16: end if
17: else
18: 𝐼𝛿 ← 𝑡1
19: end if
20: {𝑖𝑡𝑒𝑚1, ..., 𝑖𝑡𝑒𝑚𝛿𝑖 } ← 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝐹𝑟𝑒𝑞𝐷𝑒𝑠𝑐𝑒𝑛𝑑 (𝐼𝛿 )
21: for 𝑗 = 1, ..., 𝛿𝑖 do
22: 𝑠 ← 𝑖𝑛𝑑𝑒𝑥𝐼𝑛𝐼 (𝑖𝑡𝑒𝑚 𝑗 ) //index of 𝑖𝑡𝑒𝑚 𝑗 in 𝐼

23: 𝑢 ← 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 + ⌈𝛿𝑖/𝑙 ⌉
24: 𝑝𝑠𝑢 ← 1
25: end for
26: 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 ← 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 + ⌈𝛿𝑖/𝑙 ⌉
27: end for
28: return 𝑃 = {𝑝𝑖 𝑗 }

Online Packing The proposed algorithms can also be utilized for
online packing of tensor blocks to pages. Each time when a new
tensor is about to be added to the database, the list of tensor blocks
in this tensor as well as all related tensors (i.e., tensors which share
at least one block with the new tensor) will be retrieved to run
the proposed algorithm to obtain a new packing scheme. Then
the difference between the new packing scheme and the existing

packing scheme will be computed. Only these pages that need to
be changed will be repacked again.

6 BUFFER POOL MANAGEMENT
A model serving workload involves multiple types of tensors that
have different locality patterns. For example, the model parameter
tensors at each layer are persisted to disk and are repeatedly read
for making inferences; the input feature vector also needs to be
persisted, but is read only once. The intermediate features output
from each layer do not need to be persisted and are read only once.

Existing works proved that compared to LRU/MRU/LFU, which
only consider reference time/distance/frequency, a fine-grained
buffer pool management strategy that groups different types of
data based on a locality set abstraction [18, 73, 74] and considers
the access pattern and durability requirements of each locality
set, can achieve better data locality for large-scale data analytics
processing [73, 74]. A locality set is a set of pages that will be
processed similarly. For example, the pages in each equivalent class
are regarded as a separate locality set. Users can configure the page
eviction policy, e.g., MRU or LRU, for each locality set. When pages
need to be evicted from the buffer pool to make room for new
pages, the system chooses a locality set to be the victim locality set
if the next page-to-be-evicted from the locality set has the lowest
expected eviction cost among all locality sets. The expected eviction
cost is formalized in Eq. 6.

𝑐𝑤 + 𝑝𝑟𝑒𝑢𝑠𝑒 × 𝑐𝑟 (6)

Here, 𝑐𝑤 is the cost for writing out the page, 𝑐𝑟 is the cost for loading
it back for reading, and 𝑝𝑟𝑒𝑢𝑠𝑒 is the probability of accessing the
page within the next 𝑡 time ticks. The formulation of 𝑐𝑤 and 𝑐𝑟 in
existing works [18, 73, 74] have considered the lifetime, durability
requirements, access patterns, etc. of each locality set, and can
be reused for this work. However, when modeling 𝑝𝑟𝑒𝑢𝑠𝑒 , existing
works did not consider page sharing caused by model deduplication.
To address the problem, we need to reformulate this factor.

In the scenario of serving multiple models, we propose to apply
the queueing theory [30] to model the page accesses so that each
page is like a server, and each model inference request that triggers
a page access is like a customer. Because a page may be shared
by multiple models, inference requests from each model will be
dispatched to a queue associated with the model. If we assume the
arrival time of the next access to each page from each queue as an
independent Poisson point process [30], the probability of reusing
each page (i.e., the probability that the page will be accessed within
𝑡 time ticks) can be estimated using Eq. 7. Here, 𝑀 = {𝑚1, ...,𝑚𝑠 }
represents a set of models that share this page, and 𝜆𝑖 denotes the
access rate per time tick for the model𝑚𝑖 .

𝑝𝑟𝑒𝑢𝑠𝑒 = 1 − 𝑒−
∑︁

𝑚𝑖 ∈𝑀 𝜆𝑖𝑡 (7)

This approach is more accurate than simply estimating 𝑝𝑟𝑒𝑢𝑠𝑒
based on the reference frequency/distance measured for each page,
because the access patterns of various datasets involved in each
model inference is fixed, mostly affected by 𝜆𝑖 .

7 EVALUATION
In this section, we will answer the following questions:
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(1) How effective is the proposed synergistic model deduplication
mechanism in reducing the latency and improving the storage
efficiency for various model serving scenarios? (Sec. 7.2)
(2) How will the proposed index approach affect the time required
for detecting the duplicate blocks, the overall storage efficiency,
and the model serving accuracy? (Sec. 7.3)
(3) How will the proposed strategies of packing blocks to pages
affect the storage efficiency and the computation overheads, com-
pared to various baselines? (Sec. 7.4)
(4) How will optimized caching improve memory locality? (Sec. 7.5)
(5) How will deduplication work with popular model compression
techniques, such as pruning and quantization? (Sec. 7.6)

7.1 Evaluation and Workloads
7.1.1 Multiple Versions of Personalized Text Embedding Models.
Text embedding is important for many natural language processing
applications, and its accuracy can be greatly improved using large
open corpus like Wikipedia [6]. However, at the same time, every
enterprise or domain has its own terminologies, which are not
covered in the open data. To personalize the text embeddings, for
each domain, we need to train a separate model on both the shared
open data and the private domain/enterprise data. Word2Vec is
a two-layer neural network used to generate word embeddings.
We use skip-gram Word2Vec as well as negative sampling, with 64
negative samples, and noise contrastive estimation (NCE) loss. We
deploy a Word2Vec model pretrained using a Wikipedia dump and
downloaded from TFHub [5]. The model embeds the 1 million most
frequent tokens in the corpus. Then we finetune the pre-trained
model using different domain-specific corpus including texts ex-
tracted from Shakespeare’s plays [4], posts collected from Firefox
support forum [8], articles collected from Fine Wine Diary [8], Yelp
reviews [68], IMDB reviews [47]. The input document is processed
with a skip window size of 1. The Word2Vec embedding layer has
one million 500 dimensional embedding vectors corresponding to
one million words in the dictionary. Therefore, a weight tensor is
in the shape of 106 × 500.

The inference of a word2vecmodel on netsDB is implemented via
matrix multiplication, where an input feature vector is of the shape
of [100, 106], representing a batch of 100 input words, sentences, or
documents. Aword can be represented as a 106 dimensional one-hot
encoding vector, where the corresponding word in the vocabulary is
specified as 1, and other words are specified as 0. Then, multiplying
the batch of encoding vectors of words with the embedding weight
matrix will output the batch of embedding vectors for these words.
Similarly, the encoding vector for a sentence or a document, which
is seen as a "bag of words", can be represented as the sum of the one-
hot encoding vectors of all the words in this sentence or document.
By multiplying the batch of encoding vectors and the embedding
weight matrix, the embedding for each sentence or document is
obtained as the weighted sum of the embedding vectors of the
words in this sentence or document.

7.1.2 Multiple Versions of Text Classification Models. We further
investigate a scenario that serves five different text semantic clas-
sification models. Each classification task takes a review as input
and outputs a binary label to indicate the input is toxic or nontoxic
[13, 47, 68]. All tasks use the same model architecture. Each model

uses three layers. The first layer is a Word2Vec layer as mentioned
in Sec. 7.2.1, using a vocabulary size of one million and an embed-
ding dimension of 500. The second layer is a fully connected layer
that consists of merely 500 × 16 parameters, and the third layer
is an output layer that consists of 16 × 2 parameters. Because the
fully connected layer is small in size, we encode it in a UDF that is
applied to the output of the Word2Vec embedding layer.

The first two text semantic classification models are trained us-
ing the same IMDB review datasets. The difference is that Model-1’s
Word2Vec layer uses the weights of a pre-trained model directly
downloaded from TFHub as mentioned in Sec. 7.2.1, which is set
as Non-Trainable, so that only the weights of the fully connected
layers are changed during the training process. However, Model-2’s
Word2Vec layer is set to be Trainable, which means the weights
of the layer will also change during the training process. Similarly,
Model-3 and Model-4 are trained using Yelp datasets, with the
Word2Vec layer set to be Non-Trainable and Trainable respec-
tively. The Model-5 is trained using the civil comments [13], which
are collected from news sites with labeled toxicity values, and the
Word2Vec layer in this model is set to be Trainable.
7.1.3 Transfer Learning of Extreme Classification Models. Follow-
ing TRA [66], a two-layer feed-forward neural network (FFNN)
is implemented in our proposed system for the AmazonCat-14K
[48, 49] benchmark. This FFNN requires five parameter tensors: the
weight tensors and bias tensors of the two layers, and the input
tensor for which predictions are generated. The input tensor in-
cludes 1, 000 data points that have 597, 540 features, and the extreme
classification task uses 14, 588 labels. The hidden layer has 1, 000
neurons. Therefore, the weight tensor (denoted as𝑊1) in the first
layer has 597, 540, 000 parameters, and the weight tensor (denoted
as𝑊2) in the second layer has 14, 588, 000 parameters.

A transfer learning scenario is tested, where the first layer𝑊1
is freezed, and𝑊2 is specialized for different tasks. Only for this
scenario, the inputs, weights, and biases are randomly generated
instead of being trained from real-world data like other scenar-
ios. The experiments are still reasonable as deduplication in this
scenario hardly affects the inference accuracy. That is because𝑊1
used in all the models are the same and thus no weights need to
be approximated for deduplicating it, and we also choose not to
deduplicate any blocks from the specialized and smaller𝑊2 layer.

The implementation of the feed-forward inference at each fully-
connected layer is illustrated in Fig. 1.

Evaluation Environment Setup Unless explicitly specified, most
of the experiments used an AWS r4xlarge instance that has four
vCPU cores and 30 gigabytes RAM. The storage volumes include
a 128 GB SSD, and a 128 GB hard disk drive. For the experiments
on the GPU, we used an AWS g4dn.2xlarge instance that is in-
stalled with one NVIDIA T4 Tensor Core GPU that has 16 gigabytes
memory, besides eight CPU cores and 32 gigabytes host memory.

7.2 Overall Evaluation Results
7.2.1 Multiple Versions of Personalized Text Embeddings. We find
that word embedding models finetuned from the same TFHub pre-
trained Word2Vec model share more than 90% of pages. (The ac-
curacy of each Word2Vec model after finetuning is above 99%.)
Each model is a 1, 000, 000 × 500 tensor, stored in a set of tensor
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blocks in the shape of 10, 000× 100, each weight is stored in double
precision. Without our proposed deduplication mechanism, stor-
ing six word embedding models separately requires more than 24
gigabytes storage space. However, by applying our work, only 6.7
gigabytes storage space is required, which is a 3.6× reduction. Note
that the overall memory requirements for serving 6 models will be
higher than the storage requirements, as we also need to cache the
intermediate data, which includes the join HashMap constructed
for probing the model parameters, and about 1 gigabytes input data.

In Tab. 1 and 2, we measured the total latency of making a batch
of 100 inferences on all six models using different configurations
for buffer pool size and storage hardwares. We observed that our
proposed deduplication mechanism brought up to 1.4× and 4.7×
speedups in model serving latency for SSD and HDD storage re-
spectively, as illustrated in Tab. 1 and Tab. 2.

Table 1: Overall latency for serving different number ofWord2Vec
models, tested in a r4xlarge instance, using SSD and HDD. Buffer
pool size is set to 15 gigabytes. (Unit: seconds)

num models disk type w/o dedup w/ dedup & optimized caching
2 SSD 191 175
3 SSD 350 262
4 SSD 506 381
6 SSD 720 513
2 HDD 430 425
3 HDD 1112 639
4 HDD 1474 962
6 HDD 2209 1398

Table 2: Overall latency for serving six word2vec models using
different storage configurations (Unit: Seconds)

disk type buffer pool size w/o dedup w/ dedup w/ dedup & optimized caching
SSD 15GB 720 513 513
SSD 10GB 762 594 580
SSD 8GB 786 710 638
HDD 15GB 2209 1398 1398
HDD 10GB 2264 1435 1435
HDD 8GB 8120 4921 1720

We also compared the netsDB’s performance to the CPU-based
TensorFlow on the same AWS r4.xlarge instance and the GPU-
based TensorFlow on a g4dn.2xlarge instance. On TensorFlow, we
developed two approaches for Word2Vec inference.

The first approach usedmatrixmultiplication (tf.matmul), which
is similar to the netsDB implementation of Word2Vec inference
as mentioned in Sec. 7.1.1. In the experiments of comparing this
approach and netsDB, we used double precision for both systems.

The second approach is based on embedding lookup by using
Keras’Word2Vec embedding layer (i.e., keras.layers.Embedding).
The implementation takes a list of IDs as input, and searches the
embedding for each ID (via index) in parallel.

For the second approach, because Keras’ embedding layer en-
forces single precision, we changed netsDB implementation to use
the single-precision float type. The experiments for this approach
used 1 million IDs in each batch. For netsDB’s implementation
based on matrix multiplication, we assume the 1 million IDs are
from 100 documents, and each document has 10, 000 different words,
so its input features include 100 vectors, each vector is a sum of
the one-hot embedding vectors of 10, 000 words, as mentioned in
Sec. 7.1.1. The input batch has 800 megabytes in size for the imple-
mentation based on matrix multiplication, but only 8 megabytes
for the implementation based on embedding lookup.

In Tab. 3, TF-mem, TF-file, and TF-DB loads an input batch
from the local memory, the local CSV file, and a PostgreSQL table
(400 BLOB fields for the first approach, and 1 BLOB field for the
second approach), respectively. We observed that netsDB supports
the inference of significantly more models in the same system
than TensorFlow. For this case, we did not observe performance
gain brought by GPU acceleration in TensorFlow, mainly because
inference is less complicated than training and a batch of such
inferences cannot fully utilize the GPU parallelism.

Table 3: Comparing the serving performance ofmultipleword2vec
models deployed in netsDB to TensorFlow. (Unit: Seconds)

TensorFlow CPU TensorFlow GPU
numModels netsDB TF-mem TF-file TF-DB TF-mem TF-file TF-DB

Matrix-Multiplication-based inference, double precision

3 252 9 64 96 14 69 128
6 503 Failed Failed Failed Failed Failed Failed
12 1008 Failed Failed Failed Failed Failed Failed

Embedding-lookup-based inference (1 million IDs/batch), single precision

3 114 57 58 58 Failed Failed Failed
6 229 Failed Failed Failed Failed Failed Failed
12 456 Failed Failed Failed Failed Failed Failed

7.2.2 Multiple Versions of Text Classification Models. Based on the
above results, we further evaluated the proposed techniques on the
text classification task described in Sec. 7.1.2.

We imported these text classification models into netsDB. The
default page size used in this experiment is 64megabytes and when
using a block shape of 100 × 10000, each text classification model
requires 64 pages of storage size before deduplication. We first
compared the required number of private and shared pages after
deduplication as well as the classifier inference accuracy before and
after deduplication. The comparison results are illustrated in Tab. 4.

Without deduplication, the total storage space required is 20.5GB
for 320 pages in total. After applying the proposed deduplication
mechanism, the total storage space required is reduced to 5.6GB
for 87 pages, using the block size of 100 × 10000.

Table 4: Pages deduplicated (shared pages) and inference accuracy
before and after deduplication. (Unit: Seconds)

private pages num shared pages auc before dedup auc after dedup
Model-1 2 62 85.01% 85.01%
Model-2 7 57 81.25% 81.25%
Model-3 1 63 84.69% 81.11%
Model-4 13 51 90.38% 86.79%
Model-5 1 63 94.80% 94.09%

Table 5: Page reference count distribution after deduplication
Model-1 Model-2 Model-3 Model-4 Model-5 Total

pages shared by 5 models 51 51 51 51 51 51
pages shared by 4 models 6 6 6 0 6 6
pages shared by 3 models 5 0 5 0 5 5
pages shared by 2 models 0 0 1 0 1 1
private pages 2 7 1 13 1 24

Each shared page may have a different reference count (i.e.,
shared by a different set of tensors). So we illustrate the reference
counts of pages for each model in Tab. 5.

The comparison of the overall inference latency of all five text
classification models, using different block sizes and storage con-
figurations, is illustrated in Tab. 6. We observed that 1.1× to 1.6×
speedup were achieved by applying our proposed techniques.
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7.2.3 Transfer Learning of Extreme Classification Models. In this ex-
periment, all three models have the same architecture as described
in Sec. 7.1.3, using double precision weights, and are specialized
from the same feed-forward model through transfer learning and
they share a fully connected layer, which contains 597 millions of
parameters. This layer is stored as a shared set in netsDB, and it ac-
counts for 4.8 gigabytes of storage space. Each model’s specialized
layer only accounts for 0.2 gigabytes of storage space. Therefore,
with deduplication of the shared layer, the overall required storage
space is reduced from 15 gigabytes to 5.4 gigabytes. We need to
note that the required memory size for storing the working sets
involved in this model-serving workload is almost twice of the
required storage space, considering the input batch of the 1, 000
597, 540, 000 dimensional feature vectors and the intermediate data
between layers for both models.

Besides a significant reduction in storage space, we also observed
up to 1.18× and 1.45× speedup in SSD and HDD storage respec-
tively, because of the improvement in cache hit ratio (40% − 46%).
Because this is a transfer learning scenario, the shared pages have
no approximation at all, there exists no influence on accuracy.

Table 6: Overall latency for serving text classificationmodels using
different storage configurations. (Unit: Seconds)

disk type buffer pool size w/o dedup w/ dedup w/ dedup & optimized caching
SSD 15GB 646 427 426
SSD 10GB 655 572 540
SSD 8GB 675 595 557
HDD 15GB 1, 675 1, 091 1, 085
HDD 10GB 1, 815 1, 515 1, 467
HDD 8GB 1, 815 1, 686 1, 620

Table 7: Overall deduplication results for transfer learning with
FFNN. (Unit: Seconds)

disk type buffer pool size w/o dedup w/ dedup w/ dedup & optimized caching
SSD 9GB 115 109 103
SSD 13GB 114 96 96
HDD 9GB 221 203 157
HDD 13GB 204 141 141

We also compared the netsDB performance to TensorFlow, using
the Keras implementation of the FFNN model. As illustrated in
Tab. 8, netsDB outperforms TensorFlow for loading input from a
CSV file and a Blob field of a PostgreSQL table. If we compute and
store the input feature vectors in a table of 400 Blob fields, the TF-
DB latency for CPU and GPU is 1, 274 and 945 seconds respectively,
significantly slower than the latency on netsDB, which serves data
and model in the same system.

Table 8: Comparing the serving performance of multiple FFNN
models deployed in netsDB to TensorFlow. (Unit: Seconds)

TensorFlow CPU TensorFlow GPU
numModels netsDB TF-mem TF-file TF-DB TF-mem TF-file TF-DB

2 64 43 383 94 17 310 55
3 96 64 𝐹𝑎𝑖𝑙𝑒𝑑 115 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑
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Figure 6: Comparison results of deduplicating a text classification
model using different indexing approaches (block size: 100x10000)

7.3 Evaluation of Duplicate Block Detection
We compared our indexing strategy as illustrated in Alg. 1 to two
baselines: (1) A naive indexing scheme using pair-wise comparison
to identify similar blocks based on Euclidean distance; (2) Mistique’s
approximate deduplication using MinHash [59]. As illustrated in
Fig. 6, we observed significant accuracy improvement brought by
our proposed deduplication detection approaches (w/ and w/o fine-
tune) for deduplicating the same amount of blocks. That’s because
both baselines failed to consider a block’s magnitude as well as its
impact on accuracy.

Moreover, we also compared the compression ratio, the average
latency for querying one tensor block from the index, and the accu-
racy of our proposed approach to (1) Mistique exact deduplication
approach, where two tensor blocks are deduplicated only if they
have the same hash code; (2) Mistique approximate deduplication;
and (3) Enhanced pairwise comparison approach with magnitude
ordering applied. Both (2) and (3) used periodic accuracy checks,
for which, we evaluate the accuracy of a model once for indexing
every five blocks from the model, and we stop deduplication for a
model once its accuracy drop exceeds 3.5%. However, we do not
roll back to ensure the accuracy drop is within 3.5% for these ex-
periments, though such rollbacks can be easily implemented. As
illustrated in Tab. 9 and Tab. 10, the proposed approach based on
L2 LSH still achieved the best compression ratio. The Mistique’s
approximate approach is significantly slower in querying the index
because a new block requires to be discretized and the MinHash
generation requires multiple rounds of permutations. Due to such
overhead, the latency required for building an index using the
Mistique approximate approach is significantly higher than our
proposed approach.

Table 9: Comparison of compression ratio and index query time.
Blocks w/o dedup Blocks w/ dedup Query Time

(Per Block, second)
Mistique Exact Dedup 2545 2040 0.02
Mistique Approximate Dedup 2545 712 10+
Enhanced Pairwise 2545 693 2.9
Proposed (w/o finetune) 2545 662 0.2

Table 10: Comparison of model accuracy drop.
Model-1 Model-2 Model-3 Model-4 Model-5

Mistique Exact Dedup 0.00% 0.00% 0.00% 0.00% 0.00%
Mistique Approximate Dedup 0.00% 0.00% 3.64% 4.06% 0.71%
Enhanced Pairwise 0.00% 0.00% 3.57% 3.58% 2.92%
Proposed (w/o finetune) 0.00% 0.00% 3.58% 3.59% 0.71%
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Figure 7: Block sharing in Text Classification

We also visualized the distribution of duplicate blocks across
the models for the text classification workload, as illustrated in
Fig. 7. The results showed that the blocks that are shared across
models tend to be located in the same position of the tensor. This
observation leads to the optimization of metadata as described in
Sec. 3: metadata such as the index (i.e., position) of a shared tensor
block in each tensor can be simplified.

7.4 Evaluation of Page Packing Algorithms
We evaluated our proposed page packing algorithms using four
evaluation scenarios: (1) Two-stage algorithm, which used Alg. 2
in stage 1, and then apply Alg. 3 to items in non-full bins in stage 2.
(2) Greedy-1 algorithm that is based on equivalent classes (Alg. 2);
(3) Greedy-2 algorithm that applies Alg. 3 to overall page packing.
(4) A baseline algorithm, where we simply pack tensor blocks to
pages in order, and then we eliminate the duplicate pages which
contain the same set of tensor blocks.

We observed significant improvement in storage efficiency brought
by our proposed two-stage algorithm compared to alternatives, as
illustrated in Tab. 11. In addition, the computation efficiency of the
two-stage algorithm is comparable to Greedy-1, as illustrated in
Tab. 12. As mentioned, the extreme classification workload involves
models that share the same fully connected layer, which means all
tensor blocks in that layer are fully shared by all models. In such a
special case, all algorithms achieve similar storage efficiency.

Table 11: Comparison of required number of pages using different
page packing algorithms.

Scenario (block size, page size) Baseline Two-Stage Greedy-1 Greedy-2
word2vec (100 × 10000, 64MB) 130 98 99 98
text classification (100 × 10000, 64MB) 101 87 91 87
text classification (300 × 300, 64MB) 156 104 108 109
text classification (300 × 300, 32MB) 270 195 198 202

Above testing results are based on the offline page packing. We
also tested the online approach of page packing. We find that in the
text classification workload, when using 100 × 10, 000 block size
and 64 megabytes page, each time we involve a new model, about
20% of pages need to be reorganized, while 80% of pages can be
reused and thus do not need to be changed, as illustrated in Tab. 13.

Table 12: Comparison of page packing latency using different page
packing algorithms. (Unit: seconds)

Scenario (block size, page size) Baseline Two-Stage Greedy-1 Greedy-2
word2vec(100 × 10000, 64MB) 1.29 0.02 0.01 0.82
text classification (100 × 10000, 64MB) 0.68 0.01 0.01 0.52
text classification (300 × 300, 64MB) 13.65 0.05 0.05 11.50
text classification (300 × 300, 32MB) 44.72 0.04 0.04 42.72

Table 13: Page reuse and reorganization for online page packing.
Step New model to pack pages reused pages discarded pages created
1 Model-1 0 0 64
2 Model-2 52 11 15
3 Model-3 52 9 15
4 Model-4 50 13 23
5 Model-5 52 13 16

7.5 Evaluation of Caching Optimization
We also compare the proposed caching optimization to a number
of baselines, including LRU, MRU, as well as the locality set-based
page replacement policy without considering the page sharing.
The detailed cache hit ratio comparison for the Word2Vec and text
classification applications are illustrated in Tab. 8. Locality Set-M/L
refers to the locality set page replacement policy [73, 74] that treats
shared pages as one locality set and applies the MRU/LRU to this
locality set of shared pages. Optimized M/L refers to the localitySet-
M/L with the proposed caching optimization applied (i.e., shared
pages will be given a higher priority to be kept in memory).

We observed that, after deduplication, the cache hit ratio im-
proved significantly because of the reduction in memory footprint.
In addition, with the proposed deduplication approach applied,
Optimized-M/L achieved a significantly better cache hit ratio than
alternative page replacement policies.
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Figure 8: Comparison of different page replacement policies

7.6 Relationship to Model Compression
Besides deduplication, there exist a number of model compression
techniques, such as pruning [27, 28] and quantization [33], which
can only be applied to each single model separately. In this work,
we found that as a cross-model compression technique, model dedu-
plication can be applied after pruning or quantization individual
models, which achieved 2× to 3× better storage efficiency. The rea-
son is that pruning and quantization will not significantly change
the similarity of tensor blocks across models.

We also observed similar results for an ensemble of VGG-16 mod-
els. We omit the details here, because the use cases of convolutional
neural networks in RDBMS are unclear and the volume of model
parameters is relatively small (up to hundreds of megabytes).



Serving Deep Learning Models with Deduplication
from Relational Databases Conference’17, July 2017, Washington, DC, USA

Table 14: Comparison of compression techniques (Compression
ratio is defined as the ratio of the size after compression to the size
before compression. Accuracy drop is measured as the maximum
accuracy drop of the models after compression.)

pruning quantization dedup dedup+ pruning dedup+quant
auc drop 3.2% 1.33% 3.98% 3.6% 3.78%

compression ratio 23.4% 12.5% 27.32% 6.74% 5.24%

8 CONCLUSIONS
Serving deep learning models from RDBMS can greatly benefit from
the RDBMS’ physical data independence and manageability. This
work proposed several synergistic storage optimization techniques
covering indexing, page packing, and caching. We implemented
the system in netsDB, an object-oriented relational database. We
evaluated these proposed techniques using several typical model
serving scenarios, including the serving of (1) multiple fine-tuned
word embedding models, (2) multiple text classification models,
and (3) multiple extreme classification models specialized through
transfer learning. The results showed that our proposed dedupli-
cation techniques achieved 2.7× to 3.6× reduction in storage size,
speeded up the inference by 1.1× to 4.7×, and improved the cache
hit ratio by up to 1.6×. The results also showed that significantly
more models can be served from RDBMS than TensorFlow, which
helps to reduce the operational costs of model inferences.
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