
1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

Identifying Taxonomic Units in Metagenomic
DNA Streams on Mobile Devices

Vicky Zheng, Ahmet Erdem Sariyuce, and Jaroslaw Zola Senior Member, IEEE

Abstract—With the emergence of portable DNA sequencers, such as Oxford Nanopore Technology MinION, metagenomic DNA

sequencing can be performed in real-time and directly in the field. However, because metagenomic DNA analysis tasks, e.g.,

classification, taxonomic units assignment, etc., are compute and memory intensive, and the available methods are designed for batch

processing, the current metagenomic tools are not well suited for mobile devices. In this work, we propose a new memory-efficient

approach to identify Operational Taxonomic Units (OTUs) in metagenomic DNA streams on mobile devices. Our method is based on

finding connected components in overlap graphs constructed over a real-time stream of long DNA reads as produced by the MinION

platform. We propose an efficient algorithm to maintain connected components when an overlap graph is streamed and show how

redundant information can be removed from the stream by transitive closures. We also propose how our algorithms can be integrated

into a larger DNA analysis pipeline tailored for mobile computing. Through experiments on simulated and real-world metagenomic

data, executed on the actual mobile device, we demonstrate that our resulting solution is able to recover OTUs with high precision.

Our experiments also demonstrate the compounding benefits of introducing feedback loops in the DNA analysis pipeline.

Index Terms—Metagenomics, Nanopore sequencing, Connected components, Streaming algorithms

F

1 Introduction

Recently introduced nanopore-based DNA sequencers,
specifically Oxford Nanopore Technology (ONT) Min-
ION [4], are revolutionizing how DNA-based studies are
performed. Their key advantages are a small form factor
and low energy consumption that make them fully portable
and allow for easy deployment in the field, outside of a
typical laboratory [22], [33]. Moreover, these devices can
sequence DNA molecules directly (i.e., without extra steps
like DNA amplification) and can stream the resulting DNA
reads in near real-time. This makes them extremely attrac-
tive for metagenomic studies that involve processing DNA
recovered directly from environmental samples. In recent
years, MinION sequencers have been increasingly used for
in situ studies, including, for example, tracking of COVID19,
Ebola and Zika outbreaks [1], [12], [31], deployments in
the Arctic and Antarctic [11], and even on the International
Space Station [9] (we invite the reader to [18] for a broader
discussion on mobile DNA sequencing).

One of the most common tasks in metagenomics is
identification of Operational Taxonomic Units (OTUs) rep-
resented by clusters of highly similar DNA reads. OTUs
often serve as a proxy representing microbial composition
of the sequenced sample in cases where reads classification
(e.g., by searching a DNA database of known organisms) is
difficult or impossible. However, in the current mobile DNA
sequencing workflows, identification of OTUs, along with
any other DNA analytics, remains challenging. In Figure 1,
we outline the usual mobile DNA sequencing workflow

• The authors are with the Department of Computer Science, University at
Buffalo.

E-mail: vickyzhe@buffalo.edu

using MinION. The device streams, in real-time, electric sig-
nals characterizing detected DNA fragments. These signals
are basecalled to yield DNA reads, which are next processed
using full-fledged bioinformatics tools. In a mobile setup,
the sequencer is typically coupled with a portable host
device with limited compute power, memory, and energy
supply (e.g., tablet or a dedicated system-on-a-chip like
MinIT [2]). Since the basecalling process is already compute
and memory intensive, the bioinformatics analysis step has
to be either offloaded to a cloud service (which is not always
possible or desired) or postponed until sufficient compute
resources become available. In both cases, the resulting
delay between DNA read acquisition and the analytics is
highly undesirable from the end-user’s perspective, as it
decreases the overall responsiveness.

In this work, we focus on the problem of identifying
OTUs in mobile DNA read streams generated by MinION
portable sequencers. Our goal is to provide a memory and
compute efficient solution that could be deployed as a co-
processing routine in portable DNA sequencing workflows
operating on light-weight computational devices. Our ap-
proach is based on finding connected components in the
similarity (or overlap) graphs constructed and streamed
directly over the DNA read streams. Connected components
have been demonstrated before as a robust representation of
OTUs [13], [15], [29]. They are an attractive abstraction, as
they are the starting point to multiple other tasks, includ-
ing DNA assembly [30], reference-free taxonomic classifi-
cation (or clustering) [17], [36], or species abundance esti-
mation [10]. Intuitively, connected components build from
the observation that metagenomic samples contain many
organisms whose DNA reads should not assemble together
in a similarity graph [29].

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

Fig. 1: Schematic representation of mobile DNA sequencing pipeline with MinION. Sequenced reads can be analyzed
locally, or can be offloaded to a Back-end as a Service (or Software as a Service) for processing in a cloud. In this work, we
propose an OTU identification method suitable to run directly on mobile devices.

In this work, we make the following specific contribu-
tions:

• We propose efficient algorithms to identify transi-
tive closures and maintain connected components
in streamed DNA overlap graphs. These algorithms
are able to identify transitive closures in expected
constant time and allow us to maintain a minimal
memory footprint while collecting connected com-
ponent statistics to identify OTUs.

• We show how our algorithms can form a feedback
loop with a DNA overlaps detection routine to fur-
ther reduce memory footprint of the end-to-end pro-
cessing workflow.

• Through experimental results on the actual mobile
device, we demonstrate that the proposed methods
are both memory and computationally efficient, and
can identify OTUs in ONT MinION sequencing data.

2 Problem Formulation
We consider a mobile DNA sequencing pipeline as pre-
sented in Figure 1. A portable DNA sequencer (specifically
ONT MinION) is attached and controlled by a battery
powered mobile host (e.g., laptop or system-on-a-chip) that
is also responsible for DNA data processing. The sequencer
delivers, in real-time, raw signals representing detected
DNA molecules. Raw signals are comprised of the measure-
ment of the ionic displacement of DNA molecules as they
pass through a nanopore. These raw signals are immediately
basecalled on the host machine yielding the actual DNA
reads. To illustrate the rate at which the process happens:
in our experiments, we usually observe that the sequencer
delivers around 130 raw signals per second. The basecalling
rate varies depending on the host machine capabilities. For
example, using NVIDIA Nano Supercomputer-on-a-Chip
with 128 GPGPU cores and 4GB of main memory, the
basecalling can be sustained at the rate of approximately
31 reads per second. Reads generated from nanopore-based
sequencers are commonly tens of thousands of bases in
length with the longest reported read being 2.3Mbp [21].
The resulting DNA reads stream is passed for the down-
stream analysis.

In this work, we are specifically interested in perform-
ing OTU identification directly on the host that receives
streamed DNA reads. To this end, we use connected compo-
nents as proxies for OTUs. As mentioned earlier, connected
component have been demonstrated as a robust OTU rep-
resentation in the past [15], [29]. To formalize the resulting

problem, let R = [r1, . . . , rn] represent an input stream of
DNA reads generated in real-time by a DNA sequencer. We
have that for each i < j read ri precedes read rj in the
stream, which we will denote by ri ≺ rj . The size of the
stream, n, is not known a priori. For example, a user may
decide to terminate a sequencing experiment at any point
of time (e.g., after sufficient data has been collected), or may
run an experiment for a specified time interval (e.g., two
hours, which could be a small metagenomic experiment).

Given a set of DNA reads, we can construct an overlap
graph G = (V,E) in which vertices V represent the reads,
and two vertices, u and v, are connected by the directed
edge, u → v, denoted by e = (u, v), if there is a significant
overlap between a suffix of the read represented by u

and a prefix of the read represented by v. Here significant
overlap means that the length of the suffix-prefix match is
beyond some predefined threshold and indicates that the
two reads corresponding to u and v have been derived from
neighboring portions of the unknown underlying genome.
For now, we assume that an overlap detection tool (ODT) is
available and capable of constructing an overlap graph over
the stream R (see below).

Let Ri be the set of the first i reads from the stream
R, and let Gi = (V i, Ei) be the overlap graph constructed

over Ri. Moreover, let Gi denote an undirected graph con-
structed by treating all edges in Ei as undirected. Our goal is
to dynamically identify and maintain, in a computationally
and memory efficient way, a set Ci = {ci1, c

i
2, . . . , c

i
|Ci|}

of all connected components found in graph Gi, where

cij is the set of vertices in component j of graph Gi. The
final set of connected components, Cn, will represent the
Operational Taxonomic Units over the set of DNA reads in
R. In other words, we will expect that all reads within a
given connected component will be coming from the same
taxonomic unit (e.g., an organism).

We note that, when processing stream R, we are con-
cerned only with the graph Gi and the set Ci (since these
structures carry our information of interest), and do not

have to explicitly store or maintain graph Gi. Moreover,
currently we are not concerned with the details of how
the overlap graph is computed (e.g., what is the similar-
ity threshold for suffix-prefix comparison, or how DNA
reverse-complements are handled; we discuss this issue in
Section 3.4). In other words, we are assuming that in our
mobile DNA sequencing pipeline, there is an ODT that
operates under the hardware constraints mentioned earlier.
The ODT handles an incoming stream of reads generated by
a sequencer and creates, with some precision and sensitivity,

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

a new stream of edges induced by the incoming read. Specif-
ically, given incoming read ri, let vi be its corresponding
vertex in graph Gi. The ODT provides sets N+(vi) ⊆ V i−1

and N−(vi) ⊆ V i−1, such that for each u ∈ N+(vi) there is
an edge (vi, u) ∈ Ei and for each u ∈ N−(vi) there exists
an edge (u, vi) ∈ Ei (note that in both cases u corresponds
to a read that precedes ri in R, i.e., u ≺ vi).

3 Proposed Approach
Given the above problem formulation, to create and main-
tain our desired set Ci, we could leverage one of the several
existing algorithms for finding connected components in
graph streams (we review them in Section 5). However,
this approach has drawbacks because the current algorithms
are tailored for general graph streams and are oblivious
to the domain specific properties of the data. Therefore
we take a slightly different route and exploit the (well
known) fact that, in a typical DNA sequencing experiment,
many DNA reads are sharing an overlap, and thus provide
redundant information.

To better illustrate this property, consider a set of reads
in Figure 2a that come from the same region of a genome.
Because read rj overlaps with both ri and rk, and at the
same time ri and rk are overlapping as well, we can elimi-
nate read rj without disconnecting the underlying overlap
graph and hence without losing any critical information.
This simplifies the graph on which we have to perform con-
nected components identification, and reduces the number
of reads (and hence graph nodes) we have to maintain in the
memory. The redundant reads may be marked as such, and
can be offloaded to a persistent storage and processed later,
e.g., when more computational resources are available.

The second observation is that, in our problem, we never
remove arbitrary nodes from the overlap graph. This simpli-
fies data management as we can adopt tested data structures
such as disjoint-set to identify connected components [19].

In our approach, outlined in the right-most panel of
Figure 1, we exploit both properties at the same time: we
first provide an efficient strategy to identify redundant
reads in a stream and then use a variant of union-find to
track connected components. In the process, we provide
feedback information to the ODT to further improve end-
to-end performance on the entire workflow. Here we note
that the feedback step is entirely optional, and it does not
affect the performance of our method.

3.1 Finding Transitive Nodes
The first step in our approach is to decide whether an
incoming read is redundant and hence can be removed from
further processing. Let us consider again example reads in
Figure 2a and, for the purpose of presentation, let us assume
that rx ≺ ry ≺ ri, rj , rk. Depending on which of the reads
ri, rj , rk arrives last, we have one of three possible overlap
graphs as shown in Figure 2b. Here, read ri is represented
by vertex vi, and shaded nodes correspond to the last
arriving read. Any redundant read, in our case read rj ,
shares suffix-prefix overlap with at least two other reads, in
our case ri and rk. Now let us consider an induced subgraph
over the redundant vertex (i.e., vertex corresponding to

the redundant read, in our case vj) and any two of its
adjacent vertices that are also adjacent to each other. In
this sub-graph, one of the nodes must have two outgoing
edges, one must have two incoming edges, and one must
have one incoming and one outgoing edge (this node must
correspond to a redundant read). Back to Figure 2b, we can
see that node vj is redundant irrespective of the order in
which reads are processed due to the transitive edge (vk, vi).
We will call nodes that introduce transitive edges between
two other nodes transitive, and since they correspond to
redundant reads, we will eliminate them from processing.

For each incoming read, we now want to identify if
it introduces any transitive nodes. This can be done by
considering all possible triples it forms with its adjacent
nodes. For instance, to find the transitive nodes introduced
by the arriving node vi (i.e., read ri) in the first example
in Figure 2b, we need to check if it has a pair of incoming
neighbors u,w ∈ N−(vi) that share an edge (u,w) or (w, u).
In the second example, to find the transitive nodes intro-
duced by the arriving node, we check if it has an incoming
neighbor u ∈ N−(vj) and outgoing neighbor w ∈ N+(vj)
that share an edge (u,w). Finally, to find the transitive nodes
introduced by the arriving node vk, we need to check if it
has a pair of outgoing neighbors u,w ∈ N−(vk) that share
an edge (u,w) or (w, u).

In general, we notice that there are three ways an incom-
ing read can introduce transitive nodes. However, because
we do not know which case we are dealing with, we need to
consider all three. This intuition is captured in Algorithm 1.

For each incoming read v, the input to the algorithm
are all overlaps with the previously processed nodes (rep-
resented by sets N+(v) and N−(v)), and the current irre-
ducible overlap graph G (we explain irreducibility below).
In lines 3-9, we check if v has a pair of outgoing neighbors
u,w ∈ N+(v) that share an edge (u,w) ∈ E or (w, u) ∈ E.
This scenario corresponds to the last case in Figure 2b. In
lines 10-16, we check if v has a pair of incoming neighbors
u,w ∈ N−(v) that share an edge (u,w) ∈ E or (w, u) ∈ E.
This scenario corresponds to the first case in the Figure 2b.
Finally, in lines 17-21, we check if v has a pair of neighbors
u,w where u ∈ N+(v) and w ∈ N−(v) share an edge
(w, u) ∈ E. This scenario corresponds to the middle case
in the Figure 2b.

Although the processing steps in Algorithm 1 are sim-
ple, the entire procedure can be computationally expensive
for a mobile system and streaming regime (keeping in
mind that it is executed for each incoming read). Because
we are searching for edges between incoming neighbors,
edges between outgoing neighbors, and edges between
incoming and outgoing neighbors, the process requires
Θ
(

(|N−(vi)|+ |N
+(vi)|)

2
)

edge queries. This is problem-
atic, as vi may have a high degree, and each edge query
can be expensive depending on how G is stored in mem-
ory. However, we can make certain guarantees about our
incoming node degree as long as Gi−1 is irreducible. Here,
we define an irreducible graph to be an overlap graph that
does not contain transitive nodes.

Cost of Handling Transitive Nodes

In a streaming regime, we can maintain graph irreducibil-
ity by eliminating transitive nodes the moment they are

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

rk

rj

ri

ry

rx

(a)

rj � rk � ri

rk � rj � ri

ri � rk � rj

rk � ri � rj

ri � rj � rk

rj � ri � rk

vk vj

vi

vx

vy

vk vj

vi

vx

vy

vk vj

vi

vx

vy

(b)

vk

vi

vx

vy

(c)

Fig. 2: (a) Example DNA reads with their overlaps marked. (b) Three different cases that may occur in the overlap graph
constructed over reads in (a) if rx ≺ ry ≺ ri, rj , rk, and ODT does not report overlap between rx → rj and rj →
ry . (c) Irreducible graph created by removing rj as a transitive read. Connected components in the resulting graph do
not change.

Algorithm 1 FINDTRANSITIVE(G, v,N+(v), N−(v))

1: G = (V,E) � G is irreducible

2: L← ∅ � set of transitive nodes

3: for u ∈ N+(v) do
4: for w ∈ N+(v), u 6= w do
5: if u 6∈ L ∧ w 6∈ L then
6: if (u,w) ∈ E then
7: L← L ∪ {u}
8: else if (w, u) ∈ E then
9: L← L ∪ {w}

10: for u ∈ N−(v) do
11: for w ∈ N−(v), u 6= w do
12: if u 6∈ L ∧ w 6∈ L then
13: if (u,w) ∈ E then
14: L← L ∪ {w}
15: else if (w, u) ∈ E then
16: L← L ∪ {u}
17: for u ∈ N+(v) do
18: for w ∈ N−(v) do
19: if u 6∈ L ∧ w 6∈ L then
20: if (w, u) ∈ E then
21: L← L ∪ {v}
22: return L

introduced by an incoming node. We will call removing
transitive nodes transitive closures. Maintaining irreducibility
through transitive closures will not require any additional
computational effort. However, it will necessitate a dedi-
cated approach to maintain a coherent list of connected com-
ponents.

Recall that by definition, an ODT detects an edge (u, v) if
there is a significant overlap between the reads correspond-
ing to u and v. Here, a significant overlap indicates the reads
corresponding to u and v have been derived from neigh-
boring portions of the underlying genome. If we have an
irreducible overlap graph, we are guaranteed that for an in-
coming read vi, |N

−(vi)|+ |N
+(vi)| ≤ 4 with |N−(vi)| ≤ 2

and |N+(vi)| ≤ 2. This can be shown through contradiction:
Suppose we have an incoming read ri and an irreducible
graph Gi−1. Now, suppose |N+(vi)| = 3 (or |N−(vi)| = 3,
both work). By definition, the three reads in N+(vi) that
overlap with ri belong to the same portion of the genome
as ri. This is because their prefixes overlap with ri. Since all
three of the reads belong to the same portion of the genome,
then they must also overlap with one another. Since they

all overlap with one another, at least one of the reads is
either contained within another read or contained within
the overlap of the other two reads. This means that at least
one of the reads is transitive which contradicts that Gi−1

is irreducible. This contradiction shows that both |N+(vi)|
and |N−(vi)| ≤ 2 and therefore |N−(vi)|+ |N

+(vi)| ≤ 4 so
long as Gi−1 is irreducible. Notice that this is demonstrated
in Figure 2b.

We recognize that the above reasoning holds for the
case where an overlap (a suffix-prefix match above some
predefined threshold) between reads indicates that they are
derived from the neighboring portion of a genome. This
assumption is not always true in the real world (e.g., due
to repeats in a genome and errors in sequencing). However,
as we show later in Section 3.4, our method still performs
acceptably well even when the assumption of graph irre-
ducibility is violated.

3.2 Maintaining Graph and Components

Given an efficient routine to identify transitive nodes in the
stream, we need a way to maintain the both graph structure
and the corresponding connected components. Our solution
must also be able to handle deletions of transitive nodes.

To maintain graph Gi, we use a simple adjacency list
built on top of a hash table. For each vertex we maintain
a list of its incoming and outgoing neighbors, and the
neighbor lists are kept in a hash table with key derived from
vertex identifier. In this way, we compensate for the fact that
the size of the input stream is not known in advance. This
solution is practical, efficient and takes into account small
expected size of the neighbor lists.

To store and track connected components, we use a vari-
ant of the union-find data structure (UF) [19]. Specifically,
we represent UF as a set of key-value pairs 〈vr, vc〉, where
vr is some node mapped to a component represented by vc
(i.e., vc is the root of the component). Here, a set is again
implemented over a hash table, to account for the fact that
the size of UF will be changing dynamically.

3.3 Maintaining Components Over a Stream

Having all ingredients in place, we summarize our method
for maintaining connected components in Algorithm 2.
In the first step, we identify all transitive nodes that are
safe to remove using our FINDTRANSITIVE routine (line 2).
For each transitive node, we first remove its corresponding

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

Algorithm 2 STREAMCC(Gi−1,UF, vi, N
+(vi), N

−(vi))

1: Gi−1 = (V i−1, Ei−1)
2: L← FINDTRANSITIVE(Gi−1, vi, N

+(vi), N
−(vi))

3: E− ← ∅
4: for u ∈ L do
5: UF[u]← nil
6: E− ← E− ∪ {e | e = (u,w) ∧ e ∈ Ei−1}
7: E− ← E− ∪ {e | e = (w, u) ∧ e ∈ Ei−1}
8: if vi 6∈ L then
9: UF[vi]← vi

10: for u ∈ (N+(vi) ∪N−(vi)) do
11: if UF[u] < UF[vi] then
12: UF[vi]← UF[u]
13: for u ∈ (N+(vi) ∪N−(vi)) do
14: if UF[u] 6= UF[vi] then
15: P ← {r | UF[r] = u}
16: for w ∈ P do
17: UF[w]← UF[vi]
18: Ci ← UF � connected components represented via UF

19: V i ← (V i−1 ∪ {vi}) \ L
20: Ei ← Ei−1 \ E−

21: ODT(drop L) � optional feedback to ODT

entry from the UF structure (line 5). We then identify all
associated edges to remove from G (lines 6 and 7). Because
we are using hash tables for both UF and E, both of these
operations can be done in amortized O(|V |). Since G is
reduced by transitive closures, we expect |V | to be a small
fraction of all processed nodes (which we confirmed via
experimental results). If the incoming node vi is not in the
list of nodes to remove, we proceed with insertion in lines
8-17 (explained below). Finally, in lines 18-21, we remove
all edges associated with transitive nodes along with the
transitive nodes and reads themselves.

One critical advantage of our approach is that it can
provide feedback to the ODT (line 21) instructing it which
reads are potentially redundant. Since transitive nodes cor-
respond to redundant reads, they may be safely offloaded
(or dropped) to a persistent storage, and processed later
as needed, thus saving memory. Moreover, by maintaining
only non-redundant reads, an ODT may improve its perfor-
mance as well. These properties turn out to be particularly
crucial when executing on low-memory devices, since off-
loading reads from the main memory allows us to save
gigabytes and hence operate on much larger data set then
what would be normally possible (as we demonstrate in the
experimental results).

Inserting Nodes

To insert a node vi (lines 8-17), we process how vi affects
UF (lines 9-17). Node vi can form its own component (if
it has no neighbors), join a component (if its neighbors all
belong to the same component), or merge components (if its
neighbors belong to different components). First, we assume
that vi is forming its own component in line 11. Then, we
handle the situation where it joins a component or merges
components. If vi has neighbors, then we identify the root of
the component to which vi belongs to (lines 10-12). We note
that because we are incrementally maintaining UF with each

u

w vi

x y

w vi

x y

Fig. 3: Impact of false positive and false negative edges on
connected components discovery when using transitive clo-
sure. Left: vertex vi is added to the graph with single com-
ponent consisting of vertices {w, u, x, y}. We consider two
cases where edges (w, x) and (vi, y) are incorrectly missing,
or edges (x, u) and (u, y) are incorrectly introduced. Right:
After performing transitive closure on u, in both cases the
graph will consist of three connected components instead
of one component.

incoming read, the resulting structure always has a depth
of one (all nodes are connected to the root). Therefore, the
cost of this step is O (|N−(vi) ∪N+(vi)|), which is constant
when G is irreducible.

In lines 13-17, we handle the situation where compo-
nents are merged. We do this by checking if any of vi’s
neighboring nodes have a different root (line 14). When
this is the case, we reassign all of the nodes w ∈ ci−1

UF[u], to

UF[w]← UF[vi]. As a result, neighbors of vi end up having
the same component mapping as vi. Note that gathering
component members in line 15 requires searching through
UF, and hence takes O(|V |) time. However, this cost gets
amortized over the course of execution as shown in experi-
mental results.

3.4 Tuning to Real World Data

So far we have been working under the assumption that
an ODT correctly identifies suffix-prefix overlaps beyond
some predefined threshold between reads coming from the
neighboring parts of a genome. Although this assumption
is helpful in our understanding of transitive nodes, it is not
entirely realistic. This is because DNA reads, especially in
MinION sequencing, are error-prone and typical genomes
are repetitive. Consequently, an ODT may either miss over-
lap between reads (e.g., due to sequencing error) or may
detect spurious overlaps (e.g., due to repetition where simi-
lar reads come from different regions of a genome).

If an ODT detects an overlap between reads that do
not belong to neighboring portions of the genome, then
this is a false positive. The connected components of the
overlap graph that contains many false positives may not
be a robust representations of OTUs; this is especially ap-
parent in the presence of high sequencing error. However,
they may still be informative, for example, OTUs may be
describing higher taxonomic units (say genus or family)
instead of representing individual species. In [29], Pell et
al. found that if the false positive rate is above a so called
percolation threshold (e.g., 18% in one of their tests on de
Bruijns graphs), erroneous connections between the “true”
components emerge and the resulting components do not
represent species any more.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

If an ODT misses an overlap between two reads that
belong to neighboring portions of a genome, then this is
a false negative. This can cause two components that are
supposed to be connected to be disjoint. Disconnected com-
ponents may also misrepresent the true OTUs, leading to
incorrect assessment of the number of OTUs. False negatives
are extremely common and can be dealt with by increasing
the depth of coverage to get a single, complete component
for each OTU. Increasing the depth of coverage means that
more reads are sequenced from the sample. The intuition
behind this is that the more reads that are sequenced, the
more opportunities we give to the ODT to identify an over-
lap in that region and ideally form a single component. The
increased depth of coverage causes overlap graphs to grow
large as it introduces more nodes. However, this is exactly
the problem that our transitive closures approach addresses.

In Figure 3, we show a hypothetical scenario that demon-
strates the impact of false positive/negative edges. In this
scenario, node u is transitive, and therefore it will be re-
moved by transitive closure. However, in the presence of
false positive/negative edges, removing a transitive node
may disconnect our graph. To see why, observe that nodes
w and vi are connected to u, and x and y are connected to u,
and yet these two pairs are not connected to each other. This
could have happened because ODT missed edges (u, x) and
(vi, y) or the ODT incorrectly identified edges (x, u) and
(u, y). In either case, removing u will disconnect the graph.
We use the term articulation points to identify nodes that
disconnect components upon their removal [14].

Protecting Articulation Points

When transitive nodes are articulation points, we know
this is due to an ODT error. However, we cannot conclude
whether this is due to false positive or false negative edges.
Due to this uncertainty, we should not remove articulation
because we cannot assume that articulation points correctly
provide redundant information. Moreover, disconnecting
components would require recomputing all components
from scratch, thus degrading computational performance.
Furthermore, to even determine whether a component
has become disconnected is a challenging problem on its
own [23]. Hence, in our approach we decided to protect
articulation points from being removed.

Let nodes corresponding to the reads that contain the
redundant read be anchor nodes. For example, in Figure 3,
u is transitive while vi and w are anchor nodes. Instead of
checking whether a node is an articulation point, we will
impose a more strict, and inexpensive to compute, criteria:
A transitive node must have anchored neighbors for it to
be removed. A node is anchored if it shares an edge with
an anchor node. If all of a transitive node’s neighbors are
anchored, then we can safely remove the transitive node.
This is because a transitive node cannot be an articulation
point if its neighbors are anchored. Anchor nodes must
belong to the same component as the transitive node. If all
of the transitive node’s neighbors are anchored, then they
all have at least two points of connection to the rest of
the component: one point is with the transitive node and
another point is with at least one of the anchored nodes.
This allows us to safely remove the transitive node because

the neighbors still maintain at least one point of connection
to the rest of the component.

We can modify Algorithm 2 to enforce that we do not
remove transitive nodes that may be articulation points.
To do this, it is sufficient that we remove from set L

any node whose neighbors are not all anchored. For each
node u ∈ L, this necessary condition can be checked in
O (|N−(u)|+ |N+(u)|) time because each neighbor of u

requires a constant number of edge queries to see if it
is anchored. Hence, this modification imposes only slight
overhead compared to the original algorithm.

Effects of Preserving Transitive Nodes

We will refer to an overlap graph that has transitive nodes
that are not articulation points removed as a reduced graph.
In a reduced graph, we are guaranteed to not disconnect an
existing component. However, in the following example, we
illustrate how removing transitive nodes may still result in
a fragmented component in the future. Suppose that nodes
u, vi and w precede nodes x and y in Figure 3 (u, vi, w ≺
x, y). Since x and y have not been added to the graph yet,
node u is not an articulation point and hence is removed
by transitive closure. When x and y are added to the graph,
they must end up in different components from w and vi
since u is missing. Although this may affect the component
count, in the experimental results, we show that connected
components are still robust representations of OTUs.

Another observation is that because we cannot remove
all transitive nodes, we will not have the same degree
guarantees as in an irreducible overlap graph. For exam-
ple, in Figure 3, we cannot remove u due to it being an
articulation point. Later in the process, we may receive a
read rj , that has specifically suffix-prefix overlaps with the
reads corresponding to w and x but also u. In such case, the
out degree of vj will be three, which violates our previously
established degree constraints in irreducible graphs.

Fortunately, in practice, we observe that incoming nodes
in the stream follow an exponential degree distribution,
which is a side effect of transitive closures (see experimental
results). If we assume an exponential distribution, then we
can still guarantee that the expected degree of a node will
be constant. Suppose an incoming node vi has degree of k
with probability pk, where pk = (1 − e−1/κ)e−k/κ and κ is
some constant [27]. Then the expected average degree of an

infinite stream is: E
[

|N+(vi)|+ |N
−(vi)|

]

=
∞
∑

k=1

k · pk =

∞
∑

k=1

k(1− e−1/κ)e−k/κ =
e−1/κ

1− e−1/κ
= O(κ).

Since the average degree is bounded by κ, as long as
κ is a small constant, maintaining transitive closures on a
reduced graph will still perform similarly to an irreducible
overlap graph. In our experimental results, we found that κ
never exceeds three.

4 Experimental Results
To validate our proposed approach, we implemented Algo-
rithms 1 and 2, including the extensions from Section 3.4, in
a standalone C++ application (the code is open source and

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

available from [35]). We performed a set of experiments us-
ing synthetic as well as actual, publicly available, GridION
data [3]. In our experiments, we focused on performance
(e.g., run time and memory use) as well as correctness char-
acteristics (e.g., connected components and OTUs recovery
and convergence) taking into account properties of the ODT.
We also note that all experiments that involved random
sampling or shuffling of the data were repeated multiple
times, and we did not observe significant difference from
the results reported below.

4.1 Test Data

To prepare benchmark data, we started from the
ERR2906227 data set publicly available from the European
Nucleotide Archive [3]. This data set has been generated
using the ONT GridION sequencer, which is a scaled-
up version of the portable MinION platform. We selected
this particular data set since it represents metagenomic
sequencing of a mock community with known microbial
composition. Specifically, the data set is based on the Zymo
Community Standards that comprises five Gram-positive
bacteria, three Gram-negative bacteria, all eight organisms
in the same abundance, and two types of yeast that make
4% of the community (more details regarding this particular
data set and how sequencing had been performed can be
found in [28]). We chose to use data sets with organisms
in the equal abundance to better assess the effects of tran-
sitive closures on OTUs identification. In Supplement 1, we
provide additional experimental results for the case where
abundance of species changes logarithmically.

To annotate the reads, i.e., assign them to one of the com-
ponent organisms in the mock community, we performed
read mapping using the blast-2.10.1+ tool [7] and the
reference genomes provided by Zymo [37] (maker of the
mock community). For each mapped read, we selected its
target OTU based on the best mapping score (i.e., to which
reference genome it mapped the best). We disregarded
reads with low mapping scores and reads that did not
map uniquely. Furthermore, we eliminated very few reads
mapping to the yeast genomes since they made less than
4% of all reads. The resulting data set consists of 2,969,089
classified (i.e., assigned to an OTU) reads. We will refer to
the resulting data set as ERR2906227.

We used the annotated ERR2906227 data set to simulate
artificial but realistic reads using the NanoSim tool [34].
Starting from the actual GridION reads and the correspond-
ing reference genomes, NanoSim first builds a statistical
model of the GridION sequencer and then uses this model
to derive new reads from the reference genomes. Since
NanoSim reports from which position in the genome each
simulated read has been derived, we can use this informa-
tion to create a perfect ODT, that is, a tool in which no false
positive or false negative edges are created. This enables
us also to control for ODT performance (e.g., precision and
sensitivity) when assessing performance of our algorithms.
We refer to the resulting data set as Sim. The data set
consists of 200,000 reads, where each of the eight reference
genomes is represented by 25,000 reads.

For reproducibility purposes, we provide all de-
tails regarding data preparation in the accompanying
web page [35].

4.2 Overlaps Detection

Detection of prefix-suffix overlaps in DNA reads is exten-
sively studied topic, especially in the context of long reads
such as those produced by MinION or PacBio platforms.
However, although there are several ODTs available (e.g.,
daligner [26], minimap2 [20], MHAP [8], ELaSTIC [36]),
these tools do not provide any formal guarantees with
respect to the quality and correctness of the discovered
overlaps. Moreover, they currently are not meant to work
in a streaming regime and are not designed to incorporate
potential feedback provided by our algorithms (e.g., line 21
in Algorithm 1). Specifically, they do not expose any inter-
face that would enable us to inform the ODT which reads
are no longer required to perform OTU identification (such
reads could be removed by the ODT from the main memory
and from computations). Taking all of that into account, in
order to test our solution while controlling for ODT quality
and performance, we decided to simulate overlap graph
streaming based on overlaps detected via batch processing.

To simulate the overlap process for the ERR2906227

data set, we directly leveraged information provided by the
blast tool when performing reads assignment to OTUs
(as explained in the previous section). Specifically, we as-
sumed that two reads overlap if they are mapped by blast

to the same portions of the underlying reference genome
such that they have a suffix-prefix overlap of at least size
1,000 nucleotides/characters (based on [25] we consider
such overlap length significant). To simulate an ODT for
the Sim data set, we used a similar approach. However,
instead of using blast, we directly used the exact mapping
information provided by NanoSim (as explained earlier). In
both cases, we obtained a complete overlap graph a priori,
including information about direction of the overlaps.

Since the overlap graphs are constructed by directly
leveraging information provided by blast and NanoSim,
the overlap graphs do not contain any false positive edges.
This means that each component consists entirely of reads
from a single input species and therefore are homogeneous.
If we used an existing ODT, the constructed overlap graph
may have false positive edges because it does not know the
underlying true graph structure. Although we are not able
to control for quality of correctness or give feedback to a
real ODT, we provide additional results using minimap2 in
Supplement 1).

Given an overlap graph, we were able to directly emulate
the corresponding stream of reads R and their neighbor-
hoods N+ and N−. To achieve realistic behavior from the
memory use perspective, our simulated ODT performed as
follows. All reads from the stream R are stored in a FASTA
file in the order in which they appeared in the stream (for
each data set we generated several streams by randomly
permuting the order of the reads and we observed no
significant difference in performance of our algorithms for
different streams). In the FASTA file, the name of each read
encoded information about which other reads in the stream
that read is overlapping with. When executing, our ODT it-

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3172661, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 11

the NVIDIA Nano SCoC. When ODT utilizes the feedback,
the memory usage remains relatively low (slightly over
1GB), and no swap memory is required. All this despite
the fact that all 2,969,089 reads in the ERR2906227 stream
are taking over 12GB. When the ODT was executed without
the feedback mechanism, the main memory was saturated
after the first 8 minutes of processing, and the ODT started
using swap memory. However, after another 60 minutest of
execution the swap also was saturated and the ODT process
was terminated by the operating system (after processing
slightly over 80% of the stream). In summary, the feedback
mechanism allowed us to process relatively large real world
data that would otherwise be impossible using our modest
mobile resources.

5 Related Work
The idea of using transitive closure to reduce computational
complexity has been used previously in the context of DNA
assembly, where DNA reads are pieced together to recon-
struct longer DNA strings [30]. For example, in [24], Myers
discusses DNA string graphs in which vertices represent
prefixes and suffixes of reads, and edges represent non-
matching substrings between two overlapping reads. He
then shows that transitive edges can be removed without
affecting the ability to reconstruct the assembly. While in
our approach we essentially exploit the same principle, i.e.,
redundancy of overlapping reads, our focus is on streaming
and not memory prohibitive batch processing.

Disjoint-set forests, also known as union-find, is the most
efficient data structure to find connected components in a
graph. Because of its popularity and versatility, there are
several adaptations of union-find for various computational
setups. For example, Isenburg and Shewcuk [16] adapted
the union-find algorithm for a streaming 3D grid network
to use in image processing, Agarwal et al. considered I/O
efficient solutions for terrain analysis [6], and Simsiri et al.
studied work-efficient parallel adaptations of union-find for
incremental graph connectivity [32]. Laura and Santaroni
introduced the first semi-streaming algorithm that makes
a few passes to find strongly connected components in a
directed graph [19]. These methods, however, are primarily
focused on general streams where graph nodes and edges
can be inserted or removed at any point of time. Moreover,
they assume that the executing environment has significant
main memory available. In our case, the problem has a
slightly different flavor. On the one hand, the stream is
easier to handle because we consider only node insertions
and specific node removals. Due to the nature of metage-
nomic reads, we can also expect bounded number of edges
introduced with every node insertion. On the other hand,
we have very limited access to the main memory and com-
putational power (typically, available memory is around
4-8GB) in any mobile setup. Consequently, our primary
focus is on maintaining minimal memory footprint, while
delivering the desired statistics.

6 Conclusion
The growing popularity and rapid adoption of portable
DNA sequencing platforms necessitates the development

of new computational strategies to enable in situ DNA
analytics. In this work, we introduce OTUs identification
method based on connected components abstraction and
operating on DNA streams. The method can be used to ac-
celerate mobile execution of multiple types of DNA analysis,
including metagenomic DNA assembly and classification.

The key element of our solution is memory efficient
handling of connected components emerging in streams
of DNA reads and their overlap graphs. Through formal
and experimental analysis, we show that if the degree
distribution of nodes in the streamed overlap graph follows
an exponential distribution (which is the case in real-world
data) our method has minimal computational cost.

The OTUs identification method we describe in this
work builds directly from the earlier observations that
connected components may approximate OTUs. While this
approach is very computationally appealing, it is not bullet-
proof. As demonstrated by our experimental results, and
observed by others [29], if the number of false positive
edges in the overlap graph exceeds certain thresholds, the
resulting connected components no longer represent OTUs
at the species level. This limitation should be taken into
account when selecting the ODT to include in the processing
pipeline, and when deciding on the downstream process-
ing tasks.

Our method is introduced in conjunction with the idea of
DNA processing pipeline that incorporates feedback loops
between different stages in the pipeline. Our experiments
demonstrate the compounding benefits of having feedback
loops. In our proposed pipeline, performing transitive clo-
sures reduces the workload of our ODT by reducing the
number of reads the ODT has to manage; the ODT is then
able to reduce the workload of components identification
by reducing overall overlap graph size. The feedback loops
make our algorithms suitable for mobile computing devices.

While our proposed solution addresses the question
of how to identify connected components in a stream, it
is based on the assumption that the processing pipeline
includes an ODT that is able to work efficiently over the
streamed DNA reads and incorporate potential feedback.
While such ODTs are not yet readily available, we hope
that our results will convince other researchers to pursue
this mechanism. Currently, we are investigating an adaptive
ODT operating directly on the raw signals produced by
MinION sequencer (i.e., bypassing basecalling stage). A new
real-time DNA processing pipeline and raw signal ODT are
both part of the SMARTEn [5] project, our broader effort in
mobile DNA processing.

Acknowledgments
This work is supported by the National Science Foundation
under the grant CNS-1910193.

References

[1] “Nanopore sequencing of the SARS-CoV-2 virus,”
https://tinyurl.com/yduddxk9.

[2] “MinIT,” https://nanoporetech.com/products/minit, 2018.
[3] “European Nucleotide Archive,” https://www.ebi.ac.uk/ena/

browser/view/ERR2906227, 2019.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 12,2022 at 07:58:35 UTC from IEEE Xplore. Restrictions apply.

