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SUMMARY

Single-cell transcriptomics enables the definition of diverse human immune cell
types across multiple tissues and disease contexts. Further deeper biological under-
standing requires comprehensive integration of multiple single-cell omics (tran-
scriptomic, proteomic, and cell-receptor repertoire). To improve the identification
of diverse cell types and the accuracy of cell-type classification in multi-omics sin-
gle-cell datasets, we developed SUPERR, a novel analysis workflow to increase
the resolution and accuracy of clustering and allow for the discovery of previously
hidden cell subsets. In addition, SUPERR accurately removes cell doublets and pre-
vents widespread cell-type misclassification by incorporating information from cell-
surface proteins and immunoglobulin transcript counts. This approach uniquely im-
proves the identification of heterogeneous cell types and states in the human im-
mune system, including rare subsets of antibody-secreting cells in the bone marrow.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technologies have rapidly advanced in the last decade, including
advances to cell-capture approaches (Evan et al., 2015; Klein et al., 2015; Utada et al., 2007), library prep-
aration (Picelli et al., 2013; Hashimshony et al., 2012), and sequencing methods (Evan et al., 2015; Picelli
etal., 2013; Habibetal.,, 2017; Stoeckius et al., 2017). These increasingly more widely adopted technologies
have significantly improved the understanding of cell heterogeneity in health and disease (Hashimshony
et al., 2012; Zheng et al., 2017; Habib et al., 2017; Stoeckius et al., 2017; Picelli et al., 2013). However, reli-
ance on cellular transcriptomics alone limits the comprehensive identification of heterogenous cell popu-
lations (Liu and Trapnell 2016). This limitation has propelled the development of multi-omics single-cell
sequencing technologies to increase the resolution and accuracy for cell subset classification.

Multi-omics single-cell sequencing technologies, such as CITE-seq (Stoeckius et al., 2017), REAP-seq
(Peterson et al., 2017), and others (Lee et al. 2020), simultaneously measure gene expression (mRNA)
and cell-surface proteins. Additional heterogeneity of immune cell subsets can be revealed by combining
single-cell gene expression with simultaneous T- and B-cell receptor (TCR and BCR) repertoire sequencing
using techniques such as RAGE-seq and DART-seq (Meyer 2019; Singh et al., 2019; Horns et al. 2020; Zem-
mour et al., 2018; Yermanos et al., 2021). Thus, simultaneous measurement and comprehensive integration
of transcriptomics, cell-surface protein, and cell-receptor repertoire can reveal heterogeneous cell types
relevant to disease mechanisms and homeostasis.

However, multi-omics technologies also present computational challenges for data integration and anal-
ysis (Colomé-Tatché and Theis 2018; Luecken and Theis 2019; Stuart and Satija 2019). Challenges include
high dimensionality of the data (Yu and Lin 2016), sparsity of the data (Qiu 2020), diversity across various
omics data types (Hao et al., 2021), and technical effects between different sample batches (Stuart et al.,
2019). Several algorithms have been developed to integrate and analyze multi-omics measurements,
including weighted nearest neighbor (WNN) implemented in Seurat v4 (Hao et al., 2021), similarity network
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fusion (SNF) in CiteFuse (Kim et al., 2020), among others (Wang et al., 2020; Gayoso et al., 2021; Jin et al. peng.qiu@bme.gatech.edu
2020; Argelaguet et al., 2018). The commonality of these methods is to utilize the shared signals among P.Q)

. . . T . . . . L . eliver.ghosn@emory.edu
different omics data types to align their distributions and achieve integration, which is an unsupervised (EEBG)
data-driven approach. Although unsupervised data-driven methods have been successful for clustering https://doi.org/10.1016/j isci
and identifying cell types, significant improvements can be made by incorporating robust prior knowledge 2022.105123
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Figure 1. SUPERR workflow
(A) Schematic overview of the experimental design. Peripheral blood and bone marrow aspirates were processed, surface-stained with barcoded antibodies,
and then encapsulated with barcoded microspheres. We generated three libraries for each sample corresponding to gene expression (GEX), cell-surface
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Figure 1. Continued

protein/antibody-derived tags (ADT), and cell-receptor repertoire (VDJ). Libraries were sequenced to a target depth, and count matrices were
assembled for each-omic data separately.

(B) SUPERR workflow is composed of two main steps. Major cell lineages are manually gated at the first step by integrating information from both the ADT
and V(D)J data matrices. Then, the manually-gated cell lineages are further sub-clustered based on information from the GEX data. The V(D)J matrix can be
used to further identify the diversity of heavy (VH) and light (VL) variable genes among the plasma cell clusters. PCs: plasma cells. See also Tables ST and S2.

such as well-established marker genes and cell-surface protein markers that can accurately define cell types
(Aran et al., 2019; Mahnke et al. 2010).

Here, to address the challenges of multi-omics analysis, we combined our extensive expertise on high-dimen-
sional flow cytometry data analysis (Meehan et al., 2019) with our multi-omics single-cell data sets to develop
the SUPERR (Surface Protein Expression, mRNA and Repertoire) workflow. SUPERR is a novel, semi-supervised,
biologically-motivated approach towards the integration and analysis of multi-omics single-cell data matrices.
By combining a robust prior knowledge of flow cytometry-based cell-surface markers (gating strategy) (Mahnke
et al. 2010) with the high-dimensional analysis of scRNA-seq, SUPERR increases the resolution and accuracy in
clustering algorithms and allows the discovery of new biologically relevant cell subsets. We first applied the
flow cytometry-based "“gating strategy” on a combination of cell-surface markers and immunoglobulin-specific
transcript counts to identify major immune cell lineages. Next, we explored the gene expression matrix following
this gating strategy to resolve cell subsets within each major immune lineage. The inclusion of this atypical
"gating strategy” step also allows for cell-doublet discrimination and dramatically enhances lineage-specific vari-
ation, which helps better capture biological signals within each cell lineage. Finally, we apply the SUPERR work-
flow to human blood and bone marrow cells and directly compare its performance to existing methods. We
demonstrate that SUPERR can leverage the power of each “omics” to identify major immune lineages more accu-
rately and reveal biologically-meaningful heterogeneity within each lineage that can be confirmed by flow cy-
tometry, facilitating the discovery of novel immune cell types.

RESULTS

Cell-surface proteins and immunoglobulin transcript counts identify major immune lineages
in human blood and bone marrow

We generated multi-omics single-cell datasets from 12,759 human peripheral blood mononuclear cells (PBMC)
and 7,426 human bone marrow (BM) cells from five healthy adult donors. As shown in Figure 1A, we simulta-
neously captured the following three omics: Total gene expression (GEX), 32 cell-surface proteins/antibody-
derived tags (ADT) (Table S1), and B-cell receptor (BCR) heavy and light chain V(D) repertoire (VDJ). The
SuPERR analysis workflow can be described in two major steps shown in Figure 1B: (1) a manual biaxial gating
based on the expression levels of well-stablished (Mahnke et al. 2010) cell-surface proteins (ADT) and total immu-
noglobulin (Ig) transcript counts to accurately identify antibody-secreting cells (ASCs), and (2) a subsequent sub-
clustering of each manually-gated lineage/population identified in step 1, using the GEX matrix.

For the first step of the SUPERR workflow, we normalized the cell-surface protein (ADT) data using the DSB
normalization method (Mulée et al. 2021). Next, we concatenated the normalized ADT matrix with the total
Ig-specific unique molecular identifier (UMI) counts from the V(D)J matrix, which describes the total number
of immunoglobulin-derived transcripts per cell. The integrated ADT/lg matrix was used to identify major
immune cell lineages before assessing their gene expression profile. Major immune cell lineages were
identified and classified using a well-established sequential gating strategy on biaxial plots (Figures 2
and 3A) widely used in conventional flow cytometry data analysis and readily available through the Opti-
mized Multicolor Immunofluorescence Panel (OMIP) publications (Mahnke et al. 2010). Because ASCs,
also known as plasma cells, produce and secrete large quantities of immunoglobulin, they could be accu-
rately identified based on their Ig-specific transcript counts (Figures 2 and 3A). Of note, the semi-super-
vised SUPERR workflow was able to readily identify a rare cell cluster containing as few as eight plasma cells
in the human PBMC sample. As we show below, such a rare population of plasma cells cannot be identified
using current conventional unsupervised workflows.

In the analysis of PBMC samples, we defined gates for six major immune cell lineages based on well-estab-
lished markers (see Table 1): plasma cells, B cells, NK/NKT/MAIT/y3T cells, Monocytes, CD4*T cells, and
CD8T cells (Figure 2A, black borders). In the analysis of the BM samples, we defined gates for five major
lineages (see Table 2): CD138— plasma cells, CD138+ plasma cells, B cells, myeloid cells, and
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Figure 2. SuUPERR workflow applied to peripheral blood mononuclear cells (PBMCs)
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(A) "Gating strategy” approach to identify major cell lineages on biaxial plots based on surface markers (ADT) and V(D)J data. Total Ig transcript: sum of Ig
UMIs in the VDJ matrix. Gates for major lineages are indicated as black outlines and black text. Gates for downstream cell-identity validation are indicated as

golden outlines and golden text.

(B) Cross comparison between the manually-gated major lineages and the final SUPERR clusters.
(C) The average expression levels of surface markers (ADT) and VDJ features for the final SUPERR clusters. Only the ADTs/VDJ features that were not used for

sequential gating are included. All gates: all cell types defined by sequential gating. SUPERR clusters: clusters generated by clustering on each major cell

types. PCs: plasma cells. See also Figures ST and S3.
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Figure 3. SUPERR workflow applied to bone marrow (BM) cells

(A) "Gating strategy” approach to identify major cell lineages on biaxial plots based on surface markers (ADT) and V(D)J data. Total Ig transcript: sum of Ig
UMIs in the VDJ matrix. Gates for major lineages are indicated as black outlines and black text. Gates for downstream cell-identity validation are indicated as
golden outlines and golden text.

(B) Cross comparison between the manually-gated major lineages and the final SUPERR clusters.

(C) The average expression levels of surface markers (ADT) and VDJ features for the final SUPERR clusters. Only the ADTs/VDJ features that were not used for
sequential gating are included. Non-productive: 1, if a cell were labeled as non-productive in the VDJ matrix and 0 if not. Productive VDJ: 1, if a cell was
labeled as productive in the VDJ matrix and 0 if not. All gates: all cell types defined by sequential gating. SUPERR clusters: clusters generated by clustering
on each major cell types. PCs: plasma cells. See also Figures S2 and S3.

hematopoietic stem and progenitor cells (HSPCs) (Figure 3A, black borders). Notably, the B cells identified
by the manual gating strategy using the cell-surface markers (ADT) were also present within the V(D)J ma-
trix, which validated our strategy of using ADT for cell-lineage classification (Figures S1, S2 and S3A). In
addition to the main cell lineages, our manual-gating strategy revealed other sub-clusters (Figures 2 and
3A, gray borders), which we used to validate the results from the downstream GEX-based clustering anal-
ysis. Our manual-gating strategy was further validated by high-dimensional flow cytometry analysis using
an aliquot of the same samples taken before the single-cell encapsulation (Figure S3B).
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Table 1. Cell-type classification and phenotype of PBMC clusters generated by the SUPERR workflow

SuPERR
Main lineage clusters Cell classification Phenotype Refs.
Plasma cells 1 Plasma cells CD19+/CD20-/highest levels (Shlomchik and Weisel 2012)
of Ig-specific transcripts
B cells 2 Naive-I IgD+/IgM+/CD27-/CD95- (Glass et al., 2020; Kaminski et al., 2012;
(CD19*, CD20%) 3 Naive-I| IgD+/IgM+/CD27-/CD95-/ Tiller et al., 2007; Mehtonen et al., 2020)
HLA-DQA2+
4 Switched Memory IgD-/IgM-/CD27+/CD95+
5 Unswitched Memory IgD+/IgM+/CD27+
6 IgMP IgMM/CD27-/CD95+/CD24-
NK/NKT/MAIT/ 7 NK-I CD16* KLRC3+/CD11b" (Poli et al., 2009; Evans et al., 2011;
vdT He et al., 2010; Lawand et al. 2017;
(CD56%) 8 NK-Il CD16" CX3CR1+ Cai et al., 2020; Wong et al., 2019)
9 NK-IIl CD16* CX3CR1+
10 NK CD56" CD16~
11 MAIT cells TRAV1-2+
12 NKT CD4+/CCR7+
13 iINKT TRAV24+/CD8+
14 NK-IV CD16* cD11bM
15 v T cells TRGV9+/TRDV2+
16 NK-V CD16* (dividing) MKI67+
Monocytes 17 Classical-l CD16-/CD68+/HLA-Drhi (Villani et al., 2017)
(CD14"") 18 Classical-ll CD16-/CD68+/HLA-DR"™
19 Classical-Ill CD16-/CD68+/HLA-DR'/
CD11b"
20 Non-classical CD16+/CD147'°/CD68+/HLA-DR"
21 Intermediate/DCs CD16™/CD14"™/CD68+/HLA-DR"/
CD11c+
CD4 T cells 22 Naive-I CCR7+/SELL+/CD27+/CD95-/ (Blaser et al., 1998; Hashimoto et al., 2019;
cp3h Juno et al., 2017; Kumar et al. 2018;
(CD3*, CD4%) 23 Naive-I| CCR7+/SELL+/CD27+/CD95- Zhu et al. 2010)
24 Tem—Tem CCR7'°/SELL+/CD27+/CD95+
25 CTL-I KLRB1+
26 CTL-II KLRB1+/GZMA+/GZMK+
27 Tem CCR7'°/SELL-/CD27-/CD95+/
LGALS1+/S100A4"
28 Treg FOXP3+/CTLA4+/CD95+/
HLA-DRB1+
29 Treg Naive FOXP3+/CD45RA+/CD95-
30 Temra CD45RA+/NKG7+/GNLY+/
GZMB+
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Table 1. Continued

SuPERR
Main lineage clusters Cell classification Phenotype Refs.
CD8 T cells 31 Naive-I CCR7+/CD45RA+/CD27+/ (Braun et al. 2015; Martin and Badovinac 2018)
CD127+
(CD3*, CD8a+) 32 Tem-l CCR7+/SELL+/CD27+/CX3CR1-
33 Tem CCR7-/SELL+/CX3CR1+
34 TLE CCR7-/SELL+/CX3CR1+/ZNF683+
35 MAIT cells TRAV1-2+
36 Naive-II CCR7+/CD45RA+/CD27"/
CD127+
37 Temra CD45RA+/CCR7-/CD27-/CD127-
38 Tem-lI CCR7+/SELL+/CD27+/CX3CR1-/
TNFSF10+

Gene expression (GEX) and cell-surface (ADT) markers used to classify the lymphoid and myeloid cell populations in the human peripheral blood mononuclear
cells (PBMC). NK: Nature Killer cells; NKT: NK T cells; iNKT: invariant NKT; v T: gamma-delta T cells; Tcm: central memory T cells; Tem: effector memory T cells;
CTL: cytotoxic T lymphocytes; Treg: regulatory T cells; Temra: effector memory T cells expressing CD45RA; TLE: long-lived effector memory T cells; MAIT:

mucosal-associated invariant T cells. See also Figures S5-S9.

Cell-doublet discrimination

By identifying the major cell lineages as the first step of the SUPERR workflow we were able to accurately
identify and remove cell doublets. For example, we applied flow cytometry-style biaxial feature plots on
the ADT data to identify cell barcodes that co-expressed features of two or more major lineages
(Figures ST and S2). Cell barcodes containing ADT signals (cell-surface markers) known to belong to
more than one well-defined immune lineage (e.g., co-expression of B-cell/CD19 and T-cell/CD3 markers)
were considered doublets and removed from the downstream analysis. Figures ST and S2 illustrate the
gating strategy used for removing doublets from the PBMC and BM data sets, respectively. In our bench-
marking analysis below, we further validate and compare our cell-doublet discrimination method here to
other recently-developed algorithms.

Selection of major cell lineages prior to GEX analysis enhances true biological signals
Notably, the assignment of major cell lineages via a supervised manual-gating approach (ADT + V(D)J
matrices) before performing the principal component analysis (PCA) on the GEX matrix, revealed that
much of the data variation captured by the PCA is cell-lineage specific (Figure 4). Key variables,
including ribosomal transcript content, mRNA abundance, and total unique gene counts, vary signifi-
cantly among the cell lineages (Figure 4, ANOVA p < 2.2e-16). Even though our initial step of sample
integration only outputted data for 2000 highly variable genes (HVGs), meaning that the subsequent
PCA for the various lineages were performed on the same set of HVGs, the PCA can be interpreted as
a feature selection step. For example, the PCA analysis focusing only on a pre-defined subset of cells
(i.e., pre-gated major lineages) is able to produce principal components driven by biologically-mean-
ingful variations that occur only within that lineage. In contrast, the principal components computed
based on all cells are primarily driven by variations among different lineages. As such, enhancing
the lineage-specific biological signals should also capture variations originated from differences in
cellular states within a particular major lineage. Thus, lineage-specific variations, including variations
because of differences in cellular state, will be reflected in the corresponding PCA, which in turn
will be reflected in the downstream clustering and visualization (UMAP/t-SNE) results for the corre-
sponding lineage. In sum, our pre-selection of major cell lineages before GEX clustering generates
lineage-specific principal components that are biologically-meaningful, improving the resolution of
the downstream GEX clustering analysis.

SuPERR reveals greater heterogeneity within major immune lineages
Human peripheral blood

Gating for major cell lineages using the ADT and V(D)J matrices revealed six distinct populations within the
PBMC sample (Figure 2A, black outlines). We then further explored each major lineage by generating

iScience 25, 105123, October 21, 2022 7




¢? CellPress

OPEN ACCESS

iScience

Table 2. Cell-type classification and phenotype of BM clusters generated by the SUPERR workflow

SuPERR
Main lineage clusters Cell classification Phenotype Refs.
Plasma cells 1 Ig"/PRDM1- Igh/PRDM1- (Glass et al., 2020;
(CD138-) 2 HLA-DR"/SDC1'°/G2-M phase ~ HLA-DR"/SDC1'°/G2-M phase Halliley et al., 2015)
Plasma cells 3 IRF4"/PDL1* IRF4"/PDL1*
(CD138+) 4 XBP1"/SDC1"/PDL1" XBP1"/SDC1"/PDL1M
B cells 5 T3/Naive CD21+/IL4R+ (Zhou et al., 2020;
(CD19*, CD20%) 6 Small pre-B/pre-BII-I RAG+/IGKC+ Becker et al., 2018)
7 Small pre-B/pre-Bll-II RAG+/IGLC3+
8 Switched Memory CD21+/CD27+/IGHA1+/
IGHG1+
9 T1/T2 RAG-/CD10+/CD207"°
10 Large pre-B/pre-Bll CD34-/DNTT-/MKI67 +
11 Early pro-B/pre-pro-B CD34+/DNTT"
12 Activated naive CD21+/NR4A1+/DUSP2+
13 Late pro-B/pre-BI CD34+/DNTT™
HSPCs 14 Pre-reticulocytes GYPA™/HBB+ (Jin et al., 2019; Kuramasu et al., 1998;
(Lineage-, CD347) 15 Pre-pDCs CD123+/CD304+/CD303+/ Kallberg and Leanderson 2008;
CSF2RA+ Dzierzak and Philipsen 2013;
16 GMP CD34+/FLT3+/CD164+/ Xie etal., 2020; Lai et al., 2017)
CD45RAM/Cell cycle
17 MEP CD34+/GYPA-/ITGA2B+
18 Reticulocytes GYPA-/HBB+/HBM-
19 Pro-Neutrophil CD34+/MPO+/ELANE+
20 Reticulocytes GYPAM GYPA"/HBB+
21 HSC/MPP CD34+/AVP+/CD38-
22 Erythrocytes GYPA-/HBB+/HBM-
23 Pro-erythroblast GYPA'°/HBB+/HBM+
24 CMP CD34+/FLT3+/CD164+
25 Basophil/Mast cell progenitors CD34+/CLC+/HDC+
Myeloid/Granuloid 26 Neutropoiesis MPOM/ELANE" (Yang et al., 2014; Kawamura
(CD11c+) 27 Monopoiesis CD68"/CD14" etal, 2017; Evrard et al., 2018)
28 Monopoiesis CD68"°/CD14™
29 Neutropoiesis MPO™ELANE™
30 Monopoiesis CD68°/CD14'"°
31 Monopoiesis CD68™/CD14™
32 Neutropoiesis MPO'*/ELANE"®/MKI67"
33 Monopoiesis CD68"/CD14"
34 Progenitors FLT3+/CD74+

Gene expression (GEX) and cell-surface (ADT) markers used to classify the plasma cells, B cells, myeloid and granuloid cells, and the hematopoietic stem and
progenitor cells (HSPCs) in the human bone marrow (BM). Ig: immunoglobulin transcripts; G2-M phase: genes involved in the cell cycle; T1/2/3: Transitional B

cells; pDCs: plasmacytoid dendritic cells; GMP: granulocyte-monocyte progenitor; MEP: megakaryocyte-erythroid progenitor; HSC: hematopoietic stem cell;
MPP: multipotent progenitor; CMP: common myeloid progenitor. See also Figures S4, S10, and S11.

subclusters using information from the GEX matrix. Briefly, we selected a set of HVGs from within the pre-
gated population. The counts of selected genes for each cell were normalized by library size and then nat-
ural-log transformed, followed by per-gene Z-score scaling. We then applied a singular value decomposi-
tion (SVD) implementation of principal component analysis (PCA) to reduce the dimensionality. Left singu-
lar values were taken as gene scores and right singular values as cell scores. Next, we generated a K-nearest

8 iScience 25, 105123, October 21, 2022
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Figure 4. Cell-type-specific variations in gene expression

Average expression

(A) "Gene count” represents the number of unique genes expressed by each cell type. Error bars in boxplots are the 95%

confidence interval.

(B) “UMI count” represents the total mMRNA abundance expressed by each cell type.

(C) "Percent of Ribosomal” represents the percentage of ribosomal gene UMI counts expressed by each cell type. The
grey line shows the mean expression level for each feature in the total PBMC and BM samples.

(D) Left panel: the top 30 (red points) and the top 300 (grey points) highly variable genes (HVGs) from total PBMC. The
points under the red dashed line fall below the top 300 HVGs of total PBMC. Right panel: the top 30 HVGs from PBMC-
derived B cells (green points) displayed with the top 300 HVGs from total PBMC (grey points). Student's t-test was used to
compare the mean of each cell type with the mean of the total PBMC/BM. *p<0.05, **p < 0.01, ***p < 0.001,

****n < 0.0001, unpaired, two-tailed. Multiple-group ANOVA test for (A), (B), and (C): p < 2.2e-16. PCs: plasma cells.
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Figure 5. SUPERR workflow identifies four subsets of human plasma cells in the BM
(A) UMAP representation of the four bone marrow (BM) plasma cell clusters.
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Figure 5. Continued

(B) Top panel: percentage of lg-specific transcripts (UMI) expressed in each plasma cell subset. Bottom panel: expression
levels (sum) of plasma cell genes (see STAR Methods) after removing lg-specific UMIs and re-normalizing the data matrix.
Error bars in boxplots are the 95% confidence interval.

(C) Expression levels of individual plasma cell genes, cell-cycle score after removing Ig-specific UMIs (See STAR Methods)
and ADT. The grey line shows the mean expression level across all clusters.

(D) The antibody isotypes and subclasses expressed by each plasma cell subset.

(E) The connected lines on the Circus plot describe shared clones between clusters (clonal lineage was identified by the
identical V and J gene usage, identical CDR3 nucleotide length, and >85% homology within the CDR3 nucleotide
sequence).

(F) Reactome Pathway Database analysis (see STAR Methods) shows unique biological processes that define each plasma
cell subset.

neighbors’ graph, followed by Louvain community detection (see STAR Methods section for detailed
description). Following these steps, we obtained the subclusters for each major lineage, herein called
SUPERR clusters. At a Louvain resolution of 0.8, SUPERR identified 38 clusters in human PBMC, with each
major lineage broken out into two or more subclusters, representing sub-lineage heterogeneity
(Figure 2B).

We further investigated the 38 SUPERR clusters by exploring the expression levels of cell-surface proteins
(ADT matrix) (Figures 2C and S5). Some ADT markers were lineage-specific (e.g., CD19 was used to classify
B cells and Ig-specific transcript counts were used to classify plasma cells) and used to confirm SuPERR cell
classification accuracy. Other markers displayed heterogeneous expression within lineages and were pri-
marily used for defining and confirming subcluster identity. We integrated the ADT and GEX data matrices
by simple concatenation to generate a joint matrix for SUPERR cluster identification (Figures 5 and S4-S11).
We confirmed the heterogenous clusters as biologically meaningful using well-established cell-surface
lineage markers (Table 1). For example, five subclusters were identified within the B-cell major lineage,
all of which could be mapped back to previously described B-cell subsets (Garimalla et al., 2019; Glass
etal., 2020; Kaminski et al., 2012; Tiller et al., 2007) (Figure S5). Similarly, several subclusters were identified
within the T-cell and NK-cell major lineages (Figures S7-59), including T-regulatory cells (Treg) defined as a
subtype of CD4'T cells with high expression of surface CD25 (ADT matrix) and FOXP3 transcripts (GEX
matrix), and low expression of surface CD127 (ADT matrix) (Figures 2A and S7). Finally, five subclusters
of monocytes were identified, including the previously described classical, non-classical, and intermediate
monocyte subsets (Figure S6é).

Remarkably, SUPERR readily identified a cluster of rare plasma cells (ASCs) in the blood even though we
captured only eight plasma cells within this cluster (Figure 2). This level of resolution and accuracy in iden-
tifying rare plasma cells was possible by analyzing the total Ig-specific transcript counts from the V(D)J ma-
trix, which unlike the analogous Ig transcripts from the GEX matrix, provide a more accurate count of the
total productive Ig expression per cell. As plasma cells are defined by their unique ability to produce large
quantities of Ig transcripts, they were readily identified based on a ~2.5 logo-fold increase in total Ig-spe-
cific UMI counts compared to B cells (Figure 2A).

Human bone marrow

SuPERR identified 34 unique clusters in human BM cells (Figures 3A and 3B). Of note, SUPERR matched the
various B-cell subclusters to the different stages of B-cell development known to occur in the human BM
(Mehtonen et al., 2020) (Figure S4). For example, the cell-surface expression of CD10, with DNTT and
CD34 gene expression (GEX) transcripts, classified cluster 11 and cluster 13 as Early Pro-B (a.k.a., pre-
pro-B) and Late Pro-B (a.k.a., pre-Bl), respectively. The lack of DNTT mRNA transcripts in cluster 10 indi-
cates a Large Pre-B stage (a.k.a., pre-Bll), which is followed by the Small Pre-B stage (a.k.a., pre-Bll)
represented by clusters 6 (VPREB1M) and 7 (VPREB1'°). The Transitional (T)1/T2/T3 and Naive B cells could
be identified by their surface expression of CD21 (Zhou et al., 2020). Finally, the mature class-switched
memory B cells were identified based on their expression of IGHA1/IGHG1 immunoglobulin transcripts
and cell-surface CD27 (Becker et al., 2018) (Figure S4). Similarly, the SUPERR workflow also identified the
developmental pathway of neutrophils, monocytes, and erythrocytes starting from the most undifferenti-
ated population of hematopoietic stem cells (HSC) and multipotent progenitors (MPP) expressing CD34
and AVP transcripts (but lacking CD38) (Figures S10 and S11). The classification results for the BM subclus-
ters are summarized in Table 2.
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SuPERR workflow reveals new subsets of antibody-secreting cells in the human bone marrow

The SuPERR workflow readily and unambiguously identified four biologically distinct subsets of human
ASCs (a.k.a., plasma cells) in the adult bone marrow (BM) of healthy donors (Figures 3 and 5). The determi-
nant feature of a plasma cell is its ability to produce and secrete large quantities of immunoglobulins (Ig)
(i.e., antibodies). The SUPERR workflow leverages this unique plasma cell feature by quantifying the abso-
lute UMI counts of Ig-specific genes (IGH + IGL) from the V(D)J repertoire matrix (Figure 3A). Next, we inte-
grate the Ig UMI count matrix to the ADT matrix we used to pre-gate major lineages (see above) and apply
the same semi-supervised gating strategy on biaxial plots to identify cells with high Ig UMI counts. Unlike
the GEX matrix, the lg-specific UMI counts from V(D)J matrix provides a more accurate count of the pro-
ductive lg transcripts produced by plasma cells as the V(D)J data matrix is generated from a separate library
using only lg-specific primers (Zheng et al., 2017).

Remarkably, the number of total Ig-specific transcripts (UMl counts) detected in plasma cells is
~2.5 logio-fold higher than in B cells (Figures 3A and 3C), allowing for an unambiguous identification of
total plasma cells. Next, we separated the total plasma cells into two subsets, based on the cell-surface
expression of CD138 (ADT matrix), a canonical plasma-cell marker expressed by some, but not all, BM
plasma cells (Halliley et al., 2015). Finally, we used the GEX matrix to further subdivide the CD138+ and
CD138- plasma cell subsets based on their transcriptomic profile, revealing a total of 4 distinct subsets
of human plasma cells (Figures 3 and 5).

To facilitate the identification of the differential gene expression that distinguish each of the four plasma
cell subsets, we first removed from the GEX matrix all the mRNA transcripts derived from immunoglobulin
genes (i.e., we removed IGHV, IGKV and IGLV genes). The rationale is that immunoglobulin genes repre-
sent more than 50% of the total mMRNA transcripts (UMI counts) recovered from plasma cells. We then log-
normalized the immunoglobulin-depleted GEX matrix and performed differential gene expression (DGE)
analysis using the Wilcoxon Rank-Sum Test followed by Bonferroni correction. The resulting differentially-
expressed genes readily defined unique biological processes for each plasma cell cluster (Figure 5). Cluster
1: CD138-/Ig"/PRDM1-; cluster 2: CD138-/HLA-DR"/SDC1'°/G2-M phase; cluster 3: CD138+/IRF4-/PDL1+,
cluster 4: CD138+/XBP1"/SDC1"/PDL1" (Figures 5A and 5C). Clusters 2 and 4 show characteristics similar
to previously identified human BM plasma cell subsets, described as Fraction A and Fraction B, respectively
(Halliley et al., 2015). Notably, cluster 1 represents a unique plasma cell subset, in that >75% of its total
mRNA transcripts represent immunoglobulin genes (Figure 5B). This large proportion of immunoglobulin
gene transcripts indicates a high metabolic activity that is geared towards producing and secreting anti-
bodies. Indeed, pathway analysis (Reactome Pathway Database) (Jassal et al., 2020) using the DGE list
for cluster 1 revealed signals mainly for the metabolism of proteins (Figure 5F).

Surprisingly, we found that not all plasma cell clusters express the canonical plasma cell genes. Plasma cells
develop from activated B cells through a dynamic cell-differentiation process, leading to the down regu-
lation of B-cell identity genes, such as PAX5, and up-regulation of well-described plasma-cell genes,
including PRDM1, SDC1, XBP1, and IRF4 (Halliley et al., 2015). These genes are considered canonical
plasma-cell genes and, hence, they are used in scRNA-seq experiments to identify and classify plasma cells
based on their transcriptomics (GEX matrix). However, the plasma cell cluster 1 does not express detect-
able levels of IRF4 and PRDM1. The absence of these canonical genes in cluster 1 was not because of
the overrepresentation of immunoglobulin (Ig) genes because IRF4 and PRDM1 were not detected even
after normalizing the GEX matrix without the immunoglobulin genes (Figure 5C).

By comparing the immunoglobulin isotypes and subclasses (IgM, IgD, 1gG1-4, IgA1-2, IgE) expressed by
each plasma-cell subset identified by SUPERR, we found that cluster 2 contains plasma cells of multiple iso-
types/subclasses. In contrast, cluster 1is more homogeneous, containing mainly IgG1 and IgA1 (Figure 5D).
Furthermore, we observed that cluster 1 is composed of clonal plasma cells (defined by their IGH CDR3
amino acid sequences) that are shared among clusters 3 and 4 (Figure 5E). Finally, pathway analysis (Reac-
tome Pathway Database) revealed unique biological processes and genetic programs that define each
plasma cell subset (Figure 5F). Notably, cluster 4 expresses genes involved in cell cycle and programmed
cell death, whereas cluster 3 appears to be actively responding to environmental stimulation.

In sum, the SUPERR workflow readily and unambiguously identified four biologically-distinct human
plasma cell subsets in the adult BM. These findings further support the need for comprehensive
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multi-omics single-cell data integration and reveal the potential shortcomings of relying solely on one
omics data type (i.e., transcriptomics) to identify and classify cell (sub)types. In the following sections,
we provide specific examples in which SUPERR workflow can outperform existing approaches.

Benchmarking of SUPERR against current methods developed to remove cell doublets

As we described above, the first step of the SUPERR workflow, in which we use cell-surface markers (ADT)
and V(D)J gene counts in sequential biaxial plots to identify major cell lineages, also allows for accurate
cell-doublet discrimination (Figures S1 and S2 and 6A and 6B). Our SUPERR approach successfully identi-
fied and removed 370 cell doublets in the PBMC sample. In contrast, standard/conventional approaches of
trimming out cell barcodes with very high mRNA transcripts (e.g., removing cell barcodes with greater than
the mean UMI value +4 standard deviation) (Ocasio et al., 2019) identified only 42 doublets. In the BM,
SuPERR identified 108 cell doublets, and the conventional approach identified only one cell doublet (Fig-
ure 6A). Strikingly, every plasma cell we identified in PBMCs would have been trimmed/removed by the
conventional approach of removing cells with very high mRNA transcripts (i.e., mean +4 SD UMI counts)
(Figure 6A). In contrast, the SUPERR workflow readily recognized the PBMC plasma cells as single cells con-
taining high UMI counts (Figure 6A). The plasma cell identity was further confirmed by the presence of a
single productive V(D)J repertoire usage and the lack of other major lineage markers. Thus, the true cell
doublets removed by SUPERR would otherwise be missed by conventional approaches and erroneously
included as single cells in downstream GEX analysis, as visualized on the UMAP plot (Figure 6C).

We further compared our approach with current computational methods specifically designed to remove
cell doublets in scRNA-seq datasets. First, we tested the standard workflow of scDblFinder (Germain et al.,
2021) and compared it with the cell doublets defined by the SUPERR method (Figure 6D). To validate the
cell doublets identified by both SUPERR and scDblFinder doublets, we used a set of well-defined gene
markers to calculate a cell-type score (see STAR Methods) and then projected these scores for each cell
barcode identified as doublets (Figures 6E and 6F). We showed that SUPERR and scDblFinder had good
agreement on doublets that expressed high scores for multiple major lineages. Although scDblFinder
outputted a larger number of cell doublets compared to the SUPERR workflow, the scDblFinder-specific
doublets did not show heterotypic patterns when compared against the singlets defined by both methods
(Figure S12), indicating potential false positives in the scDblFinder workflow. Most importantly, SUPERR
identified hundreds of validated cell doublets (i.e., cell barcodes that co-express markers, both mRNA
and cell-surface protein, of more than one cell lineage) that were missed by the scDblFinder workflow
(Figure 6D).

Benchmarking of SUPERR against commonly-used methods reveal reduced cell-type
misclassification, and superior ability to resolve and classify new cell types

We first compared our SUPERR workflow with the commonly-used Seurat package v3 (Stuart et al., 2019)
using default parameters. In the PBMC sample, Seurat v3 identified 24 clusters compared to 38 clusters
identified by the SuPERR workflow (Figure S14A). In the BM sample, Seurat v3 identified 22 clusters
compared to 34 clusters identified by SuPERR (Figure S15A). When we directly compared the cluster
assignment of each cell barcode (Figures S14A and S15A), multiple Seurat v3 clusters were further subdi-
vided by the SUPERR workflow into several biologically-meaningful clusters (Figure 5 and S4-S11). The
ability of the SUPERR workflow to identify greater and novel subsets of immune cells can be explained
by the advantages of pre-gating major immune cell lineages based on cell-surface markers and Ig-specific
transcripts before exploring the GEX matrix. As shown in Figure 4, pre-gating major lineages reveals the
gene variation that occurs only within the pre-defined lineage instead of gene variation observed across
all major lineages (Figure 4D).

Importantly, our benchmarking analysis reveals a significant number of cell-type misclassifications (i.e., a
single cluster containing cells from different major lineages) generated by the default Seurat v3 workflow.
For example, Seurat v3 generated three clusters (5, 9, and 15) containing a mixture of cell lineages,
including CD8"T cells and NK cells (Figure S14). In contrast, SUPERR correctly clustered and classified these
cells separately. Similarly, Seurat v3 cluster 3 mixed CD4" and CD8"T cells, whereas SuPERR correctly iden-
tified and separated these different cell types (Figure S14). Notably, such cell-type misclassification artifacts
are not rare and commonly occur when simultaneously clustering all cells in high-dimensional space
(Orlova et al. 2018; Altman and Krzywinski 2018) using the GEX data matrix as performed by most, if not
all, scRNA-seq analysis workflow.
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Figure 6. Cell-doublet identification by SUPERR using both surface markers and gene expression data matrices
(A) Distribution (gene count x total UMI) of cell doublets (left) and singlets (right) detected by the SUPERR approach. The red dashed lines show the threshold
used by some conventional approaches to exclude cells that express higher than mean+4SD of gene count and total UMI. Only the cells above the dashed
lines would have been excluded from the downstream analysis in conventional approaches (i.e., plasma cells in PBMCs, highlighted in the red circle, would
have been incorrectly excluded from downstream analysis).

) The number of unique genes (left panels) and the number of total UMIs (right panels) expressed by singlets and doublets in PBMC (top panels) and BM
bottom panels). The grey line shows the mean expression level across all clusters. Error bars in boxplots are the 95% confidence interval.
C) Cell doublets identified by the SUPERR workflow and projected on a UMAP, showing the cell doublets are spread across multiple clusters.
D) Venn diagram comparing the cell doublets identified by the SUPERR workflow and the ScDblFinder pipelines.
E) Proportion of heterotypic doublets identified and classified by SUPERR in PBMC.

F) Expression level of gene signatures (see STAR Methods) of heterotypic doublets defined by SUPERR and scDblFinder to confirm their cell identities. Red
points represent SUPERR-defined doublets. Green points are the cell doublets identified by both SUPERR and scDblFinder. Blue points represent
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scDblFinder-defined doublets, which were identified as singlets by SUPERR. The immune cell types were annotated by the SUPERR workflow. See also
Figures S1, S2, and S12.

One might attribute the improved performance of the SUPERR workflow to the fact that it utilizes additional
input data from other omics (i.e., ADT and V(D)J). Therefore, we further compared the SuPERR workflow
with two recently-developed pipelines that also integrate the information from both GEX and ADT data
for clustering cells. We compared the SUPERR workflow to the weighted nearest neighbor (WNN) approach
as implemented in Seurat v4 (Hao et al., 2021) and the similarity network fusion (SNF) as implemented in
CiteFuse (Kim et al., 2020) (Figures S14B and S14C and S15B and S15C). To better quantify the performance
of each data analysis workflow and to reveal the extent of unwanted cell-type misclassifications from each
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approach, we developed a new scoring system named Cell Fidelity Statistics (CFS) score (Babcock et al.,
2021). Briefly, we consider the biaxial feature plots of cell-surface markers (ADT) and V(D)J-derived Ig-tran-
script counts (Figures S1 and S2) to represent a “gold standard” as this iterative nature of SUPERR prohibits
cells from inappropriately co-clustering with a separate lineage. This approach is borrowed from the well-
established biaxial gating strategy of flow cytometry analyses (Mahnke et al. 2010). We then compare the
cell-type identity assigned to each cell barcode to those from a different workflow and consider the pro-
portion of cells that change identity, generating a cell fidelity metric. The proportion of misclassified cells
is reported as a "1-CFS score,” which provides a statistical measure of uncertainty in the cell-type assign-
ment steps of the compared workflow. For example, the PBMC and BM clusters generated by Seurat v3
showed a 1 - CFS score of 0.0694 and 0.0531, respectively, indicating that 6.94% of PBMCs and 5.31% of
BM cells were misclassified by the Seurat v3 (Figures 7A and 7B). Notably, the”1-CFS scores”for the
WNN (Seurat v4) and SNF (CiteFuse) approaches were lower than Seurat v3, indicating better agreement
between Seurat v4, CiteFuse and SUPERR and further highlighting the benefits of integrating additional
omics for single-cell analysis (Figures 7A and 7B). However, it is important to note that, similar to Seurat
v3, WNN and SNF approaches still generated cell-type misclassifications (Figures S14-517).

To compare the performance of SUPERR against WNN (Seurat v4) and SNF (CiteFuse), we calculated the
Average Silhouette Width (ASW) (Rousseeuw 1987) score to determine the optimal cluster resolution for
WNN, and k for SNF. However, the optimal ASW scores resulted in low resolution/k with exceedingly
few clusters, revealing insufficient heterogeneity and preventing direct comparisons with SUPERR (Fig-
ure S13). Therefore, we instead intentionally increased the cluster resolution to generate a total number
of clusters that is comparable across all methods. For example, the default Seurat v4 pipeline at a cluster
resolution 0.5 generated 34 and 29 clusters versus 38 and 34 clusters generated by SUPERR in the PBMC
and BM, respectively. In contrast, at a higher cluster resolution of 3, WNN generated 40 and 36 clusters
in the PBMC and BM, respectively. Our rationale was that by generating additional clusters from the
WNN approach we could observe improved cluster agreement with SUPERR. However, even at higher clus-
ter resolution and larger number of clusters, WNN was not able to identify a plasma cell cluster in the
PMBC, and could not distinguish plasma cell subclusters in the BM (Figures 7A and 7B and S14B and
S15B and S17). Similarly, the CiteFuse workflow was not able to identify plasma cells in the PBMC or
plasma-cell heterogeneity in the BM even after manually increasing the number of k (which is similar to
increasing cluster resolution) for their spectral clustering approach (Figures 7A and 7B and S14C and
S15C and S17). These results further support the SUPERR workflow and its ability to generate biologi-
cally-meaningful subclusters of cells while preventing cell-type misclassifications.

To further validate the ability of SUPERR to prevent cell-type misclassifications, we explored the purity of
the cell clusters generated by each approach independently. We explored the gene expression profile
(GEX) and cell-surface protein (ADT) expression for cells included in the most abundant PBMC cluster
(CDA T cells) generated by SUPERR, Seurat v3, Seurat v4, and CiteFuse (Figure S16A). As we show in Fig-
ure S16B, the CD4 T cell clusters generated by Seurat v3, Seurat v4, and CiteFuse contained substantial
cell-type misclassifications dominated by CD8 T cells and NK/NKT cells. In contrast, SUPERR-defined
CD4 T cell clusters showed higher overall purity (Figure S16B).

To determine whether cell-type misclassifications generated by the other approaches could confound
interpretation of downstream differential gene expression (DGE) analysis, we explored the PBMC clusters
generated by the WNN approach (Seurat v4) (Figure 7C). Because DGE analysis is a commonly-used
method to interpret biological differences between clusters or cell types, we hypothesized that running
DGE analysis on a WNN (Seurat v4) cluster containing cell-type misclassification could generate misleading
results even at low contamination (i.e., cell-type mixing) numbers. For example, the WNN-derived PBMC
cluster 4 contains mainly NK cells, but it is also contaminated/mixed with NKT and T cells. Indeed, by
analyzing the DGE list of the cluster 4 before removing the contaminating (NKT and T) cells, the TRGV10
gene appeared as highly expressed for this cell population (Figure 7C). However, TRGV10 is expressed
on gamma-delta T cells (Aliseychik et al., 2020), not on NK cells. These results indicate that the widespread
cell-type misclassification that is often observed in conventional data-analysis workflows can confound data
interpretation.

Finally, when comparing the new SuPERR-identified plasma cells with the other workflows, we observed
major differences. Although SUPERR readily and accurately identified a cluster of eight plasma cells in
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Figure 7. SuPERR identifies significant cell-type misclassifications in other commonly-used approaches

(A) Red points represent the peripheral blood mononuclear cells (PBMC) that were misclassified by either the conventional approach using GEX data only
(i.e., Seurat v3), or by more recent approaches using both GEX and ADT data, such as the WNN in Seurat v4, and the SNF in CiteFuse. The Cell Fidelity
Statistic (CFS, see STAR Methods) reports the fraction of correctly classified cells, the inverse of which is the fraction of misclassified cells (6.94% by Seurat v3,
5.16% by Seurat v4, 2.42% by CiteFuse).

(B) Red points represent the bone marrow (BM) cells that were misclassified by Seurat v3 (5.31%), WNN/Seurat v4 (5.12%), and SNF/CiteFuse (5.15%) as
determined by CFS. CFS scores show a progressive improvement in cell-type classification from Seurat v3 (GEX only) to Seurat v4 and CiteFuse, revealing
higher agreement between CiteFuse and gold-standard biaxial gating of cell lineages.

(C) The PBMC cluster 4 generated by the WNN method (Seurat v4) contains misclassified cells (i.e., a mixture of NK, NKT, and T cells) and was further
explored using the cell-surface (ADT) markers CD56 and CD3 (left panel). The Differential Gene Expression (DGE) analysis for cluster 4 (pink circle) compared
to “cleaned” NK cells (Venn diagram) shows the TRGV10 gene as a top hit. However, the TRGV10 gene is mostly expressed in CD3* gamma-delta T cells and

absent in NK cells (right panel). See also Figures S14-517.
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PBMCs (Figure 2A), the other pipelines (Seurat v3, WNN/Seurat v4, and SNF/CiteFuse) failed to identify
these rare cells (Figure S14). Unlike PBMC, BM cells contain significantly more plasma cells. In this case,
SuPERR identified four biologically distinct plasma cell clusters, whereas the other workflows identified
only one cluster (Figures 5 and S15). Of note, the plasma cell cluster generated by the Seurat v3 workflow
contained a mixture of cell types (i.e., cell-type misclassification), including B cells and HSPCs (Figure S15A).
In addition, all the workflows we tested have misclassified a fraction of the SUPERR-identified plasma cells,
as they appeared spread across multiple clusters (Figure S15).

To determine whether further optimizations in the analysis workflow would allow the other approaches
(Seurat v3, WNN and SNF) to identify the four SUPERR plasma-cell clusters in the BM, we performed a sec-
ond iteration of clustering (i.e., recursive approach/re-clustering) on the original BM plasma cell cluster
identified by both Seurat (v3 and v4) and CiteFuse. After the second iteration of clustering, Seurat (v3
and v4) and CiteFuse were able to identify more BM plasma cell clusters (Figure S17). However, the plasma
cells clusters remained as a mixture of contaminating B cells and HSPCs (Figure S17). For the fairness of
comparison, the parameters used for running the Seurat v3, Seurat v4, CiteFuse, and SUPERR workflows
were set as the default parameters described in STAR Methods (unless noted otherwise). And the re-clus-
tering approach on the original Seurat v3, Seurat v4 and CiteFuse clusters was limited to two iterations.

Taken together, the results from the benchmarking analysis show that the SUPERR workflow not only iden-
tifies more and novel clusters but also improves the clustering purity and the accuracy of biological
interpretation.

DISCUSSION

A core component of a single-cell RNA-seq analysis is the identification and classification of cell types. The
most popular and widely-used approaches rely on principal component analysis (PCA) derived from a set of
HVGs, followed by nearest neighbors graph-based clustering. The resulting clusters are then assignedto a
cell type and biological function via manual annotation, using the mRNA transcript counts as a guide. In
existing approaches, the selection of HVGs for downstream clustering analysis is often dominated by line-
age-specific markers. These markers often capture variance that exists between cell lineages (e.g., the vari-
ance that distinguishes T cells from B cells) but often misses variance that exists within each cell lineage
(e.g., the variance that distinguishes the various T-cell subsets, including effector memory from central
memory, stem memory, naive, etc.) (Figure 4). Thus, an improved method to select HVGs within each
cell lineage is needed to discover new biologically-meaningful cell subtypes with high accuracy.

Moreover, selecting HVGs with high variance across all lineages (instead of within lineages) as the very first
step in data analysis (as in many existing approaches) carries the risk of inappropriately grouping cells with
similar gene expression but arising from separate cell lineages, resulting in cell-type misclassification (Fig-
ure 7). Cell-type misclassification often occurs in conventional scRNA-seq data analyses. It can be caused
by a mathematical phenomenon known as the curse of dimensionality (Altman and Krzywinski 2018; Trevor
Hastie et al., 2009; Orlova et al. 2018), inadvertently misguiding biological interpretations (Figure 7, 1-CFS
scores). The integration of additional omics, including cell-surface markers used in WNN (Hzao et al., 2021)
and SNF (Kim et al., 2020) approaches, can improve cell-type classification, however, it doesn’t eliminate
cell-type misclassification. Another contributing factor to cell-type misclassification is the presence of
cell doublets in the final dataset. Despite recent advances in microfluidics that precisely generate droplets
containing single cells, a significant fraction of the droplets can still contain more than one cell (Klein et al.,
2015; Cao et al., 2017). Current approaches to remove cell doublets rely on overly high mRNA transcript
counts (i.e., outliers) (Ocasio et al., 2019) and gene marker co-expression. However, as we show here,
many cell doublets contain average mRNA counts and can mistakenly be carried over to downstream anal-
ysis (Figure 6). More recent and sophisticated computational algorithms to identify cell doublets such as
scDblFinder (Germain et al., 2021) can still ignore true doublets and captures false positives (Figures 6
and S12).

To address these pitfalls of existing methods, we presented here the semi-supervised SUPERR workflow. In
SuPERR, we simultaneously apply information gained from triple-omics sequencing, namely gene expres-
sion (GEX), cell-surface proteins measured by antibody-derived tags (ADT), and immunoglobulin transcript
counts from the V(D)J repertoire matrix. As a quality control measure and to prevent downstream cell-type
misclassification, the first step of SUPERR is to perform a “manual gating” similar to the standard flow
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cytometry analysis. ADT and V(D)J matrices can reliably classify cells into clearly distinct major lineages us-
ing well-established canonical markers. This manual gating step ensures that any downstream subclusters
are composed of a single lineage, allowing for a more accurate cell-type classification and data interpre-
tation. The second step of the SUPERR is to examine each lineage independently, both from one another
and from the first gating steps. Rather than selecting genes with high variance across all cell lineages, we
select HVGs only from within each manually-gated lineage. These HVGs inform a PCA and subsequent
nearest-neighbors graph-based clustering. Our PBMC and BM samples analysis show that the SUPERR
approach can reveal additional cell types (and likely cell states) compared to other existing approaches.
We reason that this is mainly because of the ability of SUPERR to select only the relevant HVGs for each
well-defined lineage and ignore extra sources of variance that may not be informative within each cell
lineage.

To ensure the generalizability of our biaxial gating approach so that SUPERR can be broadly applicable
regardless of the type of sample/tissue, we included in our ADT panel well-established cell-surface markers
that have been previously validated using the gold-standard flow cytometry approach (Figure S3). These
cell-surface markers can readily (and accurately) identify major cell lineages, including immune lineages
(i.e., CD45"), non-immune lineages (i.e., CD457), epithelial lineages (i.e., EFCAM+), and other lineages
regardless of the origin of the sample. Of note, many lineage-specific cell-surface markers have been vali-
dated and published in open-source journals, including the collection of cell-type classifications available
as optimized multicolor immunophenotyping panels (OMIPs) (Mahnke et al. 2010). These well-character-
ized cell-surface markers can be included as part of the ADT panels used in any experimental design to
identify major immune and non-immune lineages. Thus, new datasets with different combinations of
antibody (ADT) panels can still follow a similar SUPERR gating strategy as long as the panel includes known
lineage markers. Furthermore, we expect the SUPERR approach to improve the ability to identify novel cell
subsets and cellular states (within each major lineages) for which cell-surface markers have not yet been
characterized. For example, a novel subset (cluster) of B cells can be discovered within the major B-cell line-
age (i.e., within cells expressing surface CD19). In the (unlikely) event that the novel B-cell subset doesn't
express CD19, the novel subset should still form a separate cluster within another pre-defined gate based
on its cell-surface marker expression. In this scenario, the additional omics (GEX and VDJ) in our workflow
would reveal the B-cell identity of the novel B-cell subset.

Future studies to optimize the initial biaxial manual gating step might include developing an automated
semi-supervised clustering algorithm to readily identify major cell lineages using the ADT and V(D)J
data matrices. Automated algorithms that still rely on biaxial projections, such as the exhaustive projection
pursuit (EPP) approaches (Friedman and Tukey 1974) might provide more accurate results compared to
fully unsupervised methods in high-dimensional space, which might suffer from the curse of dimensionality
(Altman and Krzywinski 2018; Trevor Hastie et al., 2009; Orlova et al. 2018). In fact, we recently implemented
an automated EPP approach to identify cell subsets using cell-surface markers in high-dimensional flow
and mass cytometry datasets (Meehan et al., 2019). Although this new subset identification and character-
ization (SIC) pipeline was specifically developed for flow and mass cytometry datasets (Meehan et al., 2019),
future studies should aim to optimize such pipelines to process multi-omics single-cell ADT and V(D)J
matrices as an alternative automated step in the SUPERR workflow.

We recognize the difficulty and expense of generating triple-omics data for every sample, as well as the
limitations of applying the SUPERR approach to older datasets for which ADT and V(D)J matrices are un-
available. Also, some samples might not include B and/or T cells, which means there will not be V(D)J
matrices. Thus, to broaden the application of the SUPERR principles to datasets without triple-omics avail-
able, we propose a gene-based (GEX) recursive analysis approach (i.e., re-clustering), which carries some of
the same benefits of SUPERR. When we applied this recursive approach to the same BM dataset explored
by the SUPERR we identified improvements, but also limitations (Figure S17). Focusing on the plasma cells,
the recursive approach applied to other existing workflows, which only identified one cluster of plasma cells
in the first clustering iteration, now generated more subclusters of plasma cells. However, the re-clustering
approach was not able to accurately identify biologically-meaningful plasma cell clusters and, mostimpor-
tantly, itwas not able to isolate the plasma cells from the other contaminating cells. Thus, the resulting sub-
clusters of plasma cells represented a mixture of plasma cells, B cells, and HSPCs (Figure S17). In contrast,
SuPERR readily and accurately identified four subsets of plasma cells that were confirmed based on the
three omics (GEX, ADT, and VDJ), including the high antibody transcript counts (~2.5 logqo-fold higher
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antibody transcripts than B cells). Moreover, the plasma cell subsets identified by SuPERR are of great bio-
logical importance as revealed by the Reactome pathway analysis (Figure 5). Therefore, integrating three
omics in the SUPERR workflow provides unique information that recursive clustering strategies for defining
HVGs cannot achieve. Our conclusions here agree with the latest implementation of Seurat v4 (Hao et al.,
2021) and CiteFuse (Kim et al., 2020), which also integrate ADT measurements in their analysis pipeline,
further supporting the SUPERR approach of multi-omics integration for defining cell clusters.

Taken together, we developed a comprehensive multi-omics single-cell data integration and analysis work-
flow that mitigates or resolves pitfalls in existing approaches and allows for the discovery of novel and bio-
logically-meaningful cell subsets in the human immune system.

Limitations of the study

The SUPERR approach was designed to minimize cell-type misclassifications and reveal additional hetero-
geneity in multi-omics single-cell assays that include at least GEX and ADT data. Hence, the SUPERR work-
flow is limited to datasets in which cell-surface protein (ADT) data in available. One of the steps in the
SuPERR workflow is the user-defined sequential gating performed on select cell-surface markers (ADT)
that are highly expressed and lineage-specific, similar to Hi-D flow cytometry. However, this sequential
manual gating could introduce user bias. Automating the sequential gating step could overcome this lim-
itation. In fact, we have developed an automated sequential gating approach for Hi-D flow and CyTOF data
(Meehan et al., 2019), which could be implemented for ADT data in future versions of SUPERR. Finally, the
ADT datasets from multiple experiments may contain batch effects, preventing data concatenation before
manual gating. In this scenario, we recommend performing the sequential manual gating in each sample
individually before data integration, even though it could be time consuming when there are multiple sam-
ples. In our studies here, the ADT datasets did not show any significant batch effects. Hence, we were able
to concatenate all tissue-specific samples before manual gating.
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PE Mouse Anti-Human CD34 (clone 8G12)
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BD Biosciences

BD Biosciences

Cat# 348057; RRID:
Cat# 561314; RRID:
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Biological samples

Human Adult Peripheral Blood

Human Adult Bone Marrow

Emory University’s Children’s Clinical and
Translational Discovery Core

Emory University; AllCells

N/A

N/A

Critical commercial assays

Chromium Single Cell 5’ Library & Gel Bead
Kit
Chromium Single Cell A Chip Kit

Chromium Single Cell V(D)J Enrichment Kit,
Human B Cell

Chromium Single Cell 5’ Library Construction
Kit

Chromium Single Cell 5" Feature Barcode
Library Kit
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10X Genomics

10X Genomics

10X Genomics

10X Genomics

10X Genomics

Cat# 1000006
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Cat# 1000016

Cat# 1000020

Cat# 1000080
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EasySep Direct Human PBMC Isolation Kit

EasySep Human B-Cell Enrichment Kit Il
without CD43 Depletion

Custom oligonucleotide antibody conjugation

Stem Cell Technologies

Stem Cell Technologies

Expedeon

Cat# 19654
Cat# 17963

Custom

Deposited data

Raw and analyzed data

This paper

GEO: GSE181543

Oligonucleotides

/5AmMC12/CGGAGATGTGTATAAGA
GACAGNNNNNNNNNN-GGACGCAAC
TTAAGA
-NNNNNNNNNCCCATATAAGA*A*A
/5AmMC12/
CGGAGATGTGTATAAGAGACAGNN
NNNNNNNN-GTGCAAGAGTTGGCG
-NNNNNNNNNCCCATATAAGA*A*A
/5AMMC12/CGGAGATGTGTATAA
GAGACAGNNNNNNNNNN-GAA
GAAGCGTTATTC
-NNNNNNNNNCCCATATAAGA*A*A

/5AMMC12/CGGAGATGTGTATA
AGAGACAGNNNNNNNNNN-TAG
TTGACATGCCAT
-NNNNNNNNNCCCATATAAGA*A*A
/5AMMC12/CGGAGATGTGTATAAG
AGACAGNNNNNNNNNN-CGAGGT
ACATCTTGT
-NNNNNNNNNCCCATATAAGA*A*A
/5AMMC12/CGGAGATGTGTATA
AGAGACAGNNNNNNNNNN-CAC
TCCTTGACAGGT
-NNNNNNNNNCCCATATAAGA*A*A
/5AmMMC12/CGGAGATGTGTATA
AGAGACAGNNNNNNNNNN-GCC
AAGATCAGGTCC
-NNNNNNNNNCCCATATAAGA*A*A
3/5AmMMC12/CGGAGATGTGT
ATAAGAGACAGNNNNNNNNNN-
GGACGCAACTTAAGA
-NNNNNNNNNCCCATATAAGA*A*A

IDT

IDT

IDT

IDT

IDT

IDT

IDT

IDT

Custom

Custom

Custom

Custom

Custom

Custom

Custom

Custom

Software and algorithms

FlowJo v10.6

Cell Ranger v3.1.0

Seurat v4.0

DSB

Reactome pathway database

BD Biosciences

10X Genomics

Hao et al. 2021

Mulé et al. (2021)
Jassal et al., (2020)

https://www.flowjo.com/solutions/flowjo/

downloads/
https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/3.1/what-
is-cell-ranger
https://github.com/satijalab/seurat/
https://github.com/niaid/dsb

https://reactome.org/PathwayBrowser/
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scDblFinder Germain et al., (2021) https://github.com/plger/scDblFinder

Cell Fidelity Statistic (CFS) scores Babcock et al., (2021) https://github.com/Ghosn-Lab/BatchNorm
Custom scripts This paper Zenodo: https://doi.org/10.5281/zenodo.

7045077

RESOURCE AVAILABILITY
Lead contact

Further information and request for resources should be directed to and will be fulfilled by the lead contact,
Eliver E.B. Ghosn (eliver.ghosn@emory.edu)

Materials availability

This study did not generate new unique reagents.

Data and code availability

® Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of pub-
lication. Accession numbers are listed in the key resources table.

e All original code has been deposited at Zenodo and is publicly available as of the date of publication.
DOls are listed in the key resources table.

® Any additional information required to reanalyze the data reported in this article is available from the
lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and specimen collection

Peripheral blood samples (n = 3; 2F/1M) were collected from healthy adult donors through Emory Univer-
sity’s Children’s Clinical and Translational Discovery Core (CCTDC). Bone marrow samples (n = 2; TM/1F)
were collected from healthy adult donors through Emory University Hospitals under IRBO0066294 or ob-
tained from AllCells (Alameda, CA). Subjects were between 20 and 50 years of age. All subjects provided
written informed consent before sample collection.

METHOD DETAILS

Cell preparation

Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral venous blood using EasySep™
Direct Human PBMC Isolation Kit (Cat # 19654). B cells were enriched from hip bone marrow (BM) using
EasySep™ Direct Human PBMC Isolation Kit (Cat # 19654) followed by EasySep Human B-Cell Enrichment
Kit Il without CD43 Depletion (Cat # 17963) following manufacture’s protocols. Up to 1 x 10° cells per donor
were incubated with Fc block (Miltenyi) on ice for 10 min, followed by staining with a mix of 31 oligo-con-
jugated (barcoded) antibodies (see Table S1 for full list) for 30 min onice in custom-made RPMI-1640 media
(def-RPMI-1640; deficient in biotin, L-glutamine, phenol red, riboflavin, and sodium bicarbonate), and con-
taining 3% newborn calf serum , followed by two washes in def-RPMI-1640/0.04% BSA. Cells were resus-
pended at a concentration of 1200-1500 cells/uL in custom RPMI-1640/0.04% BSA and passed through a
20-um nylon filter before loading onto a Chromium Controller (10X Genomics, Pleasanton, CA).

Single-cell RNA-sequencing

Cells were loaded to target encapsulation of 6,000 cells. Gene expression (GEX), Antibody-derived tag
(ADT), and V(D)J libraries were generated using the Chromium Single Cell 5’ Library & Gel Bead Kit v1
with feature barcoding (10X Genomics, Pleasanton, CA) following the manufacturer’s instructions. Gene
expression libraries were pooled and sequenced on a NovaSeq 6000 platform (lllumina, San Diego, CA).
ADT and V(D)J libraries were sequenced separately on a Next-seq platform (lllumina, San Diego, CA).
The sequencing depths are shown in Table S2.
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Multi-omics single-cell data preprocessing

10X Genomics Cell Ranger v3.1.0 was used to perform barcode processing and single-cell 5" unique mo-
lecular identifier (UMI) counting. Reads from GEX and ADT libraries were processed simultaneously using
“cellranger count,” whereas reads from V(D)J libraries were aligned by running “cellranger vdj.”

Gene expression (GEX)

The scRNA-seq expression datasets were integrated into two final matrices, one for PBMC and another for
BM. To remove potential batch effects, we used the canonical correlation analysis (CCA) to integrate the
three individual PBMC samples into one final PBMC dataset and combine the two individual BM samples
into one final BM dataset. Before integration, we performed library-size scaling and log-transformation for
each sample individually. Next, we identified the top 2,000 HVGs for each sample using regularized nega-
tive binomial regression (Hafemeister and Satija 2019), followed by CCA to find anchors and integrate cells
from individual samples into one integrated dataset. Finally, we performed per-gene z-score normalization
for each integrated dataset. We removed from the downstream analysis the genes expressed in less than
three cells, the cells with less than 200 genes, and the cells with more than 20% of mitochondrial gene
counts. GEX raw count matrices are available through NCBI GEO, accession number GSE181543.

Antibody-derived tags (ADT)

The cell-surface protein expression (ADT) matrices were normalized separately for each individual sample
using the DSB normalization (Mulé et al. 2021). Cell barcodes in the Cell Ranger unfiltered matrix containing
less than 40 genes and less than 100 total UMIs were considered background. The barcodes from Cell
Ranger “filtered_feature_bc_matrix"” were considered true cells. By subtracting the mean value of the back-
ground population and then regressing out the cell-cell technical variation (Mule et al. 2021), the ADT
values representing background expression levels were centered around zero. ADT raw count matrices
are available through NCBI GEO, accession number GSE181543.

Antibody repertoire (VDJ)

We used the Cell Ranger-generated "all_contig_annotations.csv” (unfiltered) and the “filtered_contig_
annotations.csv” files to generate new V(D)J features merged with the corresponding ADT matrix. Briefly,
we summed the total UMIs of each cell barcode in the “all_contig_annotations.csv” V(D)J file to generate a
feature called “Total Ig Transcripts” that represent the total UMIs of immunoglobulin heavy and light
chains. In addition, we generated a binary feature called “Productive VDJ" that identifies whether a cell bar-
code with a productive V(D)J information is contained in the CellRanger "filtered” annotation file and hence
considered a true B cell or plasma cell. B-cell receptor repertoire V(D)J raw count matrices are available
through NCBI GEO, accession number GSE181543.

Manual gating

Manual gating was performed based on the two V(D)J features (i.e., |g-specific transcript counts and pro-
ductive VDJ sequences) and the 31 cell-surface protein features in the DSB normalized ADT data. Because
the DSB normalized data showed similar distribution within the same tissues, the 3 PBMC samples and 2
BM samples were concatenated, respectively. The major cell lineages (six for PBMCs and five for BM cells)
were then identified and manually gated using a customized strategy of biaxial plots implemented in a
MATLAB script (https://github.com/Ghosn-Lab/SuPERR.git). The markers and the gating hierarchy were
determined by prior knowledge of variations of cell-surface protein expression across various major cell
lineages (Figures 2A and 3A). Cell doublets were manually “gated out” based on the co-expression of
two or more major lineage markers (Figures S1 and S2).

Clustering on gene expression matrix

Each major cell lineage identified by the manual gating was next clustered based on the integrated GEX
matrix (Stuart et al., 2019). First, HVGs were computed for cells in each major cell lineage using the vari-
ance-stabilizing transformation (VST) method (Hafemeister and Satija 2019), and expression data of each
gene was transformed to zero mean and unit variance. We then performed PCA on the HVGs of
each main lineage and selected the top 30 PCs for downstream analysis. Next, a K-nearest neighbor
(KNN) graph was constructed in the low-dimensional PCA space based on the Euclidean distance between
cells, with K = 30. Jaccard further converted the KNN graph to a cell-cell similarity matrix, followed by Lou-
vain community detection algorithm (Blondel et al., 2008) to define cell clusters in each major cell lineage.
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The weighted nearest neighbor (WNN) approach as implemented in Seurat v4 and the similarity network
fusion (SNF) as implemented in CiteFuse were separately applied to generate cell clusters cells based on an
intergrated matrix containing both GEX and ADT data. For Seurat v4, we used the graph-based smart local
moving (SLM) algorithm (Waltman and Jan van Eck 2013), and set the clustering resolution to 3 to generate
as many (or more) clusters as SUPERR. For CiteFuse, cells from different samples were first integrated using
CCA as described above and then the integrated dataset was used as input. We applied the spectral clus-
tering algorithm as suggested by the authors and the K was set to 39 for PBMC and 35 for BM to align the
number of cell clusters generated by SUPERR.

Pathway analysis

The DGE list for each BM plasma cell cluster was used as input data to the Reactome pathway database
(Jassal et al., 2020) (https://reactome.org/PathwayBrowser/) to visualize active biological pathways and
regulatory processes in each plasma cell cluster. The “firework” diagrams were cropped so that only the
hit pathways were preserved.

Cell-doublet identification

The scDblFinder (Germain et al., 2021) workflow was run independently on the GEX matrix from the PBMC
and BM samples, following the workflow described on github (https://github.com/plger/scDblFinder).
First, we performed log-normalization, selection of HVGs and PCA analysis on the GEX matrix for each sam-
ple. Next, we ran the scDblFinder pipeline using the default parameters.

Calculation of cell-type scores

Each cell-type specific score was calculated by summing the raw UMI counts from the gene list we gener-
ated based on prior knowledge and log-normalized the data. The following gene lists were used for each
cell-type score. B cells: CD79A, MS4A1, CD19, VPREB3; CD4T: CD4, CD3D, CD3E, CD5, IL7R; CD8T: CD8A,
CD8B, GZMK, CD3D, CD3E; Myeloid: LYZ, S100A8,5S100A9, S100A12, CDé8, CD14, CYBB; NK: GNLY,
NKG7, GZMB, KLRD1, GZMA; NKT: CCL5, GNLY, NKG7, GZMH, KLRB1, CST7; Treg: FOXP3, CTLA4,
IL2RA, IL32; T cells: CD3D, CD3E, CD4, CD8A, CD8B, CD5, IL7R, GZMK, GZMH; and PC (Plasma cell score):
ITGB7, IRF4, CD9, PRDM1, XBP1, SDC1, VCAM1, CD38.

Cell fidelity statistic

To generate the cell fidelity statistic (CFS) score (Babcock et al., 2021), we cross-check the cell lineages
identities generated by a biaxial gating approach (reference) versus cell cluster assignment (test). CFS re-
lies on the tenet that if different workflows identify a single cell as belonging to multiple lineages, both
cannot be correct and therefore some information has been lost. We apply CFS to measure the loss in
cell classification fidelity caused by relying on clustering algorithms to discriminate cell lineages, as is
the norm in conventional workflows. To generate a CFS score, we first produce clusters (Seurat v3, Seurat
v4, CiteFuse). We then count the number of cells which are grouped into majority out-of-lineage clusters.
The CFSscore is expressed as a fraction of total cells which were grouped into the inappropriate lineage, or
the cells which have a disagreement between cluster assignment and biaxial gate. CFSis reported as a frac-
tion from 0-1, where 1 means that no cells were misclassified, and a score of 0.8 means that 20% of cells were
misclassified.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential gene expression analysis

We used the “FindAllMarkers” function of Seurat v3 to perform the differential gene expression analysis.
Statistical significance was tested using the Wilcoxon Rank-Sum test, with p_val_adj<0.05 (p-value after
Bonferroni correction). For the DGE analysis of the BM plasma cell clusters, we first removed the immuno-
globulin-specific UMIs from the GEX matrix. Then, we log-normalized the resulting matrix to discover and
explore non-immunoglobulin plasma cell genes.

Student’s t-test

To quantify the difference of biological signals (total gene count, total UMI count and percentage of ribo-
somal UMI) among major cell types, student’s t-test was performed that compared the mean of each cell
type with the mean of the total PBMC/BM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, unpaired,
two-tailed.
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