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Abstract. We present here a novel instructional resource, called DeepCode, to
support deep code comprehension and learning in intro-to-programming courses
(CS1 and CS2). DeepCode is a set of instructional code examples which we call
a codeset and which was annotated by our team with comments (e.g., explaining
the logical steps of the underlying problem being solved) and related instructional
questions that can play the role of hints meant to help learners think about and
articulate explanations of the code. While DeepCode was designed primarily to
serve our larger efforts of developing an intelligent tutoring system (ITS) that fos-
ters the monitoring, assessment, and development of code comprehension skills
for students learning to program, the codeset can be used for other purposes such
as assessment, problem-solving, and in various other learning activities such as
studying worked-out code examples with explanations and code visualizations.
We present here the underlying principles, theories, and frameworks behind our
design process, the annotation guidelines, and summarize the resulting codeset
of 98 annotated Java code examples which include 7,157 lines of code (includ-
ing comments), 260 logical steps, 260 logical step details, 408 statement level
comments, and 590 scaffolding questions.

Keywords: Code comprehension - Intelligent tutoring systems -
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1 Introduction

Code comprehension, i.e., understanding of computer code, is a critical skill for both
learners and professionals. Students learning computer programming spend a significant
portion of their time reading or reviewing someone else’s code (e.g., code examples from
atextbook or provided by the instructor). Furthermore, it has been estimated that software
professionals spend at least half of their time analyzing software artifacts in an attempt to
comprehend computer source code. Reading code is the most time-consuming activity
during software maintenance, consuming 70% of the total lifecycle cost of a software
product [5, 8, 32]. O’Brien [24] notes that source code comprehension is required when
a programmer maintains, reuses, migrates, reengineers, or enhances software systems.
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Therefore, offering support to enhance learners’ source code comprehension skills will
have lasting positive effects for their academic success and future professional careers.

Our goal is to explore instructional strategies that promote deep code comprehension
and learning. To this end, we present here a novel instructional resource, called Deep-
Code, which is a set of annotated code examples to support code comprehension and
learning activities in intro-to-programming courses (CS1 and CS2). Indeed, the design
of DeepCode was driven by our larger efforts on exploring instructional strategies that
foster the development of code comprehension skills and the construction of accurate
mental models and learning in conjunction with advanced education technologies such
as conversational intelligent tutoring systems (ITSs; [33, 34, 45]) that use scaffolded
self-explanations to foster the monitoring, assessment, and development of code com-
prehension skills for students learning to program. It is important to note that ITSs are a
particular category of adaptive instructional systems (AISs) that offer both micro-level
and macro-level adaptivity, as explained later.

While we developed DeepCode to serve our goal of developing an ITS for code
comprehension and learning of programming concepts, the resulting codeset of annotated
code examples can be used for other purposes such as assessment, problem-solving,
and in various other learning activities such as studying worked-out examples or code
visualizations as well as for research purposes such as exploring other instructional
strategies, e.g., asking students to Explain-in-Plain-English target code examples (EiPE;
9,22, 41).

The code examples included in the DeepCode dataset cover the vast majority of top-
ics in a typical intro-to-programming course (CS1) - see the list of topics later. While the
DeepCode instructional dataset contains Java code examples, the design principles and
annotation guidelines are generally applicable to any programming language. The anno-
tation guidelines were based on code comprehension theories, self-explanation theories,
and the micro-macro adaptivity framework used by ITSs.

We are not aware of any similar resources available for code comprehension and
learning activities that have been publicly released and which cover the vast majority of
topics in CS1. Furthermore, one unique feature of our annotated code examples is the
theory-driven annotation guidelines.

Work in the area of code comprehension targets a subset of CS1 topics and usually
do not release code examples for use by others [2, 3, 27, 28]. Recent work on Explain-in-
Plain-English (EiPE; 9, 24, 42) use large sets of code examples, e.g., Chen and colleagues
[9] use 52 code examples scattered across various courses and course related activities:
a CS1 for engineers’ course (8 homework questions), 5 homework and exam problems
in a ‘CS1 for CS majors’ course, 26 exam problems of which each student was assigned
one problem on each of 5 exams, in a data structures course, and 13 additional questions
as part of a paid survey that was offered to sophomore-level CS students. It should
be noted that in EiPE tasks, learners/readers are asked to provide a high-level natural
language (e.g., English) description of the code which is different from asking them to
self-explain as detailed later. To the best of our knowledge, there was no principled way,
theory-driven selection and annotation of the 52 code examples.
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Other notable efforts to create questions/problems in CS Education fall into two
broad categories: (1) creating traditional test questions, usually in multiple-choice format
such as Canterbury Bank [31] and (2) creating more advanced learning content such
as explained worked examples [7], codecasts [36], code animations [20, 38], Parson’s
problems [22], and code construction problems with automatic assessment [17, 39]. All
these kinds of learning content are based on meaningful code examples, which could be
explained, animated, or presented in a form of a problem. Surprisingly, research in this
direction predominantly focused on creating authoring tools that allow end users create
advanced content items leaving it to the users to create useful collections of examples or
problems. Moreover, no theory-based guidelines for creating problems or examples are
usually offered. In this context, our work bridges the gap between these two research
direction. Similar to the motivation of question-bank developers, we focus on a collection
of quality content. However, in contrast to relatively simple content in question banks,
we focus on complete meaningful augmented code examples. This code examples could
be used as-is in its original form or serve as a basis for creating collections of quality
examples and problems using the advanced content authoring tools mentioned above.

The DeepCode codeset has the following main features meant to promote deep
comprehension of code and learning of computer programming concepts:

e Explanations in the form of logical step comments capturing the domain model;

e Explanations in the form of logical step details comments capturing the program model
and linking the program model and the domain model, i.e., the integrated model;

e Explanations of new concepts being introduced by each code example.

e Scaffolding hints in the form of questions for the domain model, program model, and
the integrated model as well as for the new concepts (enables micro-adaptation).

e Topic ordering based on input from CS1 and CS2 instructors and prior research
on programming concept difficulty and importance (enables macro-adaptation and
implementation of learning strategies such as mastery learning and spacing effects).

2 Related Work

The development of the DeepCode set of instructional code examples has been guided
by a number of theories and frameworks and recent advances in code comprehension
and text comprehension research of which the following are the most important: read-
ing/code comprehension theories [6, 16, 18, 19, 21, 26, 35, 37, 44], cognitive load
theory [41], cognitive engagement theory [13, 14] and the ICAP framework [13], self-
explanation theory [10, 12], and the intelligent tutoring framework that offers macro- and
micro-adaptive instruction [45] with a focus on conversational tutoring that implement
scaffolded self-explanation strategies [33] and related efforts such as the conversational
tutor for program planning ProPL [24].
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For instance, according to Pennington’s theory of code comprehension [25] involves
the building of a domain model and of a program model, as detailed later. Accordingly, the
DeepCode annotation guidelines specify adding comments, which we call logical step
comments, describing the code from a domain perspective, i.e., describing the domain
model. For each logical step, details of how those logical steps are implemented in a
chunk of code are needed as well. This is meant to describe the program model as well as
link the domain model to the program model. By the same token, based on cognitive load
theory, each code example introduces only one new topic or concept and only individual
statements that refer to the new concept that learners are supposed to learn are annotated
with statement level comments. Concepts in other lines of code are supposed to have been
mastered earlier while working on code examples corresponding to topics introduced
earlier in the sequence of topics. Indeed, code examples are sequenced based on a priori
defined sequence of topics and each code example is supposed to use only concepts
related to previously mastered topics and the new topic, as detailed later. Scaffolding
questions were also annotated for the logical step and logical step details comments in
order to help with the development of scaffolding tutorial dialogues.

Of particular interest to our larger goals of building ITSs that scaffold learners’ code
comprehension processes are self-explanation theories and the micro-/macro-adaptive
framework for tutoring. Self-explanation theories [10, 12] indicate that students who
engage in self-explanations, i.e. explaining the target material to themselves, while
learning are better learners, i.e. learn more deeply and show highest learning gains.
The positive effect of self-explanation on learning has been demonstrated in different
science domains such as biology [11] and physics [15], math [1], and programming
[3]. Furthermore, research has shown that guided self-explanation is effective too [1].
Self-explanation’s effectiveness for learning is attributed to its constructive nature, e.g.,
it activates several cognitive processes such generating inferences to fill in missing infor-
mation and integrating new information with prior knowledge, and its meaningfulness
for the learner, i.e., self-explanations are self-directed and self-generated making the
learning and target knowledge more personally meaningful, in contrast to explaining
the target content to others [30]. Several types of self-explanation prompts have been
identified and explored such as justification-based self-explanation prompts [15] and
meta-cognitive self-explanation prompts [11]. The code examples in DeepCode could
be used with various prompts and we intend to do so in order to elicit from students a
variety of responses to capture as much about their mental models and mental model
construction processes as possible.

As already noted, our larger goal is to build an ITS for code comprehension in
intro-to-programming courses. The behavior of any ITS, conversational or not, can be
described using VanLehn’s two-loop framework [45]. According to VanLehn, ITSs can
be described in broad terms as running two loops: the outer loop, which selects the next
task to work on, and the inner loop, which manages the student-system interaction while
the student works on a particular task. The outer loop provides macro-adaptivity, i.e.,
selects appropriate instructional topics and tasks for a learner to work on, e.g., based
on their mastery level. In order to offer outer loop support, DeepCode is based on a
sequence of intro-to-programming topics and instructional tasks per topics as explained
later.
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The inner loop of an ITS monitors students’ performance through embedded assess-
ment, updates its model of students’ levels of understanding (that is, the student model),
and uses the updated student model to provide appropriate scaffolding in the form of
feedback and other scaffolds. Accordingly, each code example in DeepCode is annotated
with hints in the form of questions which are meant to scaffold learners’ comprehension
processes. Conversational ITSs can use the instructional code examples and annotations,
e.g., the hints, to interactively monitor, assess, and scaffold learners’ comprehension
and learning. This should lead to best learning outcomes, according to the Interactive,
Constructive, Active, and Passive (ICAP; [13]) framework of cognitive engagement
according to which interactive learning leads to best cognitive engagement.

As a way to illustrate how these various theories provided the foundations for our
work, we will use a concrete example and present step by step the annotation guidelines
and process with references to the underlying theories.

3 A Working Example

In order to better illustrate the guiding principles and theories underlying the development
of the DeepCode annotation guidelines, we will make use throughout the paper of a
concrete example related to the widely played game of Bingo - a simplified version of
the game to be precise. The game is played with disposable paper boards which contain
25 squares arranged in five vertical columns and five rows. Columns are labelled ‘B’,
‘T, ‘N’, ‘G’, ‘O’. The cell in the middle is empty. Random numbers from 1 to 75 are
used in the game and there are some restrictions on the range of values that can occur in
each column, e.g., the ‘B’ column only containing numbers between 1 and 15 inclusive
whereas the ‘I’ column containing only 16 through 30. We will work with a simplified
Bingo game in which all 25 cells may contain any number between 1 and 75. Players
must match rows, columns, or diagonals in randomly generated Bingo board.

Our task is to solve computationally, i.e., with the help of a computer program, the
following problem: Automatically generate random boards for the (simplified) game of
Bingo.

The Java code implementing the solution for this Bingo board generation task is
shown in Fig. 1. Details about the annotations, i.e., the explanations added in the form
of comments are provided next together with the underlying theoretical foundations.
Figure 1 does not show all the annotations added because of space reasons. The missing
annotations are exemplified throughout the narrative of the paper.

4 The DeepCode Annotation Guidelines

‘We now present a summary of the annotation guidelines for developed DeepCode, exem-
plifying the various elements and the underlying theories that form the foundations for
those elements.
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Our entire team was involved in the development of the DeepCode codset. Each
team member was assigned a number of topics for which to create and annotate code
examples. They were instructed to either identify code examples in various sources
(textbooks, websites, etc.) and use them as they are (i.e., just focus on annotating them
with comments/explanations) or modified, or create their own examples from scratch.
In case a particular source was used, the annotators were supposed to specify the source
as detailed later. All annotators went first through a training period and had access to a
detailed annotation guidelines manual and a cheatsheet.

The general steps to create and annotate code examples for the DeepCode codeset
were:

1. Create at least 4 code example for a target topic. We create 4 code examples for each
topic to allow students who struggle to practice the same topic again following the
master learning principle (Bloom, 1981).

2. Add metadata.

3. Identify major logical steps and add corresponding logical step comments.

4. Add logical step details describing how the logical step is carried out using
programming concepts.

5. Generate statement level comments for specific lines of code referring to the newly
introduced topic.

6. For each logical step and new concept references (captured by statement level com-
ments), generate a sequence of instructional hints in the form of questions which can
be used to help students understand and articulate the logical step and its details.

7. Add misconception detection information and remedial feedback.

Step 1: Code Example Creation. The general guidelines given to annotators to create
code examples are given below:

— create code examples for the topics you were assigned make sure you are aware of the
topic/concept ordering for the whole CS1/CS2 sequence as it is important for the code
example creation and annotation. The list of topics and their order is: Preliminary Top-
ics (Variables + Expressions + Constants + Primitive data type), Input, Math, Class,
Strings, Logical Operators, If, If-else, Switch, While Loops, Do While, For loops,
Nested Loops, Arrays, Two Dimensional Arrays, Array Lists, Classes + Objects,
Methods, Inheritance, Exception Handling, Recursion, Sorting, and Searching.

— Each code example should focus on the topic for which the example is targeted and
may rely on concepts/topics covered earlier in the ordered list of topics. This is meant
to reduce the cognitive load on novices trying to learn programming. According to
cognitive load theory [41], humans have a limited capacity working memory and
an unlimited long-term memory. Therefore, during learning activities instructional
strategies should minimize the short-term memory load and encourage the construc-
tion of knowledge structures, i.e., schemas, in long-term memory. To this end, each
code example introduces one new concept/topic or subconcept/subtopic.
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— The examples should have deterministic output if at all possible so that an intelligent
tutoring system would be able to assess the correctness of student predictions. This
may not always be possible, e.g., when input is required from the user or when a
random process is involved.

— Each code example should be nicely edited using a Java/code editor that can format.

— Each code example should be built around a story, i.e., a real-life application of the
code should be thought of that is meaningful to students — something they can relate to
from their own life experience. This guideline plays a motivational role because using
such relatable stories could lead to a more meaningful effort on learners’ part when
trying to understand computational solutions to relatable challenges (as opposed to
unfamiliar or abstract ones). Furthermore, using real-life applications which students
can relate to it through their own life experience, minimizes the need for domain
knowledge to understand the code examples (i.e., general world knowledge would
suffice) should reduce the cognitive load on the learners allowing them to allocate
cognitive resources on the core programming concepts to be learned. Examples of
real-life applications or problems are feet to meter conversion, leap year detection, or
Bingo boards.

— Code examples should compile and run as expected. Once a code example was created,
compiled, and executed without errors, it needs to be augmented with metadata and
instructional comments as detailed below.

Step 2: Metadata. Each code example is annotated with a header that specifies the
annotator/author, topic(s), subtopic(s), source (if any), goal (what the code does, i.e., the
problem it solves), input (if any), and output. The granularity of topic/subtopic is an issue
in itself. The Java example in Fig. 1 does not offer all the corresponding metadata due
to space reasons. We plan to publicly release the fully annotated examples as a GitHub
repository once the publication of this work is being accepted.

Step 3: Identification of Logical Steps. This step is about annotating the code examples
with high-level explanations describing the logical steps of the problem being solved.
This guideline is based on program comprehension theories proposed over the past
50 years or so [6, 16, 19, 25, 28, 32, 34, 36, 39). A major problem with the traditional
program comprehension models is that they were the result of analyzing expert pro-
grammers’ comprehension processes as opposed to novices’, i.e., individuals with no or
almost no relevant knowledge. More recently, there is work addressing this issue such
as Schulte and colleagues [34] who proposed an education comprehension model.

While the various models of code comprehension differ in what their main focus is,
they all share the following majors components [25, 34]: an external representation —
external views or aids assisting the programmer in comprehending the code, a knowledge
base — the programmers’ knowledge, a situation/mental model — programmer’s current
understanding of the code and which is constantly updated through the assimilation
process, and an assimilation process — the process through which the situation model
is being updated based on the knowledge base, external representation, and the current
situation model. The knowledge base and the situation model are sometimes conflated
together under a broader cognitive structures label/category [34].
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Given that learners lack (most of or all of) the much needed knowledge base, we
face a catch-22 challenge:

In order to read and understand code the reader (learner in our case) needs a
knowledge base; however, if the reader is someone who just starts learning programming
then the knowledge base is empty or almost empty which means the learner needs to build
their knowledge base which can be done by “looking at”, i.e., reading, code examples
which means the reader must understand them which is what they are trying to achieve
in the first place bringing them back full-circle. In order to transform this vicious circle
into a virtuous one, external support in the form of scaffolding offered by a human or a
24/7 computer-tutor is critical, which is our larger goal.

To this end, the DeepCode codeset and the corresponding pedagogical comments
were designed to compensate for the lack of a ‘knowledge base’ of students in intro-to-
programming courses and offer necessary support when needed to both help students
understand target code examples and learn newly introduced programming concepts and
techniques.

Of particular importance to our work presented here is the distinction between the
program model, the domain model, and the situation model [26]. The program model is
some representation of the control-flow of the program or what we call a direct mental
equivalent of the code. The domain model captures the function or goals of the program
from a target domain perspective, i.e., it describes the domain problem and the solution
being implemented by the code by referring mostly to objects and relations and processes
and approaches of the domain and of the problem being solved. The situation model in
our view captures an integrated view of both the program and domain model with an
emphasis on cross-references between the two models, i.e., it contains information which
is not being captured by the individual program and domain models. In fact, there is
evidence that the best code readers are those who can build such an integrated situation
model by seeking to understand and infer cross-references between the program and
domain models.

Accordingly, we have focused on pedagogical comments that correspond to the
domain model (logical level comments) and program model (logical step implementation
details) and situation model (logical step details provide cross-references between the
program and domain models).

The logical steps and corresponding comments describe the logical steps of the
overall algorithm implemented in the code. Logical steps are meaningful, higher-level
steps in the overall solution/algorithm implemented by the code. It is not necessary to
describe in detail how the step is being implemented but simply indicate the meaningful
purpose/functionality of each such logical code chunk in the context of the overall
goal/purpose of the code. A logical step comment should be a concise sentence referring
mostly to objects and relations of the domain/problem being solved as shown below (see
also Fig. 1 which shows all the logical step comments).

logical_step_2: Generate 25 random numbers in the range of 1 to 75 and populate
the Bingo board.
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Cross-references/usage of concepts from the ‘program model’, i.e., implementa-
tion, should be avoided or kept at a minimum. The logical_step_details field links the
problem/domain model to the implementation.

Step 4: Logical Step Details. Whereas the logical step is a very high level explanation
meant to link the code to the problem/story at a very high level, the logical_step_details
explanation provides details about how the logical step is being carried out.

The need for the logical_step_details is to provide a link between logical details and
implementation details while keeping the logical step description high level and short
(one short or medium size sentence in plain language - minimal programming language
specific lingo, domain knowledge lingo is acceptable, e.g., soccer lingo, but should be
kept at a minimum, if at all possible, so that all students can understand the problem and
the solution. Additional explanations of domain knowledge concepts should be added if
needed).

logical_step_details: Two loops are used to scan all the cells on a Bingo board. The
outer loop accounts for the rows and the inner loop for all the cells in one row. For each
scanned cell on the Bingo board, a random number is generated and stored in the cell.

Step 5: Statement Level Comments. Statement level comments focus on individual
statements and emphasize the elements of the statement relevant to the new concept
being taught. It refers more to the ‘program model’, i.e., to concepts, steps, and functions
related to implementation. The statement level comment and related question should not
necessarily be about the general function of the statement but rather focus on the parts
related to the new concept.

stm_comment: Declare an array variable called myNumber of type integer and size
11 and allocate memory for it.

It should be noted that as another way to reduce cognitive load on learners, our
guidelines are based on a code comprehension scaffolding strategy that focuses on elic-
iting explanations at the logical level of code understanding and of statements that refer
to the new concept/topic being introduced by each code example - other statements,
while important for understanding, are not explicitly explained as they refer to prior
concepts which the learners should have mastered previously when those concepts were
introduced previously in the sequence of concepts.

Step 6: Adding Hints in the Form of Questions and the Corresponding Answers.
In order to support the development of advanced education technologies such as ITSs
that provide micro- and macro-level adaptation through interactive scaffolding, for each
logical step comment and logical step details comment, we added a sequence of hints
in the form of questions meant to help learners think and articulate about the logical
steps and logical step details. That is, the goal is to use those hints to scaffold students’
self-explanations of the logical steps and logical step details and statement level explana-
tions. The first question in the sequence elicits the logical step (domain model) whereas
the subsequent questions should prompt learners key aspects of the logical step details
(program and integrated models). For each question the corresponding answer is pro-
vided as well in order to facilitate the automated assessment of student responses to those
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hints, e.g., by comparing the student responses to these ideal responses we provided for
each hint using automated semantic similarity methods [33]. Figure 1 does not show the
questions for any of the comments for space reasons. We illustrate below the kind of
question sequences for logical step and logical step details comments.

JE*

* logical_step_2: Generate 25 random numbers in the range of 1 to 75 and populate
the Bingo board.

* logical_step_details: Two loops are used to scan all the cells on a Bingo board. The
outer loop accounts for the rows and the inner loop for all the cells in one row. For each
scanned cell on the Bingo board, a random number is generated and stored in the cell.

* question_1: What does the following code block do?

* answer_1: Generate 25 random numbers in the range of 1 to 75 and populate the
Bingo board.

* question_2: How many times does the outer loop execute?

* answer_2: The outer loop iterates 5 times.

* question_3: How many times does the inner loop execute?

* answer_3: The inner loop executes 5 times.

*/

Questions and corresponding benchmark answers were generated as well for
statement level comments.

/**

* stm_comment: Print element of the Bingo board at position indicated by row i and
column j.

* question_1: Which element of the array bingoBoard is being displayed?

* answer_1: Element of the Bingo board at position indicated by row i and column
j is being displayed.

*/

Step 7: Annotating Misconceptions and Corresponding Remedial Feedback. A key
instructional goal for any instruction effort, computer-based or otherwise, is to identify
students’ misconceptions and provide remedial feedback immediately. For our running
code example, a typical misconception is the index of the last row and column of the
matrix representing the Bingo board. We can trigger a question to prompt for an answer
to discover the presence of the misconception in any or all the lines of code where the
matrix is being referred, e.g., immediately after the bingoBoard matrix is declared or
when the matrix is being scanned.

Misconception: The index of the last row of the bingoBoard matrix is 5.

Remedial feedback: The index of the last row of the bingoBoard matrix is 4 as indices
run from O to the number of rows minus 1.

Triggering questions: What is the index of the last row of the bingoBoard matrix?
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import java.util. Random;

public class twoDimensionalArraysBingoBoard {
public static void main(String[] args) {

int[][] bingoBoard = new int[5][5];
Random rand = new Random();

for(inti=0;1<5;i++)
{
for (intj=0;j<5;j++)

while ( (bingoBoard[i][j] = rand.nextInt (75))==0) ;

System.out.print( "board square [" +1i+ ", " +j+ "]" + " =" + bingo-
Board[i][j] +"\n");
b

System.out.println( "" ) ;

}

for(inti=0;i1<5;i++)

for(intj=0;j<5;j++)
{

System.out.print(bingoBoard[i][j]+ " ") ;
}
System.out.println( "" ) ;
}
¥
¥

Fig. 1. A working example to illustrate the kind of annotations we added to all 98 of Java code
examples covering all CS1 topics.
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5 Discussion and Conclusions

The resulting DeepCode instructional codeset consists of 98 annotated Java code exam-
ples (at least 4 code examples per topic). More details about the codeset are shown in
Table 1 in terms of total lines of code (with and without comments), total number of
logical step comments and corresponding logical step details comments, total number
of statement level comments, and the number of hints in the form questions.

Table 1. Descriptive statistics about the DeepCode codeset (n = 98 annotated Java code
examples).

Metric Total Average
Total lines of code without comments 1631 16.81
Total lines of code with comments 7157 73.78
Logical steps 260 2.68
Logical step details 260 2.68
Statement level comments 408 4.20
Number of questions for logical steps 590 6.08

The design of the DeepCode instructional codeset was based on strong theoretical
foundations which is a unique feature of it. The corresponding annotation guidelines
offered as much details for the annotators as possible. Due to space reasons, we have not
provided all the guidelines such as the need for the example authors to spellcheck all the
comments. Furthermore, it should be noted that the guidelines are just that, guidelines.
That is, they are not supposed to and in fact they cannot capture all possible cases that
annotators may encounter during their code example creation and annotation.

Additionally, the guidelines leave some concepts vaguely defined, for instance,
what exactly constitute a logical step. Nevertheless, we hope that the development and
release of DeepCode will foster new developments in terms of additional resources
and advanced educational technologies for deep code comprehension and learning of
complex programming topics and ultimately help learners become successful computer
professionals.

Acknowledgments. This work was supported by the National Science Foundation under award
1822816. All findings and opinions expressed or implied are solely the authors’.

References

1. Aleven, V., Koedinger, K.R.: An effective metacognitive strategy: learning by doing and
explaining with a computer-based cognitive tutor. Cogn. Sci. 26(2), 147-179 (2002)

2. Alhassan, R.: The effect of employing self-explanation strategy with worked examples on
acquiring computer programming skills. J. Educ. Pract. 8(6), 186—-196 (2017)



48

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

V. Rus et al.

. Bielaczyc, K., Pirolli, P.L., Brown, A.L.: Training in selfexplanation and self-regulation strate-

gies: investigating the effects of knowledge acquisition activities on problem solving. Cogn.
Instr. 13(2), 221-252 (1995)

Bloom, B.S.: All Our Children Learning - A Primer for Parents, Teachers, and Other Educators.
McGraw-Hill, New York (1981). ISBN 9780070061187

. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer 34(1), 135-137

(2001)

Brooks, R.: Towards a theory of the comprehension of computer programs. Int. J. Man Mach.
Stud. 18, 543-554 (1983)

Brusilovsky, P., Yudelson, M.: From WebEx to NavEx: interactive access to annotated program
examples. Proc. IEEE 96(6), 990-999 (2008)

Buse, R.P.L., Weimer, W.R.: A metric for software readability. In: International Symposium
on Software Testing and Analysis, pp. 121-130 (2008)

Chen, B., Azad, S., Haldar, R., West, M., Zilles, C.: A validated scoring rubric for explain-
in-plain-English questions. In: The 51st ACM Technical Symposium on Computer Science
Education (SIGCSE 2020), Portland, OR, USA, 11-14 March 2020. ACM, New York (2020).
7 pages. https://doi.org/10.1145/3328778.3366879

Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., Glaser, R.: Self-explanations: how
students study and use examples in learning to solve problems. Cogn. Sci. 13, 145-182
(1989)

Chi, M.T.H., DeLeeuw, N., Chiu, M.-H., LaVancher, C.: Eliciting self-explanations improves
understanding. Cogn. Sci. 18(3), 439-477 (1994)

Chi, M.T.H.: Self-explaining: the dual processes of generating inference and repairing mental
models. In: Glaser, R. (ed.) Advances in Instructional Psychology: Educational Design and
Cognitive Science, vol. 5, pp. 161-238. Lawrence Erlbaum Associates Publishers (2000)
Chi, M.T.H., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning
outcomes. Educ. Psychol. 49, 219-243 (2014)

Chi, M.T.H., et al.: Translating the ICAP theory of cognitive engagement into practice. Cogn.
Sci. 42, 1777-1832 (2018)

Conati, C., VanLehn, K.: Further results from the evaluation of an intelligent computer tutor
to coach self-explanation. In: Gauthier, G., Frasson, C., VanLehn, K. (eds.) ITS 2000. LNCS,
vol. 1839, pp. 304-313. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45108-
0_34

Détienne, F.: Software Design - Cognitive Aspects. Practitioner Series. Springer, London
(2002). https://doi.org/10.1007/978-1-4471-0111-6

. Edwards, S.H., Murali, K.P.: CodeWorkout: short programming exercises with built-in data

collection. In: Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2017), pp. 188-193. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3059009.3059055

Graesser, A.C., Singer, M., Trabasso, T.: Constructing inferences during narrative text
comprehension. Psychol. Rev. 101, 371-395 (1994)

Good, J.: Programming paradigms, information types and graphical representations: empir-
ical investigations of novice program comprehension. Ph.D. thesis, University of Edinburgh
(1999)

Guo, PJ.: Online Python tutor: embeddable web-based program visualization for cs educa-
tion. In: Proceedings of the 44th ACM Technical Symposium on Computer Science Edu-
cation (SIGCSE 2013), Denver, Colorado, USA, pp. 579-584. Association for Computing
Machinery (2013)

Kintsch, W.: Learning from text. Cogn. Instr. 3(2), 87-108 (1986)


https://doi.org/10.1145/3328778.3366879
https://doi.org/10.1007/3-540-45108-0_34
https://doi.org/10.1007/978-1-4471-0111-6
https://doi.org/10.1145/3059009.3059055

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

DeepCode: An Annotated Set of Instructional Code Examples 49

Kumar, A.N.: Epplets: a tool for solving parsons puzzles. In: Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (SIGCSE 2018), pp. 527-532. Asso-
ciation for Computing Machinery, New York (2018). https://doi.org/10.1145/3159450.315
9576

Lane, H.C., VanLehn, K.: A dialogue-based tutoring system for beginning programming. In:
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society
Conference (FLAIRS), pp. 449-454. AAAI Press (2004)

Lopez, M., Whalley, J., Robbins, P., Lister, R.: Relationships between reading, tracing and
writing skills in introductory programming. In: Proceedings of the Fourth International
Workshop on Computing Education Research, pp. 101-112. ACM (2008)

O’Brien, M.P.: Software comprehension — a review & research direction. Department of
Computer Science & Information Systems University of Limerick, Ireland. Technical report
(2003)

Pennington, N.: 1987. Comprehension strategies in programming. In: Soloway, E., Iyengar, S.
(eds.) Empirical Studies of Programmers: Second Workshop, pp. 100-113. Ablex, Norwood
(1987)

Recker, M.M., Pirolli, P.: A model of self-explanation strategies of instructional text and
examples in the acquisition of programming skills (1990)

Rezel, E.S.: The effect of training subjects in self-explanation strategies on problem solving
success in computer programming (2003)

Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a review and
discussion. Comput. Sci. Educ. 13(2), 137-172 (2003)

Roy, M., Chi, M.T.H.: The self-explanation principle in multimedia learning. In: The
Cambridge Handbook of Multimedia Learning, pp. 271-286 (2005)

Sanders, K., et al.: The Canterbury QuestionBank: building a repository of multiple-choice
CS1 and CS2 questions. In: Proceedings of the ITiCSE Working Group Reports Conference on
Innovation and Technology in Computer Science Education-Working Group Reports (ITiCSE
-WGR 2013), pp. 33-52. Association for Computing Machinery, New York (2013). https://
doi.org/10.1145/2543882.2543885

Rugaber, S.: The use of domain knowledge in program understanding. Ann. Softw. Eng.
9(1-4), 143-192 (2000)

Rus, V., Sidney, D., Xiangen, H., Graesser, A.C.: Recent advances in conversational intelligent
tutoring systems. Al Mag. 34(3), 42-54 (2013)

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., Paterson, J.: An introduction to program
comprehension for computer science educators. In: Proceedings of the Conference on Inte-
grating Technology into Computer Science Education, ITiCSE, pp. 65-86 (2010). https://doi.
org/10.1145/1971681.1971687

Shaft, T.M.: The role of application domain knowledge in computer program comprehension
and enhancement. Unpublished Ph.D. thesis, Pennsylvania State University (1992)
Sharrock, R., Hamonic, E., Hiron, M., Carlier, S.: CODECAST: an innovative technology
to facilitate teaching and learning computer programming in a C language online course. In:
Proceedings of the Fourth ACM Conference on Learning @ Scale (L@S 2017), pp. 147-148.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3051457.
3053970

Shneiderman, B., Mayer, R.: Syntactic/semantic interactions in programmer behaviour. Int.
J. Comput. Inf. Sci. 8(3), 219-238 (1979)

Sirkid, T.: Creating and tailoring program animations for computing education. J. Softw. Evol.
Process 30(2) (2018)

Spacco, J., Hovemeyer, D., Pugh, W., Emad, E., Hollingsworth, J.K., Padua-Perez, N.: Expe-
riences with marmoset: designing and using an advanced submission and testing system for
programming courses. In: ITICSE 2006, pp. 13-17 (2006)


https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/2543882.2543885
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/3051457.3053970

50

40.

41.

42.

43.

44.

45.

V. Rus et al.

Soloway, E., Spohrer, J.C.: Studying the Novice Programmer. Lawrence Erlbaum Associates,
Hillsdale (1989)

Sweller, J., VanMerrienboer, J.J.G., Paas, F.: Cognitive architecture and instructional design.
Educ. Psychol. Rev. 10, 251 (1998). https://doi.org/10.1023/a:1022193728205

Whalley, J., et al.: An Australasian study of reading and comprehension skills in novice
programmers, using the bloom and SOLO taxonomies. In: Eighth Australasian Computing
Education Conference (ACE 2006), January 2006

Woolf, B.P.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolu-
tionizing E-learning. Morgan Kaufman Publishers, Burlington (2009)

Zwaan, R.A., Radvansky, G.A.: Situation models in language comprehension and memory.
Psychol. Bull. 123(2), 162 (1998)

VanLehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3), 227-265
(2006)


https://doi.org/10.1023/a:1022193728205



