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Abstract
With the increased popularity of electronic textbooks, there is a growing interest in devel-
oping a new generation of “intelligent textbooks,” which have the ability to guide readers 
according to their learning goals and current knowledge. Intelligent textbooks extend regu-
lar textbooks by integrating machine-manipulable knowledge, and the most popular type of 
integrated knowledge is a list of relevant concepts mentioned in the textbooks. With these 
concepts, multiple intelligent operations, such as content linking, content recommendation, 
or student modeling, can be performed. However, existing automatic keyphrase extraction 
methods, even supervised ones, cannot deliver sufficient accuracy to be practically useful in 
this task. Manual annotation by experts has been demonstrated to be a preferred approach 
for producing high-quality labeled data for training supervised models. However, most 
researchers in the education domain still consider the concept annotation process as an ad-
hoc activity rather than a carefully executed task, which can result in low-quality anno-
tated data. Using the annotation of concepts for the Introduction to Information Retrieval 
textbook as a case study, this paper presents a knowledge engineering method to obtain 
reliable concept annotations. As demonstrated by the data we collected, the inter-annotator 
agreement gradually increased along with our procedure, and the concept annotations we 
produced led to better results in document linking and student modeling tasks. The con-
tributions of our work include a validated knowledge engineering procedure, a codebook 
for technical concept annotation, and a set of concept annotations for the target textbook, 
which could be used as a gold standard in further intelligent textbook research.

Keywords  Knowledge engineering · Concept annotation · Concept mining · Annotation 
scheme · Intelligent textbook · Electronic textbook

1  Introduction

Modern textbooks have been developed and refined over many decades into well-organized 
tools for communicating knowledge and educating the next generation of professionals. Yet, 
the power of computing and the internet has caused textbooks to evolve even faster than 

Mengdi Wang and Hung Chau have contributed equally to this work.

 *	 Peter Brusilovsky 
	 peterb@pitt.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1848-7342
http://crossmark.crossref.org/dialog/?doi=10.1007/s10758-021-09544-z&domain=pdf


	 M. Wang et al.

1 3

before. The conversion of textbooks into an electronic format has created an opportunity to 
augment textbooks with novel functionalities based on applications or artificial intelligence. 
This direction of research, which is usually referred to as “intelligent textbooks,” has explored 
a range of novel ideas over the last 20 years. The explored approaches include adaptive naviga-
tion support (Henze et al., 1999), natural language question answering (Chaudhri et al., 2013), 
automatic link creation (Guerra et al., 2013), and personalized recommendations of external 
content (Agrawal et al., 2014).

Concepts in the form of keyphrases play an important role in empowering most of these 
intelligent textbook technologies because they act as the “knowledge behind pages.” Histori-
cally, concepts were connected with each page or a section of a textbook by a textbook author 
or another domain expert in the process known as indexing, which was an important compo-
nent of intelligent textbook authoring (Brusilovsky, 2003). The rapid development of machine 
learning and natural language processing enabled a range of keyphrase extraction and key-
phrase generation approaches (Meng et al., 2017) that can perform automatic indexing of text-
book fragments with domain concepts represented by keyphrases. However, these automatic 
keyphrase extraction methods suffer insufficient extraction accuracy in specific application 
domains where high-quality training data is scarce. Education domain including intelligent 
textbooks is such a domain.

The emergence of automatic keyphrase extraction approaches changes the nature of human 
engagement in knowledge annotation. While in the past, with a large number of documents 
to be annotated, the goal of human work was quantity rather than quality, nowadays the large 
share of less-critical annotation work could be performed automatically, saving human time 
to focus on most critical cases where quality is essential. In turn, documents with high-quality 
annotation become vital to train automatic keyphrase extraction approaches based on machine 
learning.

This paper presents our attempt to design and evaluate a reliable and systematic annota-
tion procedure to produce high-quality knowledge annotation for college textbooks where the 
demand is high, quality of the outcome is important, and high-quality training data is scarce. 
In contrast to traditional single-author indexing, we explored a codebook-driven annotation 
process performed by a team of experts. The use of codebooks to assist a team of experts has 
been explored in several areas, however, this approach has never been used to produce con-
cept annotations for intelligent textbooks. We evaluated the quality of the designed annotation 
process against several manual and automatic baselines and also explored its use for some 
essential needs of intelligent textbooks such as student modeling. Our study demonstrated that 
our approach produces high-quality annotation results that can be directly used in intelligent 
textbook tasks for providing the “knowledge behind pages,” or utilized for training automatic 
models.

This paper is organized as follows. Section 2 reviews related work; Sect. 3 describes the 
design of a systematic textbook annotation procedure and it’s application on an online text-
book; Sect. 4 provides the main outcomes of this concept annotation procedure; Sect. 5 pre-
sents the evaluation on the main outcomes; and Sect. 6 concludes this paper and discusses the 
future work.
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2 � Related Work

2.1 � Intelligent Textbooks

Much of the research on intelligent textbooks could be traced back to early attempts to 
develop electronic textbooks using pre-Web hypertext systems. At the time, artificial intel-
ligence (AI) approaches were used to automate link creation between hypertext pages, 
which was an essential process in creating a high quality hypertext  (Bareiss & Osgood, 
1993). Since these early attempts, “intelligent linking” has remained an integral part of 
hypertext research. A range of more advanced approaches to extract concepts and other 
semantic features from hypertext pages have been reported in Agrawal et al. (2014), Green 
(1999), Guerra et al. (2013), Lakkaraju et al. (2008).

The next generation of research on intelligent textbooks was motivated by the expand-
ing World Wide Web and the migration of textbooks online. This generation focused on 
using adaptive hypermedia techniques to produce adaptive textbooks. By monitoring user 
reading and other activities (e.g., question answering) in adaptive online textbooks, these 
systems attempted to model user knowledge and to support users with adaptive navigation 
within a book (Brusilovsky & Pesin, 1998; Henze et al., 1999; Kavcic, 2004) as well as 
adaptive content presentation  (Melis et  al., 2001). This generation of adaptive textbooks 
has been based on relatively advanced models of content annotation by domain experts, 
frequently using domain ontologies  (Brusilovsky, 2003). Similar to automatic linking 
research, the research on concept-based adaptive textbooks remains active and focuses 
on more advanced personalization technologies, as well as on automative domain model 
development and concept indexing.

The most recent generation of intelligent textbooks was fueled by the increased avail-
ability of user data and focused on combining artificial and collective intelligence. Starting 
with early attempts of using users’ past behaviors to provide social navigation support for 
future learners (Brusilovsky et al., 2004), research in this direction has explored increas-
ingly more complex approaches for mining users’ past behaviors to guide new users (Lan 
& Baraniuk, 2016) and predict their success (Winchell et al., 2018). Modern research on 
intelligent textbooks also frequently combines the ideas of automatic linking, personaliza-
tion, concept annotation, and data mining (Labutov et al., 2017; Lan & Baraniuk, 2016).

2.2 � Data Annotation

Despite efforts to automate knowledge extraction for documents, manual annotation 
processes still play an important role in the construction of corpora in various domains, 
including the domains of scientific publication (Augenstein et  al., 2017), biomedical lit-
erature (Wilbur et al., 2006), and clinical corpus (Xia and Yetisgen-Yildiz, 2012). In the 
beginning of these processes, domain experts are often recruited to perform initial annota-
tions with initial guidelines. Next, the experts will iteratively refine the guidelines until the 
agreement reaches a pre-defined threshold. Finally, with the refined guidelines, the experts 
can annotate a large-scale document collection. During the annotation process, discus-
sions among the annotators to review and refine the guidelines have shown to have positive 
impacts on the quality of annotations. Wilbur et al. (2006) found that the inter-annotator 
agreement could significantly increase among annotators who received additional training 
on the guidelines. A set of such guidelines is also called a coding schema that assigns an 
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objective (e.g., morphemes, words, phrases, sentences) to a single category. Two consid-
erations for a coding schema were identified in Bayerl et al. (2003): (1) the categories of 
the coding schema must enable people to differentiate among the categories; and (2) the 
coding schema should be consistent among different coders or within one coder over dif-
ferent time. A methodological framework was also proposed in Bayerl et al. (2003), which 
consisted of five successive steps for systematic schema development.

2.3 � Concept Mining

There are a wide range of applications related to concept mining, such as key-phrase or 
concept extraction, prerequisite-outcome concept prediction   (Labutov et  al., 2017), or 
concept hierarchy creation  (Wang et al., 2015). Among these applications, concept extrac-
tion is the most fundamental task that leads to the success of other tasks; i.e., in order to 
predict if a concept is a prerequisite or outcome concept, we first need to identify if it is a 
concept.

Dozens of studies have tried to automatically extract key-phrases by using different 
approaches, including rules-based, supervised learning, unsupervised learning, and deep 
neural networks. However, their performances are still very low, which makes them not 
effective enough to use for certain applications, such as explainable recommendation sys-
tems. Typically, automatic key-phrase extraction systems consist of two parts. First, they 
need to preprocess data and then extract a list of candidate keyphrases with lexical patterns 
or heuristics  (Florescu & Caragea, 2017; Grineva et al., 2009; Le et al., 2016; Liu et al., 
2009a; Medelyan et al., 2009; Mihalcea & Tarau, 2004). Then, the candidates are ranked or 
classified to identify correct keyphrases by using unsupervised methods or by using super-
vised methods with hand-crafted features. Candidates are scored based on some properties 
that show how likely a candidate keyphrase is to be a keyphrase in the given document. 
Many studies have formed this task as a binary classification problem to determine correct 
keyphrases  (Hulth, 2003; Jiang et al., 2009; Rose et al., 2010; Wang et al., 2015; Witten 
et al., 2005).

For unsupervised learning, graph-based methods  (Bougouin et al., 2013; Mihalcea & 
Tarau, 2004) try to find important keyphrases in a document. A candidate is important 
when it has relationships with other candidates and when those candidates are also impor-
tant in the document. This forms a graph that represents the input document, where a node 
and edge of the graph represents a keyphrase candidate and the relationship between two 
related candidates, respectively. Each node in the graph is assigned a score, which can be 
calculated using ranking techniques such as PageRank   (Page et  al., 1999). Finally, they 
select the top-ranked candidates as keyphrases for the input document. On the other hand, 
topic-based clustering methods   (Grineva et  al., 2009; Liu et  al., 2009b, 2010) group 
semantically similar candidates in a document as topics. Keyphrases are then selected 
based on the centroid of each cluster or the importance of each topic.

Although deep neural networks have successfully been applied to many NPL-related 
tasks, such as sequence tagging and named entity recognition, few studies have focused 
on the problem of keyphrase extraction, and none of them have evaluated a textbook data-
set, which resulted from a lack of a large amount of available data to train a deep learning 
model. Meng et al. (2017) have developed a RNN-based generative model using encoder-
decoder architecture to predict keyphrases. Though their performance was better than state-
of-the-art methods, it was still not clear how it would be used in an educational setting 
since the datasets evaluated were scientific articles and paper abstracts an author-assigned 
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keyphrases in scientific articles are often general topics rather than specific concepts that 
are taught in class (e.g., concept extraction vs. expectation maximization).   Chau et  al. 
(2020) show that CopyRNN does not perform better than some of the baselines in the con-
text of the Introduction to Information Retrieval textbook.

Wang et  al. (2015) proposed a method for mining concept hierarchies for textbooks, 
which is also required to extract a list of concepts. In this study, instead of focusing on the 
concept extraction task, they used Wikipedia titles as an external resource to identify con-
cepts appearing in the textbook’s table of contents that may not cover many other concepts 
discussed in the book’s contents. As a result, there are only a few concepts extracted to 
build the hierarchy.

3 � Textbook Knowledge Annotation

In the education domain, knowledge annotation has been performed in many stud-
ies because its results have often served as the primary input for methods being devel-
oped (Brusilovsky et al., 1998; Weber & Brusilovsky, 2001; Henze & Nejdl, 2001; Papan-
ikolaou et al., 2003). However, researchers usually perform it as an ad-hoc task and it is 
known to be a very challenging task (Shamsfard & Barforoush, 2004; Wong et al., 2012). 
This is because it is hard to maintain consistency during the long process of annotation 
without clear rules and descriptions.

In order to overcome this challenge, we designed a systematic textbook annotation pro-
cedure and applied it to annotating a popular online textbook, Introduction to Information 
Retrieval (IIR) . The goal of our annotation is to add concepts to the book to turn it into 
an intelligent textbook, and this annotation task helped us to refine the proposed textbook 
annotation procedure.

3.1 � The Case Study: Introduction to Information Retrieval

The ultimate goal of this research focuses on the development of intelligent textbooks, 
which could offer a rich set of support functionalities to readers, including automatic con-
tent linking and recommendations. The IIR textbook was one of our first targets. In order to 
support the expected functionalities, we have to produce a fine-grained annotation of con-
cepts to this textbook. Before we introduce our systematic annotation approach, it is impor-
tant to mention that in order to produce quality annotation for the IIR textbook, we previ-
ously explored traditional ad-hoc expert annotation, crowdsourcing, and automatic concept 
extraction, as well as other approaches. While the overall quality of the obtained results 
and the inter-rater agreement for both experts and crowdworkers were lower than expected, 
the results of our earlier work were useful to guide our work on systematic annotation and 
were also useful to offer evaluation baselines.

3.2 � Initial Coding Procedure and Hiring Process

Our goal is to develop a systematic textbook annotation procedure so that high inter-anno-
tator agreements can be achieved and maintained. As shown in Fig. 1, the initial annotation 
procedure contains several standard steps, including screening applicants’ profiles, guiding 
annotators to perform the tasks, and building an annotation codebook.
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In order to perform textbook annotation following the developed procedure, we hired 
three experts: one PhD student working in the IR domain and two master’s students who 
completed a graduate IR course with high final class scores. After eleven weeks, we 
replaced one master’s student with another master’s student who also completed an IR 
course with a high class performance to see how the codebook could help to achieve a 
good agreement rate with a new annotator. The PhD student was paid by the project and 
the three master’s students were paid a stipend of $12 per hour. The annotators were given 
task descriptions and the initial codebook for annotating concepts (discussed in the next 

Fig. 1   Coding procedure diagram. The annotators follow the procedure until they complete the whole pro-
cess

Fig. 2   The main interface for annotating concepts



Knowledge Annotation for Intelligent Textbooks﻿	

1 3

sections). Before starting the process, the annotators had to pass an annotation test to help 
familiarize themselves with both the task and the annotation interface (see Fig. 2).

3.3 � Task Description

Annotators were expected to work on one chapter per week for the first 16 chapters of the 
IIR textbook (i.e., we only processed these chapters because they are used in a real class-
room where students need to read them through an intelligent textbook interface). Each 
chapter includes multiple sections, which were considered as units for annotation. The sec-
tions were identified according to the headings in the table of contents of the book (unless 
a section was too short and could be combined with a section that follows). The annotators 
were required to annotate all possible concepts that appeared in the text of each section. 
Within each week, after completing annotating concepts, the experts sat down together to 
discuss cases where they did not agree with one another and came up with possible rules 
that could help to increase the agreement.

3.4 � Initial Codebook

The annotators initially started performing the tasks by following the concept annotation 
instructions. The instructions shown to the annotators are shown in Fig. 3. The instructions 
were developed by a group of experts in the field for the tagging task, and we consider it to 
be the initial codebook of our coding procedure. Throughout the coding process, the code-
book was updated and eventually became an outcome of the annotation procedure.

3.5 � Annotating Process for the First Two Chapters

The annotators started the annotation process by following the procedures described above. 
They completed one chapter every week (called a “round”) via the annotation interface. 
At the beginning of each round, the annotators tagged concepts section by section, which 
took about 2–3 h in total. The results (3 independent sets of annotations) were processed 

Fig. 3   The initial codebook for textbook concept annotation task
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to identify agreed cases (i.e., the concepts tagged by all three of the experts) and disagreed 
cases (concepts that were tagged by only one or two experts). We measure the level of 
agreement by calculating the proportionate inter-annotator agreement (i.e., the total num-
ber of agreed cases divided by the total number of cases). The annotators discussed the 
disagreement cases with one another to modify the results, which took 2–3 more hours. 
Based on the discussion and the analysis of disagreement cases, the codebook was updated 
by adding or modifying the rules and the new agreement score was re-calculated after the 
discussion. In the next round, annotators performed the annotation task, based on the cur-
rent codebook.

3.6 � Process Modification

After the first two rounds, we found out that the key reason of the low agreements before 
discussion is that the annotators unintentionally missed tagging particular concepts, 
although they agreed that those concepts should be tagged. In order to resolve this prob-
lem, we refined our annotation process by adding one more step: after completing their 
own annotations, the experts were required to check for missed concepts (see Fig. 4). It was 
done by reviewing a file where the experts could see each other’s annotation results and 
decide whether they wanted to change their own annotations. The experts were asked to 
locate the missing concepts in the original context to make the decision. After checking for 
the missing concepts, the new agreement was calculated and the annotators discussed and 
updated the codebook, as described in the previous section.

3.7 � Improvements from the Modified Process and Codebook

In order to see the improvements after refining the coding procedure and to demonstrate 
the benefit of the incrementally improving codebook, we report the inter-annotator agree-
ment among the three annotators and also the average agreement of the pairs in Fig. 5.

In an annotation process, discussions typically help experts to correct human errors 
when performing their task and come up with rules that aim to resolve their conflicts. As 

Fig. 4   Modified coding procedure diagram
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shown in Fig. 5, the agreement after the discussions was very high from the start, above 
0.9. However, for the first two rounds, the annotation process following the initial coding 
procedure resulted in a very low inter-annotator agreements of 0.25 and 0.2 before the dis-
cussion. As previously mentioned, after investigating the reason for this low agreement, we 
found out that although the annotators said that some concepts should be annotated, they 
unintentionally missed them while annotating.

From the third round on, the annotation process followed the refined coding procedure, 
which requires the experts to check the concepts that they missed (explained in Sect. 3.6). 
This refinement resulted in much higher inter-annotator agreements of above 0.6 before the 
discussions. Moreover, strictly following the codebook helped the experts to become more 
consistent in annotating particular concepts. The inter-annotator agreements before discus-
sion had gradually been increasing, from 0.68 at week 3 up to 0.9 at the end. The after-
discussion agreements also increased during the last few rounds, in which the annotators 
almost always agree with each others for all of the annotated concepts.

4 � The Outcomes

In this section, we present the main outcomes of our attempts to develop a systematic con-
cept annotation procedure. The outcomes include the final annotation procedure, the con-
cept annotation codebook, and the Information Retrieval corpus, including the text of the 
first 86 sections from the selected IIR book and the list of concepts that are associated with 
each of the sections.

Fig. 5   Proportionate Inter-annotator Agreement Results (week by week)
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4.1 � Final Coding Procedure

The final procedure for systematic concept annotation was developed in the process of 
full-scale practical testing of the initial procedure. While the initial procedure already 
integrated the best practices reported in earlier publications, our thorough testing led to 
an important modification explained in the previous section. The final coding procedure 
shown in Fig. 4 includes the following steps:

•	 Step 1 The project leader screens candidate profiles to choose annotators who satisfy 
specific criteria; for example, background knowledge.

•	 Step 2 The annotators familiarize themselves with the interface that is used to anno-
tate knowledge components. The annotators also study the instructions that they need 
to follow during the annotation process. To ensure that they understood what they are 
asked to do and how to do it, the annotators have to pass a test that is related to the 
main task.

•	 Step 3 The annotators complete one round of the annotation process independently for 
an assigned portion of text (in our case, one chapter every week), strictly following the 
codebook.

•	 Step 4 An annotator checks for potentially missed concepts by reviewing the annotation 
results produced by the others. They are required to locate the missing concepts in the 
original text to make decisions.

•	 Step 5 The annotators meet up after finishing the annotation round to discuss disagree-
ment cases and to come up with new rules to prevent the identified conflicts in the 
future.

•	 Step 6 The new rules from Step 5 are added to the codebook (if necessary).
•	 Step 7 Move to the next assignment and repeat the process from Step 3 until all assign-

ments are completed.

4.2 � The Codebook

Table 1 lists the coding schema and detailed rules with examples of concepts and explana-
tions. Following the coding procedure, we added one or more rules after each round. In 
total, we have ten rules. Most of the rules were added after the first few rounds (e.g., round 
1,2,3). After round 9, no new rules were added. It indicates that the resulting table might be 
sufficiently complete and would be recommended for broader use.

4.3 � The Corpus

The important practical outcome of our work is the IR Corpus, which is the full set of 
annotations for the first 16 chapters (i.e., 86 sections) of the Introduction to Information 
Retrieval textbook. We will make this data available for public use,1 called the Systematic 
Knowledge Annotation (SKA) corpus. The outcome statistics for this corpus are shown 
in Table 2. To stress the importance of the systematic annotation process, along with the 
data about the final concepts (agreed by all of the three experts after their discussions, see 
column 4&5 in Table 2), we also report the statistics for concepts that are annotated by 

1  https://​github.​com/​PAWSL​abUni​versi​tyOfP​ittsb​urgh/​Conce​pt-​Extra​ction.

https://github.com/PAWSLabUniversityOfPittsburgh/Concept-Extraction
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Table 1   Coding schema for concept annotation

Rule Description (bold text) with Examples and Explanations

1. (Round 1) Only noun/noun phrases are considered
Examples:
Concept: sorting algorithm, wildcard pattern matching, boolean retrieval model
Not concept: merging postings list, ranking documents
In the examples above, merging postings list and ranking documents
are not concepts, because they are not nouns or noun phrases

2. (Round 1) Abbreviation of a concept is also a concept
Examples:
“IR (information retrieval)", “EM (expectation maximization)"
IR and EM are all concepts, because information retrieval and
expectation maximization are concepts

3. (Round 1) Annotate the whole noun/noun phrases,
but ignore the general adj. (e.g., long, big etc.)
Examples:
Concept: latent linguistic structure, hidden variables
Not concept: long query, big document collection
In the examples above, long and big are too general.
Only query and document collection are concepts

4. (Round 2) If two noun phrases are concepts, the combination should be the concept
Examples:
Concept: postings list, data structure, postings list data structure
In the example above, postings list and data structure are concepts,
so postings list data structure is a concept.

5. (Round 3) The concepts combined with conjunctions should be separated (e.g., and, or)
Examples:
“boolean and proximity queries"
In the example above, you need to annotate the two concepts boolean queries
and proximity queries

6. (Round 5) All variations of the concepts should be annotated
Examples:
Concept: Multi-term query, Bi-term query, Three-term query
The examples above are variations of the concept query,
therefore they should be annotated.

7. (Round 6) Annotate all special / not general phrases in the
Computer Science related domain e.g., Statistics, mathematics
Examples:
Concept: quadratic function, binomial distribution
Quadratic function and binomial distribution are concepts,
because they are important phrases in the Statistics domain.

8. (Round 6) Ignore the Abbreviation in brackets
Examples:
“inverse document frequency (idf)"
“variable byte (vb)"
“encodingmegabytes (mb)"
In the examples above, idf, vb, and mb should be ignored

9. (Round 8) If the concept term has punctuations, keep them
Examples:
“(query, document) pairs"
The example above should be annotated as a concept including the bracket and comma.

10. (Round 9) The well-known and important examples should be annotated
Examples:
“A well-known example is the Unified Medical Language System..."
In the example above, Unified Medical Language System should be annotated as a concept.
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all the experts before discussions (see columns 2&3 in Table  2). Note that the numbers 
of concepts and unique concepts after discussions are larger than those that occur before 
discussions.

The distribution of n-grams is very similar both before and after discussions, which can 
be seen in Table 2. For the final concept list, bi-grams contribute to about 50% of all the 
concepts for both cases (i.e., number of concepts and number of unique concepts). The 
longer a concept is, the less frequently it appears in the corpus. Unique 1-g account for 
18.02% of all the unique concepts, while 1-g alone account for 35.31% of all the concepts. 
On the other hand, unique 3-g account for 21.39% of all of the unique concepts, while 3-g 
only contribute to 13.29% of all the concepts. This statistics could be helpful for designing 
automatic concept extraction; for instance, instead of trying to predict all the concepts, one 
just needs to focus on 1 to 4 g, which contribute to about 99.5% of improvements to the 
model performance.

4.4 � Error Analysis

To show the necessity of adding rules in Table 1 for each round, we performed error anal-
ysis for each rule. During the discussion procedure in each round, the annotators found 
errors that either included bad concepts or that missed some good ones because of the lack 
of a particular rule. For example, without Rule 1, one or more annotators annotated phrases 
such as “sort” and “normalize”, which are important domain verbs, but are not concepts. 
Another example is that without Rule 2, annotators might miss some good concepts that 
are important abbreviations of a concept like “EM” (expectation maximization). Table 3 
shows the error analysis for all rules in each round. The first column shows the rule number 
in Table 1 and the second column shows the problem caused without the corresponding 
rule. The third column shows the proportion of the errors caused by the lack of this rule 
among all the errors. For example, in all errors that include bad concepts, 10.61% of them 
occurred in Round 1 because of the lack of Rule 1. In other words, the annotators could 
delete 10.61% of bad concepts annotated in Round 1 with this additional rule (i.e., Rule 1).

Table 1   (continued)
The first column shows the rule numbers and in which round this rule was added. The second column 
shows the description of each rule (bold text) with examples and explanations

Table 2   Data statistics of IR corpus

The concepts included in the final results are those that are agreed upon by all the three experts before the 
discussions (i.e., column 1 & 2) and after the discussions (i.e., column 3 & 4)

Characteristic Concepts no. 
(before discussion)

Unique concepts no. 
(before discussion)

Concepts no. (after 
discussion)

Unique concepts 
no. (after discus-
sion)

1-g 958 (36.19%) 236 (18.60%) 1121 (35.31%) 278 (18.02%)
2-g 1291 (48.77%) 8719 (56.66%) 1565 (49.29%) 871 (56.45%)
3-g 351 (13.26%) 270 (21.27%) 422 (13.29%) 330 (21.39%)
4-g 41 (1.55%) 38 (2.99%) 58 (1.83%) 55 (3.56%)
5+6-g 6 (0.23%) 6 (0.47%) 9 (0.28%) 9 (0.58%)
All grams 2647 1269 3175 1543
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5 � Evaluation

In this section, we evaluate our SKA corpus and compare it against several other corpora 
produced by alternate annotation approaches, including crowd-sourcing annotation and 
automatic annotation techniques. We first compared the SKA corpus with other corpora in 
terms of the statistics and other metrics (e.g., precision, recall and F1). In addition, we per-
formed the comparisons on two other tasks: document linking and student modeling, since 
the quality of the annotation could lead to better support for intelligent textbooks which 
rely on concept annotation.

5.1 � Comparision with Other Corpora

In order to demonstrate the effectiveness of our annotation procedure, we compare our 
SKA courpus against the baseline corpora that was obtained with alternative annotation 
procedures. In order to understand the importance of the discussed phrases, we also com-
pare it against the intermediate results of the SKA process; i.e., concepts identified by each 
of the three expert annotators before discussion.

•	 Crowd-sourcing Amazon MTurk (MTurk) concept annotations produced by non-expert 
crowdworkers. In order to produce this corpus, we recruited three crowd workers from 
Amazon Mechanical Turk.2 The annotators were assigned to chapters 6 and 8 of the 
IIR textbook (we chose these two chapters based on a reasonable amount of text for the 
annotation assignments), annotating 13 sections in total. We used the same interface 
(shown in Fig. 2) to collect the data. The workers performed their assignments indepen-
dently.

•	 Expert concepts annotated by one expert. In order to model a traditional ad-hoc anno-
tation process, one PhD student working in the IR domain (who was treated as the 
expert) was asked to annotate the concepts using our interface, but without any explicit 
guidelines or codebook.

Table 3   Error analysis for each 
rule in the codebook

Rule Problem Percentage

Rule 1 (Round 1) Include bad concepts 10.61
Rule 2 (Round 1) Miss good concepts 17.90
Rule 3 (Round 1) Include bad concepts 18.18
Rule 4 (Round 2) Miss good concepts 6.97
Rule 5 (Round 3) Include bad concepts 9.25
Rule 6 (Round 5) Miss good concepts 11.10
Rule 7 (Round 6) Miss good concepts 12.50
Rule 8 (Round 6) Include bad concepts 13.30
Rule 9 (Round 8) Miss good concepts 6.25
Rule 10 (Round 9) Miss good concepts 10.00

2  https://​www.​mturk.​com.

https://www.mturk.com
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•	 IBM Natural Language Understanding API (IBM) we used the client library watson_
developer_cloud3 provided for Python. IBM Watson was selected as one of the most 
advanced examples of automatic annotation. When given a text document, the API 
returns a list of keywords or entities. The total number of concepts and total number 
of unique concepts extracted by IBM API for the first 16 chapters of the IIR book are 
4061 and 3065, respectively.

•	 Annotators without discussion (Anno w/o Discussion) Three concept datasets annotated 
by three expert annotators following the codebook, but before the discussion stage.

Table 4 shows the basic statistics of the baselines and the SKA corpus. We observed that 
the corpus extracted by IBM Natural Language Understanding API has the largest number 
of concepts and unique concepts per chapter. It is also interesting to observe that even a 
single expert annotator following our annotation procedure can identify considerably more 
concepts than an expert performing ad-hoc annotation, who, in turn, can find fewer than 
half of the concepts produced by the SKA procedure. Table 5 shows the baseline corpora 
comparison with the SKA corpus in terms of precision, recall and F1, where we treat SKA 
as “ground-truth". The high number means there is a high degree of similarity between 
the baseline and the SKA corpus. Not surprisingly, the three datasets annotated by three 
annotators are the ones closest to the SKA corpus. Annotations by an expert without the 
codebook is more similar to the SKA corpus than the MTurk and the IBM corpus.

 

Table 4   Data Statistics of 
different concepts corpora for IIR 
textbook

Corpus Concepts no. per 
chapter

Unique concepts 
no. per chapter

MTurk 96.67 88.25
Expert 87.31 46.84
IBM 253.81 191.56
Anno w/o Discussion 1 113.81 76.06
Anno w/o Discussion 2 118.19 80.06
Anno w/o Discussion 3 127.13 85.93
SKA 198.44 96.44

Table 5   Corpora comparison 
with SKA

Corpus Precision Recall F1

MTurk 0.41 0.26 0.32
Expert 0.60 0.34 0.42
IBM 0.21 0.39 0.25
Anno w/o Discussion 1 0.94 0.89 0.91
Anno w/o Discussion 2 0.91 0.89 0.90
Anno w/o Discussion 3 0.91 0.95 0.93

3  https://​github.​com/​watson-​devel​oper-​cloud/​python-​sdk.

https://github.com/watson-developer-cloud/python-sdk
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5.2 � Document Linking

In this section, we evaluate the SKA corpus on the task of textbook linking. To be more 
specific, we attempt to use the concepts as the textbook content representation to iden-
tify similar book sections from different textbooks. We believe that textbooks are care-
fully designed by their authors to organize knowledge or concepts for a given field, as 
each section of the book contains certain knowledge that is hidden behind the concepts. 
Therefore, concept annotations of better quality could help to better link the textbook 
sections. We follow the content linking problem defined in  Meng et al. (2016), which 
is to match the subsections in BOOK1 and the corresponding subsections in BOOK2. 
As it is a one-to-many match (e.g., one subsection in BOOK1 can be matched to many 
subsections in BOOK2), we rank all subsections in BOOK2 based on their similarity to 
subsections in BOOK1. We first use the concepts to represent each book subsection as a 
vector and then compute the similarities between sections as similarities between their 
vectors (using cosine similarity).

5.2.1 � Ground‑Truth and Experiment Design

We used the ground-truth data on subsection mapping in the information retrieval text-
books. The data includes mapping of subsections from the textbook that we used for 
annotation (IIR) in this work to another textbook (Baeza-Yates et  al. Modern Informa-
tion Retrieval; in short, MIR). Two experts were asked to provide the mapping score for 
each subsection pair. The final relevance score was computed as the average of the scores. 
The ground-truth dataset contains four chapters with 47 subsections from IIR, which are 
mapped to 88 subsections in MIR.

We used the SKA and baselines to link the two textbooks. If one of these concepts is 
mentioned in a book subsection, this concept will be used to represent the given book sub-
section. We also consider the number of occurrences of each concept. To be specific, we 
use the concept frequency to create a vector as the knowledge representation of each book 
subsection. The similarity between two book subsections is measured by cosine similarity.

5.2.2 � Document Linking Evaluation

As discussed in the previous sections, one subsection in IIR may map to more than 
one subsection in MIR. In the ground-truth dataset, 55.3% are one-to-one relationships, 
21.3% are one-to-two mapping relationships, and the rest are one-to-N ( N > 2 ) mapping 
relationships. The well-known ranking-based evaluation metrics NDCG (Normalized 
Discounted Cumulative Gain)@N (Järvelin & Kekäläinen, 2002) was adopted for evalu-
ation. As shown in Eq. 1, NDCG@p measures the quality of top p ranked book sections 
Discounted Cumulative Gain (DCG@p) normalized by top p Ideal Discounted Cumu-
lative Gain (IDCG@p). DCG@p and IDCG@p are defined by Eqs.  2 and   3, where 
reli is the relevance score in the ranked book sections by different methods and RELi 
is the relevance score in the ideal ranked order. NDCG@p compares the target ranking 
to the positions that documents occupy in the ideal list and penalizes any mismatches. 
NDCG@1 measures the effectiveness of the model to find the top relevant document. In 
the same way, NDCG@p measures the quality of ranking the first p items respectively. 
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As in our dataset more than half of the mappings are either one-to-one relationships and 
91.5% of them are one-to-p ( 1 ≤ p ≤ 3 ) relationships, p was set to be 1 and 3.

In this section, we provide our results with baseline corpora (refer to Sect.  5.1). We 
observed that the results in terms of both NDCG@1 and NDCG@3 in Table 6 are small. 
Similar observations that term-based methods (e.g., those only using term frequency) 
always perform much worse than other sophisticated methods was also found in the previ-
ous work   (Guerra et  al., 2013). In their work, when only applying term-based methods 
using all terms in the content to link the sections of five information retrieval textbooks, 
two of which are used in this study, the average NDCG@1 and NDCG@3 can only reach 
0.057 and 0.186 respectively. In our study, we observed from Table 6 that when using con-
cepts as terms, the results are much better, which shows concepts that can better represent 
the underlying knowledge. In addition, we observed that the SKA corpus performs bet-
ter than both Expert and IBM concepts in terms of both NDCG@1 and NDCG@3. This 
shows that with the systematic annotation procedure, a team of experts can better extract 
hidden knowledge in the textbook. Among the three baseline corpora of MTurk, Expert, 
and IBM, Expert performs best at point 1. This may be because the Expert dataset is more 
similar to the SKA corpus (see Table 5). To see how the discussed phrases help improve 
the quality of the corpus, we also compared the SKA corpus with individual annotations 
from before the discussion. The results in Table  6 show that the SKA corpus produces 
better results than all three datasets produced by expert annotators before the discussion. 
This provides the evidence in favor of the discussion phase, which tries to bring together 
knowledge from different experts and combine their views to annotate the text with con-
cepts. We also observed that each of the three datasets produced by annotators before the 
discussion perform better than the single expert performing an ad-hoc annotation without 

(1)NDCG@p =
DCG@p

IDCG@p

(2)DCG@p =

p
∑

i=1

2reli − 1

log2(i + 1)

(3)IDCG@p =

p
∑

i=1

2RELi − 1

log2(i + 1)

Table 6   Document linking 
results under SKA corpus and 
the baselines

Bold font indicates the best result

Corpus NDCG@1 NDCG@3

MTurk 0.19 0.24
Expert 0.21 0.28
IBM 0.20 0.32
Anno w/o Discussion 1 0.24 0.32
Anno w/o Discussion 2 0.22 0.30
Anno w/o Discussion 3 0.23 0.30
SKA 0.26 0.35
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the codebook and the discussion. This demonstrates that the codebook can guide the expert 
to extract a better knowledge representations from within the textbooks and thus improve 
the overall quality of the annotations.

5.3 � Student Modeling

Student models (SMs) are used to track student learning in online-learning platforms 
like massive open online Courses (MOOCs) and intelligent tutoring systems  (Corbett & 
Anderson, 1995; Pavlik et al., 2009). SMs are maintained by observing students working 
with learning materials and are used to adapt the system behaviors to individual students; 
i.e., to recommend the most relevant materials or practice activities. Modern SMs are able 
to maintain the level of student knowledge for a set of knowledge units (KUs). KUs, also 
known as knowledge components or skills, are the fundamental units upon which students’ 
knowledge is measured. For example, a student practicing an elementary mathematics 
problem might have to understand knowledge units like “Addition”, “Subtraction”, “Mulit-
plication”, and “Division”. Traditionally, experts annotate practice activities or learning 
resources with KUs. To evaluate and understand the quality of annotated concepts, we used 
them as knowledge units for SMs and measured the predictive power of the obtained SMs. 
In the following subsections, we will discuss the system used, the data collection proce-
dure, and the experiment details.

5.3.1 � Ground‑Truth and Experiment Design

The dataset used for this experiment is collected from an online reading platform, System C 
(anonymized). This system was used in a graduate-level Information Retrieval course. The 
system provides an active reading environment to the student where they read the assigned 
textbook sections to prepare for the next class. Each section of textbook is followed by a 
quiz, which allows students to assess how well they learned the content. There is no restric-
tion on the number of attempts to answer the questions. System C logs all attempts made by 
the student. The dataset contains students’ time spent on reading sections and quiz perfor-
mance. The dataset includes interactions from 22 students collected from the Spring 2016 
semester. Details of the dataset are listed in Table 7.

To assess the quality of each corpus, we used their concepts as KUs to model students’ 
reading and quiz attempt behavior and predict their future performances. To perform this, 
we used a comprehensive factor analysis Model  (CFM)  (Thaker et  al., 2019). CFM is a 
logistic regression based model that takes students’ previous performances and reading 

Table 7   SM dataset statistics
Number of documents (sections) 394
Number of questions 158
Number of students 22
Median per student of reading time (minutes) 104
Average per student questions attempted 126
Median reading speed (words per minutes) 773
Percentage of skimming activities 33%
Percentage of reading activities 67%
Total interactions 22,536
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behaviors to predict their success rate for a given question. We selected CFM to model 
student performances, as it performs better on intelligent textbooks than other state-of-the-
art student modeling approaches and also incorporates student reading behavior, which has 
proved to be beneficial in cases of online textbook-based learning systems (Huang et al., 
2016; Thaker et al., 2018).

5.3.2 � Student Modeling Evaluation

To evaluate the performance of CFM on student performance, we performed 5-fold cross-
validation with student-stratified folds. First, we randomly selected 80% of students and 
put all their reading and quiz activity data into a training set. Then for the remaining 20% 
of students, all of their reading and quiz activity data was put into a test set. The predic-
tions are reported for quiz performances. The 5-fold cross-validation is performed from the 
generated folds and area under the receiver operating characteristic curve (AUC) and root 
mean squared error (RMSE) are reported. Larger AUC and lower RMSE numbers indicate 
better results.

•	 Comparison with other annotation methods
	   In this section, we report our results with baseline corpora (refer to Sect.  5.1) to 

understand the importance of the SKA approach over other annotation methods. As 
shown in Table 8, SKA performs better than both expert annotation and IBM concepts. 
This shows that the codebook-based annotation method is better at extracting KUs than 
the simple expert annotation (Expert) and the automatic concept extraction method 
(IBM). An important insight was the small gap in the differences between the perfor-
mance of IBM and SKA. The previous research has shown that small improvements 
in student modeling are acceptable and provide a significant improvement in student 
activity adaptation, based on student models (Thaker et al., 2018, 2020)

	   We ignored the MTurk baseline, as crowdsourced annotations were collected for 
only two chapters, which is not sufficient to model student performance. In order to 
train student models, we need datasets from several chapters in a sequence. Currently 
we don’t have the MTurk data from all the chapters; we only have a dataset for chap-
ter 2 and 8, which don’t have any overlap needed to train and test students’ knowledge. 
Collecting new data will take a lot of effort, which is not the focus of this work, so we 
left it for future study.

•	 Comparison with expert annotations before discussion 
	   To understand the importance of the discussion phase of the annotation process, 

we also compared our final annotations with annotations without different discussion 

Table 8   Results of student 
performance prediction with 
SKA corpus and the baselines

Bold font indicates the best result

Corpus AUC​ RMSE

Expert 0.541 0.475
IBM 0.624 0.385
Anno w/o Discussion 1 0.618 0.386
Anno w/o Discussion 2 0.602 0.401
Anno w/o Discussion 3 0.584 0.421
SKA 0.633 0.363
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phases. The results of this phase are listed in Table 8. As the results show, SKA annota-
tions perform better than each of the annotations where any of the discussion phases are 
missing; with an increase in AUC, this depicts the effectiveness of the discussion phase. 
The results also make it evident that removing Discussion 3  affects the results more 
drastically, and that this shows the importance of each discussion phase. The results 
provide an important insight that Anno w/o Discussion in SKA approach was able to 
come up with better concepts than the Expert. This is another piece of evidence of the 
effectiveness of using the codebook and the discussion phases.

6 � Conclusion and Future Work

In this paper, we present a reliable systematic knowledge engineering approach for fine-
grained annotation of textbooks with underlying knowledge in the form of concepts. We 
explored this approach by performing a full-scale annotation procedure on a popular open 
source textbook Introduction to Information Retrieval (IIR). In the process of working with 
IIR, we refined and finalized the proposed approach. The low inter-agreement among anno-
tators, in the beginning, shows that it is hard to annotate concepts from a textbook, even by 
domain experts, without proper procedure. The observation that the inter-agreement among 
annotators gradually increased by following our proposed procedure shows the effective-
ness of this procedure.

In order to evaluate the quality of our SKA corpus, we compared our SKA corpus 
against alternately produced annotation corpora in terms of their performance on two tar-
get tasks performed by intelligent textbooks: document linking and student modeling. The 
results demonstrate that our SKA corpus can achieve better performance in both tasks, as 
compared with other annotation corpora. Altogether, our data indicates that the annota-
tion process presented in this paper could be used to augment textbooks with “knowledge 
behind pages” that could effectively support several needs of intelligent textbooks.

Besides this approach itself, the outcomes of our work include a codebook, which can 
be used to annotate similar textbooks, and a public dataset. The dataset includes the text-
book content and a full set of section-level annotation (SKA corpus) and could be used 
by the document engineering community to refine and evaluate keyphrase extraction and 
generation approaches. In our own research, we were able to apply the produced dataset to 
train a well-performing automatic keyphrase annotation approach (Chau et al., 2020). We 
believe that the presented team-based systematic knowledge annotation approach could be 
used to produce a broader collection of high-quality datasets for training automatic models.

In our future work, we plan to continue our exploration of quality-focused concept 
annotation approaches for textbooks addressing a number of challenges and opportunities 
that we were not able to explore in the first round of our research. In particular, we are 
interested to explore more opportunities to engage a team of crowdworkers in the process 
of annotation. While we demonstrated that a team of experts working with a codebook 
could produce a higher-quality annotation than a single expert of a crowdworker, once a 
codebook is developed by experts, it might also empower crowdworkers. It remains to be 
seen whether the annotation produced by crowdworkers with the codebook could reach 
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the quality produced by a team of experts. Second, the observed good results produced 
by the IBM automatic approach in both assessment tasks encourage us to explore a hybrid 
approach that combines the automatic extraction method and the systematic expert proce-
dure. The automatic extraction method may have potential power in improving the quality 
of the annotation, as well as reducing the overall annotation load.4

Acknowledgements  This material is based upon work supported by the National Science Foundation 
under Grant No. 1525186. This research is also supported in part by the University of Pittsburgh Center for 
Research Computing through the resources provided.

References

Agrawal, R., Gollapudi, S., Kannan, A., & Kenthapadi, K. (2014). Study navigator: An algorithmically gen-
erated aid for learning from electronic textbooks. Journal of Educational Data Mining, 6(1), 53–75.

Augenstein, I., Das, M., Riedel, S., Vikraman, L., & McCallum, A. (2017). Semeval 2017 task 10: Scien-
ceie-extracting keyphrases and relations from scientific publications. Preprint arXiv:​1704.​02853

Bareiss, R., & Osgood, R. (1993). Applying ai models to the design of exploratory hypermedia systems. In 
Fifth ACM Conference on Hypertext (pp. 94–105). ACM Press.

Bayerl, P. S., Lüngen, H., Gut, U., & Paul, K. I. (2003). Methodology for reliable schema development and 
evaluation of manual annotations. In Proceedings of the workshop on knowledge markup and semantic 
annotation at the second international conference on knowledge Capture (K-CAP. (2003). ACM.

Bougouin, A., Boudin, F., & Daille, B. (2013). Topicrank: Graph-based topic ranking for keyphrase extrac-
tion. In Proceedings of the sixth international joint conference on natural language processing (pp. 
543–551). Asian Federation of Natural Language Processing.

Brusilovsky, P. (2003). Developing adaptive educational hypermedia systems: From design models to 
authoring tools. In T. Murray, S. Blessing, & S. Ainsworth (Eds.), Authoring tools for advanced tech-
nology learning environments: Toward cost-effective adaptive, interactive, and intelligent educational 
software (pp. 377–409). Kluwer.

Brusilovsky, P., Chavan, G., & Farzan, R. (2004). Social adaptive navigation support for open corpus elec-
tronic textbooks. Lecture Notes in Computer Science. In P. De Bra & W. Nejdl (Eds.), Third interna-
tional conference on adaptive hypermedia and adaptive web-based systems (AH’2004) (Vol. 3137, pp. 
24–33). Springer-Verlag.

Brusilovsky, P., Eklund, J., & Schwarz, E. (1998). Web-based education for all: A tool for development 
adaptive courseware. Computer Networks and ISDN Systems, 30(1), 291–300. https://​doi.​org/​10.​1016/​
S0169-​7552(98)​00082-8.

Brusilovsky, P., & Pesin, L. (1998). Adaptive navigation support in educational hypermedia: An evaluation 
of the isis-tutor. Journal of Computing and Information Technology, 6(1), 27–38.

Chau, H., Labutov, I., Thaker, K., He, D., & Brusilovsky, P. (2020). Automatic concept extraction for 
domain and student modeling in adaptive textbooks. International Journal of Artificial Intelligence in 
Education.

Chaudhri, V. K., Cheng, B., Overtholtzer, A., Roschelle, J., Spaulding, A., Clark, P., et al. (2013). Inquire 
biology: A textbook that answers questions. AI Magazine, 34(3), 55–72.

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modelling the acquisition of procedural 
knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–278.

Florescu, C., & Caragea, C. (2017). Positionrank: An unsupervised approach to keyphrase extraction from 
scholarly documents. In Proceedings of the 55th annual meeting of the association for computational 
linguistics (Volume 1: Long Papers) (pp. 1105–1115). Association for Computational Linguistics.

Green, S. J. (1999). Building hypertext links by computing semantic similarity. IEEE Transactions on 
Knowledge and Data Engineering, 11(5), 713–730.

Grineva, M., Grinev, M., & Lizorkin, D. (2009). Extracting key terms from noisy and multitheme docu-
ments. In Proceedings of the 18th international conference on World Wide Web, WWW ’09 (pp. 661–
670). ACM.

4  http://​crc.​pitt.​edu.

http://arxiv.org/abs/1704.02853
https://doi.org/10.1016/S0169-7552(98)00082-8
https://doi.org/10.1016/S0169-7552(98)00082-8
http://crc.pitt.edu


Knowledge Annotation for Intelligent Textbooks﻿	

1 3

Guerra, J., Sosnovsky, S., & Brusilovsky, P. (2013). When one textbook is not enough: Linking multiple 
textbooks using probabilistic topic models. In European conference on technology enhanced learning 
(pp. 125–138). Springer.

Henze, N., Naceur, K., Nejdl, W., & Wolpers, M. (1999). Adaptive hyperbooks for constructivist teaching. 
Künstliche Intelligenz, 13(4), 26–31.

Henze, N., & Nejdl, W. (2001). Adaptation in open corpus hypermedia. International Journal of Artificial 
Intelligence in Education, 12(4), 325–350.

Huang, Y., Yudelson, M., Han, S., He, D., & Brusilovsky, P. (2016). A framework for dynamic knowledge 
modeling in textbook-based learning. In Proceedings of 24th conference on user modeling, adaptation 
and personalization (pp. 141–150). ACM.

Hulth, A. (2003). Improved automatic keyword extraction given more linguistic knowledge. In Proceed-
ings of the 2003 conference on empirical methods in natural language processing, EMNLP ’03 (pp. 
216–223). Association for Computational Linguistics.

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions 
on Information Systems (TOIS), 20(4), 422–446.

Jiang, X., Hu, Y., & Li, H. (2009). A ranking approach to keyphrase extraction. In Proceedings of the 32nd 
international ACM SIGIR conference on research and development in information retrieval, SIGIR ’09 
(pp. 756–757). ACM.

Kavcic, A. (2004). Fuzzy user modeling for adaptation in educational hypermedia. IEEE Transactions on 
Systems, Man, and Cybernetics, 34(4), 439–449.

Labutov, I., Huang, Y., Brusilovsky, P., & He, D. (2017). Semi-supervised techniques for mining learning 
outcomes and prerequisites. In Proceedings of the 23rd ACM SIGKDD international conference on 
knowledge discovery and data mining, KDD ’17 (pp. 907–915). ACM.

Lakkaraju, P., Gauch, S., & Speretta, M. (2008). Document similarity based on concept tree distance. In The 
19th ACM conference on hypertext & hypermedia (pp. 127–131). ACM.

Lan, A. S., & Baraniuk, R. G. (2016). A contextual bandits framework for personalized learning action 
selection. In T. Barnes, M. Chi, & M. Feng (Eds.), The 9th international conference on educational 
data mining (EDM 2016) (pp. 424–429). Raleigh.

Le, T. T. N., Nguyen, M. L., & Shimazu, A. (2016). Unsupervised keyphrase extraction: Introducing new 
kinds of words to keyphrases. In B. H. Kang & Q. Bai (Eds.), AI 2016: Advances in artificial intelli-
gence (pp. 665–671). Springer International Publishing.

Liu, F., Pennell, D., Liu, F., & Liu, Y. (2009). Unsupervised approaches for automatic keyword extraction 
using meeting transcripts. In Proceedings of human language technologies: The 2009 annual confer-
ence of the north american chapter of the association for computational linguistics, NAACL ’09 (pp. 
620–628). Association for Computational Linguistics.

Liu, Z., Huang, W., Zheng, Y., & Sun, M. (2010). Automatic keyphrase extraction via topic decomposition. 
In Proceedings of the 2010 conference on empirical methods in natural language processing, EMNLP 
’10 (pp. 366–376). Association for Computational Linguistics.

Liu, Z., Li, P., Zheng, Y., & Sun, M. (2009). Clustering to find exemplar terms for keyphrase extraction. In 
Proceedings of the 2009 conference on empirical methods in natural language processing: Volume 1–
Volume 1, EMNLP ’09 (pp. 257–266). Association for Computational Linguistics.

Medelyan, O., Frank, E., & Witten, I. H. (2009). Human-competitive tagging using automatic keyphrase 
extraction. In Proceedings of the 2009 conference on empirical methods in natural language process-
ing: Volume 3–Volume 3, EMNLP ’09 (pp. 1318–1327). Association for Computational Linguistics.

Melis, E., Andrès, E., Büdenbender, J., Frishauf, A., Goguadse, G., Libbrecht, P., et  al. (2001). Active-
math: A web-based learning environment. International Journal of Artificial Intelligence in Education, 
12(4), 385–407.

Meng, R., Han, S., Huang, Y., He, D., & Brusilovsky, P. (2016). Knowledge-based content linking for online 
textbooks. In 2016 IEEE/WIC/ACM international conference on web intelligence (WI) (pp. 18–25). 
IEEE.

Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., & Chi, Y. (2017). Deep keyphrase generation. In 
ACL2017, annual meeting of the association for computational linguistics (pp. 836–845). ACL. arxiv:​
1704.​06879

Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of EMNLP 2004 (pp. 
404–411). Association for Computational Linguistics. https://​www.​aclweb.​org/​antho​logy/​W04-​3252

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bringing order to 
the web. Stanford InfoLab: Tech. rep.

Papanikolaou, K. A., Grigoriadou, M., Kornilakis, H., & Magoulas, G. D. (2003). Personalising the inter-
action in a web-based educational hypermedia system: The case of inspire. User Modeling and User 
Adapted Interaction, 13(3), 213–267.

http://arxiv.org/abs/1704.06879
http://arxiv.org/abs/1704.06879
https://www.aclweb.org/anthology/W04-3252


	 M. Wang et al.

1 3

Pavlik, P., Cen, H., & Koedinger, K.R. (2009). Performance factors analysis–a new alternative to knowledge 
tracing. In Proceedings of the 2009 conference on artificial intelligence in education: Building learn-
ing systems that care: From knowledge representation to affective modelling (pp. 531–538). IOS Press.

Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction from individual doc-
uments. In M. W. Berry & J. Kogan (Eds.), Text mining: Applications and theory (pp. 1–20). John 
Wiley and Sons Ltd.

Shamsfard, M., & Barforoush, A. A. (2004). Learning ontologies from natural language texts. International 
Journal on Human-Computer Studies, 60, 17–63.

Thaker, K., Carvalho, P., & Koedinger, K. (2019). Comprehension factor analysis: Modeling student’s read-
ing behaviour: Accounting for reading practice in predicting students’ learning in moocs. In Proceed-
ings of the 9th international conference on learning analytics and knowledge (pp. 111–115). ACM.

Thaker, K., Huang, Y., Brusilovsky, P., & He, D. (2018). Dynamic knowledge modeling with heterogeneous 
activities for adaptive textbooks. In The 11th international conference on educational data mining (pp. 
592–595). ACM.

Thaker, K., Zhang, L., He, D., & Brusilovsky, P. (2020). Recommending remedial readings using student 
knowledge state. In Proceedings of The 13th international conference on educational data mining 
(EDM 2020) (pp. 233–244).

Wang, S., Liang, C., Wu, Z., Williams, K., Pursel, B., Brautigam, B., Saul, S., Williams, H., Bowen, K., & 
Giles, C. L. (2015). Concept hierarchy extraction from textbooks. In Proceedings of the 2015 ACM 
symposium on document engineering, DocEng ’15 (pp. 147–156). ACM.

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for web-based instruction. 
International Journal of Artificial Intelligence in Education, 12, 351–384.

Wilbur, W. J., Rzhetsky, A., & Shatkay, H. (2006). New directions in biomedical text annotation: Defini-
tions, guidelines and corpus construction. BMC Bioinformatics, 7(1), 1–10.

Winchell, A., Mozer, M., Lan, A., Grimaldi, P., & Pashler, H. (2018). Can textbook annotations serve as an 
early predictor of student learning? In The 11th international conference on educational data mining 
(pp. 431–437). ERIC.

Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., & Nevill-Manning, C. G. (2005). Kea: Practical auto-
mated keyphrase extraction. Design and Usability of Digital Libraries: Case Studies in the Asia Pacific 
(pp. 129–152). IGI Global.

Wong, W., Liu, W., & Bennamoun, M. (2012). Ontology learning from text: A look back and into the future. 
ACM Computer Survey, 44(4).

Xia, F., & Yetisgen-Yildiz, M. (2012). Clinical corpus annotation: Challenges and strategies. In Proceedings 
of the third workshop on building and evaluating resources for biomedical text mining (BioTxtM’2012) 
in conjunction with the international conference on language resources and evaluation (LREC), Istan-
bul, Turkey.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Mengdi Wang1   · Hung Chau1 · Khushboo Thaker1 · Peter Brusilovsky1 · Daqing He1

	 Mengdi Wang 
	 mew133@pitt.edu

	 Hung Chau 
	 hkc6@pitt.edu

	 Khushboo Thaker 
	 k.thaker@pitt.edu

	 Daqing He 
	 dah44@pitt.edu

1	 School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260, USA

http://orcid.org/0000-0002-1848-7342

	Knowledge Annotation for Intelligent Textbooks
	Abstract
	1 Introduction
	2 Related Work
	2.1 Intelligent Textbooks
	2.2 Data Annotation
	2.3 Concept Mining

	3 Textbook Knowledge Annotation
	3.1 The Case Study: Introduction to Information Retrieval
	3.2 Initial Coding Procedure and Hiring Process
	3.3 Task Description
	3.4 Initial Codebook
	3.5 Annotating Process for the First Two Chapters
	3.6 Process Modification
	3.7 Improvements from the Modified Process and Codebook

	4 The Outcomes
	4.1 Final Coding Procedure
	4.2 The Codebook
	4.3 The Corpus
	4.4 Error Analysis

	5 Evaluation
	5.1 Comparision with Other Corpora
	5.2 Document Linking
	5.2.1 Ground-Truth and Experiment Design
	5.2.2 Document Linking Evaluation

	5.3 Student Modeling
	5.3.1 Ground-Truth and Experiment Design
	5.3.2 Student Modeling Evaluation


	6 Conclusion and Future Work
	Acknowledgements 
	References




