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ABSTRACT: Herein, we describe the nickel-catalyzed reductive
arylation of remote C(sp3)−H bonds with aryl electrophiles. The
reaction targets secondary and tertiary C(sp3)−H bonds to deliver
all-carbon quaternary centers. The success of this method relies on
a novel amidyl radical precursor that tolerates reducing conditions,
namely O-oxalate hydroxamic acid esters.

Selective C−H functionalization represents an attractive
approach to rapidly increase structural complexity and

streamline synthesis.1 Over the past two decades, efforts to
develop practical methods for selective C−H functionalization
have led to novel reactivities, new mechanistic paradigms, and
synthetically useful protocols.2 In this area, the transition-
metal-catalyzed directed arylation of C−H bonds represents an
important protocol for the efficient construction of C−C
bonds.3 The selective arylation of C−H bonds can significantly
simplify synthetic routes to construct C−C(sp2) bonds by
avoiding the use of prefunctionalized starting materials
(Scheme 1a). Despite the tremendous progress in the arylation
of C(sp2)−H bonds,4 the site-selective arylation of unactivated
C(sp3)−H bonds remains underdeveloped.5 Moreover, the

additional problems associated with tertiary C(sp3)−H bonds,
namely steric hindrance and β-hydride elimination, have
severely impeded the development of the transition-metal-
catalyzed arylation of tertiary C−H sites.
Complementary to transition metal-catalyzed C(sp3)−H

activation/arylation, another powerful approach is the arylation
of carbon-based radicals generated by hydrogen atom transfer
(HAT).6 In that regard, the recently reported copper-catalyzed
Suzuki−Miyaura arylation of benzylic and secondary C(sp3)−
H bonds, reported by Zhu and Nagib,7 represent creative
approaches to this important problem (Scheme 1b).8 Studer
and co-workers recently developed a reaction for the arylation
of C(sp3)−H bonds that uses the combined processes of 1,n-
HAT and aryl migration (Scheme 1b).9 Despite these seminal
advances,10 a general protocol targeting tertiary C−H bonds
remains elusive.
Recently, a series of nickel-catalyzed arylation reactions that

used prefunctionalized tertiary substrates were reported,
offering a variety of approaches for the construction of all-
carbon quaternary centers.11 While powerful for the formation
of quaternary centers, the use of tertiary C−H bonds as
substrates in nickel-catalyzed arylation remains an unsolved
problem.12 Here, we propose combining 1,5-HAT13 with
nickel-catalyzed reductive coupling14 to enable the selective
arylation of remote tertiary C(sp3)−H bonds (Scheme 1c). We
envisioned two major obstacles to accomplishing this goal: the
choice of amidyl-radical precursor15 and the combination of
producing an amidyl radical and the arylation of a tertiary
carbon radical11a−e in Ni catalysis. The generation of an amidyl
radical through single-electron transfer (SET) from Ni and
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Scheme 1. Arylation of C(sp3)−H Bonds
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subsequent C(sp3)−H arylation may offer a new paradigm for
nickel-catalyzed C−H functionalization.6,16

With these challenges in mind, we started our investigation
with a series of amidyl-radical precursors 1−6 and chose
Ni(acac)2 as a catalyst with a combination of pyridine, Zn, and
MgCl2 in DMA.11f The reactions of substrates 1,15d 2, 3,15a,h

and 415b all failed to produce the desired product.
Interestingly, a trace amount of product 7a was found when
515c was used as the starting material. When we subjected the
O-oxalate hydroxamic ester (Oohe) 6aa novel structural
motifto the reaction conditions, the remote arylation
product 7a was obtained in a 60% yield (Scheme 2).

After an extensive examination of the reaction conditions, we
identified that the reaction of 6a with methyl 4-bromobenzoate
in the presence of Ni(hfacac)2·xH2O, pyridine, Zn, and MgCl2
provided the arylated product 7a in a 69% yield (Table 1, entry
1). In the absence of MgCl2, pyridine, or Zn, the reaction did
not proceed (Table 1, entries 2−4). Since both MgCl2 and
LiCl can be used to activate Zn, we switched MgCl2 to LiCl,
but this significantly decreased the yield (Table 1, entry
5).11b,17 The reaction with 0.4 equiv of pyridine produced 7a
in a moderate 59% yield (Table 1, entry 6). When a series of
electronically differentiated pyridine ligands were examined
(see the Supporting Information), all were found to be inferior
to pyridine. For example, 4-OMe-pyridine provided less than
half the yield (28%) relative to pyridine (Table 1, entry 7).
Furthermore, the reaction provided no product when 2,6-
bipyridine replaced pyridine in the reaction (Table 1, entry 8).
The use of Mn or other zero-valent metals as the reductant
provided the desired product in low yield (e.g., Table 1, entry
9). The use of other nickel sources, namely Ni(acac)2 and
NiBr2·DME, also decreased the yield to 50% and 34%,
respectively (Table 1, entries 10 and 11). Using DMA instead
of the mixed THF/DMA solvent system slightly decreased the
yield to 65% (Table 1, entry 12).
With the optimized reaction conditions in hand, we next

evaluated a range of substrates with tertiary and secondary
C(sp3)−H bonds (Table 2). First, a series of electronically

differentiated aryl bromides and iodides possessing various
common functional groups were tested with the Oohe
derivative 6a as the model substrate (Table 2a). The
electron-deficient para-substituted aryl bromides worked well
in the reaction, giving the corresponding products 7a−7e in
moderate to good isolated yields. The coupling with
multisubstituted aryl bromides provided the products 7f−7h
in moderate yields. Notably, the reaction offers the ability to
employ multisubstituted aryl coupling partners, difficult
substrates when using the elegant intramolecular aryl migration
methodology.9 For meta-trifluoromethyl bromobenzene, the
arylation delivered product 7i in a 62% isolated yield. The
reaction was also compatible with other arenes, such as methyl
6-bromo-2-naphthoate (7j) and 3-bromopyridine (7k). The
site-selectivity en route to product 7j suggests the difference
between the reaction and the Minisci-type alkylation of
pyridines, which gives the product with C2 or C4 selectivity.18

In contrast to the use of electron-deficient aryl coupling
partners, the use of electron-rich aryl halides presents a greater
challenge.11b−e In this protocol, the arylation with electron-rich
aryl iodides, such as methyl, OAc, OBz-substituted iodoben-
zene, and N-acetyl iodoindole, proceeded smoothly with the
use of 3-fluoropyridine as the ligand and the addition of LiCl,
providing the products 7l−7o, respetively, in moderate yields.
Overall, this scope offers direct access to challenging products.
Next, different structural motifs around the targeted C−H

bond were evaluated using electron-deficient aryl bromides
(Table 2b). As expected, both sterically hindered and
electronically differentiated tertiary C−H bonds could be
arylated to produce products 8−15 in 40−64% isolated yields.
Impressively, even sterically hindered homobenzylic C−H
bonds (e.g., 9), and the tertiary C−H bond of cyclopentene
(e.g., 12) produced products in only slightly lower yields.
Moreover, the methodology can target an α-methyl-substituted
substrate (e.g., 13) for remote arylation. Substituting the
aliphatic backbone with a methyl or phenyl group to produce
sterically hindered tertiary C−H bonds as targets led to
products 14 and 15 in good yields. The reaction to produce
product 14 demonstrates the preference of this reaction to

Scheme 2. Evaluation of Amidyl Radical Precursors for the
Arylation of Remote C−H Bondsa

aPerformed on 0.1 mmol scale a 0.1 M concentration. n.d. = not
detected. Yields were determined by 1H NMR analysis using 1,3,5-
trimethoxybenzene (Ar−H) as the internal standard.

Table 1. Optimization of Reaction Conditionsa

entry deviation yield (%)b

1 none 69
2 without MgCl2 n.d.
3 without pyridine n.d.
4 without Zn n.d.
5 LiCl instead of MgCl2 30
6 0.4 equiv pyridine 59
7 4-OMe-Py instead of pyridine 28
8 15 mol % bpy instead of pyridine n.d.
9 Mn instead of Zn 35
10 10 mol % Ni(acac)2 50
11 10 mol % NiBr2·DME 34
12 DMA as the solvent 65

aPerformed on 0.1 mmol scale (0.1 mmol 6a) at 0.1 M concentration.
n.d. = not detected. bYields were determined by 1H NMR analysis
using 1,3,5-trimethoxybenzene (Ar−H) as the internal standard.
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select tertiary C−H bonds over primary C−H bonds.
Moreover, tertiary ethereal C−H bonds (e.g., 16) could be
successfully arylated. Importantly, the arylation of secondary
C(sp3)−H bonds could be achieved by switching the ligand
and solvent. With this change, linear substrates produced the
arylated products in a 50% yield (17 and 18). The reaction of
cyclic C(sp3)−H bonds delivered product 19 in a modest yield
but with excellent diastereoselectivity. Overall, the reaction
demonstrates significant versatility with regard to the steric and
electronic environment of the target coupling.
In an effort to better understand the key mechanistic

features of the target reaction, some straightforward mecha-
nistic inquiries were performed (Scheme 3). For example, the
addition of TEMPO completely inhibited the reaction while
leaving significant (>50%) starting material intact (Scheme
3a). Next, when we subjected substrate 6n to the reaction, the
ring-opened product 22 was obtained in a 46% yield, and the
direct arylation product 21 was not detected (Scheme 3b).
This suggests that a carbon-centered radical is required for the
subsequent arylation process. Additionally, competition experi-
ments between our arylation reaction and the Giese reaction19

were conducted (Scheme 3c). The addition of alkene 23
completely inhibited the arylation process and provided the
Giese product 24 in only a 34% yield, thereby suggesting that
the Giese reaction of the tertiary carbon radical either
effectively outcompetes the desired Ni-catalyzed arylation

process or inhibits the catalytic cycle directly. The Giese
reaction performed even better when excluding the aryl
bromide. Surprisingly, in the absence of the aryl bromide
and nickel, the Giese product 24 could also be detected in a
4% yield. This observation suggests that the generation of an
amidyl radical could proceed through a single-electron transfer
(SET) process from Zn, which is likely slower than that with
Ni.
On the basis of these studies, a plausible mechanism is

shown in Scheme 4. Both the [NiI] species and Zn11b can
generate the requisite amidyl radical 25 through single-electron
transfer (SET) processes (Scheme 4, path a and path b), but
the SET initiated by [NiI] represents the major pathway since
the addition of a catalytic amount of nickel improves the Giese
reaction. After the formation of amidyl radical 25, a 1,5-HAT
reaction forms tertiary radical 26, which subsequently reacts
with the [Ar−NiII] species11 to give the final product. MgCl2
plays a dual role of activating Zn11b,16 and facilitating the
generation of amidyl radical 25. This is accomplished through
the chelation of the oxalate hydroxamic acid ester to promote
SET.11b Additional mechanistic workongoing in our
laboratoryshould provide finer detail to this catalytic cycle.
In summary, we have demonstrated the arylation of remote

tertiary and secondary C(sp3)−H bonds through a 1,5-HAT
and nickel-catalyzed reductive coupling process. By employing
reductive coupling with Ni, the methodology enables the use of

Table 2. Substrate Scope of C(sp3)−H Arylationa

aPerformed on 0.2 mmol scale with 15 mol % Ni(hfacac)2·xH2O, 0.8 equiv of pyridine, 1.5 equiv of Zn, and 1.2 equiv of MgCl2 in 0.2 M DMA/
THF (3:1). The reaction time was 4 h. Isolated yields are shown. bPerformed with no pyridine, 2 equiv of Zn, and 2 equiv of MgCl2 in 0.13 M
DMA/THF (3:1). cPerformed with 1.5 equiv of ArI, 10 mol % Ni(acac)2, 0.8 equiv of 3-F-pyridine, and 2 equiv of LiCl, in 0.4 M DMA/THF
(3:1). dPerformed with 10 mol % Ni(acac)2 and 15 mol % 4,4-di-tert-butylbipyridine (dtbbpy) in 0.1 M THF. The reaction time was 16 h.
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aryl electrophiles to target difficult-to-access C(sp3)−H bonds.
Moreover, the reaction represents a direct strategy for the
construction of all-carbon quaternary centers from unactivated
tertiary C(sp3)−H bonds. The reaction proceeds with
commercially available reagents and an inexpensive nickel
precatalyst under mild conditions, offering practical utility.
Finally, the novel substrates, namely O-oxalate hydroxamic
esters, will be suitable for other valuable HAT-based reactions.
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