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ABSTRACT: A strategy for the photosensitized cycloaddition of alkenylboronates and allylic alcohols by a temporary coordination
is presented. The process allows for the synthesis of a diverse range of cyclobutylboronates. Key to development of these reactions is
the temporary coordination of the allylic alcohol to the Bpin unit. This not only allows for the reaction to proceed in an
intramolecular manner but also allows for high levels of stereo and regiocontrol. A key aspect of these studies is the utility of the
cycloadducts in the synthesis of complex natural products artochamin J and piperarborenine B.

Cycloaddition reactions are one of the most useful
strategies to generate rings.1 Among these processes, [2

+ 2]-cycloaddition of alkenes is regarded as the premier
approach for the synthesis of cyclobutanes.2 The majority of
these reactions are photochemical and therefore proceed via
high-energy, and short-lived, excited-state intermediates.
Consequently, to achieve reasonable reaction rates and
minimize secondary photochemical reactions, researchers
have extensively developed intramolecular [2 + 2]-cyclo-
additions. Due to constraints with the ring forming event,
stereochemical control can often be achieved (Scheme 1A).
However, the substrates must be carefully designed to generate
a ring and therefore this necessarily limits the scope of
products that can be generated to polycycles. In addition,
laborious synthetic sequences can be necessary to prepare the
substrate. Intermolecular [2 + 2]-cycloadditions are also
known, but to achieve reasonable reaction rates, both
substrates typically need activating groups (arenes, dienes,
ester, etc.) (Scheme 1A). Since these reactions are bimolecular,
a range of cyclobutanes can be synthesized. However, the
requirement that both coupling alkenes need activating groups
remains a limitation for intermolecular [2 + 2]-cycloadditions.
In addition, unlike concerted [4 + 2]-cycloadditions in which
the regio- and stereochemistry can be controlled by FMOs
(frontier molecular orbitals),1 in many cases, it is difficult to
control the stereo- and regiochemical outcome of intermo-
lecular [2 + 2]-cycloaddition reactions.
In this manuscript, an alternative approach is disclosed in

which by virtue of a temporary association between the
reactants, a biomolecular reaction can be achieved in an
intramolecular fashion (Scheme 1B). In this approach, stereo
and regiochemical control can be achieved while retaining the
benefits of diversity from an intermolecular [2 + 2]-
cycloaddition of readily available components. To implement
this approach, we designed a reaction between an allylic
alcohol and an alkeneylboronate (Scheme 1C). This process
would allow simple unactivated alkenes to participate in [2 +
2]-cycloadditions in the form of allylic alcohols and lead to the
formation of diverse borylated cyclobutanes.3

Borylated carbocycles and heterocycles are useful inter-
mediates in the construction of complex molecules. This is
primarily due to the ease with which the C−B bond can be
converted to other functional groups.4 In recent years, an
emphasis has been placed on the synthesis of rigid carbocycles
and heterocycles to enable drug development. Consequently,
the preparation of cyclobutylboronates is regarded as an
important goal. While several strategies are known for
cyclobutylboronate synthesis,5−9 [2 + 2]-cycloadditions retain
their own importance because (1) the reactions are
convergent, (2) the alkene starting materials are generally
widely available, and (3) products can be prepared that would
be inaccessible by other approaches.10,11 With respect to
photochemical [2 + 2]-cycloaddition,12,13 prior work has
demonstrated that alkene triplet excited states can be captured
with alkenylboronates. More recently, our lab has demon-
strated that alkenylboronates can be photosensitized and
undergo reaction with a variety of activated alkenes (e.g.,
styrenes, dienes).14 In the latter case, the Bpin unit acted as an
activating group to allow for the cycloaddition to proceed in
good yield. In this study, the Bpin unit is utilized as a
coordinating group to direct the cycloaddition to occur with
allylic alcohol derivatives (Scheme 1C). Cycloadditions of this
type are valuable because (1) allyl alcohol derivatives are
widely available yet underutilized in this field and (2) the
product contains multiple functional groups for further
elaboration to enable the synthesis of complex molecules,
such as artochamin J and piperarborenine B.
The initial reaction optimization was conducted with allyl

alcohol (1) and E-styrenylBpin (2). The choice to use E-
styrenylBpin (2) stems from the fact that the sytrenyl
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component could be sensitized with common visible-light-
activated sensitizers,14,15 thus avoiding the use of high-energy
UV light at this stage of development. Treatment of allyl
alcohol (1) and E-styrenylBpin (2) in the presence of fac-
Ir(ppy)3 did not lead to product formation. It is likely that
association of alcohol and the Bpin unit was minimal, and
dissociation occurs before cycloaddition (Scheme 2A, entry 1).
Therefore, bases were evaluated to shift the position of the
equilibrium to the borate complex (Scheme 2A, entries 2−4).

It was identified that use of KOt-Bu allowed for formation of
3a (Scheme 2A, entry 4). Continued optimization along this
line demonstrated that use of a sensitizer with a higher triplet
energy, in conjunction with a more nonpolar solvent, led to
formation of [2 + 2] cycloadduct 3a in 89% yield (Scheme 2A,
entry 8). The use of the higher-energy sensitizer is likely
necessary to increase the rate of quenching, whereas the use of
toluene likely drives the formation of the borate complex.
Finally, styrenylBneop and styrenylBdmpd work in the
reaction, albeit with reduced yields (see the Supporting
Information for details).
Studies were also conducted to probe the importance of the

alcohol-Bpin coordination (Scheme 2B). It was found that
reaction of bis-allyl boronate 4 was not productive when
irradiated in the presence of 450 nm LEDs and an Ir-sensitizer.
However, the addition of KOt-Bu allowed for the reaction to
proceed to generate 3b. This is likely the result of the
formation of tetravalent borate, which constricts the angle
(compare I to II) to be like III and thus allows for
cycloaddition to occur.
Under the optimized reaction conditions, the scope of the

cycloaddition was investigated (Scheme 3). 1,2-Disubstituted
alkenes allowed for product formation; however, a mixture of
diastereomers was formed (products 6−8). With trisubstituted
alkenes, the formation of penta-substituted cyclobutanes could
be achieved (products 9−15). Reactions with cyclic trisub-
stituted alkenes allowed for the formation of bicyclic structures
(products 11−15). In a similar vein to reactions of 1,2-
disubstituted alkenes, reactions of unsymmetric trisubstituted
alkenes gave rise to diastereomers (product 10). In one
example, a tetrasubstituted alkene was tolerated to generate a
highly substituted cyclobutane (product 16). At this stage of
development, use of homoallylic alcohols of any substitution
patterns did not result in product formation.
In addition to a variety of allylic alcohols, many diverse

alkenyl boronates participated in the reaction. The aryl unit
could be substituted with various functional groups such as Br
(product 22), unprotected amine (product 24), and CN
(product 21). In addition, electron-withdrawing (product 20,

Scheme 1. Approaches Toward [2 + 2]-Cycloadditions

Scheme 2. Reaction Optimization
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21, 23), electron-donating (product 19), and sterically
demanding (product 17) substitutions were well-tolerated.
Several classes of heteroaromatic compounds could be used
such as furan (product 27), thiophene (product 25), indole
(product 26), and pyridine (product 28). The alkenylboronate
could also be substituted at the α position to form sterically
congested products (29-30). Finally, dienylboronates of
several substitution patterns were also tolerated (products
31−37). When substrates are 1,4-substituted dienes, a
secondary photoisomerization was also observed (products
32 and 33).16 To achieve better E/Z selectivity, we envisioned

using a lower-energy sensitizer that could still enable the [2 +
2]-cycloaddition to synthesize 33 efficiently (given that the
substrate is highly conjugated and likely has a lower triplet
energy) yet allow for a more selective photoisomerization.
Indeed, fac-Ir(ppy)3 catalyzed the reaction to form 33 with 8:1
Z/E selectivity in good yield. The synthesis of 36 is also
notable as the silyl enol ether can be used as a functional
handle. Notably, dienylboronates are known to undergo [4 +
2]-cycloadditions with allylic alcohols,3e our method demon-
strated an alternative reactivity. Finally, under the reaction

Scheme 3. Substrate Scope

aNMR yield refers to yield determined by 1H NMR analysis of the unpurified reaction mixture of the product after functionalization of the Bpin
unit. Diastereomeric ratio (dr) determined of the unpurified reaction mixture by 1H NMR analysis. Yield is of isolated, purified product.
bChlorobenzene was used as solvent. cPenn PhD Photoreactor M2 was used. d48 h. eDCM was used as solvent. fThe alcohol was protected using
TBSCl and imidazole. g2.0 mol % fac-Ir(dFppy)3.

h1.0 mol % fac-Ir(ppy)3 was used as catalyst.
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conditions, use of alkyl-substituted alkenyl boronates did not
allow for product formation.
With respect to the allylic alcohol unit, both secondary and

tertiary examples were tolerated. In the case of secondary
alcohols, the reactions led to the formation of single observable
diastereomers (products 39 and 40) (Scheme 4A). It is likely

that the high levels of stereocontrol were observed because the
reaction proceeded via IV, in which the R-group was
positioned in the pseudoequatorial position. In the case of
tertiary alcohols, the reaction occurred smoothly and led to the
synthesis of sterically congested products 42−45 (Scheme 4B).
In the cases of 44 and 45, low levels of diastereoselectivity
were observed due to the relatively small size difference
between substituents as compared to 39 and 40.
The reaction of dieneol 46 is interesting because under

different sets of conditions, alternate products could be made
(Scheme 5). For example, under the conditions described in
this study, the alcohol directs the cycloaddition to occur at the
proximal double bond to generate 47 (Scheme 5A). The
reaction likely occurred by coordination of the alcohol to the
Bpin unit followed by triplet energy transfer to generate VI.
Radical addition allows for formation of VII, which upon
intersystem crossing (ISC) and radical recombination, leads to
formation of the product. On the other hand, if the conditions
are modified such that the Bpin acts as an activating group and
not a coordinating group (as previously described),14 product
48 is generated (Scheme 5B). Here, triplet energy transfer
occurs with 2 to form VIII. The initial bond formation takes
place at the terminal position of the diene. After ISC and
radical recombination, product 48 is formed.

It is well known that organoboronates can undergo Pd-
catalyzed cross coupling with aryl bromides.17 However,
alkylboronates are significantly more reluctant to undergo
cross coupling compared to their aryl or alkenyl counterparts.18

To overcome this issue, the Morken group developed a cross
coupling of γ-hydroxyl alkylBpin.19 In these examples, the
hydroxyl group facilitates the cross-coupling reaction.
As illustrated in Scheme 6A, this method can be applied to

the cycloadducts to generate diverse cyclobutanes. The
reactions proceed with retention of stereochemistry and
function for aryl (product 49), heteroaryl (products 50−52),
and alkenyl bromides/triflates (products 53 and 54).
Moreover, this sequence has been instrumental in the

synthesis of the cyclobutane natural products artochamin J20

and piperaborenine B (Scheme 6B, C).21 In the case of
artochamin J, the synthesis commenced with cycloaddition of
allylic alcohol 56 and alkenylBpin 55 (Scheme 6B). The crude
material was then subjected to the cross-coupling sequence to
generate 58 as a single observable diastereomer on gram scale.
At this stage, cyclization of the primary alcohol with the
neighboring electron-rich arene was desired. However, even
after extensive investigations, the cyclization could not be
achieved. Therefore, a sequence was devised that involved
oxidation to the acid and Friedel−Crafts cyclization promoted
by TFAA to generate 59. Clemmensen reduction22 and
deprotection with TBAF allowed for the synthesis of
artochamin J.
A brief synthesis of piperaborenine B was also enabled by

this methodology (Scheme 6C). Starting with alkenylboronic
ester 60 and allylic alcohol 61, [2 + 2]-cycloaddition and cross
coupling allowed for the synthesis of 63 in 66% yield and 3.3:1
dr. Oxidative cleavage of the alkene resulted in the formation

Scheme 4. Additional Examples

Scheme 5. Divergent Reactivity
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of aldehyde 64.23 Exhaustive oxidation under Fe-catalyzed
aerobic oxidation24 led to formation of a dicarboxylic acid,
which upon sequential treatment with oxalyl chloride and
dihydropyridinone led to formation of piperaborenine B. Our
method complements the reported routes, which rely on a
directed C−H activation method to install the arene(s).21

Without additional steps to install and remove the directing
group, only six steps were required to prepare piperaborenine
B. Finally, it is important to note that the approaches described
here are modular and thus amendable to the synthesis of
derivatives.
In conclusion, a new strategy to access synthetically versatile

cyclobutylboronates is presented. By taking advantage of a
temporary tether between an alcohol and boronate, a regio-
and stereoselective reaction can be achieved. Due to the
functional groups on the cyclobutane, facile diversification can
be carried out to allow for the efficient synthesis of complex
natural products.
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