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The polariton, a quasiparticle formed by strong coupling of a photon to a matter excitation,

is a fundamental ingredient of emergent photonic quantum systems ranging from semiconductor

nanophotonics to circuit quantum electrodynamics. Exploiting the interaction between polaritons

has led to the realization of superfluids of light as well as of strongly correlated phases in the mi-

crowave domain, with similar efforts underway for microcavity exciton-polaritons. Here, we develop

an ultracold-atom analogue of an exciton-polariton system in which interacting polaritonic phases

can be studied with full tunability and in the absence of dissipation. In our optical-lattice system,

the exciton is replaced by an atomic excitation while an atomic matter wave is substituted for the

photon under a strong dynamical coupling between the two constituents that hybridizes the two

dispersion relations. We access the band structure of the matter-wave polariton spectroscopically by

coupling the upper and lower polariton branches, and explore polaritonic transport in the superfluid

and Mott-insulating regimes, finding quantitative agreement with our theoretical expectations. Our

work sheds light on fundamental polariton properties and related manybody phenomena and opens

up novel possibilities for studies of polaritonic quantum matter.

Since their first description as a superposition of light and matter excitations [1, 2], polaritons have been an

essential key for understanding the nature of strong light-matter couplings in solids. While the polariton concept [3]

has been broadly expanded to various fields and contexts [4], its essence is captured by the microcavity polariton,

whose realization in a semiconductor [5] first revealed exciton-photon mode splitting as the signature of a mobile,

dynamically-coupled quasi-particle with a dispersion relation that hybridizes those of its two constituents.

Polariton interactions, mediated by the excitation, open up novel possibilities for engineering effective photon-

photon interactions that can lead to Bose-Einstein condensation [6, 7] and strongly interacting many-body states

[8, 9]. In this context, several polariton platforms including semiconductor microcavities [10, 11], Rydberg polaritons

[6], as well as waveguide [12] and circuit [9] quantum electrodynamics, provide breakthrough possibilities for quantum

simulations [13, 14]. Here, it is an important challenge to achieve strong coupling [15] and interactions [16] with

tunable parameters while managing dissipation [8] and assuring scalability [17].

In this paper, using a recently developed experimental approach [18, 19] based on ultracold atoms in an optical

lattice, we introduce a scalable and flexible polariton platform in which the photonic constituent is replaced by a

matter wave, resulting in a novel quasi-particle entirely made of matter. While replicating the fundamental features

of conventional polaritons [4], the ratio of effective mass and interactions of these matter-wave polaritons is fully

tunable, and the system is dissipation-free with an infinite Purcell factor. It is a fundamental feature of our platform
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that coupling to modes other than the ones of interest is completely suppressed, such that polaritonic features can be

studied in the absence of losses in hitherto inaccessible regimes. By controlling the parameters of interest, our system

can simulate polaritonic manybody properties in the regime of strong interactions [20–22].

In analogy to an exciton-polariton, we realize a quasiparticle that hybridizes the quadratic dispersion relations of

two constituents of disparate mass. While the light constituent playing the role of the photon in the microcavity is

a free-space atomic matter wave, the other constituent, replacing the exciton, is an atom with high effective mass

induced by an optical lattice, that is coupled to the matter wave via an effective dipole moment. The coupling

hybridizes the two disparate dispersion relations into lower (LP) and upper (UP) polariton branches, thus leading to

a slowdown of the matter-wave propagation. The optical lattice confining the atom not only increases its effective

mass but also provides an analog of strongly-correlated polaritonic arrays [10], in which the interaction between

excitons is replaced by the natural collisional interaction between the heavy atoms in the lattice. We create a system

of strongly-interacting polaritons, in which the competition between hopping and interactions leads to a tunable phase

transition from a polaritonic superfluid to a Mott insulator, in agreement with expectations based on the polariton

band structure [22, 23].

Experimental platform
The scheme for our experiments is illustrated in Fig. 1. Using an optically-trapped Bose-Einstein condensate of

around 104 87Rb atoms in the S1/2 hyperfine ground state |r⟩ ≡ |F = 1,mF = −1⟩ (red), we load an array of

∼ 103 red-detuned, tightly-confining optical lattice tubes with depth s⊥ ≫ 1 measured in terms of the recoil energy

Er⊥ = h2/2mλ2⊥, where λ⊥ = 1064 nm is the lattice laser wavelength and m the atomic mass. Another lattice

(“z-lattice”) with variable depth s, in terms of a corresponding recoil energy Er = h̄ωr at wavelength λ, additionally

confines the |r⟩ atoms along the vertical z axis aligned with the tubes. The |r⟩ atoms hop between sites of the z lattice

with finite tunnel coefficient J , while transport across tubes is negligible on experimentally relevant time scales. The

atoms are coupled to a second S1/2 hyperfine ground state, |b⟩ ≡ |F = 2,mF = 0⟩ (blue) via a 6.8 GHz microwave field

of strength Ω and negative detuning ∆ from the atomic resonance in the z-lattice, which is shifted by the difference in

zero-point energy. The wavelength λ = 790.0 nm and polarization (σ−) of the z-lattice (for which Er = h× 3.67 kHz)

are chosen such that it is fully state-selective and |b⟩ atoms do not experience its potential at all, and can freely move

along the tubes (for times smaller than 2π/ωz ∼ 10 ms) occupying a continuum of modes |p⟩ with momentum p.

As observed in [18], for the radiative decay of an atom from a lattice well, the coupling to the free modes for ∆ < 0

induces the formation of a bound state containing an evanescent |b⟩ matter wave with decay length ∼
√︁
h̄/2m|∆|. If

now the evanescent wave starts to leak into neighboring sites, the coupling between the two components can induce an

effective tunneling of the |r⟩ atom, and since the evanescent wave remains localized around the atom, this process then

corresponds the hopping of a quasiparticle. In a many-body system, such matter-wave polaritons will be characterized

by an effective tunneling matrix element J̄ and an onsite interaction Ū . Here we explore the signatures of polariton

formation in a Bose-Hubbard scenario in which the overall state of the system is tuned via the ratio between tunneling

and onsite interactions.

Accessing excitation features
To explore the effects of the vacuum coupling, we first measure the excitation spectrum deep in the Mott regime with

a small ratio J/U ∼ 5 × 10−3 between atomic tunneling and onsite interactions. The procedure is summarized in



3

Fig. 2a and b. After preparing the system (see methods) at sz = 14 and s⊥ = 40 (where U = h × 1.7 kHz), we

exponentially ramp up Ω at fixed ∆ on a time scale τ ≫ 1/|∆| that is long enough to preclude nonadiabatic shedding

of matter waves [18]. With the coupling Ω applied, we sinusoidally modulate s⊥ at variable frequency ω̄ in order

to induce resonant excitations of the gapped Mott phase [24] (we note that, while varying s⊥ changes the polariton

onsite interaction Ū , it does not directly affect the single-polariton feature ∆). After ramping Ω back down, we enter

the superfluid regime in which we characterize the effects of the modulation, which are in the form of a reduction of

coherence, via time-of-flight (ToF) measurements.

The effects of the coupling on the excitation spectrum are shown in Fig. 2c. In a reference run without coupling,

we observe excitation peaks at ω̄ ≈ U/h̄ and 2U/h̄, as expected from resonant atom redistribution between sites

[25]. The coupling has no noticeable effect on the position of the peaks, suggesting that for the parameters used

(Ω, |∆| ∼ ωr) the change of the on-site energy is small. However, an additional feature appears, centered at a larger

modulation frequency ω̄ not far from |∆| (see Fig. 2d), accompanied by excess |b⟩ population left after the coupling

is ramped back down.

Formation of matter-wave polaritons
In order to discuss these observations further, we first develop a quantitative description of the expected polariton

features, following the general approach of [22]. We first consider a |r⟩ atom coherently distributed over the sites

of the z-lattice, such that the system Hamiltonian takes the form of a series of coupled Weisskopf-Wigner models.

By expressing the momentum of the vacuum modes pn,q in terms of a quasimomentum q ∈ [−k, k] and an integer

band index n ≥ 1, the non-interacting part of the Hamiltonian decouples as Ĥ =
∑︁

n,q εn,q ĉ
†
n,q ĉn,q, where ĉ†n,q =

αn,q r̂
†
q +

∑︁
n′ βn,n′,q b̂

†
n′,q creates a matter-wave polariton as a (Ω,∆)-dependent superposition of a |r⟩ Bloch wave

and all |b⟩ modes of the same q. The corresponding polariton dispersion relation εn,q emerges from the equation

εn,q − h̄∆q =
∑︁

n′ h̄
2g2n′,q/ (εn,q − En′,q) (see methods and [23]), where gn,q = Ω ⟨ϕ0|n, q⟩ /2 is the coupling strength

between the originating lattice Wannier function |ϕ0⟩ and the free-momentum mode |n, q⟩ normalized to a Wigner-

Seitz cell, En,q = p2n,q/2m is the free-atom dispersion, and ∆q = ∆+4J sin2(πq/2k) a q-dependent detuning from the

continuum edge that accounts for the bandwidth 4J of the z-lattice (for details see appendix). The n = 1 band is the

LP branch of the matter-wave polariton, while the bands with n ≥ 2 produce a series of UP branches.

Fig. 3a depicts the ground (lower) and first excited (upper) polariton bands, ε0,q and ε1,q at a typical detuning.

In real space, taking an atom localized in site j, the coupling induces, via ĉ†n,j =
∑︁

q ĉ
†
n,qe

−iqzj , the formation of a

matter-wave polariton as a localized quasi-particle. Its ground-band Wannier function ⟨z|ĉ†1,j=0|0⟩ is shown in Fig. 3b

(where |z⟩ is the position eigenstate, and |0⟩ denotes the vacuum). As a result of the coupling, the |r⟩ component

acquires additional amplitude in neighboring sites, which can be seen as being due to a re-coupling of the evanescent

|b⟩ tail into the lattice potential.

We estimate the effect of the coupling on the on-site interaction in the z-lattice by setting Ū ≈ ḡ
∫︁
∥ ⟨z|ĉ†1,j |0⟩∥

4
dz,

where we take the one-dimensional collisional strength ḡ (see methods) as state-independent (for 87Rb, the differences

are on the percent level), such that we capture the dominant effects of the modified spatial overlap between the

components. The magnitude of the shift δU = (U − Ū) depends on both the extent of the evanescent tail and its

amplitude; results for our parameters are shown in Fig. 3c. Consistent with our observation, the maximum shift
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δU/U ∼ 0.1 is below what our spectroscopy method can systematically resolve, as is also evidenced in a reference

measurement without coupling in which we correspondingly lowered U by reducing the z-lattice depth (see Fig. 2c).

Based on the polariton band structure, we now discuss the mechanism responsible for the resonant excitation of

|r⟩ atoms in the lattice that is accompanied by the appearance of |b⟩ atoms. Polaritons in the lower band are mostly

in the |r⟩ state, which is tightly confined. As they are periodically squeezed in the orthogonal direction, they are

subject to a strong perturbation of their interaction energy Ū . If this is done resonantly (ω̄ ≈ ω̄0), they can be

excited into the upper band, as it is mostly composed of the unconfined |b⟩ state and thus is less sensitive to such

perturbations. The third peak in the excitation spectrum (see Fig. 2c) located around the frequency difference ω̄0

between the bottom of the UP band and the center of the LP band, h̄ω̄0 = ε2,0 −
∑︁

q ε1,q corresponds to a conversion

from the deeply-bound Wannier polariton state to quasi-free states in the region where the density of states is highest.

The band gap increases with |∆|, requiring higher modulation frequencies ω̄ to excite this resonance (c.f. Fig. 2d).

Because the UP is dominated by |b⟩, the excitation from the LP leaves |r⟩ vacancies in the z-lattice, and atoms are

instead observed as excess |b⟩ population around zero momentum, as seen in the inset in Fig. 2b.

Characterizing transport behavior
To further elucidate these features, we study the hopping in a polaritonic Bose-Hubbard model. Compared to the

modification of the onsite interaction Ū , the renormalization of J for the atoms to J̄ = −
∑︁

q ε1,qe
iπq/k for the

polaritons can be significant. In order to test the magnitude of this effect, we compare the degree of coherence of the

|r⟩ component at different lattice depths s with that of the (coupling-free) atomic reference with known J ≡ J(s).

Using the width of the central peak of the |r⟩ diffraction pattern as a proxy [26], we record the ToF distribution after

switching off the optical potential and the coupling and removing the |b⟩ component with resonant light (to eliminate

four-wave mixing [27]). The results for ∆/ωr = −0.5 and Ω/ωr = 0.8 are shown in Fig. 4a. The peak width σ of the

reference is well fit by a piecewise-linear function with fixed zero slope in the superfluid region, and positive slope in

the Mott regime [28]. When we turn on the coupling, the measured peak width σ̄ is comparable in the superfluid

region and then increases with s, but not as much as the reference.

We use the fitted reference curve and the functional dependence J(s) obtained from the uncoupled band structure

to obtain an operational relationship σ(J) between peak width and hopping. Under the assumption that the onsite

interaction remains unchanged, the same relationship should hold between σ̄ and J̄ obtained from the polariton band

structure, and indeed we find that the rescaled reference curve quantitatively reproduces the observed peak widths

for the experimental coupling parameters. In the |r⟩ basis, the polariton formation effectively renormalizes the depth

of the applied lattice, leading to a horizontal shift of points of a given peak width towards increasingly larger lattice

depths. Near the kink at s = 4, the rescaling of hopping implies both the presence of a superfluid-to-Mott transition

of polaritons, and of a vacuum-coupling driven transition from the singly-occupied atomic Mott lobe to a polariton

superfluid.

The dependence of the hopping on the coupling parameters ∆ and Ω is shown in Fig. 4 (b, c). The measured peak

width changes as expected from the rescaled reference curve, and the inferred polaritonic enhancement J̄/J of the

hopping agrees well with the prediction of the polariton band structure. In particular, unlike J , J̄ saturates for large

s as a result of matter-wave-induced hopping.
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In Fig. 4, there is good agreement between experiment and theory if at least one of the coupling parameters is

comparable to ωr. However, for weaker couplings near the continuum edge, a reduction of |∆| can lead to an increase

of the peak width, as seen in the upper inset of Fig. 4b, a behavior that cannot be explained by a violation of

adiabaticity in applying the coupling (1/τ ∼ 0.02 ωr). For small Ω and |∆|, the |b⟩ component of the LP has large

spatial extent and low density, such that the collisional on-site interaction between the tightly confined |r⟩ atoms can

lead to an effective change of the detuning. Indeed, the divergence of the peak width occurs near |∆|/ωr ∼ U/Er = 0.28,

consistent with a shift to effectively positive detunings, at which we expect radiative matter-wave decay to give rise

to a quantum Zeno effect [29]. We note that similar interaction-activated dissipation that inhibits transport in a

Bose-Hubbard model has recently been observed using photon-induced losses [30].

Future perspectives

In this work, we focused on the lower polariton branch, corresponding to renormalized hopping of excitons in a material

system [10], which has allowed us to realize a polaritonic quantum phase transition as well as a transition from an

atomic Mott insulator to a polariton superfluid. The novel features that we report in this paper can be understood

using a polaritonic Hamiltonian that combines fundamental aspects of the Weisskopf-Wigner and Bose-Hubbard

models. Our platform is very versatile and opens up various possibilities for further study. By exploiting the lattice

band structure and applying specific couplings, exotic polariton band structures can be implemented [23], including

those featuring frustration. We can also focus on the upper branch dominated by |b⟩ atoms, which corresponds to the

renormalized transport of photons. Making the z-lattice state-dependent (instead of state-selective [19]) will allow us

to create the equivalent of coupled-cavity arrays, and implement the analogue of photon blockade [31] for |b⟩ atoms,

with the strongly interacting |r⟩ state playing the role of a nonlinearity. Introducing couplings between more than

two excitonic or photonic bands should enable studies of analogues of multiexciton polaritons [32], multimode strong

coupling [33], and spin-orbit coupling [34]. This may open up possibilities for studying topological polaritonic systems

in higher dimensions [35].
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Main figure captions

FIG 1. Experimental scheme and polariton formation. a,b, An |r⟩ (red) atom in the ground band of a

deep state-selective optical lattice (red) is coupled through a microwave field (green) with strength Ω and detuning

∆ < 0 to an unconfined state |b⟩ (blue) with energy below the edge of the continuum of motional states. The atomic

ensemble is confined to a system of tightly confining tubes created with state-independent transverse lattices (gray).

c, In each tube, the coupling results in a polaritonic superposition of lattice-trapped atoms and matter-wave modes
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with quasi-particle hopping J̄ and on-site interaction Ū .

FIG 2. Excitation spectra in the Mott regime (s⊥ = 40, s = 14). a, Excitation: after ramping up Ω, s⊥

is modulated by ±30% at variable frequency ω̄ for 10 ms. b, Detection sequence involving rethermalization and a

gravitational π-phase shift for the |r⟩ atoms after the coupling is turned off (details see methods). The two panels

display the |r⟩ and |b⟩ momentum distributions measured after resonant excitation at detuning ∆/ωr = −1.00(7) and

coupling Ω/ωr = 1.09(2). The width σ̃ is extracted through Gaussian fits to the 1D density along z. c, Excitation

spectra (i) for ∆,Ω as in b, with the inset stripe showing the number of |b⟩ atoms; (ii) for the uncoupled case Ω = 0

(red) and additionally s=10 (gray). Error bars show the standard error of the mean (s.e.m.). All data points are the

average over at least 3 runs. d, Detuning dependence of the third excitation feature. Open red circles denote the |r⟩

peak position, and blue dots denote the position of the maximum transfer of |b⟩ atoms, as extracted from Gaussian

fits, with error bars giving spectral width (2σ) of the excitation feature. The green curve is the calculated polariton

excitation energy ω̄0(∆,Ω), where the shaded areas include the width of the ground band (darker green) and the

uncertainties in ∆ (±0.27 kHz) and Ω (±2%) (lighter green).

FIG 3. Polariton band structure, calculated for s = 10. a, (i) Uncoupled band structure for lattice-trapped

atoms in |r⟩ (red curve) and free atoms |b⟩ (blue curve). (ii) Band structure for a coupling Ω/ωr = 1 and a detuning

∆/ωr = −0.5, with the two lowest polariton bands (n = 1, 2) shown as purple curves. The green arrow denotes the

separation ω̄0 from the middle of the lower band to the bottom of the upper band. The dashed curves reproduce the

atomic band structure. b, Wannier functions obtained for the two scenarios of a, containing |r⟩ (red) and |b⟩ (blue)

components, where d = λ/2. c, Fraction of the |b⟩ component |β|2 and polariton interaction energy Ū as a function

of Ω for ∆/ωr = −0.5. d, Polariton ground-band tunneling coefficient J̄ relative to J as a function of Ω and ∆. The

dashed lines correspond to measurements shown in Fig. 4b and c.

FIG 4. Renormalization of hopping extracted from the coherence of the |r⟩ component at s⊥ = 18. a, Scan

over s for ∆/ωr = −0.50(7), Ω/ωr = 0.84(2) (purple), compared to a reference measurement with Ω = 0 (red). Plotted

is the fitted 1D Gaussian width σ along z of the central diffraction peak in time-of-flight (see inset). The red curve is

a piece-wise linear fit to the reference, with slope set to zero left of the kink, which is used to establish the relationship

between σ and s. The purple curve is obtained from the red curve after shifting s(J) (black arrow) according to the

expected rescaling of J to J̄ ; the shaded area accounts for the experimental uncertainties in ∆ and Ω. Inset: tunneling

coefficients J (red) and J̄ (purple) as a function of s. b, c, Parameter scans at s = 10 according to the traces shown

in Fig. 3d, with variable ∆ at Ω/ωr = 0.84(2) (b), and with variable Ω at ∆/ωr = −0.50(7) (c). The theoretical

prediction reflecting experimental uncertainties is shown as a solid purple line surrounded by shaded areas; the insets

in the bottom half of b and in c show the corresponding ratios J̄/J . The inset in the top half of b shows the peak

width for Ω/ωr = 0.28(1) (and h̄Ω/U = 1.01(1)). Error bars show the s.e.m.; horizontal error bars are less than the

size of the data points. All data points are the average over at least 3 runs.

† Electronic address: dominik.schneble@stonybrook.edu

[1] Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112,

mailto:dominik.schneble@stonybrook.edu


7

1555–1567 (1958).

[2] Pekar, S. Theory of electromagnetic waves in a crystal with excitons. J. Phys. Chem. Solids 5, 11–22 (1958).

[3] Mills, D. L. & Burstein, E. Polaritons - electromagnetic modes of media. Rep. Prog. Phys. 37, 817–926 (1974).

[4] Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577

(2021).

[5] Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a

semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

[6] Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

[7] Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537

(2010).

[8] Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

[9] Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 268–279 (2020).

[10] Schneider, C. et al. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).

[11] Cuevas, Á. et al. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton.

Sci. Adv. 4, aao6814 (2018).

[12] Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: Quantum matter built from

nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

[13] Hartmann, M. J. Quantum simulation with interacting photons. J. Opt. 18, 104005 (2016).

[14] Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Progr. Phys. 80, 016401 (2016).

[15] Liu, Y. & Houck, A. A. Quantum electrodynamics near a photonic bandgap. Nat. Phys. 13, 48–52 (2017).

[16] Sundaresan, N. M., Lundgren, R., Zhu, G., Gorshkov, A. V. & Houck, A. A. Interacting qubit-photon bound states with

superconducting circuits. Phys. Rev. X 9, 011021 (2019).

[17] Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum

electrodynamics. Nat. Phys. 16, 247–256 (2020).

[18] Krinner, L., Stewart, M., Pazmiño, A., Kwon, J. & Schneble, D. Spontaneous emission of matter waves from a tunable

open quantum system. Nature 559, 589–592 (2018).

[19] Stewart, M., Kwon, J., Lanuza, A. & Schneble, D. Dynamics of matter-wave quantum emitters in a structured vacuum.

Phys. Rev. Research 2, 043307 (2020).

[20] Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities.

Nat. Phys. 2, 849–855 (2006).

[21] Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nat. Phys. 2, 856–861

(2006).

[22] Shi, T., Wu, Y.-H., González-Tudela, A. & Cirac, J. I. Effective many-body Hamiltonians of qubit-photon bound states.

New J. Phys. 20, 105005 (2018).

[23] Lanuza, A., Kwon, J., Kim, Y. & Schneble, D. Multiband and array effects in matter-wave-based waveguide QED.

Phys. Rev. A 105, 023703 (2022).

[24] Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1d superfluid to a

Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

[25] Kollath, C., Iucci, A., Giamarchi, T., Hofstetter, W. & Schollwöck, U. Spectroscopy of ultracold atoms by periodic lattice

modulations. Phys. Rev. Lett. 97, 050402 (2006).

[26] Kollath, C., Schollwöck, U., von Delft, J. & Zwerger, W. Spatial correlations of trapped one-dimensional bosons in an

optical lattice. Phys. Rev. A 69, 031601 (2004).

[27] Pertot, D., Gadway, B. & Schneble, D. Collinear four-wave mixing of two-component matter waves. Phys. Rev. Lett. 104,



8

200402 (2010).

[28] Gadway, B., Pertot, D., Reeves, J., Vogt, M. & Schneble, D. Glassy behavior in a binary atomic mixture. Phys. Rev. Lett.

107, 145306 (2011).

[29] Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329–1331

(2008).

[30] Tomita, T., Nakajima, S., Danshita, I., Takasu, Y. & Takahashi, Y. Observation of the Mott insulator to superfluid

crossover of a driven-dissipative Bose-Hubbard system. Sci. Adv. 3, 1701513 (2017).

[31] Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

[32] Ouellet-Plamondon, C., Sallen, G., Jabeen, F., Oberli, D. Y. & Deveaud, B. Multiple polariton modes originating from

the coupling of quantum wells in planar microcavity. Phys. Rev. B 92, 075313 (2015).

[33] Sundaresan, N. M. et al. Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015).

[34] Solnyshkov, D. D. et al. Microcavity polaritons for topological photonics. Opt. Mater. Express 11, 1119–1142 (2021).

[35] Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).



9

METHODS

System preparation and detection. Our experiments start with BECs of 1× 104 |r⟩ = |1,−1⟩ atoms in an optical

trap [18] that are adiabatically loaded into the 3D optical lattice. For the measurements of Fig. 2, we first ramp up

the tubes over 150 ms to s⊥ = 40 using an exponential ramp, followed by an exponential ramp of the z lattice to

s = 14 over 25 ms. The state-selective z lattice is generated using σ− polarized light at the tuneout wavelength for

|b⟩ = |2, 0⟩ between the D1 and D2 lines [36].

Following the reversibly-applied microwave coupling (see Extended Data figure 1) and lattice modulation spec-

troscopy, we detect excitations through changes in the coherence back in the superfluid phase [28]. We first linearly

ramp down the z-lattice to s = 3 over 5 ms followed by 15 ms of thermalization. The tubes and the optical trap

are then switched off and the z-lattice depth is jumped to s = 14 (in 50 µs) and held for 600 µs to induce a

gravitationally-induced π shift between the wells. The resulting diffraction pattern of |r⟩ atoms features two zeroth-

order peaks separated by 2h̄k in the z direction. We sum over the transverse direction, fit the two peaks on top of a

thermal background with three Gaussians, and extract the width σ̄ as the average over the two peaks. We note that

the momentum distribution of the |b⟩ atoms remains unaffected by the changes in s, since resonant collisions during

the rethermalization phase, as well as collinear four-wave mixing in time-of-flight [27], are both suppressed due to

the mismatch of the |r⟩ and |b⟩ dispersion relations [37], and the strong confinement in the tubes limiting coherence,

respectively.

For the measurements in Fig. 4, we use a smaller tube depth, s⊥ = 18, and ramp up the z lattice more slowly,

over 80 ms (starting in the middle of the s⊥ ramp) in order to maximize the system coherence over a large range of

parameters. After switching off all potentials, we fit the 1D diffraction patterns using a single background-free Gaussian

to extract the width σ of the central peak after summing up over the transverse direction (where σ0 = 0.17 h̄k). To

eliminate possible effects of collinear four-wave mixing in ToF expansion, the |b⟩ atoms are removed using a short

blast pulse of resonant cycling light [27].

For atom detection, we use standard absorption imaging on the F = 2 → F ′ = 3 cycling transition after a ToF of

15 ms, preceded by Stern-Gerlach separation of the |r⟩ and |b⟩ states. The F = 1 atoms are detected after transferring

them to F = 2 using a short repump pulse. We use a principal component analysis routine to remove residual fringes

in the images [18].

Resonance condition. In our experiments, we need to accurately determine and maintain the resonance condition

(∆ = 0) between the |r⟩ in the z-lattice and the |b⟩ mode continuum edge. We use lattice transfer spectroscopy [38]

to adjust and monitor the resonance condition interleaved with a set of measurements, with an extrapolated drift of

maximally 300 Hz between shots. For this purpose, we prepare the BEC in the |b⟩ state, and then apply 400µs long

Rabi pulses (Ω = 2π × 1.0 kHz) to transfer a small fraction. (< 30%) of atoms into the z lattice, with calculated

mean-field shifts well below 100 Hz.

Modulation spectroscopy. For all spectroscopy measurements, the chosen modulation amplitude allows for the set

of peaks to be well resolved. The maximum fraction of |b⟩ atoms produced by the modulation remains well below that
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expected for full transfer to the UP (90% for the parameters of Fig. 2c), such that saturation effects remain small.

The duration of the thermalization step (15 ms) is chosen to be an order of magnitude larger than the time scales set

by the ground-band width and collisional interactions, allowing equilibrium to be reached.

Polariton band structure. In the Schrödinger picture, our system Hamiltonian takes the form [39]

ĤS =
∑︂
j

h̄ω
(r)
0 r̂†j r̂j +

∑︂
n,q

h̄ω(b)
n,q b̂

†
n,q b̂n,q

+
∑︂
j

∑︂
n,q

h̄gn,q

(︂
e−i(ωµt+qzj)r̂j b̂

†
n,q + H.c.

)︂
,

(1)

where h̄ω(b)
n,q = h̄ω

(b)
0 +En,q is the energy (internal plus kinetic) of the |b⟩ atoms, h̄ω(r)

0 is the energy of the |r⟩ atoms,

ωµ is the frequency of the microwave which determines the detuning through ∆ = ωµ− (ω
(b)
0 −ω(r)

0 ), zj = jπ/k is the

position of the jth site,
∑︁

j ≡
∑︁+∞

j=−∞ and
∑︁

n,q ≡
∑︁∞

n=1

∫︁ +k

−k
dq
2k . The external action of the microwave makes this

Hamiltonian time-dependent. However, by writing ĤS = Ĥ0,S + Ĥ1,S with

Ĥ0,S =
∑︂
j

h̄(ω
(b)
0 − ωµ)r̂

†
j r̂j +

∑︂
n,q

h̄ω
(b)
0 b̂

†
n,q b̂n,q (2)

one gets the time-independent interaction Hamiltonian Ĥ ≡ Ĥ1,I = eiĤ0,St/h̄Ĥ1,Se
−iĤ0,St/h̄

Ĥ =
∑︂
j

h̄∆r̂†j r̂j +
∑︂
n,q

En,q b̂
†
n,q b̂n,q

+
∑︂
j

∑︂
n,q

h̄gn,q

(︂
e−iqzj r̂j b̂

†
n,q + H.c.

)︂
.

(3)

Following the approach of [22] (see [23] for an alternative), it is then possible to study the emergence of polaritons.

Fourier-transforming the operators

r̂q =
∑︂
j

e−iqzj r̂j , r̂j =
∑︂
q

eiqzj r̂q (4)

leads to

Ĥ =
∑︂
q

h̄∆r̂†q r̂q +
∑︂
n,q

En,q b̂
†
n,q b̂n,q

+
∑︂
n,q

h̄gn,q

(︂
r̂q b̂

†
n,q + H.c.

)︂
≡

∑︂
q

Ĥq

(5)

such that the Hamiltonian decouples into independent quasimomenta [Ĥq, Ĥq′ ] = 0, where

Ĥq = h̄∆r̂†q r̂q +
∑︂
n

En,q b̂
†
n,q b̂n,q

+
∑︂
n

h̄gn,q

(︂
r̂q b̂

†
n,q + H.c.

)︂
.

(6)

If we take ĉ†n,q = αn,q r̂
†
q +

∑︁
n′ βn,n′,q b̂

†
n′,q to create a quasiparticle (polariton) in the band n with quasimomentum q,

then the eigenvalue condition Ĥq ĉ
†
n,q |0⟩ = εn,q ĉ

†
n,q |0⟩ leads to the secular equations [22]⎧⎨⎩ (εn,q − h̄∆)αn,q =

∑︁
n′ h̄gn′,qβn,n′,q

(εn,q − En′,q)βn,n′,q = h̄gn′,qαn,q

(7)
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which allow for the determination of the amplitudes αn,q and βn,n′,q (which alternatively follow from Eq. (27) in [23])

and yield the equations for the polariton dispersion relation

εn,q − h̄∆ =
∑︂
n′

h̄2g2n′,q

εn,q − En′,q
. (8)

as given in the main text.

Polariton Bose-Hubbard Hamiltonian. Here we show how the band structure and interactions derived above leads

to a polariton Bose-Hubbard Hamiltonian. Since the non-interacting Hamiltonian in lattice-momentum space is

quadratic and has energies given by (8), it reduces to

Ĥ =
∑︂
n,p

εn,q ĉ
†
n,pcn,p. (9)

Thanks to the independence between quasimomenta, if there is some hopping J for |r⟩ atoms, this can be accounted

for by simply making the detuning q-dependent, ∆ → ∆q = ∆+ 4J sin2
(︁
πq
2k

)︁2.
Reapplying (4) to the ĉn′,p operators, one can write the Hamiltonian in position space as

Ĥ = −
∑︂
n,j,j′

J̄n,j−j′ ĉ
†
n,j ĉn,j′ (10)

in terms of the hopping coefficients

J̄n,j−j′ = −
∑︂
q

εn,qe
iπ(j−j′)q/k. (11)

For negative detunings and modest microwave couplings (Ω/|∆| < 1) an experimental run that starts with |r⟩

atoms remains dominated by |r⟩, corresponding to a ground polariton band (n = 1) that is roughly sinusoidal,

meaning that we can approximate as if there is only nearest neighbor hopping (J̄1,±1 ≡ J̄ and J̄1,|n|>1 ≈ 0). The

constant −J̄1,0 =
∑︁

q εn,q is the energy of a polariton Wannier function, which is relevant for the calculation of ω̄0 in

Fig. 2. This can be combined with the local energy shift generated by the harmonic confinement of the experiment

into a site-dependent energy ε̄j . Omitting the band indices (ĉ1,j ≡ ĉj), the above Hamiltonian then reduces to

Ĥ = −J̄
∑︂
j

(ĉ†j+1ĉj + ĉ†j ĉj+1) +
∑︂
j

ε̄j ĉ
†
j ĉj , (12)

which together with the polariton interaction Ĥ int gives the Bose-Hubbard Hamiltonian. The interaction itself is

given by

Ĥ int =
Ū

2

∑︂
j

ĉ†j ĉ
†
j ĉj ĉj (13)

where we calculate

Ū ≡ 1

2
⟨0|ĉ0ĉ0Ĥ intĉ

†
0ĉ

†
0|0⟩

= ḡ

(︃∫︂
dz|ψr(z)|4 +

∫︂
dz|ψb(z)|4

+ 2

∫︂
dz|ψr(z)|2|ψb(z)|2

)︃
(14)
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in terms of the |r⟩ and |b⟩ components of the Wannier function, ψr(z) = ⟨z, r| ĉ†0 |0⟩ and ψb(z) = ⟨z, b| ĉ†0 |0⟩, respec-

tively. Here ḡ = 2h̄2a/(ma0xa0y) depends on the harmonic confinement in the tubes (a0x and a0y) and the (small)

dependence of the scattering length a ≈ 5.3 nm on the internal state of the atom is neglected. To compute ψr and

ψb, we first obtain the polariton Bloch waves using the αn,q and βn,n′,q coefficients, and then numerically integrate

them over the first Brillouin zone [since the real (imaginary) part is symmetric (antisymmetric) in quasimomentum,

it suffices to integrate the real part from q = 0 to q = k].

Data availability Source data are provided with this paper. The data that support the findings of this study are

also available from the corresponding author upon reasonable request.
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FIG. 1: Experimental scheme and polariton formation. a,b, An |r⟩ (red) atom in the ground band of a deep state-

selective optical lattice (red) is coupled through a microwave field (green) with strength Ω and detuning ∆ < 0 to an unconfined

state |b⟩ (blue) with energy below the edge of the continuum of motional states. The atomic ensemble is confined to a system

of tightly confining tubes created with state-independent transverse lattices (gray). c, In each tube, the coupling results in a

polaritonic superposition of lattice-trapped atoms and matter-wave modes with quasi-particle hopping J̄ and on-site interaction

Ū .
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FIG. 2: Excitation spectra in the Mott regime (s⊥ = 40, s = 14). a, Excitation: after ramping up Ω, s⊥ is modulated

by ±30% at variable frequency ω̄ for 10 ms. b, Detection sequence involving rethermalization and a gravitational π-phase shift

for the |r⟩ atoms after the coupling is turned off (details see methods). The two panels display the |r⟩ and |b⟩ momentum

distributions measured after resonant excitation at detuning ∆/ωr = −1.00(7) and coupling Ω/ωr = 1.09(2). The width σ̃ is

extracted through Gaussian fits to the 1D density along z. c, Excitation spectra (i) for ∆,Ω as in b, with the inset stripe

showing the number of |b⟩ atoms; (ii) for the uncoupled case Ω = 0 (red) and additionally s=10 (gray). Error bars show the

standard error of the mean (s.e.m.). All data points are the average over at least 3 runs. d, Detuning dependence of the third

excitation feature. Open red circles denote the |r⟩ peak position, and blue dots denote the position of the maximum transfer of

|b⟩ atoms, as extracted from Gaussian fits, with error bars giving spectral width (2σ) of the excitation feature. The green curve

is the calculated polariton excitation energy ω̄0(∆,Ω), where the shaded areas include the width of the ground band (darker

green) and the uncertainties in ∆ (±0.27 kHz) and Ω (±2%) (lighter green).
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FIG. 3: Polariton band structure, calculated for s = 10. a, (i) Uncoupled band structure for lattice-trapped atoms in |r⟩

(red curve) and free atoms |b⟩ (blue curve). (ii) Band structure for a coupling Ω/ωr = 1 and a detuning ∆/ωr = −0.5, with

the two lowest polariton bands (n = 1, 2) shown as purple curves. The green arrow denotes the separation ω̄0 from the middle

of the lower band to the bottom of the upper band. The dashed curves reproduce the atomic band structure. b, Wannier

functions obtained for the two scenarios of a, containing |r⟩ (red) and |b⟩ (blue) components, where d = λ/2. c, Fraction of the

|b⟩ component |β|2 and polariton interaction energy Ū as a function of Ω for ∆/ωr = −0.5. d, Polariton ground-band tunneling

coefficient J̄ relative to J as a function of Ω and ∆. The dashed lines correspond to measurements shown in Fig. 4b and c.
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FIG. 4: Renormalization of hopping extracted from the coherence of the |r⟩ component at s⊥ = 18. a, Scan over s for

∆/ωr = −0.50(7), Ω/ωr = 0.84(2) (purple), compared to a reference measurement with Ω = 0 (red). Plotted is the fitted 1D

Gaussian width σ along z of the central diffraction peak in time-of-flight (see inset). The red curve is a piece-wise linear fit to

the reference, with slope set to zero left of the kink, which is used to establish the relationship between σ and s. The purple

curve is obtained from the red curve after shifting s(J) (black arrow) according to the expected rescaling of J to J̄ ; the shaded

area accounts for the experimental uncertainties in ∆ and Ω. Inset: tunneling coefficients J (red) and J̄ (purple) as a function

of s. b, c, Parameter scans at s = 10 according to the traces shown in Fig. 3d, with variable ∆ at Ω/ωr = 0.84(2) (b), and with

variable Ω at ∆/ωr = −0.50(7) (c). The theoretical prediction reflecting experimental uncertainties is shown as a solid purple

line surrounded by shaded areas; the insets in the bottom half of b and in c show the corresponding ratios J̄/J . The inset in

the top half of b shows the peak width for Ω/ωr = 0.28(1) (and h̄Ω/U = 1.01(1)). Error bars show the s.e.m.; horizontal error

bars are less than the size of the data points. All data points are the average over at least 3 runs.
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FIG. 5: Fraction of |b⟩ atoms (blue) and peak width of |r⟩ atoms (orange) after a symmetric microwave ramp up and down

(each over 2.5 ms) for the parameters of Fig. 4 at s = 10. The dotted open blue circle is the blue atom fraction for the sequence

of Fig. 2 c without lattice modulation applied. We suspect that the degradation comes from magnetic-field noise that is able

to drive LP→UP transitions by directly affecting ∆.
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