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Recent experiments on spontaneous emission of atomic matter waves [1, 2] open a new window
into the behavior of quantum emitters coupled to a waveguide. Here we develop an approach based
on infinite products to study this system theoretically, without the need to approximate the band
dispersion relation of the waveguide. We solve the system for a one-dimensional array of one,
multiple and an infinite number of quantum emitters and compare with the experiments. This leads
to a detailed characterization of the decay spectrum, with a family of in-gap bound states, new
mechanisms for enhanced Markovian emission different from superradiance, and the emergence of
matter-wave polaritons.

I. INTRODUCTION

Experimenting with the light-matter interface at
the quantum level [3–5] has led to the discovery of
new exciting phenomena, including implementations of
photonic quantum matter [6, 7], effective long-range
interactions between neutral atoms [8], chiral quantum
optics [9], nondestructive photon counting [10] and
quantum logic gates [11, 12] among others. The plethora
of these developments contrasts with the conceptual
simplicity of coupling one or many quantum emitters to
a photonic waveguide (a.k.a. waveguide QED); photons
are the ideal carriers of quantum information as they can
travel large distances without colliding with one another,
while atoms can access and store this information by
absorbing the photons.

Implementations using ultracold atoms in optical
lattices, originally proposed by [13], challenge this
paradigm as they reproduce the same physics while
switching the roles of matter and light which now
become the radiation and emitters, respectively. This
comes with advantages, such as accessibility to different
parameter regimes, the absence of losses into stray
modes (diverging Purcell factor) and a high tunability
of the system [14, 15] with the potential to enable
state-of-the-art applications including the simulation of
giant atoms [16], perfect subradiance [17] and topolog-
ical effects [18]. The experimental realization of these
systems has been achieved recently [1, 2] resulting in the
observation of phenomena such as tunable Lamb shifts,
bound-state beats, non-Markovian decay dynamics and
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time-of-flight pictures of the bound states.

In the analysis of waveguide-QED systems [19–23], a
key idea is that the emission properties can be drastically
altered by manipulating the mode distribution of the
radiation [24–26]. However, due to the difficulty of a
multiband analysis [24], the emission of matter wave
radiation has only been analyzed for the cases of a
single emitter coupled to modes with one parabolic
band edge [1, 13, 15] or one sinusoidal band [2, 27]. In
this paper, we go beyond these restrictions and present
how to evaluate the exact lattice functions required
to solve the dynamics. Using techniques of complex
analysis, we find that this can be done in an efficient
way by using infinite products. These allow us to solve
the system with broader generality (i) by considering
the action of multiple emitters in the system; (ii) by
accounting for the full band dispersion relation for
the radiated modes; (iii) going beyond the Markovian
regime, as we solve for arbitrarily high couplings; and
(iv) also accounting for the finite size of the emitters.
For simplicity, and in agreement with the conditions of
the experiments [1, 2], we restrict ourselves to 1D non-
interacting systems within the single excitation subspace.

This paper is organized as follows. In Sec. II, we
give an introduction to the ultracold atom platform and
its connection with the Hamiltonian for spontaneous
emission of matter waves. In Sec. III, we derive the
formal solution of the equations of motion for multiple
emitters. These equations can be evaluated using the
infinite-product representations presented in Sec. IV. We
focus on the case of a single emitter in Sec. V, where we
describe the system spectrum in detail and discuss the
appearance of enhanced Markovian emission in an ultra-
Markovian regime. In Sec. VI, we compare predictions
of our model with some of the experimentally observed
dynamics. In Sec. VII we study the form of the bound
states, consisting of matter waves dynamically anchored
to the emitter. Finally, in Sec. VIII we review the case
of an infinite array of emitters and the emergence of
polaritons that result from the hybridization between
the emitter array and the potential in which the matter
waves propagate.
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II. THE SYSTEM HAMILTONIAN

We consider a two-level atom (states “red” |a⟩
and “blue” |b⟩) of mass m in a 1D state-dependent
optical lattice of recoil momentum k and potential
Va(b)(z) = Va(b) sin

2(kz), as experimentally realized in
[1, 2]. When the atom is in |a⟩, the lattice potential is
deep (Va ≫ Er = (ℏk)2/2m) and the atom is locally
confined to the harmonic-oscillator ground state ϕj(z)
in site j, with negligible tunneling between sites. An os-
cillating external field of frequency ωµ couples the atom
to |b⟩, which experiences a much shallower potential
|Vb| ≪ Va, with tunneling Jb/ℏ.

The motional states
⃓⃓
1bq
⟩︁
of the |b⟩ atoms are the Bloch

waves ψq(z) with lattice momentum q ∈ (−∞,+∞)
which are solutions of the Mathieu equation [28]. We
choose to normalize these to a single Brillouin zone
(BZ) but work in the extended zone scheme for a more
direct connection with the free-particle case. We take
their total energy ℏωb,q as the sum of the band energy
εq (see Fig. 1(b)) of Vb(z) and the internal energy
ℏωb. We note that for diverging energy, the dispersion
relation εq approximates that of a free particle subject
to the constant average potential Vb/2; this will become
important in Section IV.

If the atom is initially localized in a single well, during
short evolution times t ≪ ℏ/Jb the system is a simula-
tor for spontaneous emission of a photon by an isolated
quantum emitter in a photonic crystal [13, 15]. However,
for longer times, the |b⟩ atom propagates sufficiently far
to be reabsorbed by neighboring lattice sites of Va, such
that dynamical array effects become noticeable, as was
experimentally observed in [1, 2]. These array effects are
detrimental to the Markovianity of the system [29] and
they are especially acute in the ultracold platform due
to the strong retardation between emitters. For such a
system of N lattice sites the uncoupled Hamiltonian is
given by

Ĥ0 =

N∑︂

j=1

ℏωaâ
†
j âj +

∑︂

q

ℏωb,q b̂
†
q b̂q, (1)

where â†j = |1aj ⟩ ⟨0| creates an |a⟩ atom in the j-th site

from the vacuum |0⟩, b̂†q = |1bq⟩ ⟨0| creates a |b⟩ atom
with lattice momentum q, and the explicit sum in modes

is
∑︁

q ≡
∫︁ +∞
−∞

dq
2k for the chosen normalization and zone

scheme. The coupling part of the Hamiltonian (in the
interaction picture) takes the form

Ĥab =

N∑︂

j=1

∑︂

q

ℏΩ
2
ei(εq/ℏ−∆)t−iqzjγqâj b̂

†
q +H.c., (2)
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FIG. 1: (Color online) Representation of the system. (a) The
system in position space. Gaussian wavefunctions ϕj repre-
senting the ground states of altogether N considered wells
of a deep lattice Va(z) are coupled to Bloch waves ψq of a
shallower lattice Vb(z), through a coupling of strength Ω and
detuning ∆ from Vb(0). (b) Energy bands εq (thin blue lines)
and Franck–Condon overlap γq (thick purple lines) in the ex-
tended zone scheme. Solid lines are for the case Vb = 2.5Er,
and the dashed lines for the free-particle case Vb = 0.

where Ω is the coupling between the two internal
states, zj = jπ/k is the position of the j-th site, and
γq = ⟨ψq | ϕ0⟩ (see Fig. 1(b)) is the Franck–Condon over-
lap between the tightly confined wavefunction and the
Bloch wave at q, and ∆ = ωµ + ωa − ωb is the detuning
of the coupling field [30]. The Hamiltonian thus takes
the form of a system of Weisskopf-Wigner Hamiltonians
[31], in which ℏ∆ plays the role of the excitation energy
of a quantum emitter.

III. DECAY OF AN N-EMITTER ARRAY

Generally, the state of an atom in the state-dependent
lattice can be expressed as a linear combination of Wan-
nier states (harmonic-oscillator ground states) and Bloch
waves

|ψ(t)⟩ =
N∑︂

j=1

Aj(t)
⃓⃓
1aj
⟩︁
+
∑︂

q

Bq(t)
⃓⃓
1bq
⟩︁
. (3)
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The time evolution in this picture, iℏ∂t|ψ(t)⟩ =

Ĥab|ψ(t)⟩, is given by

{︄
Ȧj(t) = −∑︁

q
iΩ
2 e

iqzj−i(εq/ℏ−∆)tγ∗qBq(t)

Ḃq(t) = −∑︁
j

iΩ
2 e

−iqzj+i(εq/ℏ−∆)tγqAj(t).
(4)

Following a standard approach in the field [13–15, 21, 22,
32] and extending it to a system of sites, the system of
differential equations can be solved via Laplace transform
Ã(s) ≡ L{A(t)}. Considering processes of spontaneous
emission (Bq(t = 0) = 0), Eqns. (4) transform into

{︄
sÃj(s)−Aj(0) = −∑︁

q
iΩ
2 e

iqzjγ∗q B̃q (s+ i(εq/ℏ−∆))

sB̃q(s) = −∑︁
j

iΩ
2 e

−iqzjγqÃj (s− i(εq/ℏ−∆)) .

(5)
Substituting the second equation into the first yields

sÃj(s)−Aj(0) = −
∑︂

J

G̃j-J(iℏs+ ℏ∆) ÃJ(s), (6)

with the bath correlation function

G̃j-J(E) :=
ℏΩ2

4i

∑︂

q

|γq|2
eiq(zj−zJ )

εq − E
. (7)

To proceed, it is convenient to express the Bloch waves
ψq entering the calculation of the Franck–Condon factor
γq in the basis of plane waves

ψq(E)(z) = ψq(E)(0)

+∞∑︂

n=−∞
υn(E)ei(q(E)+2nk)z, (8)

and to replace the sum over lattice momenta q with an in-
tegration over the associated energy E. After integration
in the complex plane (see Appendix A), this yields

G̃j-J(E) =
ℏΩ2ahoπ

3/2

8k
ρ(E)ψ2

q(E)(0)

+∞∑︂

m,r=−∞
υm(E)υr(E)e−(q(E)+k(m+r))2a2

ho

×
[︃
e−iq(E)(zJ−zj) erfc

(︃
−i(q(E) + 2kr)aho +

zJ − zj
2aho

)︃
+ (zJ ↔ zj)

]︃
,

(9)

where lattice momentum q(E) is the positive branch
of the inverse function of the analytic extension
of εq, aho is the harmonic oscillator length (i.e.

ϕ0(z) = exp[−z2/(2a2ho)]/ 4
√︁
πa2ho), ρ(E) = 2dq(E)/dE is

the density of Bloch states (DoS), with the prefactor of 2
accounting for the existence of left and right-movers, and
erfc(x) = 2/

√
π
∫︁∞
x

exp(−y2)dy is the complementary
error function.

We note that, because of the Gaussian enve-
lope exp

[︁
−(q(E) + k(m+ r))2a2ho

]︁
the infinite sum in

Eqn. (9) converges rapidly, and for a tightly confining
emitter (|ahoq(E)|, ahok ≪ 1), the expression above sim-
plifies greatly. It follows from (8) that

∑︁
m υm(E) = 1,

and the erfc(x) in the formula approximates a step func-
tion. Hence,

G̃j-J(E) ≈ ℏΩ2

4

ahoπ
3/2

k
ρ(E)ψ2

q(E)(0)e
iq(E)|zJ−zj |. (10)

The linear system of equations (6) can be solved for
finite N with basic linear algebra (the infinite case N =
∞ is treated in detail in Sec. VIII), with the solution in

matrix form written as Ã(s) = [sI+G̃(iℏs+ℏ∆)]−1A(0).
Using the Wick-rotated variable E = iℏs + ℏ∆ in the

inverse Laplace transform then yields

A(t) =
−1

2πi

∫︂ +∞+i0+

−∞+i0+

[︂
(E − ℏ∆)I+ iℏG̃(E)

]︂−1

×A(0)e−i(E−ℏ∆)t/ℏdE.

(11)

The integral can be further simplified using the residue
theorem, for which is important to know the singularities
of the integrand. They include poles, i.e. the solutions
of the equation

det
[︂
(E − ℏ∆)I+ iℏG̃(E)

]︂
= 0, (12)

as well as square-root branch points at the band edges
EA0, EA1, EB1, EB2, etc. introduced in the next section.

IV. LATTICE FUNCTIONS ON THE COMPLEX
ENERGY PLANE

Using the Laplace transform to solve the system
dynamics (see Eqn. (11)) makes it necessary to evaluate
different lattice-related functions in the complex energy
plane. This is challenging since some of these functions,
such as the lattice momentum q(E), are multivalued
and some others, such as the Bloch waves ψq(E)(0), are
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physically defined only up to a phase factor. In this
section we develop an efficient way for doing so via an
infinite-product representation.

We start by analyzing the band structure of the
matter-wave vacuum using a standard textbook formula
[33],

cos
πq(E)

k
=

cos

(︃
π
√︂

E−Vb/2
Er

+ arg t(E)

)︃

|t(E)| ≡ T (E),

(13)
relating the lattice momentum q(E) to the transmission
coefficient t(E) for a plane wave of energy E going
through the isolated potential barrier described by
V (z) = Vb(z) for z ∈ [0, π/k] and 0 otherwise. Im-
portantly, we will see that t(E) does not need to be
evaluated explicitly, but instead just some special points
of T (E) will be necessary for the analysis, as they fully
determine the physical properties of the system.

These special points, shown in Fig. 2(a), are the
energies where T (E) takes zero, unity, or extreme values.
In particular, the energies with |T | = 1 correspond to
the band edges of the dispersion relation, which host
Bloch waves carrying an integer multiple of the recoil
momentum and definite parity. Correspondingly, we
label the band edges with even Bloch waves (Mathieu
cosines) as {EAn}∞n=0 and those with odd waves (Math-
ieu sines) as {EBn}∞n=1 [34]. Finally, we label the zeroes
{ECn}∞n=1 and the extrema {EDn}∞n=1.

The ordering of these energies for different potential
depths, shown in Fig. 2(b), is easily understood for
free-space motion Vb = 0 and the limit Vb → ±∞,
as the lattice spectrum becomes that of a quantum
harmonic oscillator. We note that flipping Vb ↦→ −Vb (as
experimentally done in [2], see Fig. 4(c)) leaves the band
structure unchanged, but swaps the parity of the edges
belonging to every other energy gap. Physically, this
transformation is equivalent to displacing the emitter by
half a lattice period.

With these definitions, we can efficiently perform an
analytical extension of several functions into the com-
plex energy plane by using infinite products. For in-
stance, consider T (E). Since t(E) → 1 as |E| → ∞,
the asymptotic expression for this function readily fol-
lows from Eqn. (13), and already resembles T (E) quite
well (see Fig. 2(a)). A perfect match can be achieved if
one “corrects” the zeroes of the approximation by first
dividing through them and then multiplying with the ac-
tual zeroes of T(E), which gives

T (E) = cos

⎛
⎝π

√︄
E − Vb/2

Er

⎞
⎠

∞∏︂

n=1

E − ECn

E − Vb

2 −
(︁
n− 1

2

)︁2
Er

.

(14)
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FIG. 2: (Color online) Characteristic energies of the matter-
wave vacuum. (a) The solid black line shows T as a function
of energy (in units of Er) for the case Vb = 2.5Er. T (E)
determines the band edges (EAn,EBn), the zeroes ECn and
the extrema EDn. The corresponding asymptotic expression,
cos[π

√︁
(E − Vb/2)/Er], is shown as a black dashed line. (b)

Diagram of these characteristic energies (with the same color
code as in (a)) above the ground energy EA0(Vb) in units of

an energy scale 4
√︁
E4

r + (4VbEr)2 chosen to match the recoil
energy when there is no lattice and the harmonic approxima-
tion energy split when the lattice is very deep. The abscissa
Vb is presented in arctangent scale.

This identity is in fact guaranteed by Liouville’s theorem
of complex analysis [35] (assuming that T (E) has no
complex singularities), since the quotient between the
two sides of the equation is, by construction, an entire
function that tends to 1.

Equation (14) in return allows for the ana-
lytic extension both of the lattice momentum, via
q(E) = k

π arccosT (E), and of the energy bands

εn(q) = T−1
n

(︁
cos πq

k

)︁
. In particular, we note that

q(EDn) are the branch points where the n and n + 1
bands cross.

An analogous reasoning can be applied for analyti-
cal extensions of other lattice functions such as ρ(E),
ψq(E)(0) and ψ

′
q(E)(0). Since at extreme energies (|E| →
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∞) an atom travelling through the lattice potentialVb(z)
behaves like a free particle subject to the average con-
stant potential Vb/2, it is straightforward to find their
asymptotic expressions, which can again be corrected fur-
ther via infinite products. In the case of the density of
states (DoS), this results in

ρ(E) = k

⌜⃓
⎷⃓ 1

Er(E − EA0)

∞∏︂

n=1

(E − EDn)2

(E − EAn)(E − EBn)
.

(15)
For the Bloch waves ψq(E)(0) taken at the emit-

ter position, the asymptotic value for high energy is√︁
k/π, and the value has to vanish at the odd band

edges EBn due to parity. Furthermore, Eqns. (7,10)
(or equivalently Eqn. (A3)) imply that ρ(E)ψ2

q(E)(0) =
2k
iπ

∑︁
q |ψq(0)|2/(εq −E) and, given that the RHS of this

expression is analytic for all E outside the bands, the
singularities of ψ2

q(E)(0) in this region have to be simple

poles matching the zeroes EDn of the DoS. This leads to
the expression

ψq(E)(0) =

⌜⃓
⎷⃓k

π

∞∏︂

n=1

(E − EBn)

(E − EDn)
(16)

and similarly

ψ′
q(E)(0) = ik3/2

⌜⃓
⎷⃓E − EA0

πEr

∞∏︂

n=1

(E − EAn)

(E − EDn)
. (17)

Finally, we note that Eqns. (16,17) can be used as
initial conditions in the Mathieu equation to obtain the
value of the Bloch wave at any other point through
ψq(E)(z) = ψq(E)(0)C(E, z) + iψ′

q(E)(0)S(E, z) where

C (S) is an entire function in both of their arguments,
(anti-)symmetric in z corresponding to the unnormalized
Mathieu cosine (sine) function.

V. SINGLE-EMITTER DECAY (N = 1)

The decay of an isolated emitter for the case of
coupling to a single, sinusoidal band or a parabolic
band edge has been analyzed in earlier theoretical works
[15, 27, 36]. Using our formalism, we now generalize this
treatment to include infinitely many (non-)sinusoidal
bands, arising for arbitrary lattice depth Vb. For sim-
plicity, we consider the case Vb > 0 and disregard band
gaps beyond an arbitrary cutoff index Λ (in practice Λ
can always be chosen to be small, given that the band
gaps quickly get narrower).

As seen in the previous section, the dynamics
A(t) of a tightly confining emitter is governed by

the bath correlation function G̃j-J(E) ≡ G̃0(E)

obtained from Eqns. (10), (15) and (16). To evalu-

ate G̃0(E), we first introduce the (truncated) products

ΠA(E) =
∏︁Λ

n=0(E−EAn) and ΠB(E) =
∏︁Λ

n=1(E−EBn),
as well as their ratio ΠB/A(E) = ΠB(E)/ΠA(E). Using
these products, the bath correlation function can then
be approximated as ℏG̃0(E) ≈ κ

√︁
ΠB/A(E), with the

coupling constant κ = (Ω/2)2ℏaho
√
2πm. To avoid

ambiguity, we consider that all square roots
√· · · in this

section give back complex numbers with argument in
(−π/2,+π/2].

To find the poles of the inverse Laplace transform
(11), we multiply Eqn. (12) with its algebraic conjugate;
the poles then correspond to zeroes of the polynomial
(E− ℏ∆)2ΠA(E)+ κ2ΠB(E). By considering the degree
of this polynomial and its changes in sign between band
edges, it is easy to see that there are no bound states
in the continuum (BIC) [37], whereas each band gap
(including E < EA0) contains at least one pole. This
differs from the multi-emitter case 1 < N < ∞, where
subradiance and retardation effects can lead to a BIC
[38, 39]. For sufficiently weak couplings (κ ≪ E

3/2
r ),

these in-gap poles can be approximated as En ≈
EAn − κ2ΠB(EAn) / [(EAn − ℏ∆)2

∏︁
m ̸=n(EAn −EAm)].

There are two additional poles, approximately
ℏ∆ ∓ iκ

√︁
ΠB/A(ℏ∆), which lie in the same gap if

they are real; otherwise one of them (EM ) has negative
imaginary part and can lead to Markovian (exponential)
decay of the emitter, and the other (E∗

M ) is its complex
conjugate.

In determining the spectral decay properties, (see
Fig. 3), we see that not all of these poles contribute
towards the residue theorem: due to the square root
singularities at the band edges, we can visualize the
integrand domain as a Riemann surface consisting of an
‘upper sheet’ where the integration paths in the complex
plane are located and a ‘lower sheet’ on the other side
of the branch cuts. Only the poles on the upper sheet
will contribute towards the residue theorem and have a
physical interpretation.

For positive lattice depths Vb > 0 and Markovian
couplings Ω ≪ minq∈R |∆ − εq/ℏ|, the pole En is in
the upper sheet only when sign{ℏ∆ − EAn} = (−1)n.
Of the two extra poles, only one is in the upper sheet;
in particular E∗

M cannot be there because its positive
imaginary part would lead to exponential growth of the
population (see Eqn. (18)).

For larger couplings, there is still a change of sheets
for one of the poles living in the nth > 0 gap as ℏ∆
crosses the value EBn. On the other hand, by increasing
the coupling it is possible to make two lower poles
co-located in a gap combine into a double pole and then
split into a Markovian pole EM and its conjugate E∗

M .
Whereas E∗

M remains always unphysical, EM can make
it to the upper sheet, as depicted in Fig. 3(c).
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FIG. 3: (Color online) Spectral emission properties of a tight
emitter. (a) Example of poles and branch cuts (dashed
lines) of the inverse Laplace transform (11) for Va = 20Er,
Vb = 2.5Er, coupling ℏΩ = Er and a detuning ∆ resonant
with the first energy band. Black dots correspond to physical
poles, whereas the white dots are unphysical and do not con-
tribute to the dynamics. The branch points EAn (red) and
EBn (blue) are the band edges hosting even and odd Bloch
waves, respectively. The thick black line represents the inte-
gration contour of the transform. (b) The sum of the squared
residues of the bound states –an indicator of the red popula-
tion that remains bounded after emission– is presented as a
color-map on the ∆-Ω plane. Regions separated by the white
dashed vertical lines {ℏ∆ = EBn}∞n=1 have a different number
of bound states. (c) Squared norm of the residue correspond-
ing with the Markovian pole EM on the ∆-Ω plane. In the
solid cyan regions there is no Markovian pole, whereas in the
cyan dashed regions the pole is in the lower sheet.

This figure reveals behavioral differences between the
decay next to a band edge hosting even Bloch waves and
one hosting odd ones. Whereas the former behaves as
expected from previous studies [15], the latter displays
an increase in the Markovian component of the decay
at non-Markovian couplings. One would naively expect

that reabsorption and emission scale equally with the
vacuum coupling; however this is not the case here as
BS formation is suppressed for these parameters (see
Fig. 3(b)). Despite the phenomenological similarities,
this ultra-Markovian emission is not to be confused
with superradiance, as a single emitter is enough to
create this effect. For illustration purposes, let us
consider the following example. Under the same condi-
tions as Fig. 3(b,c), a quantum emitter with detuning
ℏ∆ = EB1 +

1
5Er and coupling ℏΩ = 5

2Er emits half of
its population at only t = 0.52ℏ/Er and it emits more
than 90% ultimately. In contrast, while the initial decay
is very similar at ℏ∆ = EA0 +

1
5Er and ℏΩ = 5

2Er, most
of the radiation is reabsorbed at t = 2.5ℏ/Er and the red
population subsequently oscillates with large amplitude
as the system cycles between emission and reabsorption.

The integration path of Eqn. (11) can be adapted to
the singularities described in Fig. 3(a) by circling around
the physical poles and branch cuts of the integrand [40],
leading to the time evolution

A(t) =
∑︂

E∈upper
poles

α(E)ei(∆−E/ℏ)t

− iκ

π

Λ∑︂

n=0

(−1)nei(∆−EAn/ℏ)tI (EAn, t)

+
iκ

π

Λ∑︂

n=1

(−1)nei(∆−EBn/ℏ)tI (EBn, t)

(18)

where

α(E) =
2(E − ℏ∆)

2(E − ℏ∆) + κ2 d
dEΠB/A(E)

(19)

denotes the residue of the poles and the branch contri-
bution

I (E, t) =

∫︂ ∞

0

exp (−ζt/ℏ)
√︁

ΠB/A(E − iζ)

(E − iζ − ℏ∆)2 + κ2ΠB/A(E − iζ)
dζ

(20)
is well defined unless EM stands on the branch cut. The
branch contribution I (E, t) tends to zero as the time t
increases but in a non-exponential fashion, making the
decay non-Markovian. The only contributions persistent
in time, i.e. the bound states (BS), are the real upper
poles residing in the band gaps.

VI. PHENOMENOLOGY

The general features of the resulting time evolution
are shown in Fig. 4(a). It is mostly Markovian for
detunings deep inside the bands and non-Markovian
around the band edges; there is no decay deep inside the
gaps. We note that emission is suppressed at the band
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edges EBn of odd parity with respect to the edges EAn,
whose Bloch waves have the same parity as the emitter.

After the emission, the emitter population can oscil-
late by the beating of various bound states. This effect,
which has also been measured experimentally [2], is
most noticeable in the center of the first energy band.
We compare our calculation with the experimental data
in Fig. 4(b).

Although the one-emitter model (N = 1) matches
the observed decay dynamics at short times, it under-
estimates the amount of subsequent reabsorption seen
in the experiment, in which the optical lattice provided
an array of emitters. As already discussed in [2], the
subsequent oscillations are dominated by reabsorption
as the emitted radiation spreads across the emitter
array. Using the formalism developed in this paper,
the presence of neighboring ground-state emitters (i.e.
empty lattice sites) surrounding an excited emitter
can readily be taken into account in Eqn. (11) via an
analogous approach, and already working with a lattice
of three sites (N = 3) shows a marked improvement for
the second oscillation. While it generally gets harder to
analyze and numerically solve larger arrays, this is not
the case for N = ∞ (which is studied in Sec. VIII). As
seen in the figure 4(b), the overall agreement with the
experiment qualitatively improves further to longer time
scales, but residual deviations persist. They are likely
due to differences in the initial state (the experiment
worked with a sparsely populated array with more than
one excitation) and collisions between atoms.

An analogous formula to (18) can be written for the
time evolution Bq(t) of the emitted modes,

Bq(t) = −ℏΩγq
4πi

∫︂ +∞+i0+

−∞+i0+

e−i(E−εq)t/ℏ dE/ (E − εq)

E − ℏ∆+ iκ
√︁
ΠB/A(E)

.

(21)
The main difference is that the integration displays
an additional pole at energy εq. Importantly, this real
pole does not correspond to a bound state (discussed
further in the next section), but to a mode that has
completely abandoned the emitter and keeps travelling
free indefinitely. This causes similarity between the
emission spectrum and the dispersion relation of the
medium (see Fig. 4(c)). We note that at smaller
couplings, the applicability of the N = 1 theory extends

to longer times, which was the case for the parameters
of Fig. 4(c). More generally, a multi-emitter analysis of
the emitted modes is accessible through Eqn. (4).

VII. BOUND STATES

As seen in the previous section, the long-time dynam-
ics of the quantum emitter is dictated by the presence
of bound states. BS have been broadly studied in the
literature [41] and in 1D are limited to be short ranged
[42], which is the reason why they are often depicted as
decaying exponentially in space [13, 15, 27, 41, 43] while
the detailed features are often overlooked. However,
the reader might expect that the presence of a lattice
potential for the radiated modes induces a corrugation
of this evanescent wave [24]. Even more strikingly,
recent experimental work [2] found that time-of-flight
distributions of these BS can possess two sharp peaks
at opposite momenta, suggesting common features with
stationary waves despite the absence of boundaries. In
this section we clarify these apparent inconsistencies by
computing the exactly spatial distribution of the BS and
presenting a simple physical picture that encompasses
all these effects.

The BS wavefunction |ψ(t)⟩ is defined in the interac-
tion picture (see Eqn. (3)) by

{︃
A(t) = A(0)ei(∆−EBS/ℏ)t

Bq(t) =
ℏΩ

2(EBS−εq)
γqA(0)e

i(εq−EBS)t/ℏ,
(22)

where A(0) =

[︃
1 +

∑︁
q|γq|2

(︂
ℏΩ/2

EBS−εq

)︂2
]︃−1/2

is the

normalization constant. The red part of this expression
follows from isolating the contribution of a single pole in
Eqn. (18), whereas the blue part and the equation (12)
for the BS energy EBS follow from integrating (4).

The spatial distribution of this bound state is bet-
ter understood in the Schrödinger picture |ψ(t)⟩S =

e−iĤ0t/ℏ |ψ(t)⟩, where position is a time-independent op-
erator. The blue part of |ψ(t)⟩S , has a position-space
wave function BS(z, t) =

∑︁
q BS,q(t)ψq(z) which can be

integrated in a very similar way to the derivation of (9),
leading to

BS(z, t) = −iρ(EBS)ψ
2
q(EBS)(0)

√
2ahoℏΩA(0)π5/4

8k
e−i(ωb+EBS/ℏ)t

+∞∑︂

m,r=−∞
υm(EBS)υr(EBS)

× e−
(q(EBS)+2kr)2a2

ho
2

[︃
e−i(q(EBS)+2km)z erfc

(︃
−i (q(EBS) + 2kr)aho√

2
+

z√
2aho

)︃
+ (z ↔ −z)

]︃
.

(23)
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FIG. 4: (Color online) Comparison between theory and the experiments [1, 2]. (a) Detuning dependence of the population
decay |A(t)|2, from one tightly-confining emitter to a sinusoidal lattice of potential depth Vb = 2.5Er and through a coupling

κ = 0.082E
3/2
r . Cyan marks indicate the position of the energy gaps. The time slice t = ∞ represents the range of asymptotic

population that remains bound after decay. (b) Decay curves as in (a) but for a set detuning in the center of the first energy
band, ℏ∆ = 1.32Er and for an array of N = 1, 3 and ∞ emitters, with only the central emitter originally excited. The red dots
indicate the experimental values measured for the same parameters [2]. (c) Quasi-momentum distribution |Bq(τ)|2 predicted for

the emission by a single tightly-confining emitter with κE
−3/2
r = 0.015, 0.032 and 0.015 into potentials with depth Vb/Er = 2.5,

0 and −2.6 (respectively) at a fixed time Erτ/ℏ = 9.24. The insets reproduce the experimentally observed distributions for
Vb = 0 [1] and Vb ̸= 0 [2] measured for the same parameters.

This expression might seem cumbersome, but we note

-2 -1 0 1 2

-2 -1 1 2

-2 -1 0 1 2

-2 -1 0 1 2

z/al

z/al

z/al

q(E)/k

E

FIG. 5: (Color online) Spatial shape of the bound states for
the same parameter values as Fig. 4(a). On the left, the
real (dark blue) and imaginary (light orange) parts of the
analytic extension of q(E) are presented for various energies
in the bands (white) and gaps (shaded cyan regions). The
solid lines denote the momenta that contribute the most in
the composition of the bound state. The horizontal black
dashed lines denote three different possible BS energies at
different gaps. They intersect with the lattice momenta that
conform the evanescent waves around the emitter, i.e. the
bound states, which are shown on the right in spatial units
given by the lattice constant al = π/k.

that it is real at t = 0 and symmetric; that the prefactor
is regular also when EBS = EDn, due to the cancellation
of the zero of ρ(EBS) with the pole of ψ2

q(EBS)(0); that

the time evolution is that of an eigenstate of the system
(even though the Hamiltonian is not time-independent
due to the external coupling, which causes the red part
of the BS to have a frequency lower than the blue by
ωµ); and that the dominant modes of the sums are
υ0(EBS) and υ−n(EBS) = υ∗0(EBS) (with n numbering
the gap of EBS) when the blue lattice is shallow as
they correspond with the momenta that are closest to
the free-particle dispersion relation (see Fig. 5). The
BS is localized at the center of the site and decays to
both sides with an inverse exponential decay length
Im q(EBS) and a wavenumber Re q(EBS) = nk, and
it is consistent with those presented in Refs. [15, 24].
In summary, expression (23) shows that the BS is
a linear combination of evanescent waves whose mo-
menta match the analytic extension to the band gaps of
the blue lattice dispersion relation, as presented in Fig. 5.

Looking back at the spectrum of the system described
in the previous section, these bound states may be
created adiabatically by choosing a detuning ∆ resonant
with the nth band gap and increasing the vacuum
coupling strength Ω adiabatically, as empirically shown
in Refs. [1, 2]. The adiabatic condition consists of
the change in these parameters being slower than the
time scale defined by the energy difference between the
instantaneous BS energy and the nearest energy edge.
This imposes two restrictions for adiabatic excursions in
the ∆-Ω plane (see Fig. 3(b)): Ω must not be brought
back to 0 while ∆ is in some region other than the nth
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band gap since the BS energy would cross EAn, and ∆
must not cross the corresponding odd band edge EBn/ℏ
since the BS energy would also cross EBn.

The procedure of adiabatic creation allows for testing
experimentally the BS probability distributions derived
in this section. The lattice-momentum distribution
|Bq(t)|2 = |BS,q(t)|2 of Eqn. (22) matches with the
band-map measurements of Refs. [1] (for the case
Vb = 0; see also [15]) and Ref. [2] (case Vb = 2.5Er > 0).
Furthermore, signatures of the real-space distribution
|BS(z, t)|2 of Eqn. (23) might be accessed by highly
resolving in situ imaging techniques [44].

VIII. MATTER-WAVE POLARITONS

In general, as the number of emitters in the array
increases, the spectrum of the system becomes more
elaborate, but the case of infinitely many emitters is an
exception to this. As N → ∞, the Hamiltonian regains
the lattice periodicity and states with different lattice
momentum q decouple via Bloch’s theorem. In our
formalism this is reflected in the fact that vectors of the
form A(0) = (. . . , eiqπ(j−1)/k, eiqπj/k, eiqπ(j+1)/k . . .)T

are eigenstates of G̃(E) while being independent of E.
We will refer to these states as matter-wave polaritons,
in analogy to of their quantum optical counterparts
[7, 43, 45]. While photons are also involved in this new
type of quasiparticle by constituting the optical lattice,
the usual role of a photon in a polariton is taken over
by matter waves. In the regime |Vb| ≪ Er ≪ |Va|,
the dispersion relation of the radiated modes is nearly
quadratic and matter-wave polaritons are similar to
exciton polaritons [7, 46], whereas for Er ≪ |Vb| ≪ |Va|
the now strongly confining optical lattice for blue atoms
forms the analogue of a coupled cavity array in circuit
QED [47–52]. Some of these properties have recently
been observed experimentally [53].

Taking the Fourier transform FAq =
∑︁

j Aje
−iπjq/k as

a change to the decoupled basis, Eqn. (11) simplifies to

FAq(t) =
−1

2πi

∫︂ +∞+i0+

−∞+i0+

FAq(0)e
−i(E−ℏ∆)t/ℏ

E − ℏ∆+ iℏg̃q(E)
dE, (24)

where the eigenvalue

iℏg̃q(E) =

(︃
ℏΩ
2

)︃2 +∞∑︂

n=−∞

|γq+2kn|2
εq+2kn − E

(25)

follows immediately by applying the defini-
tion of eigenvalue to (7) and using the identity∑︁+∞

j=−∞ ei(q
′−q)πj/k = 2k

∑︁+∞
n=−∞ δ(q′ − (q + 2kn)). The

integrand has thus become a meromorphic real function,
free of the branch cuts at the band edges and free of
complex poles. This indicates that radiation cannot

0

2

4

6

8
-6-4-20 -2 -1 0 1 2

-2 -1 0 1 2
-0.4

0.

0.4

0.8

~∆− Ei~g̃q(E)

E

q/k

E
n
(q)

g̃ −
1

q
(0

)
~
∆

ε
n
(q)

J̄1 J̄2Vb

Va

ε(b)

1

ε(a)

2

(a) (b)(b)(b)

(c) (d)(d)(d)

FIG. 6: (Color online) Band structure of the polaritons. (a)
Graphical solution of Eqn. (25) for the polariton bands at a
particular quasimomentum, q0 = −2.3k, and with the same
parameter values as Fig. 4(b) and with energies in units of Er.
Polariton energies are located at the intersection between the
orange and blue lines. (b) Resulting polariton band structure
En(q) (in purple), for the band structure εn(q) (in blue) and
detuning ℏ∆ (in red) specified in (a). (c) Schematic depiction
of a particle in a state-dependent lattice with Va = 12Er

and Vb = −0.4949Er hopping two lattice sites due to the
coupling ℏΩ = 0.626Er between states. (d) Energy bands
corresponding to the situation depicted in (c), with a detuning
of 0.0742Er between the centers of the ground band ε(b)1 (q)
and the excited band ε(a)2 (q). The (approximate) doubling in
periodicity of the resulting polariton bands (in purple) is an
indicator of the double hopping.

escape the emitter array, which is to be expected since
the array is infinite.

Since all of the poles are real, we follow a suggestion in
[24] and visualize Equation (25) as shown in Fig. 6(a), in
order to locate all of the solutions En(q) that physically
correspond to the polariton energy bands. Some simple
properties that follow from this graph are that polariton
bands neither cross each other nor the original energy
bands (E1(q) < ℏ∆, εn−1(q) < En(q) < εn(q) for
n ≥ 2), although they might cross the detuning at the
points g̃−1

q (0) where the couplings to different bands
cancel mutually. Excited polariton bands tend to these
points in the limit of very large coupling; otherwise they
soon approximate the energy bands (En≫1(q) ≈ εn−1(q)).

The resulting band structure (purple lines in Fig. 6(b))
is exotic and cannot be obtained by a simple periodic
potential. An indicator of this is the positive effective
mass of both the ground and the first excited polariton
band near q = 0.
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The motional properties associated with these bands
follow from applying the residue theorem to (24), which
leads to

FAq(t) =

∞∑︂

n=1

rn(q)e
i(∆−En(q)/ℏ)tFAq(0) (26)

where the residues are given by

rn(q) = (1 + iℏg̃′q(En(q)))−1. (27)

The residues for bands far away from the detuning are
negligible, rendering the structure of higher bands/gaps
irrelevant for the dynamics. Alternatively, these results
may also be obtained by decoupling the Hamiltonian [43]
or as an ansatz in the Schrödinger equation, while taking
into consideration that these residues satisfy the nor-
malization condition (rn ∈ [0, 1] and

∑︁∞
n=1 rn(q) = 1),

energy conservation (
∑︁∞

n=1 rn(q)En(q) = ℏ∆) and∑︁∞
n=1 rn(q)/(εm(q) − En(q)) = 0. With this solution of

the system, we can explain the dynamical behaviour of
the experimental data [1, 2] at longer evolution times
t ≥ ℏ/Jb (see Fig. 4(b), case N = ∞).

Moreover, as different quasi-momenta are decoupled
unless they differ by an even multiple of the recoil
momentum k, one can define a periodic momentum-
dependent detuning ∆ ≡ ∆(q) to account more accu-
rately for the dispersion relation ε(a)n (q) for the |a⟩ states
in the nth band, while also modifying the Franck–Condon
overlap into γq =

⟨︁
ψ(b)
q | ψ(a)

n,q

⟩︁
. This allows more cus-

tomization of the resulting polariton bands En′(q), whose
hopping rates

J̄
(n′)
j = −

∫︂ k

−k

dq

2k
En′(q)eiπjq/k (28)

can be freely tuned. An extreme example of this is
shown in Fig. 6(c,d) where the first band of the |b⟩
states is coupled with the second band of the |a⟩ in
a way that the polaritons hop two lattice sites at a
time, without going through the intermediate site at all
(J̄1 = 0, J̄2 ̸= 0). This opens the possibility for the
analog simulation of J1-J2 quantum spin models [54, 55]
with ultracold bosons in 1D, by inducing effective spin
interactions [56–58]. We note that frustration [59], a
core feature of the J1-J2 model, in our system has kinetic
origin and is generated by coupling bands of opposite
effective mass [60].

IX. CONCLUSIONS

We have shown the importance of having multiple
emitters coupled to multiple band modes in ultracold-
atom realizations of waveguide QED. Already on the
single emitter level, the intricate band structure enriches
the spectrum, partially due to the presence of energy

edges hosting odd Bloch waves (which present an unex-
pected enhancement of the Markovian part of the decay
in the non-Markovian regime), and partially due to
the presence of multiple bound states in different band
gaps. Our analysis was made possible by what to our
knowledge are novel, simple analytical expressions for
multiple well-known functions describing the dynamical
properties of a particle in a lattice potential. The fast
convergence of these expressions and their applicability
on the whole complex energy plane make them relevant
in contexts beyond the scope of this work, although
there is no trivial generalization to higher dimensional
lattices. Interpreted as a two-point function for a
Feynman diagram analysis, they can also serve as a
starting point for the description of multiple interacting
excitations. And finally we have studied polariton
formation in the matter-wave context, showing that
this system not only can act as an analog simulator of
photonic phenomena, but also as a wider platform for
studying low-dimensional frustrated systems.
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Appendix A: Integrating over lattice momenta

The study of spontaneous emission into a lattice calls
for integration over the lattice momenta both in the dy-
namics (see Eqn. (7)) and in the spatial distribution of
the bound state,

BS(z, t) =
∑︂

q

BS,qψq(z) ∝
∫︂ +∞

−∞

γqψq(z)

EBS − εq
dq. (A1)

In order to simplify them, we propose expressing the
Franck–Condon overlaps in their integral form and solv-
ing first the integral

∫︂ +∞

−∞

ψ∗
q (z

′)ψq(z
′′)eiq(zj−zJ )

E0 − εq
dq =

∮︂

C1

ψq(E)(−z′)ψq(E)(z
′′)ρ(E)eiq(E)(zj−zJ )

2(E0 − E)
dE

(A2)

where C1 are contours circling the bands (see Fig. 7).
By using Sec. IV, it follows that the integral has a
symmetry (z′, zJ) ↔ (z′′, zj) and the integrand has
only a simple pole in E0 and bi-valued branch cuts
at the band edges. Changing the integration contour
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to C2 and noticing that the integrand is asymptot-
ically dominated by ψ∗

q(E)(z
′)ψq(E)(z

′′)eiq(E)(zj−zJ ) ∼
exp[ik(z′′ + zj − z′ − zJ)

√︁
(E − Vb/2)/Er], we find that

the outermost circumference of C2 vanishes in the upper

sheet (Im q(E) > 0) when z′′ + zj − z′ − zJ > 0 (the
opposite case follows by the aforementioned symmetry),
leaving only the pole contribution of E0:

∫︂ +∞

−∞

ψ∗
q (z

′)ψq(z
′′)eiq(zj−zJ )

E0 − εq
dq = −πiψq(E0)(−z′)ψq(E0)(z

′′)ρ(E0)e
iq(E0)(zj−zJ )H(z′′ + zj − z′ − zJ) +

(︃
z′ ↔ z′′

zJ ↔ zj

)︃
,

(A3)

with H(z) = 0, 1/2, 1 if z <,=, > 0 (respectively)
denoting the Heaviside step function.

The overlapping integral with the Gaussian emit-
ter ϕ0(z) can then be solved exactly after Fourier-
decomposing the Bloch waves into plane waves (see
Eqn. (8)), leading to expressions (9, 23).

C1C1C1

C2

E0E0E0

EA0EA0EA0 EA1EA1EA1 EB1EB1EB1 EB2EB2EB2 EA2EA2EA2

FIG. 7: (Color online) Domain coloring plot of the integrand
of the RHS of (A2) for J = j = 0, kz′ = 0.5 < kz′′ = 0.7,
Vs = 4Er and E0/Er = 1 + 2i.

[1] L. Krinner, M. Stewart, A. Pazmiño, J. Kwon, and
D. Schneble, Nature 559, 589 (2018).

[2] M. Stewart, J. Kwon, A. Lanuza, and D. Schneble, Phys.
Rev. Res. 2, 043307 (2020).

[3] J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P.
Yu, D. E. Chang, and H. J. Kimble, Proc. Natl. Acad.
Sci. 113, 10507 (2016).

[4] D. Roy, C. M. Wilson, and O. Firstenberg, Rev. Mod.
Phys. 89, 021001 (2017).

[5] I. Carusotto, A. A. Houck, A. J. Kollár, P. Roushan, D. I.
Schuster, and J. Simon, Nat. Phys. 16, 268 (2020).

[6] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L.
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