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Abstract—The next generation of supercomputing resources
is expected to greatly expand the scope of HPC environments,
both in terms of more diverse workloads and user bases, as well
as the integration of edge computing infrastructures. This will
likely require new mechanisms and approaches at the Operating
System level to support these broader classes of workloads along
with their different security requirements. We claim that a
key mechanism needed for these workloads is the ability to
securely compartmentalize the system software executing on a
given node. In this paper, we present initial efforts in exploring
the integration of secure and trusted computing capabilities into
an HPC system software stack. As part of this work we have
ported the Kitten Lightweight Kernel (LWK) to the ARM64
architecture and integrated it with the Hafnium hypervisor, a
reference implementation of a secure partition manager (SPM)
that provides security isolation for virtual machines. By integrat-
ing Kitten with Hafnium, we are able to replace the commodity
oriented Linux based resource management infrastructure and
reduce the overheads introduced by using a full weight kernel
(FWK) as the node-level resource scheduler. While our results
are very preliminary, we are able to demonstrate measurable
performance improvements on small scale ARM based SOC
platforms.

Index Terms—Operating Systems, Virtualization, Security

I. INTRODUCTION

Trusted execution and secure resource isolation have be-
come increasingly common in modern hardware architec-
tures [1]-[3], however the use cases for these feature sets
has focused on end user devices and commodity systems
platforms. While there is significant interest in adapting these
technologies to server class systems, so far the focus has
primarily been on commodity cloud based environments, and
has not directly addressed the needs of HPC class systems.
At the same time, these features present a unique opportunity
to more readily integrate HPC oriented system software solu-
tions, due to the fact that security isolation inherently requires
system level partitioning leading to compartmentalized system
software environments. While previous generations of HPC
system software required the development of mechanisms to
allow HPC OS/Rs to co-exist with monolithic OS/Rs [4]-[6],
the next generation will likely provide a much more distributed
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OS/R model making it relatively easy to swap in HPC oriented
sub-components as needed.

In this paper we introduce preliminary work to explore this
problem space through the use of the Kitten LWK in combina-
tion with secure virtualization capabilities available on modern
ARM based systems through the Hafnium hypervisor [7].
Hafnium is a reference implementation of a Secure Partition
Manager developed as part of the Trusted Firmware [8] effort
led by Linaro. Hafnium provides isolated resource partitions
through the use of secure virtualization mechanisms that
provides full memory isolation between each VM in the
system, including the primary host OS. This capability allows
the execution of private workloads that cannot be tampered
with or spied on by any other locally executing software, and
thus enables the deployment of sensitive data and applications
to otherwise untrustworthy system platforms. However, while
Hafnium currently provides these capabilities on ARM based
systems, it is implemented around a commodity use case
that requires a full weight Linux kernel instance to manage
VM scheduling on each CPU core. This results in workload
interference and other overheads due to the complexity of
Linux and its primary focus on commodity environments. To
address these issues we have adapted Kitten to allow us to
replace the Linux instance as the node-level VM scheduler.

A high level overview of our approach is shown in Figure 1.
In our system model, a lightweight kernel acts as a scheduler
for each VM hosted on the system. Using Kitten in this role
enables low noise, easily configurable, and more deterministic
scheduling behaviors to an HPC compute node, without having
to rely on the default Linux kernel scheduler. In previous work
we have already demonstrated the efficacy of deploying Kitten
as a scheduling layer for virtual machines in HPC contexts [4],
however in this work we have augmented the performance
benefits with added security isolation provided by Hafnium. In
this model, neither Kitten nor any other OS instance can access
the memory contents of another OS/R environment executing
on the system. This is a marked contrast to our previous work
with Palacios [9] that allowed (and in some cases required)
full access to internal VM memory contents by the host OS.
While Palacios took a similar approach to the separation
of VM state management from resource management and
scheduling, the separation was entirely software based and
relied on respecting API boundaries. In contrast, with Hafnium
VM state management is separated from resource management
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and scheduling by hardware enforced protection boundaries
implemented by the ARMv8 exception levels. All VM state
management functions execute at the higher privilege level of
Exception Level 2 (EL2), while scheduling and VM execution
all occur at Exception Level 1 (EL1). This allows the system
software to separate scheduling policies into a lower privilege
level from the dispatch mechanisms that handle VM context
switching.

1 1 1
1 1 1
Mgmt ||| Secure ||| Secure ||| Secure
VM (If] VM |[If VM |[I|] VM
el L 1————
[ LWK (Scheduler) EL1
Trusted Hypervisor (Dispatcher) EL2

Secure Memory Isolation

Exception Level Boundary

Fig. 1. Using LWKSs to manage isolated VMs

In the rest of this paper we will describe our work in
porting the Kitten LWK to ARM as well as integrating it
with Hafnium. In addition we will present a set of preliminary
evaluations on a small ARM SOC platform to demonstrate the
implementation as a proof of concept. We will also provide
background information on the ARMvVS8 security mechanisms,
as well as discuss future directions in adapting these mecha-
nisms for HPC environments.

II. BACKGROUND
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Fig. 2. Default Hafnium VM configuration
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a) Hafnium: Hafnium is a member project in the Trusted
Firmware Initiative, an open governance community project
hosted by Linaro, that aims to provide reference implemen-
tations of secure system software for ARM based platforms.
Hafnium builds on other TrustedFirmware projects to provide
a security isolation layer for virtual machines. By focusing
on virtualization, Hafnium provides general purpose execution
environments that can be used to deploy full OS/R stacks
that run in secure virtual system partitions. This is in contrast
to other trusted execution approaches on ARM such as OP-
TEE [10] and Trusty [11] that use higher level RPC based
services to provide specific security services such as secure
secret storage and authentication. With Hafnium, an entire VM
context can be isolated from other software components on the
system, thus allowing deployment of full HPC applications
into secure computing environments.

The design of Hafnium is influenced heavily by the architec-
ture of the ARMvVS virtualization extensions, which are based
on a more purely hierarchical approach than the SVM/VMX
extensions on x86 platforms. In ARMvS, a hypervisor is
directly invoked as part of the boot sequence and is thus able to
virtualize the platform before an OS instance is ever run. This
allows, the deployment of trusted hypervisor implementations
in a straightforward way, as it is simply a link in the chain
of the trusted boot sequence. While this allows Hafnium to
provide resource protection outside the control of the OS
itself, it complicates the design of type-2 hypervisors (such as
KVM and Palacios) due to the need to initialize the hypervisor
before the host OS is loaded. This poses a challenge to
Hafnium because, in order to keep the implementation small
to minimize its attack surface, it eschews many of the features
typically seen in a full type-1 hypervisor implementation (such
as a CPU scheduler and I/O virtualization) and instead adopts
a type-2 architecture. With this approach, VM management
operations are pushed up to a host OS instance executing
at EL1 (kernel level), while the hypervisor executing at EL2
handles only the context switches between VM instances. It
should be noted that KVM takes the same general approach
by loading a thin hypervisor layer into EL2 as part of the
Linux boot process, but currently lacks the inter-VM security
isolation of Hafnium. One notable limitation of this approach,
is that dynamic resource partitioning becomes difficult due
to the need to create secure partitions as part of the early
boot process before resource management services have been
initialized.

One of the key design decisions of Hafnium was to fo-
cus primarily on memory isolation between VM instances.
As a result Hafnium provides no guarantees about a VM’s
availability or performance. This decision is a side effect
of the type-2 hypervisor architecture that relies on a host
OS instance (executing inside a VM context), to provide
scheduling capabilities for the system. The system architecture
resulting from this can be seen in Figure 2. As the diagram
shows, Hafnium relies on a primary VM to make scheduling
decisions and explicitly invoke context switches to secondary
VMs through a privileged hypercall interface. The Hafnium
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reference implementation provides a Linux device driver that
provides VM lifecycle management and a small set of manage-
ment operations. The Linux device driver provides scheduling
by creating a Linux kernel thread for each VCPU belonging
to a particular VM. Each kernel thread holds a handle to a
single VCPU context managed by Hafnium’s hypervisor, and
so can direct Hafnium to context switch to that VCPU instance
via a dedicated hypercall. Once a VM has been scheduled
in, Hafnium performs a context switch into the given VCPU
and resumes execution inside the VM’s context. As the VM
executes, VM exits are taken to the Hafnium hypervisor with
the majority being handled internally by the hypervisor, and
only a subset of exits (e.g. IRQs from timers/devices or VM
aborts) resulting in the invocation of the Primary VM’s host
OS.

An important aspect to this is that Hafnium’s hypercall
interface is core local, meaning that Hafnium itself does not
support inter-core communication and instead relies on the
primary VM/host OS to handle all inter-core communication
and coordination. As a result, it is not possible for Linux to
invoke a VM context switch on another core than the one it is
executing the hypercall from. This in turn means that in order
for Hafnium to execute VMs on every core in the system, the
primary VM’s scheduler must be actively running on every
core as well. Therefore, under the default configuration with
a Linux primary VM, Linux must be running on every core
in the system (along with its associated kernel threads and
background tasks). This is especially egregious since few if
any of Linux’s features are actually necessary because each
VM is operating in an isolated and self contained partition.

b) ARM TrustZone: Memory security and isolation en-
abled by Hafnium is capable of being supported using two
different mechanisms. In the simplest case, Hafnium is in-
cluded as part of the trusted boot sequence and instantiates
nested page tables over all of memory before any OS is
initialized. This allows Hafnium to have direct control over
all memory mapping operations, and so is able to enforce
memory isolation via hardware virtual memory mechanisms.
In this case the security guarantees provided by Hafnium are
dependent on the attested boot chain as well as the correctness
of Hafnium itself. As a result, the implementation of Hafnium
is kept as small as possible to minimize the bug surface and
reduce its TCB. For added memory protection Hafnium also
supports TrustZone [1] enabled memory protection. TrustZone
is ARM’s implementation of a Trusted Execution Environment
(TEE), and provides hardware enforced memory isolation at
the system firmware level (EL3). With TrustZone an ARM
system is divided into secure and non-secure worlds and
memory is configured at boot time into either the secure or
non-secure partitions. With TrustZone enabled, the ARM boot
sequence forks at EL3 and executes parallel boot sequences in
both secure and non-secure instances of EL2, EL1, and ELO.
This allows a verifiable boot chain to load trusted OS/R envi-
ronments into isolated hardware partitions enforced entirely at
the firmware layer. Non-secure partitions are prevented from
accessing secure memory contents, while secure partitions are
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allowed access to both secure and non-secure memory regions.

Hafnium is designed to support both secure and non-secure
VM instances, and provide memory isolation for each. This is
complicated by the fact that TrustZone requires the existence
of both secure and non-secure hypervisor instances to handle
VMs of each type. Nevertheless, the complexity is entirely
contained in the state handling and context switching code and
does not impact the scheduling approach taken by Hafnium
(that is, a single primary VM can provide scheduling for both
secure and non-secure VM instances). The one limitation of
note in current TrustZone architectures is the requirement that
the secure and non-secure memory partitions must be statically
sized and configured during the early boot process.

III. DESIGN

In this paper we look to explore how to leverage the security
isolation capabilities of Hafnium (and the ARM architecture
in general) for the purpose of securing sensitive HPC work-
loads and data. While a fair amount of work has gone into
developing secure and trusted computation environments for
ARM based systems, very little if any has focused on HPC
environments. As past experience has shown, it is unlikely that
commodity oriented approaches will be able to fully meet the
scalability and performance requirements of HPC systems.
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Fig. 3. Proposed architecture to use the Kitten LWK as the primary Hafnium
VM

The primary design goal of this work is to replace Linux
with Kitten as the VM scheduler for Hafnium protected
environments, with a secondary goal of keeping a Linux OS/R
instance available to provide system management operations
required by modern HPC environments. In essence, we wish
to take the exascale co-kernel approach (isolating a Linux
instance to a subset of local resources) and adapt it to the
security isolation environments likely to emerge in the next
generation of systems. A high level overview of our proposed
approach is shown in Figure 3.
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a) Kitten as the Primary VM: The core component of
our approach is the deployment of the Kitten LWK as the
primary scheduling VM in a Hafnium based secure virtu-
alization environment. Our goal is to eliminate, or at least
greatly reduce, the OS overheads imposed by the primary
scheduling VM on HPC workloads executing in secure VM
instances. Kitten is well suited to this task, and has already
been shown to provide superior performance in this role on
x86 based systems [4], [12]. While there are a number of
reasons for Kitten’s superior performance, at a high level it
comes down to the fact that the Linux scheduler is optimized
around a time-shared process based model where applications’
behaviors are able to directly influence scheduling decisions.
However, when virtual machines are present on a system the
behaviors the Linux scheduler have been optimized around are
masked by the additional software layers implementing the
VM abstraction. As a result Linux often lacks the necessary
information needed to optimize VM scheduling decisions,
especially in the HPC use case. Kitten (and other LWKs) on
the other hand take a very different approach to scheduling
based on the their general philosophy of exposing hardware
capabilities directly to the higher software layers. This maps
very well to virtualized environments where each VM OS/R
assumes it is running on physical hardware. In other words,
with Kitten, the assumptions that a VM’s kernel scheduler
makes are much closer to reality than the assumptions made
when running on top of Linux, which in turn translates to
better performance for the VM'’s applications. This benefit is
particular acute when the Linux scheduler is placed under load
with multiple competing workloads.

In addition to reducing the semantic gap between a VM'’s
OS/R and the underlying hardware, Kitten is also able to
provide a number of other benefits that are applicable to our
use case. By default Kitten is designed for non-interactive
jobs, allowing significantly larger time slices for the scheduler
quantum and thus lower timer tick rates. This reduces the
overheads imposed by scheduler policy evaluation, interrupt
handling, and switching between the host and VM contexts.
In addition Kitten has little to no background tasks that need
to periodically run, nor does it have deferred work that is
randomly assigned to a CPU core. Finally, Kitten provides
a number of indirect benefits as well, primarily due to its
much simpler design that allows easier customization and
modification to directly optimize a much narrower set of target
workloads.

Deploying Kitten as a primary VM with Hafnium does how-
ever introduce a number of challenges, in particular regarding
I/O and device drivers. Due to the fact that Hafnium assumes
that it will have a full featured OS kernel running as the
primary VM, it is designed to allow the primary VM to have
full control over I/O devices. This is achieved by providing
the primary VM with direct access to the underlying MMIO
ranges (unless specifically partitioned to a dedicated secondary
VM) and delivers all hardware interrupts to the primary VM
instance. Device driver support has been a consistent problem
for LWKSs, and was a key consideration in the adoption of
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co-kernel based approaches that offloaded 1/O driver respon-
sibilities to a concurrent full featured OS instance. This will
likely become an even bigger problem in the future given the
trends towards more heterogeneous accelerator devices with
correspondingly complex device driver dependencies.

b) Linux as an Service VM: As was recognized by
multiple projects during the exascale OS/R research effort,
supporting Linux environments on each compute node is a
requirement in order to make the system usable and accessible.
This is likely to hold true on future systems, and so our
approach includes the ability to host a Linux based environ-
ment as a management VM instance. In our model a VM
running Linux would be the login environment that would
be responsible for running the node’s “native” user space
environment. With this approach, job control operations such
as launching and stopping VM instances would be invoked
from the Linux environment. Supporting such a configuration
is not possible with Hafnium as currently designed, so we
have extended the Hafnium architecture with the concept of a
super-secondary VM instance that exists in a semi-privileged
state between the primary VM and other secondary VMs. As
originally designed, the Hafnium architecture only supports
a single primary VM that is allowed to run with greater
privileges than the secure secondary VMs. These privileges
include access to the local I/O devices as well as privileged
architectural features that are masked from secondary VMs
due to security concerns. In our model the super-secondary
instance gains the ability to directly interact with I/O devices
but does not have full access to the hypercall API or the ability
to assume control over CPU cores. In Figure 3 the super-
secondary is denoted as the “Login VM”.

Providing a super-secondary instance with direct access to
the I/O devices allows the use of the Linux device driver
ecosystem and removes that responsibility from the Kitten
primary VM. Delegating I/O responsibilities to the super-
secondary requires splitting the role of the primary VM inside
Hafnium itself. For the most part this is fairly straightforward
once Hafnium is extended with the concept of a super-
secondary. During system initialization Hafnium already maps
all the MMIO regions to the primary VM, so this simply
needs to be changed to map those regions into the super-
secondary instead with appropriate updates made to the device
tree configuration to reflect which I/O devices are actually
available in the super-secondary partition. The more chal-
lenging issue is IRQ routing between the primary and super-
secondary. Because Hafnium assumes it will only have a single
primary VM, by default it routes all interrupts to the Primary
VM instance. While it would be easy to simply redirect all
hardware interrupts to the super-secondary this is not possible
due to the fact that the Kitten Primary VM requires that all
hardware timer interrupts be routed directly to it. As a result,
it is necessary to provide some form of selective IRQ routing
where timer interrupts are delivered to the primary VM, while
device IRQs are instead routed to the super-secondary. This
is an area of future work for us, and our current approach is
to continue to route all interrupts to the primary VM which
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is then responsible for forwarding any device IRQ on to the
super-secondary.

Finally, because the super-secondary includes a Linux user
space environment, system management frameworks can be
easily deployed and accessed. With this approach, job control
responsibilities would live inside the super-secondary VM,
and include the ability to configure system resources as
well as manage the lifecycles of the secondary VMs. VM
management is handled by a secure communication channel
between the super-secondary and primary VMs allowing the
super-secondary to issue commands to a control task executing
in the Kitten VM instance. The control task would then
be responsible for translating these job control commands
into the appropriate scheduling policy changes and hypercall
invocations necessary to execute them.

IV. IMPLEMENTATION

To demonstrate the feasibility of our system architecture,
we have developed a prototype implementation as a proof of
concept. Our implementation includes a Kitten LWK primary
VM that is able to host multiple instances of Kitten based sec-
ondary VMs. In addition we have very early work to support
super-secondary VM instances. As part of our development
effort we undertook the porting of the Kitten LWK from x86 to
ARMG64. This work was initially conducted at Sandia National
Labs and completed at the University of Pittsburgh. All of this
work is currently available in the Kitten Github repository .
Currently Kitten supports a limited number of ARM SOC
platforms based on either the GIC2, GIC3, or Broadcom 2836
IRQ controllers. Verified hardware platforms include the Pine
A64 [13] SBC, Raspberry Pi [14], and Qemu ARM64 VM
profile. While we have demonstrated Kitten running on actual
ARM hardware platforms, we have not yet gotten access to
HPC oriented platforms such as ThunderX2 based systems.
We intend to add support for these systems in the near future
as access becomes available.

a) Kitten as the Primary VM: Extending Kitten to run
as the Primary VM on Hafnium required relatively little mod-
ification from the native version. The implementation effort
primarily required porting the hypercall interface from the
Linux driver implementation, and exporting VM management
operations via a device file to user space. When running as
the primary VM, Kitten executes a control task in user space
that is responsible for handling VM management operations
(such as starting and stopping VMs). By default when the
Kitten primary boots up, it queries the Hafnium hypervisor
for information regarding the resource partitions and available
VM images. It then immediately launches the super-secondary
VM instance in order to provide an accessible user space
environment for the system and initialize the local I/O devices.
The control process is then responsible for launching and
terminating secondary VMs on demand.

When launching a VM hafnium uses the same approach
as the Linux implementation and creates a dedicated kernel

Uhttps://github.com/HobbesOSR/kitten
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thread for each of the VM’s VCPUs. By default these VCPUs
are spread across available CPU cores incrementally, but CPU
assignments can be configured and even modified during the
secondary VM’s execution. These kernel threads are then
placed into the Kitten scheduler run-queues and upon execu-
tion immediately invoke Hafnium to switch to the associated
VCPU context.

b) Kitten as a secondary VM: In contrast to the primary
VM environment, porting Kitten to execute as a secondary
VM under Hafnium required a greater deal of effort. In
order to fully isolate each secondary VM instance, Hafnium
disallows access to a significant number of hardware features.
As such, it is not straightforward to directly execute a native
capable kernel inside a secondary VM context. In order to
port Kitten to this secondary environment required disabling
a number of low level architectural features and providing
work-arounds where appropriate. These included features such
as the performance counter and debug registers and various
low level architectural instructions such as the dcisw cache
flushing operations. In addition, the secondary VMs must use a
para-virtual interrupt controller interface provided by Hafnium
as well as the dedicated virtual architectural timer channel.
However, with these modifications in place Kitten is able to
execute normally.

¢) Super-Secondary VM: Implementing support for a
Linux based super-secondary requires modifying Hafnium to
support the concept of a super-secondary VM as well as
modifying Linux to run in a semi-privileged VM context. As
stated earlier, the modifications to Hafnium were relatively
straightforward, since privilege checks are done by compar-
ing the internal VM identifier against known constants. The
necessary modifications were simply adding an additional
hardcoded VM ID for the super-secondary and changing
various conditionals to match against the super-secondary’s
ID instead of the primary’s. While this was a minor set of
modifications, Linux poses a more significant challenge and
is currently a work in progress. The immediate requirements
are the addition of the same para-virtual interrupt controller
interface as is required in secondary VMs as well as the virtual
timer. However, Linux also requires a more extensive set of
architectural features than Kitten and a significant number
of those are blocked by Hafnium. Given the semi-privileged
nature of the super-secondary, we expect that most of these
features can simply be enabled (as they are enabled by default
for the primary), but each one nevertheless requires verification
that it does not negatively impact the security guarantees
provided by Hafnium. This work is still ongoing.

V. EVALUATION

In order to evaluate our approach we have performed a
number of performance benchmarks using a Pine A64-LTS
Single Board Computer (SBC) platform. While the Pine A64
is a performance and power constrained embedded platform, it
is nonetheless useful to demonstrate the feasibility, if not the
full efficacy, of our approach. The Pine A64 system we used in
our evaluation is based on a 4 core ARM Cortex A53 running
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at 1.1Ghz with 2GB of RAM. All of our experiments are single
node and focus entirely on CPU and memory performance, as
we do not yet have the ability to support virtual I/O interfaces.
Each benchmark was executed on a Kitten OS/R instance
running inside a Hafnium secondary VM, with the exception of
the baseline performance measurements which were collected
using a native Kitten environment. The benchmarks were the
only workloads executing on the system, so there should
have been little to no resource contention from competing
workloads. The benchmarks we used in our evaluation were
the HPCG mini-app, stream and random access memory micro
benchmarks, selfish-detour, and a subset of the NAS parallel
benchmark suite.
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Fig. 5. Selfish Detour Benchmark running on secondary Kitten VM with a
Kitten scheduler VM.

a) Selfish: We first evaluated the noise profile of each
of the execution configurations using the selfish-detour bench-
mark. Due to the fact that the only load in the system was from
the benchmark itself, the noise profiles should reflect a close
to best case scenario with no competing workloads. As can
be seen in Figure 4, the native Kitten configuration presents a
constrained noise profile with only a small number of pauses
due to timer ticks. This behavior is consistent with previous
evaluations of LWK performance, and serves as a baseline for
the other two configurations. Figure 5 shows the results from
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Fig. 6. Selfish Detour Benchmark running on secondary Kitten VM with a
Linux scheduler VM.

running selfish inside a Kitten secondary VM instance with
Kitten acting as the primary VM scheduler on the system.
As the figure shows adding a virtualization layer causes little
to no change to noise profile of the environment. The only
difference is a slight increase in detour latencies when they
do occur. Figure 6 shows the results of using Linux as the
scheduling VM with a Kitten secondary VM. In this case, the
noise events are more frequent and more randomly distributed
due to a combination of timer tick latencies and competing
threads in the Linux environment. Based on this evaluation, we
can show that replacing Linux with Kitten for VM scheduling
can have a measurable effect on reducing the noise of the
secondary VM environments.

b) Stream and RandomAccess: We next performed a
series of memory tests using the Stream and RandomAccess
micro-benchmarks. Because Hafnium relies on hardware vir-
tualization of the memory map, memory operations from a
secure VM will be required to traverse two sets of page tables
as part of the translation. This additional overhead will be
particularly noticeable in the RandomAccess benchmark due
to its low TLB hit rates. The results of these experiments are
shown in Figure 7 as normalized values, with the raw measure-
ments included in Figure 8. As expected, RandomAccess is the
most impacted by the presence of Hafnium, and experiences
performance degradation for both of the virtualized cases.
However, the Linux scheduler performs the worst, most likely
due to the increased number of timer interrupts resulting in
increased TLB pressure from the more frequent VM context
switches. Oddly, the Stream results show that performance
increases with the presence of Hafnium, however it should be
noted that the mean performance of each configuration falls
within the standard deviation, so the performance differences
are not statistically significant.

c) HPCG: Beyond micro-benchmarks, we also evaluated
system performance using the HPCG mini-app, whose results
are included in Figure 7 and Figure 8. These results also show
very similar performance across each of the three configura-
tions, however on average the Hafnium with Kitten scheduler
configuration does show slightly better overall performance.
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Fig. 7. Normalized Performance of the HPCG, Stream, and RandomAccess
Benchmarks

HPCG Stream RandomA ccess
Mean Stdev | Mean | Stdev Mean Stdev
Native | 0.0018 | 3¢™° | 59.6 | 0.14 | 6.5e= > | 5.7¢~1°
Kitten | 0.0019 | 3e™° | 59.8 | 0.14 | 6.2 ° | 3.4e”°
Linux | 0.0018 | 3¢> | 602 | 042 | 6.04e° | 3.67°

Fig. 8. HPCG, Stream, and RandomAccess Benchmark performance (GFlops,
MB/s, GUP/s)

The main take away from this experiment is that our proposed
approach is capable of executing a full mini-app benchmark
with minimal to know overheads inside a securely virtualized
partition.
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Fig. 9. Normalized Performance of the LU, BT, CG, EP, and SP NAS Parallel
Benchmarks

LU BT CG EP SP
Native | 33.16 | 34.214 | 438 | 0.77 | 15.084
Kitten | 33.116 34.2 438 | 0.77 15.08
Linux 32.06 | 34.142 | 437 | 0.77 15.1
Fig. 10. NAS Parallel Benchmark performance (Mop/s))

d) NAS Parallel Benchmarks: Finally we evaluated the
performance of a subset of the NAS Parallel Benchmark suite
(specifically the LU, BT, CG, EP, and SP benchmarks). As
with the earlier evaluation, normalized performance is shown
in Figure 9 and the raw measurements in Figure 10. In
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these experiments application performance showed little to no
degradation across each of the three configurations. The one
exception was a very slight performance drop with the Linux
based scheduler running the LU benchmark.

e) Discussion: While these benchmarks are hardly
definitive in regards to the effectiveness of our approach, they
are consistent with previous studies of LWK performance.
Therefore it is reasonable to expect that we will see similar
trends documented in previous studies comparing LWK and
FWK overheads. All told the benchmarks do not present
anything that is new in regards to LWK performance, which
is the point to take away for our evaluation. The impact of
virtualization and secure isolation appear to be minimal in our
benchmark results, indicating the security based approaches
do not intrinsically impose significant performance overheads.
We believe these results demonstrate that further exploration
of using LWKs to manage securely partitioned HPC systems
is warranted. Overall, our evaluation demonstrates that we can
deploy security isolation mechanisms with minimal overheads
for HPC applications and workloads.

VI. RELATED WORK

To our knowledge there is relatively little work investigating
the integration of secure and trusted computation environments
into HPC OS/R stacks. Design papers and whitepapers exist
outlining what an ARM-capable system designed for HPC
would need [15], [16], but at the time of publishing we know
of no work that integrates ARM TrustZone features into HPC
OS/Rs.

VII. FUTURE DIRECTIONS

While we have presented preliminary results of our ap-
proach and an initial proof of concept implementation, there
are a number of open questions and directions to be explored
in the space of secure HPC OS/Rs. In the case of our initial
system architecture a number of immediate potential research
avenues are evident. Most obvious of these is the evaluation
of our approach on more realistic systems and workloads.
We need to perform more experiments to measure the impact
of our approach on more realistic workloads at scale. In
the near term we are working on deploying our approach
on larger scale and higher performance systems, such as
the Astra ThunderX2 based system at Sandia. As part of
this effort we intend to not only study the scalability but
also the performance isolation capabilities of our approach
when multiple workloads are hosted on the same compute
node. To achieve this there are additional extensions that need
to be made to both Hafnium and Kitten in order to more
fully support large scale applications and systems. The most
significant of these is the design I/O mechanisms that are
able to maintain secure system isolation without imposing
significant performance overheads. This alone will be a major
challenge moving forward, and will likely require some level
of device support to achieve native levels of performance.

In addition to support for I/O access from VM instances,
we also need to investigate dynamic partitioning approaches
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that allow the creation and reconfiguration of secure partitions
at run-time. Currently, Hafnium requires that secure partitions
and VM images be defined at boot time. This allows hafnium
to create secure memory partitions before any OS is initialized,
and removes the complexity of having to reclaim memory in
order to launch a new VM. To make our approach suitable for a
more dynamic set of workloads, we need to design appropriate
management interfaces to allow dynamic memory allocation
and reclaiming as part of normal operation. In addition, we
will likely need to develop support for launching VM images
supplied after the system has booted. This is a complex
issue, due to the fact that ARM does not currently have the
necessary attestation support that ensures each VM instance is
tamper proof. Without hardware support, haftnium will require
some mechanisms of verifying VM signatures to ensure their
authenticity and provenance. One potential solution would be
to leverage certificate verification, where Hafnium is able to
verify VM signatures using a known public key that is included
as part of the trusted boot sequence.

We are also still unsure whether the Hafnium hypervisor
is a suitable long term solution for secure virtualization in
HPC. We have already had to modify it in order to support
basic HPC workloads, and it is not entirely clear how many
further modifications will be necessary to make it a truly viable
architecture. We intend to continue to evaluate Hafnium, with
the consideration as to whether a wholly new hypervisor archi-
tecture needs to be developed that has HPC environments as a
foundational design goal. It is also important to note that the
next versions of the ARM platform (ARMvY) are introducing
significant security, isolation, and trusted computing features
that will change both the hardware capabilities as well as
the system software approaches needed to leverage them. We
expect that these and other hardware security features will play
a significant role in the HPC space for the next supercomputing
generation.

VIII. CONCLUSION

In this paper we have introduced a new use case for
Lightweight Kernels as resource management services in
securely isolated HPC systems. As part of this work we
have ported the Kitten LWK to the ARMO64 architecture
and integrated it with the Hafnium hypervisor to support
secure virtual machine instances on a compute node. We
have provided an initial proof of concept implementation and
provided a preliminary evaluation that shows our approach
does not impose significant performance overheads to a range
of HPC benchmarks. We have also identified a number of
future challenges, and made the case that security isolation
and trusted computing will be important features of next
generation HPC platforms. Fully supporting security isolation
in a scalable and performant way will likely be a challenge for
HPC OS/R architectures, and one that merits future research
moving forward.
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