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Abstract—The next generation of supercomputing resources
is expected to greatly expand the scope of HPC environments,
both in terms of more diverse workloads and user bases, as well
as the integration of edge computing infrastructures. This will
likely require new mechanisms and approaches at the Operating
System level to support these broader classes of workloads along
with their different security requirements. We claim that a
key mechanism needed for these workloads is the ability to
securely compartmentalize the system software executing on a
given node. In this paper, we present initial efforts in exploring
the integration of secure and trusted computing capabilities into
an HPC system software stack. As part of this work we have
ported the Kitten Lightweight Kernel (LWK) to the ARM64
architecture and integrated it with the Hafnium hypervisor, a
reference implementation of a secure partition manager (SPM)
that provides security isolation for virtual machines. By integrat-
ing Kitten with Hafnium, we are able to replace the commodity
oriented Linux based resource management infrastructure and
reduce the overheads introduced by using a full weight kernel
(FWK) as the node-level resource scheduler. While our results
are very preliminary, we are able to demonstrate measurable
performance improvements on small scale ARM based SOC
platforms.

Index Terms—Operating Systems, Virtualization, Security

I. INTRODUCTION

Trusted execution and secure resource isolation have be-

come increasingly common in modern hardware architec-

tures [1]–[3], however the use cases for these feature sets

has focused on end user devices and commodity systems

platforms. While there is significant interest in adapting these

technologies to server class systems, so far the focus has

primarily been on commodity cloud based environments, and

has not directly addressed the needs of HPC class systems.

At the same time, these features present a unique opportunity

to more readily integrate HPC oriented system software solu-

tions, due to the fact that security isolation inherently requires

system level partitioning leading to compartmentalized system

software environments. While previous generations of HPC

system software required the development of mechanisms to

allow HPC OS/Rs to co-exist with monolithic OS/Rs [4]–[6],

the next generation will likely provide a much more distributed
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OS/R model making it relatively easy to swap in HPC oriented

sub-components as needed.

In this paper we introduce preliminary work to explore this

problem space through the use of the Kitten LWK in combina-

tion with secure virtualization capabilities available on modern

ARM based systems through the Hafnium hypervisor [7].

Hafnium is a reference implementation of a Secure Partition

Manager developed as part of the Trusted Firmware [8] effort

led by Linaro. Hafnium provides isolated resource partitions

through the use of secure virtualization mechanisms that

provides full memory isolation between each VM in the

system, including the primary host OS. This capability allows

the execution of private workloads that cannot be tampered

with or spied on by any other locally executing software, and

thus enables the deployment of sensitive data and applications

to otherwise untrustworthy system platforms. However, while

Hafnium currently provides these capabilities on ARM based

systems, it is implemented around a commodity use case

that requires a full weight Linux kernel instance to manage

VM scheduling on each CPU core. This results in workload

interference and other overheads due to the complexity of

Linux and its primary focus on commodity environments. To

address these issues we have adapted Kitten to allow us to

replace the Linux instance as the node-level VM scheduler.

A high level overview of our approach is shown in Figure 1.

In our system model, a lightweight kernel acts as a scheduler

for each VM hosted on the system. Using Kitten in this role

enables low noise, easily configurable, and more deterministic

scheduling behaviors to an HPC compute node, without having

to rely on the default Linux kernel scheduler. In previous work

we have already demonstrated the efficacy of deploying Kitten

as a scheduling layer for virtual machines in HPC contexts [4],

however in this work we have augmented the performance

benefits with added security isolation provided by Hafnium. In

this model, neither Kitten nor any other OS instance can access

the memory contents of another OS/R environment executing

on the system. This is a marked contrast to our previous work

with Palacios [9] that allowed (and in some cases required)

full access to internal VM memory contents by the host OS.

While Palacios took a similar approach to the separation

of VM state management from resource management and

scheduling, the separation was entirely software based and

relied on respecting API boundaries. In contrast, with Hafnium

VM state management is separated from resource management
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and scheduling by hardware enforced protection boundaries

implemented by the ARMv8 exception levels. All VM state

management functions execute at the higher privilege level of

Exception Level 2 (EL2), while scheduling and VM execution

all occur at Exception Level 1 (EL1). This allows the system

software to separate scheduling policies into a lower privilege

level from the dispatch mechanisms that handle VM context

switching.

Trusted Hypervisor (Dispatcher) 

LWK (Scheduler) 

Secure 
VM 

Secure 
VM 

Secure 
VM 

Mgmt 
VM 

Secure Memory Isolation 

Exception Level Boundary 

EL1 

EL2 

Fig. 1. Using LWKs to manage isolated VMs

In the rest of this paper we will describe our work in

porting the Kitten LWK to ARM as well as integrating it

with Hafnium. In addition we will present a set of preliminary

evaluations on a small ARM SOC platform to demonstrate the

implementation as a proof of concept. We will also provide

background information on the ARMv8 security mechanisms,

as well as discuss future directions in adapting these mecha-

nisms for HPC environments.

II. BACKGROUND
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Secure 
VM 

CPU Core 

VM Kernel 
Thread  

Primary VM 
(Linux) 

sted

Thre V

VM Context 
Switches 

VM Exit 
Handling 

Trusted Firmware 
(TrustZone) 

rmwa

Hafni

Secure/Non-Secure 
World Switches 

Fig. 2. Default Hafnium VM configuration

a) Hafnium: Hafnium is a member project in the Trusted

Firmware Initiative, an open governance community project

hosted by Linaro, that aims to provide reference implemen-

tations of secure system software for ARM based platforms.

Hafnium builds on other TrustedFirmware projects to provide

a security isolation layer for virtual machines. By focusing

on virtualization, Hafnium provides general purpose execution

environments that can be used to deploy full OS/R stacks

that run in secure virtual system partitions. This is in contrast

to other trusted execution approaches on ARM such as OP-

TEE [10] and Trusty [11] that use higher level RPC based

services to provide specific security services such as secure

secret storage and authentication. With Hafnium, an entire VM

context can be isolated from other software components on the

system, thus allowing deployment of full HPC applications

into secure computing environments.

The design of Hafnium is influenced heavily by the architec-

ture of the ARMv8 virtualization extensions, which are based

on a more purely hierarchical approach than the SVM/VMX

extensions on x86 platforms. In ARMv8, a hypervisor is

directly invoked as part of the boot sequence and is thus able to

virtualize the platform before an OS instance is ever run. This

allows, the deployment of trusted hypervisor implementations

in a straightforward way, as it is simply a link in the chain

of the trusted boot sequence. While this allows Hafnium to

provide resource protection outside the control of the OS

itself, it complicates the design of type-2 hypervisors (such as

KVM and Palacios) due to the need to initialize the hypervisor

before the host OS is loaded. This poses a challenge to

Hafnium because, in order to keep the implementation small

to minimize its attack surface, it eschews many of the features

typically seen in a full type-1 hypervisor implementation (such

as a CPU scheduler and I/O virtualization) and instead adopts

a type-2 architecture. With this approach, VM management

operations are pushed up to a host OS instance executing

at EL1 (kernel level), while the hypervisor executing at EL2

handles only the context switches between VM instances. It

should be noted that KVM takes the same general approach

by loading a thin hypervisor layer into EL2 as part of the

Linux boot process, but currently lacks the inter-VM security

isolation of Hafnium. One notable limitation of this approach,

is that dynamic resource partitioning becomes difficult due

to the need to create secure partitions as part of the early

boot process before resource management services have been

initialized.

One of the key design decisions of Hafnium was to fo-

cus primarily on memory isolation between VM instances.

As a result Hafnium provides no guarantees about a VM’s

availability or performance. This decision is a side effect

of the type-2 hypervisor architecture that relies on a host

OS instance (executing inside a VM context), to provide

scheduling capabilities for the system. The system architecture

resulting from this can be seen in Figure 2. As the diagram

shows, Hafnium relies on a primary VM to make scheduling

decisions and explicitly invoke context switches to secondary
VMs through a privileged hypercall interface. The Hafnium
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reference implementation provides a Linux device driver that

provides VM lifecycle management and a small set of manage-

ment operations. The Linux device driver provides scheduling

by creating a Linux kernel thread for each VCPU belonging

to a particular VM. Each kernel thread holds a handle to a

single VCPU context managed by Hafnium’s hypervisor, and

so can direct Hafnium to context switch to that VCPU instance

via a dedicated hypercall. Once a VM has been scheduled

in, Hafnium performs a context switch into the given VCPU

and resumes execution inside the VM’s context. As the VM

executes, VM exits are taken to the Hafnium hypervisor with

the majority being handled internally by the hypervisor, and

only a subset of exits (e.g. IRQs from timers/devices or VM

aborts) resulting in the invocation of the Primary VM’s host

OS.

An important aspect to this is that Hafnium’s hypercall

interface is core local, meaning that Hafnium itself does not

support inter-core communication and instead relies on the

primary VM/host OS to handle all inter-core communication

and coordination. As a result, it is not possible for Linux to

invoke a VM context switch on another core than the one it is

executing the hypercall from. This in turn means that in order

for Hafnium to execute VMs on every core in the system, the

primary VM’s scheduler must be actively running on every

core as well. Therefore, under the default configuration with

a Linux primary VM, Linux must be running on every core

in the system (along with its associated kernel threads and

background tasks). This is especially egregious since few if

any of Linux’s features are actually necessary because each

VM is operating in an isolated and self contained partition.

b) ARM TrustZone: Memory security and isolation en-

abled by Hafnium is capable of being supported using two

different mechanisms. In the simplest case, Hafnium is in-

cluded as part of the trusted boot sequence and instantiates

nested page tables over all of memory before any OS is

initialized. This allows Hafnium to have direct control over

all memory mapping operations, and so is able to enforce

memory isolation via hardware virtual memory mechanisms.

In this case the security guarantees provided by Hafnium are

dependent on the attested boot chain as well as the correctness

of Hafnium itself. As a result, the implementation of Hafnium

is kept as small as possible to minimize the bug surface and

reduce its TCB. For added memory protection Hafnium also

supports TrustZone [1] enabled memory protection. TrustZone

is ARM’s implementation of a Trusted Execution Environment

(TEE), and provides hardware enforced memory isolation at

the system firmware level (EL3). With TrustZone an ARM

system is divided into secure and non-secure worlds and

memory is configured at boot time into either the secure or

non-secure partitions. With TrustZone enabled, the ARM boot

sequence forks at EL3 and executes parallel boot sequences in

both secure and non-secure instances of EL2, EL1, and EL0.

This allows a verifiable boot chain to load trusted OS/R envi-

ronments into isolated hardware partitions enforced entirely at

the firmware layer. Non-secure partitions are prevented from

accessing secure memory contents, while secure partitions are

allowed access to both secure and non-secure memory regions.

Hafnium is designed to support both secure and non-secure

VM instances, and provide memory isolation for each. This is

complicated by the fact that TrustZone requires the existence

of both secure and non-secure hypervisor instances to handle

VMs of each type. Nevertheless, the complexity is entirely

contained in the state handling and context switching code and

does not impact the scheduling approach taken by Hafnium

(that is, a single primary VM can provide scheduling for both

secure and non-secure VM instances). The one limitation of

note in current TrustZone architectures is the requirement that

the secure and non-secure memory partitions must be statically

sized and configured during the early boot process.

III. DESIGN

In this paper we look to explore how to leverage the security

isolation capabilities of Hafnium (and the ARM architecture

in general) for the purpose of securing sensitive HPC work-

loads and data. While a fair amount of work has gone into

developing secure and trusted computation environments for

ARM based systems, very little if any has focused on HPC

environments. As past experience has shown, it is unlikely that

commodity oriented approaches will be able to fully meet the

scalability and performance requirements of HPC systems.
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Fig. 3. Proposed architecture to use the Kitten LWK as the primary Hafnium
VM

The primary design goal of this work is to replace Linux

with Kitten as the VM scheduler for Hafnium protected

environments, with a secondary goal of keeping a Linux OS/R

instance available to provide system management operations

required by modern HPC environments. In essence, we wish

to take the exascale co-kernel approach (isolating a Linux

instance to a subset of local resources) and adapt it to the

security isolation environments likely to emerge in the next

generation of systems. A high level overview of our proposed

approach is shown in Figure 3.
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a) Kitten as the Primary VM: The core component of

our approach is the deployment of the Kitten LWK as the

primary scheduling VM in a Hafnium based secure virtu-

alization environment. Our goal is to eliminate, or at least

greatly reduce, the OS overheads imposed by the primary

scheduling VM on HPC workloads executing in secure VM

instances. Kitten is well suited to this task, and has already

been shown to provide superior performance in this role on

x86 based systems [4], [12]. While there are a number of

reasons for Kitten’s superior performance, at a high level it

comes down to the fact that the Linux scheduler is optimized

around a time-shared process based model where applications’

behaviors are able to directly influence scheduling decisions.

However, when virtual machines are present on a system the

behaviors the Linux scheduler have been optimized around are

masked by the additional software layers implementing the

VM abstraction. As a result Linux often lacks the necessary

information needed to optimize VM scheduling decisions,

especially in the HPC use case. Kitten (and other LWKs) on

the other hand take a very different approach to scheduling

based on the their general philosophy of exposing hardware

capabilities directly to the higher software layers. This maps

very well to virtualized environments where each VM OS/R

assumes it is running on physical hardware. In other words,

with Kitten, the assumptions that a VM’s kernel scheduler

makes are much closer to reality than the assumptions made

when running on top of Linux, which in turn translates to

better performance for the VM’s applications. This benefit is

particular acute when the Linux scheduler is placed under load

with multiple competing workloads.

In addition to reducing the semantic gap between a VM’s

OS/R and the underlying hardware, Kitten is also able to

provide a number of other benefits that are applicable to our

use case. By default Kitten is designed for non-interactive

jobs, allowing significantly larger time slices for the scheduler

quantum and thus lower timer tick rates. This reduces the

overheads imposed by scheduler policy evaluation, interrupt

handling, and switching between the host and VM contexts.

In addition Kitten has little to no background tasks that need

to periodically run, nor does it have deferred work that is

randomly assigned to a CPU core. Finally, Kitten provides

a number of indirect benefits as well, primarily due to its

much simpler design that allows easier customization and

modification to directly optimize a much narrower set of target

workloads.

Deploying Kitten as a primary VM with Hafnium does how-

ever introduce a number of challenges, in particular regarding

I/O and device drivers. Due to the fact that Hafnium assumes

that it will have a full featured OS kernel running as the

primary VM, it is designed to allow the primary VM to have

full control over I/O devices. This is achieved by providing

the primary VM with direct access to the underlying MMIO

ranges (unless specifically partitioned to a dedicated secondary

VM) and delivers all hardware interrupts to the primary VM

instance. Device driver support has been a consistent problem

for LWKs, and was a key consideration in the adoption of

co-kernel based approaches that offloaded I/O driver respon-

sibilities to a concurrent full featured OS instance. This will

likely become an even bigger problem in the future given the

trends towards more heterogeneous accelerator devices with

correspondingly complex device driver dependencies.

b) Linux as an Service VM: As was recognized by

multiple projects during the exascale OS/R research effort,

supporting Linux environments on each compute node is a

requirement in order to make the system usable and accessible.

This is likely to hold true on future systems, and so our

approach includes the ability to host a Linux based environ-

ment as a management VM instance. In our model a VM

running Linux would be the login environment that would

be responsible for running the node’s ”native” user space

environment. With this approach, job control operations such

as launching and stopping VM instances would be invoked

from the Linux environment. Supporting such a configuration

is not possible with Hafnium as currently designed, so we

have extended the Hafnium architecture with the concept of a

super-secondary VM instance that exists in a semi-privileged

state between the primary VM and other secondary VMs. As

originally designed, the Hafnium architecture only supports

a single primary VM that is allowed to run with greater

privileges than the secure secondary VMs. These privileges

include access to the local I/O devices as well as privileged

architectural features that are masked from secondary VMs

due to security concerns. In our model the super-secondary

instance gains the ability to directly interact with I/O devices

but does not have full access to the hypercall API or the ability

to assume control over CPU cores. In Figure 3 the super-

secondary is denoted as the ”Login VM”.

Providing a super-secondary instance with direct access to

the I/O devices allows the use of the Linux device driver

ecosystem and removes that responsibility from the Kitten

primary VM. Delegating I/O responsibilities to the super-

secondary requires splitting the role of the primary VM inside

Hafnium itself. For the most part this is fairly straightforward

once Hafnium is extended with the concept of a super-

secondary. During system initialization Hafnium already maps

all the MMIO regions to the primary VM, so this simply

needs to be changed to map those regions into the super-

secondary instead with appropriate updates made to the device

tree configuration to reflect which I/O devices are actually

available in the super-secondary partition. The more chal-

lenging issue is IRQ routing between the primary and super-

secondary. Because Hafnium assumes it will only have a single

primary VM, by default it routes all interrupts to the Primary

VM instance. While it would be easy to simply redirect all

hardware interrupts to the super-secondary this is not possible

due to the fact that the Kitten Primary VM requires that all

hardware timer interrupts be routed directly to it. As a result,

it is necessary to provide some form of selective IRQ routing

where timer interrupts are delivered to the primary VM, while

device IRQs are instead routed to the super-secondary. This

is an area of future work for us, and our current approach is

to continue to route all interrupts to the primary VM which
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is then responsible for forwarding any device IRQ on to the

super-secondary.

Finally, because the super-secondary includes a Linux user

space environment, system management frameworks can be

easily deployed and accessed. With this approach, job control

responsibilities would live inside the super-secondary VM,

and include the ability to configure system resources as

well as manage the lifecycles of the secondary VMs. VM

management is handled by a secure communication channel

between the super-secondary and primary VMs allowing the

super-secondary to issue commands to a control task executing

in the Kitten VM instance. The control task would then

be responsible for translating these job control commands

into the appropriate scheduling policy changes and hypercall

invocations necessary to execute them.

IV. IMPLEMENTATION

To demonstrate the feasibility of our system architecture,

we have developed a prototype implementation as a proof of

concept. Our implementation includes a Kitten LWK primary

VM that is able to host multiple instances of Kitten based sec-

ondary VMs. In addition we have very early work to support

super-secondary VM instances. As part of our development

effort we undertook the porting of the Kitten LWK from x86 to

ARM64. This work was initially conducted at Sandia National

Labs and completed at the University of Pittsburgh. All of this

work is currently available in the Kitten Github repository 1.

Currently Kitten supports a limited number of ARM SOC

platforms based on either the GIC2, GIC3, or Broadcom 2836

IRQ controllers. Verified hardware platforms include the Pine

A64 [13] SBC, Raspberry Pi [14], and Qemu ARM64 VM

profile. While we have demonstrated Kitten running on actual

ARM hardware platforms, we have not yet gotten access to

HPC oriented platforms such as ThunderX2 based systems.

We intend to add support for these systems in the near future

as access becomes available.

a) Kitten as the Primary VM: Extending Kitten to run

as the Primary VM on Hafnium required relatively little mod-

ification from the native version. The implementation effort

primarily required porting the hypercall interface from the

Linux driver implementation, and exporting VM management

operations via a device file to user space. When running as

the primary VM, Kitten executes a control task in user space

that is responsible for handling VM management operations

(such as starting and stopping VMs). By default when the

Kitten primary boots up, it queries the Hafnium hypervisor

for information regarding the resource partitions and available

VM images. It then immediately launches the super-secondary

VM instance in order to provide an accessible user space

environment for the system and initialize the local I/O devices.

The control process is then responsible for launching and

terminating secondary VMs on demand.

When launching a VM hafnium uses the same approach

as the Linux implementation and creates a dedicated kernel

1https://github.com/HobbesOSR/kitten

thread for each of the VM’s VCPUs. By default these VCPUs

are spread across available CPU cores incrementally, but CPU

assignments can be configured and even modified during the

secondary VM’s execution. These kernel threads are then

placed into the Kitten scheduler run-queues and upon execu-

tion immediately invoke Hafnium to switch to the associated

VCPU context.

b) Kitten as a secondary VM: In contrast to the primary

VM environment, porting Kitten to execute as a secondary

VM under Hafnium required a greater deal of effort. In

order to fully isolate each secondary VM instance, Hafnium

disallows access to a significant number of hardware features.

As such, it is not straightforward to directly execute a native

capable kernel inside a secondary VM context. In order to

port Kitten to this secondary environment required disabling

a number of low level architectural features and providing

work-arounds where appropriate. These included features such

as the performance counter and debug registers and various

low level architectural instructions such as the dcisw cache

flushing operations. In addition, the secondary VMs must use a

para-virtual interrupt controller interface provided by Hafnium

as well as the dedicated virtual architectural timer channel.

However, with these modifications in place Kitten is able to

execute normally.

c) Super-Secondary VM: Implementing support for a

Linux based super-secondary requires modifying Hafnium to

support the concept of a super-secondary VM as well as

modifying Linux to run in a semi-privileged VM context. As

stated earlier, the modifications to Hafnium were relatively

straightforward, since privilege checks are done by compar-

ing the internal VM identifier against known constants. The

necessary modifications were simply adding an additional

hardcoded VM ID for the super-secondary and changing

various conditionals to match against the super-secondary’s

ID instead of the primary’s. While this was a minor set of

modifications, Linux poses a more significant challenge and

is currently a work in progress. The immediate requirements

are the addition of the same para-virtual interrupt controller

interface as is required in secondary VMs as well as the virtual

timer. However, Linux also requires a more extensive set of

architectural features than Kitten and a significant number

of those are blocked by Hafnium. Given the semi-privileged

nature of the super-secondary, we expect that most of these

features can simply be enabled (as they are enabled by default

for the primary), but each one nevertheless requires verification

that it does not negatively impact the security guarantees

provided by Hafnium. This work is still ongoing.

V. EVALUATION

In order to evaluate our approach we have performed a

number of performance benchmarks using a Pine A64-LTS

Single Board Computer (SBC) platform. While the Pine A64

is a performance and power constrained embedded platform, it

is nonetheless useful to demonstrate the feasibility, if not the

full efficacy, of our approach. The Pine A64 system we used in

our evaluation is based on a 4 core ARM Cortex A53 running
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at 1.1Ghz with 2GB of RAM. All of our experiments are single

node and focus entirely on CPU and memory performance, as

we do not yet have the ability to support virtual I/O interfaces.

Each benchmark was executed on a Kitten OS/R instance

running inside a Hafnium secondary VM, with the exception of

the baseline performance measurements which were collected

using a native Kitten environment. The benchmarks were the

only workloads executing on the system, so there should

have been little to no resource contention from competing

workloads. The benchmarks we used in our evaluation were

the HPCG mini-app, stream and random access memory micro

benchmarks, selfish-detour, and a subset of the NAS parallel

benchmark suite.
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Fig. 5. Selfish Detour Benchmark running on secondary Kitten VM with a
Kitten scheduler VM.

a) Selfish: We first evaluated the noise profile of each

of the execution configurations using the selfish-detour bench-

mark. Due to the fact that the only load in the system was from

the benchmark itself, the noise profiles should reflect a close

to best case scenario with no competing workloads. As can

be seen in Figure 4, the native Kitten configuration presents a

constrained noise profile with only a small number of pauses

due to timer ticks. This behavior is consistent with previous

evaluations of LWK performance, and serves as a baseline for

the other two configurations. Figure 5 shows the results from
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Fig. 6. Selfish Detour Benchmark running on secondary Kitten VM with a
Linux scheduler VM.

running selfish inside a Kitten secondary VM instance with

Kitten acting as the primary VM scheduler on the system.

As the figure shows adding a virtualization layer causes little

to no change to noise profile of the environment. The only

difference is a slight increase in detour latencies when they

do occur. Figure 6 shows the results of using Linux as the

scheduling VM with a Kitten secondary VM. In this case, the

noise events are more frequent and more randomly distributed

due to a combination of timer tick latencies and competing

threads in the Linux environment. Based on this evaluation, we

can show that replacing Linux with Kitten for VM scheduling

can have a measurable effect on reducing the noise of the

secondary VM environments.

b) Stream and RandomAccess: We next performed a

series of memory tests using the Stream and RandomAccess

micro-benchmarks. Because Hafnium relies on hardware vir-

tualization of the memory map, memory operations from a

secure VM will be required to traverse two sets of page tables

as part of the translation. This additional overhead will be

particularly noticeable in the RandomAccess benchmark due

to its low TLB hit rates. The results of these experiments are

shown in Figure 7 as normalized values, with the raw measure-

ments included in Figure 8. As expected, RandomAccess is the

most impacted by the presence of Hafnium, and experiences

performance degradation for both of the virtualized cases.

However, the Linux scheduler performs the worst, most likely

due to the increased number of timer interrupts resulting in

increased TLB pressure from the more frequent VM context

switches. Oddly, the Stream results show that performance

increases with the presence of Hafnium, however it should be

noted that the mean performance of each configuration falls

within the standard deviation, so the performance differences

are not statistically significant.

c) HPCG: Beyond micro-benchmarks, we also evaluated

system performance using the HPCG mini-app, whose results

are included in Figure 7 and Figure 8. These results also show

very similar performance across each of the three configura-

tions, however on average the Hafnium with Kitten scheduler

configuration does show slightly better overall performance.
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Fig. 7. Normalized Performance of the HPCG, Stream, and RandomAccess
Benchmarks

HPCG Stream RandomAccess
Mean Stdev Mean Stdev Mean Stdev

Native 0.0018 3e−5 59.6 0.14 6.5e−5 5.7e−10

Kitten 0.0019 3e−5 59.8 0.14 6.2e−5 3.4e−8

Linux 0.0018 3e−5 60.2 0.42 6.04e−5 3.6−9

Fig. 8. HPCG, Stream, and RandomAccess Benchmark performance (GFlops,
MB/s, GUP/s)

The main take away from this experiment is that our proposed

approach is capable of executing a full mini-app benchmark

with minimal to know overheads inside a securely virtualized

partition.
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Fig. 9. Normalized Performance of the LU, BT, CG, EP, and SP NAS Parallel
Benchmarks

LU BT CG EP SP
Native 33.16 34.214 4.38 0.77 15.084
Kitten 33.116 34.2 4.38 0.77 15.08
Linux 32.06 34.142 4.37 0.77 15.1

Fig. 10. NAS Parallel Benchmark performance (Mop/s))

d) NAS Parallel Benchmarks: Finally we evaluated the

performance of a subset of the NAS Parallel Benchmark suite

(specifically the LU, BT, CG, EP, and SP benchmarks). As

with the earlier evaluation, normalized performance is shown

in Figure 9 and the raw measurements in Figure 10. In

these experiments application performance showed little to no

degradation across each of the three configurations. The one

exception was a very slight performance drop with the Linux

based scheduler running the LU benchmark.

e) Discussion: While these benchmarks are hardly

definitive in regards to the effectiveness of our approach, they

are consistent with previous studies of LWK performance.

Therefore it is reasonable to expect that we will see similar

trends documented in previous studies comparing LWK and

FWK overheads. All told the benchmarks do not present

anything that is new in regards to LWK performance, which

is the point to take away for our evaluation. The impact of

virtualization and secure isolation appear to be minimal in our

benchmark results, indicating the security based approaches

do not intrinsically impose significant performance overheads.

We believe these results demonstrate that further exploration

of using LWKs to manage securely partitioned HPC systems

is warranted. Overall, our evaluation demonstrates that we can

deploy security isolation mechanisms with minimal overheads

for HPC applications and workloads.

VI. RELATED WORK

To our knowledge there is relatively little work investigating

the integration of secure and trusted computation environments

into HPC OS/R stacks. Design papers and whitepapers exist

outlining what an ARM-capable system designed for HPC

would need [15], [16], but at the time of publishing we know

of no work that integrates ARM TrustZone features into HPC

OS/Rs.

VII. FUTURE DIRECTIONS

While we have presented preliminary results of our ap-

proach and an initial proof of concept implementation, there

are a number of open questions and directions to be explored

in the space of secure HPC OS/Rs. In the case of our initial

system architecture a number of immediate potential research

avenues are evident. Most obvious of these is the evaluation

of our approach on more realistic systems and workloads.

We need to perform more experiments to measure the impact

of our approach on more realistic workloads at scale. In

the near term we are working on deploying our approach

on larger scale and higher performance systems, such as

the Astra ThunderX2 based system at Sandia. As part of

this effort we intend to not only study the scalability but

also the performance isolation capabilities of our approach

when multiple workloads are hosted on the same compute

node. To achieve this there are additional extensions that need

to be made to both Hafnium and Kitten in order to more

fully support large scale applications and systems. The most

significant of these is the design I/O mechanisms that are

able to maintain secure system isolation without imposing

significant performance overheads. This alone will be a major

challenge moving forward, and will likely require some level

of device support to achieve native levels of performance.

In addition to support for I/O access from VM instances,

we also need to investigate dynamic partitioning approaches
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that allow the creation and reconfiguration of secure partitions

at run-time. Currently, Hafnium requires that secure partitions

and VM images be defined at boot time. This allows hafnium

to create secure memory partitions before any OS is initialized,

and removes the complexity of having to reclaim memory in

order to launch a new VM. To make our approach suitable for a

more dynamic set of workloads, we need to design appropriate

management interfaces to allow dynamic memory allocation

and reclaiming as part of normal operation. In addition, we

will likely need to develop support for launching VM images

supplied after the system has booted. This is a complex

issue, due to the fact that ARM does not currently have the

necessary attestation support that ensures each VM instance is

tamper proof. Without hardware support, hafnium will require

some mechanisms of verifying VM signatures to ensure their

authenticity and provenance. One potential solution would be

to leverage certificate verification, where Hafnium is able to

verify VM signatures using a known public key that is included

as part of the trusted boot sequence.

We are also still unsure whether the Hafnium hypervisor

is a suitable long term solution for secure virtualization in

HPC. We have already had to modify it in order to support

basic HPC workloads, and it is not entirely clear how many

further modifications will be necessary to make it a truly viable

architecture. We intend to continue to evaluate Hafnium, with

the consideration as to whether a wholly new hypervisor archi-

tecture needs to be developed that has HPC environments as a

foundational design goal. It is also important to note that the

next versions of the ARM platform (ARMv9) are introducing

significant security, isolation, and trusted computing features

that will change both the hardware capabilities as well as

the system software approaches needed to leverage them. We

expect that these and other hardware security features will play

a significant role in the HPC space for the next supercomputing

generation.

VIII. CONCLUSION

In this paper we have introduced a new use case for

Lightweight Kernels as resource management services in

securely isolated HPC systems. As part of this work we

have ported the Kitten LWK to the ARM64 architecture

and integrated it with the Hafnium hypervisor to support

secure virtual machine instances on a compute node. We

have provided an initial proof of concept implementation and

provided a preliminary evaluation that shows our approach

does not impose significant performance overheads to a range

of HPC benchmarks. We have also identified a number of

future challenges, and made the case that security isolation

and trusted computing will be important features of next

generation HPC platforms. Fully supporting security isolation

in a scalable and performant way will likely be a challenge for

HPC OS/R architectures, and one that merits future research

moving forward.

REFERENCES

[1] “AMD TrustZone,” https://developer.arm.com/technologies/trustzone.

[2] “Secure Encrypted Virtualization Key Management,” http://support.amd.
com/TechDocs/55766 SEV-KMAPI Spec.pdf.

[3] Intel, “Get Started with the SDK,” https://software.intel.com/en-
us/sgx/sdk, 08 2019.

[4] J. Ouyang, B. Kocoloski, J. Lange, and K. Pedretti, “Achieving Perfor-
mance Isolation with Lightweight Co-Kernels,” in Proc. 24th Interna-
tional ACM Symposium on High Performance Distributed Computing
(HPDC), 2015, To Appear.

[5] B. Gerofi, M. Takagi, and Y. Ishikawa, “IHK/McKernel,” in Operating
Systems for Supercomputers and High Performance Computing, 2019.

[6] R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen, “mOS:
An Architecture for Extreme-scale Operating Systems,” in Proceedings
of the 4th International Workshop on Runtime and Operating Systems
for Supercomputers, 2014.

[7] “Hafnium Hypervisor,” https://www.trustedfirmware.org/projects/
hafnium/.

[8] “Trusted Firmware Project,” https://www.trustedfirmware.org/.
[9] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,

M. Levenhagen, R. Brightwell, A. Gocke, and S. Jaconette, “Palacios:
A New Open Source Virtual Machine Monitor for Scalable High
Performance Computing,” in Proc. 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2010.

[10] “Open Portable Trusted Execution Environment,” https://www.op-tee.
org/.

[11] “Trusty TEE,” https://source.android.com/security/trusty.
[12] B. Kocoloski and J. Lange, “Better Than Native: Using Virtualization to

Improve Compute Node Performance,” in Proc. 2nd International Work-
shop on Runtime and Operating Systems for Supercomputers (ROSS),
2012.

[13] “Pine64,” https://www.pine64.org/.
[14] “Raspberry pi,” https://www.raspberrypi.org/.
[15] B. Gaines and K. Pedretti, “Weaving Security into Large-Scale HPC

Systems,” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), Tech. Rep., 2015.

[16] Ayaz Akram. (2021) Trusted Execution for High-Performance Comput-
ing. [Online]. Available: http://www.ayazakram.com/papers/eurodw.pdf

49

Authorized licensed use limited to: University of Pittsburgh. Downloaded on October 13,2022 at 14:17:44 UTC from IEEE Xplore.  Restrictions apply. 


