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To facilitate the adoption of cloud by organizations, Cryptographic Access Control (CAC) is the obvious

solution to control data sharing among users while preventing partially trusted Cloud Service Providers (CSP)

from accessing sensitive data. Indeed, several CAC schemes have been proposed in the literature. Despite their

differences, available solutions are based on a common set of entities—e.g., a data storage service or a proxy

mediating the access of users to encrypted data—that operate in different (security) domains—e.g., on-premise

or the CSP. However, the majority of these CAC schemes assumes a fixed assignment of entities to domains;

this has security and usability implications that are not made explicit and can make inappropriate the use of

a CAC scheme in certain scenarios with specific trust assumptions and requirements. For instance, assuming

that the proxy runs at the premises of the organization avoids the vendor lock-in effect but may give rise to

other security concerns (e.g., malicious insiders attackers).

To the best of our knowledge, no previous work considers how to select the best possible architecture

(i.e., the assignment of entities to domains) to deploy a CAC scheme for the trust assumptions and require-

ments of a given scenario. In this article, we propose a methodology to assist administrators in exploring

different architectures for the enforcement of CAC schemes in a given scenario. We do this by identifying

the possible architectures underlying the CAC schemes available in the literature and formalizing them in

simple set theory. This allows us to reduce the problem of selecting the most suitable architectures satisfy-

ing a heterogeneous set of trust assumptions and requirements arising from the considered scenario to a

decidable Multi-objective Combinatorial Optimization Problem (MOCOP) for which state-of-the-art solvers

can be invoked. Finally, we show how we use the capability of solving the MOCOP to build a prototype tool

assisting administrators to preliminarily perform a “What-if” analysis to explore the trade-offs among the var-

ious architectures and then use available standards and tools (such as TOSCA and Cloudify) for automated

deployment in multiple CSPs.
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1 INTRODUCTION

Cryptographic Access Control (CAC) allows organizations and users to enforce Access Con-

trol (AC) on cloud-hosted sensitive data while preserving data confidentiality with respect to both
external attackers and the Cloud Service Provider (CSP) itself. Several CAC schemes have been
proposed in the literature, each embodying particular features through different cryptographic
primitives. Some CAC schemes [17, 22, 45] employ Attribute-based Encryption (ABE) due to
its ability to enforce rich Attribute-based AC (ABAC) policies. Other schemes combine asym-
metric and symmetric cryptography in hybrid cryptosystems [12], employ lazy revocation [46], or
express other AC models like Role-based AC (RBAC) [47]. Others adopt proxy re-encryption [37]
or onion encryption [34] to offload the burden of cryptographic operations to the cloud.

Problem Statement. While these CAC schemes offer advanced and remarkable features, they are
often not suitable for concrete use [12]. For instance, ABE applied to AC in the cloud “exists in an
academic world and it is often difficult to find a practical use of ABE for a real application” [22].
Since researchers usually focus on high-level features only, little space is left for aspects related
to the use of their scheme in a given scenario. An important aspect for the deployment of CAC
schemes is the definition of the entities that compose the scheme along with the entities’ logi-
cal or physical locations (i.e., the definition of the “architecture” of the CAC scheme). However,
researchers seldom provide an architecture for their CAC scheme, or this is usually fixed and it
cannot adapt to the trust assumptions (e.g., presence of malicious insider or external attackers)
and requirements (e.g., enhance architecture scalability or reduce monetary costs) of different sce-
narios. Indeed, while CAC has been studied in several scenarios like eHealth [1, 9, 19, 30, 33, 37]
and eGovernment [19, 27], we note that different scenarios have different trust assumptions and
requirements. For instance, the eHealth scenario may demand stricter control over appliances man-
aging medical data, while the eGovernment scenario may require to enhance the scalability and
reliability of the architecture. Unfortunately, the lack of study on the relationship between the ar-
chitectures and the trust assumptions and requirements of different scenarios hampers the adop-
tion of CAC schemes. In other words, there is little or no research on how to fill the gap between
CAC schemes in the abstract and an architecture for deployment in a given scenario.

Solution. This article provides formal modelling and automated trade-off analysis to find the
optimal CAC scheme architectures for the trust assumptions and requirements of a given scenario
for the enforcement of CAC schemes in the cloud. In detail, our contributions are as follows:

• we discuss centralized vs. decentralized AC enforcements to define under which conditions
traditional AC suffices to protect sensitive data from both external attackers and partially
trusted CSPs, instead of relying on more complicated (and likely computationally demand-
ing [12]) decentralized solutions;
• we provide a formal architectural model to capture elements—namely, resources, domains,

and entities—commonly involved in the architectures of CAC schemes. Through constraint
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satisfaction, the architectural model synthesizes the set of architectures preserving the ex-
pected confidentiality, integrity and availability properties of the involved resources for CAC
schemes. We call these the “candidate” architectures. Then, to validate the generality of the
model, we illustrate how the architectures of some state-of-the-art CAC schemes can be
specified in our architectural model;
• we define how to evaluate different architectures according to risk levels (i.e., concerning

confidentiality, integrity and availability of sensitive data) derived from the trust assump-
tions and security and usability goals (e.g., scalability and reliability) that may be desirable
in specific deployment scenarios. Then, we formalize a Multi-objective Combinatorial

Optimization Problem (MOCOP) [24] over the set of candidate architectures to perform
a trade-off analysis aiming to strike the best possible balance between security and objec-
tives of other natures. We highlight that, when considering only risk levels and not goals,
the trade-off analysis reduces to a risk assessment, i.e., to the problem of finding the most
secure architectures for a given scenario. Instead, when considering only goals like scala-
bility and reliability, the trade-off analysis reduces to the problem of finding the most per-
formant architectures for a given scenario. Finally, by reusing, off-the-shelf, well-known
techniques for solving the MOCOP by analyzing (apparently equivalent) optimal solutions,
also known as “Pareto Optimal” solutions, we provide automated support to the difficult and
time-consuming process of selecting the most suitable architecture for a given scenario;
• we give a proof-of-concept application of how the architectural model and the trade-off anal-

ysis can be used to assist administrators in the deployment of CAC schemes architectures. We
develop a web dashboard1 implementing two different algorithms to solve the MOCOP, i.e.,
Best from Reference [14] and an ad-hoc algorithm. Through a “What-if” analysis, the former
allows evaluating architectures when the requirements of the scenario over the goals (e.g.,
enhance redundancy) and the risk levels (e.g., preserve the availability of data) are unknown
a priori, while the latter exploits the knowledge of such requirements to find the optimal
CAC scheme architectures for the underlying scenario. Furthermore, we study the compu-
tational complexity of the two algorithms and measure their efficiency in the best, worst
and average cases. To ensure cloud portability, interoperability and automatic deployment,
we rely on the TOSCA2 (Topology and Orchestration Specification for Cloud Applications)
OASIS standard to automatically generate a deployable specification of the architectures. Fi-
nally, we implement a CAC scheme (i.e., the scheme proposed in Reference [12]) into a fully
working prototype and deploy it with Amazon Web Services (AWS).

The contributions of this article are built on top of the methodology we previously presented
in Reference [3]. In Reference [3], we provided an architectural model to formally express the
set of the possible architectures for cloud-based CAC schemes. Then, we defined how to evalu-
ate these architectures with security and usability goals. Finally, we proposed a single-objective
optimisation problem to identify the best architecture for a given scenario. This article broadens
the scope of Reference [3] by first defining under which conditions the use of (computationally
demanding) CAC schemes is really necessary (Section 4). Then, we propose a meticulous risk as-
sessment obtained by relaxing (some of) the trust assumptions (implicit in Reference [3]) to eval-
uate the risk levels of CAC schemes architectures against a heterogeneous set of attackers (e.g.,
Man-in-the-Middle and malicious insiders). Indeed, when considering only the goals in Reference
[3], organisations may end up choosing well-performing architectures that, however, mine the

1https://stfbk.github.io/complementary/TOPS2020_2.
2https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca.
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Table 1. Graphical Representation of the Twofold Generalization

of the Optimisation Problem

security of the sensitive data due to some not-fulfilled trust assumptions. To solve this issue, we
make such trust assumptions explicit to allow organisations to make more informed decisions by
transparently evaluating the risk exposure of CAC schemes architectures and investigating the
interplay with the other goals (Section 6). Moreover, as shown in Table 1, we propose a twofold
generalization of the original approach in Reference [3] by (i) including the risk levels in the op-
timisation problem (Section 7.4) and (ii) developing the capability to handle scenarios in which
requirements are unknown a priori; this ability empowers organisations to reuse off-the-shelf
any approach available in the literature to solve MOCOPs by identifying Pareto Optimal solu-
tions (Section 7.5). Finally, this article integrates two different algorithms for solving the optimi-
sation problem and studies their computational complexity, describes their implementation in a
web dashboard and conducts an efficiency and performance evaluation (Section 8.1). As a final re-
mark, we highlight that our contributions are independent of the underlying CAC scheme and AC
policy model.

The article is structured as follows. In Section 2, we introduce the background. In Section 3, we
illustrate two important scenarios often considered in cloud-relevant literature, namely, eHealth
and eGovernment, while in Section 4, we discuss centralized vs. decentralized AC enforcements. In
Section 5, we introduce our architectural model based on common elements of CAC schemes. We
discuss trust assumptions and perform a risk assessment on the architectures in Section 6. We show
how to evaluate architectures based on risk levels and security and usability goals and formalize
the MOCOP along with two algorithms to solve it in Section 7. We present the web dashboard, the
complexity analysis and our proof-of-concept deployment with AWS in Section 8. In Section 9, we
discuss related work and conclude the article with final remarks and future work in Section 10.

2 BACKGROUND

Below, we describe AC, RBAC, and the high-level functioning of a cryptographic RBAC scheme.

2.1 Access Control

Samarati and De Capitani di Vimercati [39] defined AC as “the process of mediating every request
to resources maintained by a system and determining whether the request should be granted or
denied.” Resources usually consist of data such as files and documents. AC is traditionally divided
into three levels:

• Policy: this abstract level consists of the rules stating which users can perform which opera-
tions on which resources. The policy is usually defined by the owner of the resources or of
the system (e.g., the organization);
• Model: this intermediate level is a formal representation of the policy (e.g., RBAC [40] and

ABAC [20] are two models) giving the semantics for granting or denying users’ requests;
• Enforcement: this concrete level comprehends the hardware and software entities that en-

force the policy based on the chosen model. The definition of the entities that compose the
scheme along with the entities’ logical or physical locations (i.e., the architecture) is part of
the enforcement level.
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We highlight that the three levels are independent of each other. This allows evaluating different
enforcement mechanisms for the same policy and model.

RBAC is one of the most widely adopted AC models in which users are assigned to one or more
roles. In the context of an organization, a role reflects an internal qualification (e.g., employee).
Permissions are assigned to one or more roles by administrators of the policy. Users activate some
roles to access the permissions needed to finalize their operations (e.g., read a file). Formally, the
state of an RBAC policy can be described by the set of users U , roles R, permissions P and the
assignments users-roles UR ⊆ U ×R and roles-permissions PA ⊆ R×P . A user u can use a permission

p if ∃r : ((u, r ) ∈ UR) ∧ ((r ,p) ∈ PA). We note that role hierarchies can always be compiled away
by adding suitable pairs to UA.

There are two main classes of enforcements for AC. In the first class, a trusted central entity
decides whether to grant a specific action on a resource to a given user. All resources are stored in
one or more trusted logical or physical locations (i.e., domains) to which the trusted entity has full
access. Unfortunately, this trusted entity may not always be present in every scenario. Therefore,
the second class studies the enforcement of AC policies in partially trusted domains [5, 11]. A
partially trusted domain is a domain controlled by a third-party (e.g., an external organization or
a CSP), which faithfully performs the assigned instructions (e.g., store the data), but, at the same
time, it tries to extract information from the stored data. If data are sensitive, then this behaviour
may be undesirable. A CSP is an example of a partially trusted domain, as traditionally assumed in
the literature of cloud computing [6]. Indeed, a report by the U.S. Federal Trade Commission [36]
states that CSPs regularly collect companies’ data without the latter’s knowledge. When trust
on the participant entities is limited, resources are often encrypted to ensure confidentiality (e.g.,
through encryption) and integrity (e.g., through signatures).

2.2 Cryptographic Access Control Schemes

In partially trusted environments, CAC is often used to enforce AC while ensuring the confidential-
ity of sensitive data. Data are encrypted and the permission to read the encrypted data is embodied
by the secret decrypting keys. While implying a further computational burden (i.e., the crypto-
graphic operations), CAC allows encrypted data to be stored in partially trusted domains.

For concreteness, we present the CAC scheme proposed in Reference [12] for enforcing
cryptographic RBAC policies, although our findings can be generalized for other CAC schemes
(e.g., References [33, 37, 45–47]). To abstract from low level details, we assume that all commu-
nications occur through pairwise-authenticated and private channels (e.g., TLS). In the proposed
scheme, each user u and each role r is provided with a pair of secret and public keys (ks

u , k
p
u ) and

(ks
r , k

p
r ), respectively. Each file is encrypted with a different symmetric key ksym. To assign a user

to a role, the role’s secret key ks
r is encrypted with k

p
u , resulting in {ks

r }kp
u
. To give read permission

to a role over some data, the symmetric key ksym related to the data is encrypted with k
p
r , resulting

in {ksym }kp
r
. The use of both secret-public and symmetric cryptography is usually called “Hybrid

Encryption” [12]. The policy is enforced through the encrypted cryptographic keys and further
auxiliary data (e.g., files version numbers and digital signatures), together referred to as metadata.
Users store their private key in secure personal devices (e.g., laptops provided with an antivirus)
whose access is protected through passwords or similar authentication techniques, while both
encrypted data and metadata are stored in the cloud or in a secure area within the organization. To
read a file, a user u performs the following actions through a software entity usually called proxy:

(1) u decrypts the role’s r encrypted secret key {ks
r }kp

u
with his secret key ks

u , obtaining ks
r ;

(2) u decrypts the encrypted symmetric key {ksym }kp
r

with ks
r , obtaining ksym;

(3) u decrypts the file with ksym.
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To write on a file, a useru performs the same operations to obtain the symmetric key ksym, which
is used to encrypt the new file. Finally, an entity usually called Reference Monitor (RM) checks
whether u has write permission before accepting the new file and storing it in the cloud.

3 SCENARIOS AND PROBLEM STATEMENT

We study scenarios in which an organization outsources the storage of sensitive data to the cloud
and wants to use a CAC scheme to preserve the data confidentiality in the presence of a partially
trusted CSP. Each scenario is characterized by specific trust assumptions (e.g., on the employees
of the organization) and requirements (e.g., simplify maintenance or enhance reliability) that are
affected by different CAC scheme architectures. For instance, the architecture of the CAC scheme
presented in Reference [12] and reported in Section 2.2 assumes the data, metadata and RM to stay
in the cloud, while the proxy is installed in the computer of each user. By using the cloud, this
architecture gains scalability and reliability, but it may suffer from high cloud-related monetary
costs and the negative “Vendor Lock-in” effect, i.e., the more cloud services are used, the more
difficult is to switch to another CSP. Hosting the RM at the premises of the organization may
partially relieve these issues but could create other concerns (e.g., malicious insiders tampering
with the RM). In this article, we develop a tool-supported methodology that assists administrators
in evaluating these kinds of trade-offs.

Preliminary, we present two scenarios often studied in the literature of CAC schemes, namely,
eHealth and eGovernment. We discuss possible trust assumptions and requirements and highlight
the importance of carefully analysing architectural trade-offs when deploying a CAC scheme.

3.1 eHealth Scenario

The problem of storing medical data in the cloud has been widely studied in the literature [1] by
many researchers [9, 19, 27, 30, 33, 37, 41, 46], along with the eHealth scenario trust assumptions
and requirements. For instance, Horandner et al. [19] discussed the possible need for tracking pa-
tients’ medical data from multiple devices (e.g., glucometers) continuously. These data are sent to
the smartphone and finally encrypted and uploaded to the cloud. Domingo-Ferrer et al. [9] pointed
out that, besides medical data (e.g., Blood sugar, LDL Cholesterol), also metadata should be hidden
from the CSP, since they may leak sensitive information. Suppose a person with a mental disorder
is hospitalized in a clinic specialized for treating such a type of disorders employing well-paid doc-
tors. The clinic is storing in the cloud the patients’ medical data encrypted under a CAC scheme.
However, suppose the CAC scheme expects the patient’s name to be included in the metadata (e.g.,
in the AC policy or as the name of the file); the CSP may then infer that a specific person is a cus-
tomer of the clinic. Consequently, the CSP may share this information for targeted advertisements
or with a health insurance company that may then increase the insurance premium of the person.
Below, we summarize some of the most important trust assumptions (A) and requirements (R) of
the eHealth (eH) scenario:

• eHA1—there is a low probability of disgruntled doctors;
• eHA2—CSP may be curious about medical data and metadata;
• eHR1—need to hide metadata to avoid information leaking;
• eHR2—prioritize redundancy to avoid medical data loss.

It should be clear how difficult it is to select the most suitable CAC scheme architectures for
the eHealth scenario, as this means finding the architectures that maximize the satisfaction of all
requirements over both goals and risk levels derived from the given trust assumptions.

ACM Transactions on Privacy and Security, Vol. 25, No. 1, Article 2. Publication date: November 2021.
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3.2 eGovernment Scenario

The eGovernment scenario is getting more attention [19, 27] as the Public Administrations

(PAs) in different countries (e.g., Italy3 and Spain4) start a digitalization process to blend their
infrastructure with the cloud.5

Based on technologies that include mobile and web applications together with electronic identity
services, PAs can develop a portfolio of public services. Suppose a PA wants to allow citizens to
access government-issued personal documents (e.g., tax certificates) from anywhere. A European
citizen may use eIDAS6 to authenticate to an online service of a foreign European country. Then,
through a CAC scheme, the citizen may share his data (e.g., an electronic passport or the tax
certificate) with a public authority of the foreign European country while still preserving end-
to-end confidentiality [19]. We summarize some of the most important trust assumptions and
requirements of the eGovernment (eG) scenario:

• eGA1—the presence of disgruntled employees is possible;
• eGA2—communication channels may not always be secure;
• eGR1—need to enable citizens’ access from anywhere;
• eGR2—simplify the maintenance of the architecture;
• eGR3—limit CSP-related costs for budget constraints;
• eGR4—prioritize the scalability of the services.

As for the eHealth scenario, it is not trivial how to find the architectures satisfying all or the
highest number of these requirements at the same time.

3.3 Problem Characterization

Generalizing the scenarios presented in Sections 3.1 and 3.2, we are interested in finding the set of
CAC scheme architectures that strike the best possible trade-off considering the trust assumptions
and requirements of a scenario. We argue that there is no single CAC scheme architecture that fits
all scenarios. Instead, there is a need to carefully evaluate different architectures and find the ones
that optimize both the goals and the risk levels derived from the trust assumptions of each scenario.
We do this by developing a tool-supported methodology that assists administrators in finding the
best possible trade-off. The high-level flow of our approach is reported in Figure 1, where ARC
is the set of all candidate architectures for CAC schemes (the formal definition of candidate archi-
tecture is given in Section 5): the administrator provides as input the trust assumptions and the
requirements of a scenario. Given the trust assumptions, we assign a likelihood to a set of possible
attackers (e.g., malicious insider) and, based on a precomputed impact, perform a risk assessment
(Section 6) to assign risk levels to each architecture. Besides, we consider the requirements on
the risk levels and the security and usability goals and discuss how much each architecture fulfils
these requirements (Section 7). Finally, we reduce the problem of finding the set of architectures
ARCopt that maximize the satisfaction of the requirements to a MOCOP [24] (Section 7.4).

4 CENTRALIZED VS. DECENTRALIZED AC

Before discussing the architectures of CAC schemes, we briefly analyse the relationship between
the mechanism chosen to enforce AC policies and the related architecture. We argue that, under
certain conditions, traditional (i.e., centralized) AC may suffice to protect sensitive data from both

3https://www.agid.gov.it/it/infrastrutture/.
4https://joinup.ec.europa.eu/collection/egovernment/news/spanish-government-approv.
5https://joinup.ec.europa.eu/.
6https://www.eid.as/home.
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Fig. 1. Tool-supported methodology flow. Fig. 2. Conditions and inherent AC enforcement.

external attackers and partially trusted CSPs, instead of relying on more complicated (and likely
computationally demanding [12]) CAC schemes.

Below, we discuss architectural conditions that can make one class of AC enforcements more
suitable than another for a specific architecture. As introduced in Section 2.1, there are two main
classes of enforcements for AC. In the first class (centralized), sensitive data and a central entity
mediating users’ accesses are both placed in a fully trusted domain (e.g., at the premises of the
organization). In the second class (decentralized), sensitive data and the entity mediating users’
accesses are deployed in a partially trusted domain.

From these definitions, we derive that there are two architectural conditions at the base of the
centralized class of AC enforcements (the negation of these conditions leads to the alternative
decentralized class):

• C1: there exists a central entity deployed in a fully trusted domain that mediates every access
to sensitive data;
• C2: sensitive data are stored in a fully trusted domain.

As shown in Figure 2, there are four possible cases to consider:

• when both C1 and C2 are true (i.e., C1∧C2), the central trusted entity can easily enforce AC
policies over securely stored data by following traditional specifications (e.g., XACML7). This
is the common case in which an organization internally hosts and manages accesses to sen-
sitive data (e.g., private cloud). Even though not strictly required, symmetric cryptography
can enhance the security of sensitive data;
• when C1 is true and C2 is false (i.e., C1∧¬C2), data are stored by a third-party CSP and

users’ access is mediated by a trusted entity deployed within the organization. We highlight
that assuming the presence of a central trusted entity obviates the need for any cryptography
beyond authenticated symmetric key encryption [12]. Data (e.g., files) can be encrypted with
symmetric keys (e.g., one per file) that are securely stored by the central entity. For every
(authenticated) user’s access request, the central entity autonomously decides whether to
accept (i.e., by decrypting the file and returning it to the user) or reject the user’s request
based on the AC policy. The same procedure applies to write requests. The partially trusted
domain (e.g., CSP) cannot read data, since the symmetric keys are managed by the central
entity. The revocation of users is trivial, since it implies modifying the AC policy without
making any change to the encrypted data or symmetric keys.

7http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.
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As an alternative, the central entity can just return the symmetric keys to authorized users,
which then freely interact with the partially trusted domain to download files. This approach
offloads cryptographic operations from the central entity to the users. To read a file, users
first request the symmetric key to the central entity and then download the encrypted file,
performing the decryption locally. Users follow the same procedure also when writing to a
file, i.e., users send the new file to the central entity that either accepts or rejects the new file.
The revocation is still trivial, since authorized users, when writing, can perform the (lazy)
re-encryption of files with a new symmetric key.
In both alternatives, AC can be enforced with a traditional specification, while symmetric
cryptography suffices for preserving the confidentiality of outsourced data;
• when C1 is false and C2 is true (i.e., ¬C1∧C2), data are stored in a trusted domain. Since

a central trusted entity does not exist, users (usually) access data directly. Even if unusual,
users could also access data through a third-party CSP (e.g., hybrid cloud). In this case, the
organization would outsource the management of the AC policy to the CSP, which authen-
ticates users and distributes access tokens (e.g., OAuth28) through which users access data.
Again, even though not strictly required, symmetric cryptography can enhance the security
of sensitive data;
• when both C1 and C2 are false (i.e., ¬C1∧¬C2), there is no central trusted entity and data are

stored in a partially trusted domain (e.g., public cloud). Therefore, the only way to enforce
the AC policy and preserve data confidentiality is the use of decentralized AC mechanisms
such as CAC schemes (see Section 2).

Centralized AC enforcement (plus possibly symmetric cryptography) can be used in almost all
possible cases (three of four) instead of computationally expensive CAC schemes. However, we
note that this is a general consideration and it is conditional to the presence of factors influencing
a specific scenario. In particular, we identify three categories of factors that may drive an organi-
zation toward the use of CAC schemes instead or on top of centralized AC enforcements:

• Security-related factors: while the use of CAC schemes worsens the performance of the whole
system, having multiple AC layers is an enhancement from the security point of view;
• Business-related factors: corporate rules and digitalization strategies (e.g., moving the inter-

nal infrastructure to a public cloud) may constrain or guide the choices of organizations;
• Privacy-related factors: compliance with privacy regulations (e.g., the GDPR9) may foster the

adoption of CAC schemes. For instance, SAFE,10 a cloud solution for ski area managers, uses
a CAC scheme to handle personal data so to be unable to read the data. In this way, the com-
pany avoids being affected by privacy regulations while demonstrating total transparency
to its customers.

Depending on the scenario, CAC may be in any case the most suitable solution, even though not
the most efficient one. Therefore, in the next sections, we identify the set of the candidate architec-
tures of CAC schemes and show how to evaluate and optimize the satisfaction of all requirements
of a specific scenario over both goals and risk levels.

5 A MODEL FOR CAC ARCHITECTURES

While CAC schemes have different features, their architectures leverage several common elements
(e.g., cryptographic keys, proxy, and reference monitor). We identify three sets containing the

8https://oauth.net/2/.
9https://gdpr.eu/.
10https://motorialab.com/en/safe/.
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Fig. 3. Summary of basic notions of CAC schemes.

basic building blocks of our architectural model, namely, (cryptographic) Resources, Domains,
and Entities. We also consider the set Properties containing the three basic security properties,
namely, C(onfidentiality), I(ntegrity), and A(vailability). These sets are linked together by six
relationships: domains can contain (CanContain) entities and preserve (Preserves) the security
properties of resources, while entities use (Uses) and host (Hosts) resources and inherit (Inherits)
security properties required (Requires) by resources. Figure 3(a) summarizes these considerations
as an Entity-Relation diagram where sets are depicted as rectangles with rounded corners and
relations as diamonds.

Below, we define the three sets and six relations and explain how they combine to specify archi-
tectures for CAC schemes. To show expressiveness and adequacy, we specify several architectures
of CAC schemes proposed in the literature as instances of our architectural model. Formally, we
work in basic set theory and use the standard notions of set membership (∈), containment (⊆), and
set comprehension ({·| · · · }). Sometimes, we write X (q) to denote q ∈ X for q an element (a tuple)
and X a set (relation, respectively). Figure 3 summarizes the concepts expressed in this section.
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5.1 Cryptographic Resources and Properties

The set Resources contains (cryptographic) resources of the following types (see the column Re-
source in Figure 3(b)):

• encrypted data: by definition, the architecture of a CAC scheme involves data (e.g., a file
encrypted with ksym, as introduced in Section 2.2) encrypted under an AC policy;
• secret keys: a CAC scheme expects a set of secret cryptographic keys (e.g., the asymmetric

keys of user u (ks
u , k

p
u ) and role r (ks

r , k
p
r ) and the symmetric key for a file ksym, as introduced

in Section 2.2);
• metadata: intuitively, a CAC scheme needs also metadata (e.g., the AC policy, public crypto-

graphic keys, files version numbers and digital signatures, as introduced in Section 2.2).

Since CAC schemes rely on these resources to properly function, we require to preserve their
integrity (i.e., prevent unauthorized modifications) and availability (i.e., guarantee access when
needed). However, a resource may be sensitive or not (e.g., public cryptographic keys are not
sensitive). Therefore, we may require or not to preserve the Confidentiality of a (cryptographic)
resource. Figure 3(b) defines the relation Requires, i.e., it identifies each CIA property pro required
by each resource res: 〈res, pro〉 ∈ Requires when the cell at the row res and column pro shows the
symbol ✓ , whereas 〈res, pro〉 � Requires when it contains the symbol ✗.

We assume perfect encryption over data (i.e., the confidentiality of encrypted data cannot be
compromised by attacking the available cryptographic primitives) so that confidentiality of en-
crypted data is implied. On the contrary, the confidentiality of the secret keys is crucial for the
overall security of CAC schemes. Therefore, we require to preserve the confidentiality of the keys.
Finally, the sensitivity of the metadata depends on the organization and the scenario. For instance,
the name of files can potentially disclose on what projects the organization is working, while the
AC policy can reveal its internal hierarchy [47]. Depending on the organization’s judgment, meta-
data confidentiality can be either required or not (✓/✗). We note that sensitive metadata can be
encrypted and turned into non-sensitive metadata at the cost of additional overhead. However,
not all CAC schemes expect to encrypt metadata, and some entities may need to access plain-text
metadata anyway. Thus, we consider as optional the possibility to have sensitive metadata.

5.2 Domains

Following References [12, 46], we identify three domains defined from the organization’s point of
view. Domains are containers for other elements (e.g., a CSP hosting a database) and are grouped
together in the set Domains (see the column Domain in Figure 3(c)):

• clientu is the domain in which the user u operates, and it is defined as the set of user’s u per-
sonal devices (e.g., laptop and smartphone). As assumed in Section 2.2, personal devices are
not shared among users and access is protected through passwords or similar authentication
techniques. In this way, each user operates independently from the other users;
• on-premise is the domain in which the administrators operate. Usually, the on-premise do-

main lies within the organization as an area to which only authorized personnel can access
(e.g., a data centre to which only administrators can access, either physically or virtually);
• CSP is the domain of a third-party offering cloud services, like computing and storage of

files. It is a logical area and is geographically distributed [7].

The fact that a domain dom is assumed to preserve (or not) a CIA property pro of a resource res

it contains is formalized as Preserves(dom, pro, res). We show in Figure 3(c) the definition of the
relation Preserves, where the symbol “★” is a wildcard for any resource and the symbol “-” stands
for no resource. We consider administrators and thus the on-premise domain to be fully trusted.
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As a consequence, the on-premise domain preserves the CIA properties of all the resources it
contains—formally, for res in Resources, Preserves(on-premise,C, res), Preserves(on-premise, I , res),
as well as Preserves(on-premise,A, res). As discussed in Section 3, we assume the CSP to be par-
tially trusted; this means that the CSP preserves the integrity and availability of the resources
it contains but not the confidentiality—formally, Preserves(CSP, I , res), Preserves(CSP,A, res), and
(CSP,C, res) � Preserves for res in Resources. Users are not trusted to operate on (i.e., they do not
preserve the CIA properties of) resources the AC policy does not grant them access to. However,
users are trusted to operate on resources the AC policy grants them access to (e.g., the user’s own
secret keys). To refer to the portion of a resource to which the user u has access to, we use the
subscript u. For instance, secret keysu indicates the secret keys to which the user u has access to
based on the AC policy (e.g., (ks

u , k
p
u )) and not the whole set of secret keys (e.g., another user’s u′

keys, i.e., (ks
u′, k

p

u′ )). Similarly, metadatau refers to the portion of metadata the user u can access to
based on the AC policy. Therefore, each clientu domain preserves the CIA properties of the subset
of resources the AC policy grants the user u access to (i.e., secret keysu and metadatau). Formally,
Preserves(clientu, pro, secretkeysu) and Preserves(clientu, pro,metadatau) for pro in Properties.

5.3 Entities and Relationships with Resources

The set Entities contains elements that actively perform tasks in CAC schemes (see the columns
Entity in Figures 3(d) and 3(e))11:

• proxy: Domingo-Ferrer et al. [9] argued that the architectures of CAC schemes usually in-
volve a local proxy to interface users with encrypted data. The proxy encrypts the data before
uploading them to the cloud and decrypts them before showing them to the user.
• reference monitor (RM): Garrison et al. [12] discussed the presence of a reference monitor to

check modifications to encrypted data. This entity checks the integrity and compliance with
the AC policy of the users’ actions (e.g., write on an encrypted file). Possibly, the RM also
performs cryptographic operations (e.g., verifying digital signatures);
• metadata storage (MS): this entity is the storage (e.g., a database) containing the metadata.
• data storage (DS): this entity is the storage (e.g., a simple storage service) containing the data;

To accomplish its tasks, an entity must be located in at least one domain (e.g., a software needs to
run on a machine). Furthermore, an entity may host and use resources (e.g., a proxy using a secret
cryptographic key to decrypt an encrypted file). Figures 3(d) and 3(e) define the relations Hosts and
Uses, respectively, i.e., they identify the entity ent that hosts or uses a resource res. The proxy trans-
forms high-level requests (e.g., read a file) into the sequence of low-level cryptographic operations
necessary to accomplish them (e.g., obtain the decrypting key, download the encrypted file and
decrypt the file, as presented in Section 2.2). Therefore, the proxy hosts the secret keys and uses
metadata and encrypted data. We note that the proxy can be installed on each of the users’ personal
devices (i.e., multiple instances) or in a unique trusted location (i.e., single instance) like a server
within the organization. In the former case, expressed as “proxyu,” each proxy hosts the secret keys
of the user u and can retrieve metadata and encrypted data to which u has access to. In the latter
case, expressed as “proxy,” the proxy hosts the whole set of secret keys and accesses the whole
set of metadata and encrypted data. Formally, we specify these as Hosts(proxyu , secret keysu ),
Uses(proxyu ,metadatau ), Uses(proxyu , encrypted datau ) and Hosts(proxy, secret keys), Uses(proxy,
metadata), Uses(proxy, encrypted data). Finally, the RM uses both metadata and encrypted data
to verify the compliance with the AC policy of the users’ actions; the MS and the DS store

11Entities’ icons made by Freepik from www.flaticon.com.
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metadata and encrypted data, respectively. Formally, this is written as Uses(RM,metadata),
Uses(RM, encrypted data), Hosts(MS,metadata), and Hosts(DS, encrypted data).

5.4 Putting Things Together

By recalling the summary in Figure 3, we are now ready to define the notion of a CAC scheme can-
didate architecture by identifying which CIA properties each entity inherits on which resources
and then inferring in which domains an entity can stay by checking whether the domain preserves
the properties inherited by the entity. To do this, we define two relations Inherits and CanContain,
respectively. The intuition is that an architecture will be formed by those pairs 〈ent, res〉 that sat-
isfies both relations for ent an element of Entities and res an element of Resources.

According to Equation (1) in Figure 3(h), a tuple 〈ent ,pro, res〉 ∈ Inherits if the entity ent hosts
the resource res and res requires pro, or the entity ent uses the resource res and res requires pro
having that pro is either the confidentiality or the integrity property. Indeed, while it is possible
to affect the confidentiality (e.g., through information leakage) and integrity (e.g., by tampering
with a file before uploading it to the cloud) of a (used) resource, the availability of the original
(hosted) resource cannot be compromised. Figure 3(f) is extensionally equivalent to Equation (1)
in Figure 3(h).

According to Equation (2) in Figure 3(h), a tuple 〈dom, ent〉 ∈ CanContain if for all properties
pro inherited by ent on res , dom preserves pro on res ′ with res 
 res ′, where 
models a hierarchy
on resources. The hierarchy is such that secret keysu 
 secret keys, since secret keysu is a portion
of secret keys and similarly metadatau 
 metadata as metadatau is a portion of metadata and
encrypted datau 
 encrypted data as encrypted datau is a portion of encrypted data. Figure 3(g) is
extensionally equivalent to Equation (2) in Figure 3(h) and can be interpreted as explained below.

If we consider multiple instances of the proxy for each user u (i.e., proxyu), then each instance
proxyu would host a portion of the secret keys (i.e., secret keysu) and access a portion of the
metadata (i.e., metadatau) and encrypted data (i.e., encrypted datau) only. In this case, the clientu

domain can contain the proxyu. Then, being fully trusted by definition, the on-premise domain
preserves the CIA properties of all resources and therefore can contain all entities. Finally, the
CSP can contain the DS entity, since the DS inherits the integrity and availability properties of the
encrypted data only. The CSP can contain the RM and MS only if the organization deems metadata
not to be sensitive. Otherwise, the RM and MS inherit the confidentiality property of the metadata
and therefore cannot stay in the CSP domain. As a final note, since the RM checks users’ actions
against the AC policy, we assume that the RM cannot run in the users’ computer, i.e., we assume
that 〈clientu, RM〉 � CanContain.

As we can see from Figure 3(g), different domains can contain the same entity (e.g., both the
on-premise and the CSP domain can contain the DS entity). It is important to notice that two or
more domains can contain an entity at the same time. These hybrid architectures may be useful
especially for entities hosting resources (i.e., proxy, MS, DS). For instance, important encrypted
files (e.g., with a sensitive name) can be hosted in a DS at the premises of the organisation, while
other files can stay in a DS managed by the CSP (e.g., Reference [37]). The proxy can be installed
in the computer of each user so to split the set of secret keys and also in an on-premise server to
allow temporary users or light devices (e.g., smartphones) to access encrypted data (e.g., Reference
[45]). The MS can be split so to host sensitive metadata (e.g., the list of users’ names) on-premise
and non-sensitive metadata (e.g., public cryptographic keys) in the CSP domain (e.g., Reference
[47]). In these hybrid architectures, to avoid synchronization and update issues, we assume that
each resource is hosted by one entity only. Of course, it is possible to have offline backups of the
resources. Finally, we do not consider a hybrid architecture for the RM, since it does not host any
resource.
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Table 2. Considered CAC Scheme Architectures

Architectural Model. By considering all possible entity-domain pairs that satisfy the constraints
imposed by the CanContain relation (i.e., formally, an architecture is a subset of the Cartesian
product of the sets Entities and Domains), we identify 81 candidate architectures for cloud-based
CAC schemes (see Table 2 for a selection and complementary material12 for the complete list). Each
entity must be deployed in at least one of the domains that can contain it but the RM, that can be
absent from the architecture as this happens in some CAC schemes [4, 10, 16, 17, 29, 46]. In this
case, after a write request, the old file is not replaced but a new version is added that is validated
by the next user attempting to read the file. If the new version is not valid (i.e., the writer user did
not have write permission), then the reader fetches the old versions of the file until finding a valid
version. Formally, we define the set ARC of all candidate architectures arc as follows:

ARC = {arc ⊆ (Entities × Domains) | (∀〈dom, ent〉 ∈ arc : CanContain(dom, ent ))
∧ (∀ent ∈ Entities \ {RM } ∃dom ∈ Domains : 〈dom, ent〉 ∈ arc)} (3)

5.5 Instances of our Architectural Model

Table 2 shows the architectures of some CAC schemes in the literature and how they are specified
in our architectural model as elements of ARC. We depict a hybrid architecture by duplicating
the icon of the entity under multiple domains. We discuss how our model allows us to capture the
most important aspects of the various CAC schemes in the following.

Garrison et al. [12] designed a CAC scheme for a dynamic RBAC policy with a focus on per-
formance. The architecture comprehends the same three domains that we presented. A proxy for
each user contains the user’s secret keys. The metadata are in the MS and the encrypted files in
the DS entity. Both of these entities, together with the RM checking digital signatures, stay in the
CSP.

In Reference [46], the authors discussed the same three domains that we presented. The archi-
tecture expects a proxy (called “Key-store”) for each user containing the user’s secret keys. Non-
sensitive metadata (i.e., hierarchies and public parameters) are kept in the “Meta-data Directory”
(i.e., the MS) in the CSP domain. The “Data Store” (i.e., the DS) stores encrypted data in the CSP
domain. As in Reference [10], the authors proposed a CAC scheme without the RM, relying on
users to validate write operations.

In Reference [47], the authors employ Role-based Encryption (RBE) to enforce RBAC policies
in the CSP. In their architecture, the DS stores encrypted data in the CSP domain. Non-sensitive
metadata (i.e., public parameters of RBE) are in the MS in the CSP domain, while sensitive metadata

12https://stfbk.github.io/complementary/TOPS2020_2.
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(i.e., role hierarchy and user memberships) stay in an MS within the organization. The architecture
of the CAC scheme expects a proxy for each user. This CAC scheme does not support the write
operation, thus the architecture does not expect the RM entity.

In Reference [45], the authors proposed a CAC scheme along with a prototype named “FADE.”
Users interact with a proxy that can be deployed in each user’s computer or as in a server within the
organization. The architecture comprehends a quorum of key managers, deployed as a centralized
trusted entity, storing sensitive metadata (e.g., cryptographic parameters) through threshold secret
sharing [42]. Besides, the key managers perform blind decryption on cryptographic keys [32] and
allow users to upload and download files. Thus, the key managers act both as MS and RM. Each
(encrypted) file is associated with an AC policy and it is stored by the DS in the CSP domain.

Premarathne et al. [33] studied how to securely store medical big data in the cloud. They de-
signed a role-based CAC scheme making use also of steganography. The architecture comprehends
the “User” (i.e., clientu), “Health Authority” (i.e., on-premise), and “Cloud Storage” (i.e., CSP) do-
mains. Users authenticate to a trusted health authority server. This server (i.e., the proxy) is respon-
sible for extracting users’ data from files stored by the DS in the CSP domain. Metadata related
to steganography (e.g., indexes and lengths) are stored in the health authority server (i.e., MS). In
this CAC scheme, the RM entity is missing. Indeed, since the proxy runs in the trusted on-premise
domain, no one can tamper with it and the proxy’s actions are assumed to be legitimate.

In Reference [37], the authors propose a CAC scheme based on a hybrid architecture. A private
DS (i.e., in the on-premise domain) stores confidential patients’ data (e.g., chronic diseases) and it
can be accessed by authorized personnel only. A public DS (i.e., in the CSP domain) handles pa-
tient’s data that are shared with other parties like medical researchers and government authorities.
Access to the DSs is regulated by an RBAC policy. Therefore, each CSP has part of the metadata
needed by the CAC scheme. Finally, each user (e.g., doctors and nurses) is given a secret key (i.e.,
proxyu).

6 RISK ASSESSMENT

In Section 2.2, we formulated four trust assumptions (TA) that we report below for ease of
reference:

• TA1—all communications occur through pairwise authenticated and private channels;
• TA2—users’ devices are secure and protected through passwords or similar mechanisms;
• TA3—the on-premise domain is a secure area within the organization;
• TA4—the CSP is honest but curious.

However, we note that these trust assumptions may not hold in every scenario. Therefore, to
further enhance the general applicability of our architectural model, we present a risk assess-
ment to help administrators in minimizing the level of risk associated with the architectures
when considering a set of attackers (e.g., malicious insiders) aiming at compromising the sensitive
data.

We follow a common matrix-based approach to risk evaluation (e.g., see Reference [15]), where
the risk of an adverse event (e.g., a malicious insider leaking sensitive data) is decomposed in two
dimensions, i.e., likelihood and impact, measured with four different values, i.e., N(egligible), L(ow),
M(edium), and H(igh). For the likelihood, N and H mean that the probability that an adverse event
happens is, for all practical purposes, zero and one, respectively, whereas L and M correspond to in-
termediate values of the probability. For the impact, N and H mean that the negative consequences
of an adverse event happening are negligible and catastrophic, respectively, whereas L and M cor-
respond to intermediate values. The matrix in Figure 4(a) shows how the levels of likelihood and
impact combine to yield a risk level on the same scale with increasing values from N to H.
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Fig. 4. Summary of risk assessment.

The impact of an adverse event can be determined by analysing the capabilities of an attacker
on the assets of a system. For instance, a virus in a user’s device will have access to that user’s data
only, while a malicious insider with access to a server may compromise more data. Differently, the
likelihood crucially depends on the particular scenario in which the system operates. Indeed, the
likelihood is related to the probability that an exploitable vulnerability exists and that it will be ex-
ploited (e.g., the probability of a bug in a software that is exploited by an attacker). Vulnerabilities
due to poor implementation or configuration choices (e.g., using an untested third-party library or
not limiting the physical and logical access to servers in an organization) can be more or less diffi-
cult to exploit because of mitigations put in place (e.g., a sandbox to constrain the communication
between business and personal software or a more restrictive AC policy within the organization).
Therefore, while we can precompute the impact, the likelihood depends on the trust assumptions
of a specific scenario and must be evaluated by the organization on a case by case basis.

Below, we first define the impact on sensitive data by considering the violation of the confi-
dentiality, integrity and availability of the resources of CAC schemes. Note that we tune our risk
assessment at the design level, i.e., considering the abstract categories of resources we identified.
Indeed, a more detailed analysis would overly focus on a particular instantiation of the resources
for a specific CAC scheme, while we want our findings to apply to our general architectural model.
Then, we map resources to entities, discuss possible targets and define the related impact. We
characterize attackers and assess the exposure of architectures depending on the variable location
of the resources, i.e., in which domains the resources are placed. This allows assigning an impact
(high, medium, low or negligible) to the CIA of sensitive data for each combination of architecture-
attacker. Figure 4 summarizes the concepts expressed in this section.
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6.1 Resources and Impact on Sensitive Data

As a metric, we define in Figure 4(b) the impact of the violation of the CIA properties on each
resource to be proportional to the number of files that are affected, i.e., the higher the number
of affected files, the higher the impact. For instance, the leakage of a single symmetric key may
disclose the content of a single file, whereas the leakage of a user’s secret key may allow an attacker
to access all files the user has permission over.

• Encrypted Data: Any violation of encrypted data has a direct impact in terms of integrity and
availability of sensitive data, but not on confidentiality. Indeed, as assumed in Section 5.1,
the confidentiality of the encrypted data cannot be compromised by attacking the available
cryptographic primitives. Finally, we note that the violation of a single encrypted file affects
that file only (negligible impact for confidentiality and low for integrity and availability);
• Secret Keys: compromising the integrity or the availability of secret keys affect the availability

of sensitive data for single users only. For instance, if a user’s secret key gets tampered with,
then that user cannot use his key to access sensitive data anymore. However, as other users’
keys can still be used, this does not have any impact on sensitive data. Instead, the violation of
the confidentiality of a secret key is more severe, since the secret key can potentially be used
to access (i.e., decrypt) many files, as explained in Section 2 (high impact for confidentiality
and negligible for integrity and availability);
• Metadata: while mostly depending on the specific CAC scheme, metadata usually contain

information like the AC policy, digital signatures and public cryptographic keys. Indeed, per-
missions are usually distributed by encrypting secret keys with users’ public keys (see Sec-
tion 2). Therefore, compromising the integrity or availability of users’ public keys or digital
signatures would disrupt the CAC scheme by preventing the distribution or verification of
new permissions. While preventing the CAC scheme to evolve, sensitive data are still intact,
protected and available to all users (negligible impact for confidentiality and availability).
However, we identify a special case in which a user’s (or role’s) public key is not randomly
tampered with, but it is instead replaced with another public key. In this case, all secret keys
intended to be encrypted with the user’s (or role’s) public key are actually encrypted with
another public key. Therefore, the owner of the corresponding private key (e.g., the attacker)
would obtain all future permissions (e.g., assignments to roles or files) that the user (or role)
would receive, with the potential to obtain access to (i.e., read and write) many files before
being discovered (high impact for integrity).

6.2 Resources and Targets

We identify in Figure 4(c) possible targets, i.e., where in the architectures a resource can be com-
promised. In general, a resource can be compromised at rest, in transit and in use. As in Section 5.4,
we consider that the violation of the availability of a (used) resource does not affect the availability
of the original (hosted) resource.

To define the targets, we recall the Hosts and Uses relations of Figures 3(d) and 3(e) in Section 5.1;
the Hosts relation defines which entity stores which resource (at rest), while the Uses relation (in
use) implies a communication channel (in transit) between the entity hosting the resource and the
entity using it. Therefore, a target can be either the entity storing the resource, the entity using the
resource or the communication channel (denoted with↔) between them. When only the confiden-
tiality or the integrity properties can be compromised (i.e., the target is either a communication
channel or an entity that uses the resource), we use the subscript ci. For instance, Hosts defines
that encrypted data are hosted by the DS (first target), while Uses defines that encrypted data are
used by both the proxy and the RM (two other targets). Since encrypted data need to be exchanged
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by these entities, we consider also the communication channels between the DS and the proxy or
RM (two other targets). In total, encrypted data have five different targets. The same reasoning
applies to metadata, hosted by the MS and used by the proxy and the RM. Instead, secret keys are
hosted by the proxy and not used by any other entity. Therefore, the only target for secret keys is
the proxy.

Finally, note that the presence of communication channels is conditional on the architecture; if
two entities are in the same domain, the communication channel is implicit within that domain, i.e.,
data are not exchanged externally through the internet. Therefore, in this case, the communication
channel (i.e., the target) does not exist.

6.3 Targets and Impact

We derive the relationship between targets and impact on sensitive data in Figure 4(d). We use
Figure 4(c) to identify which resources can be affected for each target. For instance, the proxy is
a target for secret keys, metadata (only confidentiality and integrity) and encrypted data (only
integrity). Then, we use Figure 4(b) to determine the impact based on the affected resources. To be
conservative, we derive the impact due to the violation of each security property by considering
the worst-case. For instance, compromising the confidentiality of secret keys and metadata in the
proxy has a high and negligible impact, respectively. Therefore, the worst-case impact is high.

6.4 Attackers and Architectures Exposure

We characterize attackers by complementing the trust assumptions formulated in Section 2.2 and
reported at the beginning of this section:

• (¬TA3∨¬TA4) Malicious Insider: we consider a malicious insider attacker (e.g., disgruntled
employee) when the trust assumptions on domains (i.e., on-premise domain is fully trusted,
CSP domain is partially trusted) do not hold. In this case, the on-premise and the CSP do-
mains may be subject to internal attackers that may access and compromise any resource
used or hosted by entities present in these domains;
• (¬TA1) Man-in-the-Middle (MitM): given that entities may be located in different domains,

one or more communication channels must be established to allow for the exchange of data
(e.g., read and write operations). However, if communication channels are not assumed to be
secure (e.g., in an IoT context with limited cryptographic resources), then an attacker may
spoof or tamper with transferred data. We consider a MitM attacker for each pair of domains;
• (¬TA2) Man-in-the-Device (MitD): in enterprise contexts, especially in recent years, the

Bring-Your-Own-Device (BYOD) paradigm has emerged in which employees use their
own device also for work. However, this practice increments security risks related to the
clientu domain (e.g., viruses, side channels attacks). Also, unsupervised devices (e.g., IoT
sensors) may be targeted by a physical attacker. Therefore, the MitD attacker affects the
clientu domain.

We can now compute the impact for each tuple architecture-attacker-security property. To il-
lustrate our approach, we report some architectures with the related impact in Figure 4(e); the
attacker determines which domain or pair of domains is affected, while the architecture indicates
the possible targets. Depending on the architecture, the attacker may affect none, one or more tar-
gets. The impact level of an attacker is the worst-case impact of all targets affected by that attacker.
For instance, in the first row of Figure 4(e), the malicious insider attacker in the CSP domain affects
the MS, RM, and DS entities. The impacts due to the violation of the CIA properties are, respec-
tively, 〈N ,H ,N 〉, 〈N ,H ,N 〉, and 〈N ,L,L〉. Therefore, the impact of this attacker on that particular
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architecture is 〈N ,H ,L〉. Note that the impact of the CSP malicious insider may change based on
the architecture, as for the other attackers.

As mentioned at the beginning of this section, the likelihood of an attacker depends on the
specific scenario and trust assumptions. Therefore, while we can precompute the impact, the like-
lihood is an input from the administrators. For instance, if an organization blindly trusts its em-
ployees, then we should not consider the presence of a malicious insider in the on-premise domain.
Also, if the organization has a strict policy on the security of the employees’ devices (e.g., no BYOD,
monitoring software, antivirus installed), then the likelihood of a MitD attacker decreases. Once
the likelihood is given, the risk level can be automatically computed as the product of impact and
likelihood as reported in Figure 4(a).

Summarizing, in this section, we have focused on the impact on sensitive data with respect to
the violation of the CIA properties of the resources of CAC schemes. However, there are other
aspects (e.g., redundancy, reliability) that are important to consider but do not depend on the trust
assumptions reported at the beginning of this section; these will be discussed in Section 7.

7 TRADE-OFF ANALYSIS FOR ARCHITECTURAL DESIGNS

In this section, we formalize the problem (introduced in Section 3.3) of selecting the set of ar-
chitectures ARCopt that optimize both the risk levels and the multiple goals of a scenario as a
MOCOP [24].

Below, we first identify security and usability goals that may be desirable in different scenarios
(as illustrated in Section 3.1 and Section 3.2). The set of goals is not meant to be exhaustive or
representative, it is only given as an example to illustrate the optimization problem; other goals
may easily be added. We discuss how different architectures affect the degree of achievement of
these security and usability goals. Then, we show how to reduce the problem of selecting the
set of architectures ARCopt that optimize both the risk levels and the goals into an optimization
problem that considers the simultaneous maximization of two collections of objective functions;
the first collection regards the minimization of the risk levels (or, equivalently, the maximization
of the complement of the risk) of C, I, and A, while the second collection regards the maximization
of the goals. Finally, we propose two different algorithms to solve the MOCOP and study their
computational complexity in the best, worst and average cases.

7.1 Identifying Goals

From both cloud-relevant literature and also from industrial-relevant technical reports [43], we
sample eight security and usability goals that may be desirable in our scenarios:

• Redundancy [21, 25, 44]: the extent to which the architecture allows to effectively have du-
plicated resources;
• Scalability [23, 25, 33, 41, 45, 46]: the ability of the architecture to scale up and down to

accommodate dynamic workloads (e.g., the variable number of users’ requests);
• Reliability [21, 23, 25, 35, 41, 45]: the ability of the architecture to keep working after the

failure of one or more entities. We measure reliability through Single-Point-of-Failures

(SPOF);
• Maintenance [21, 25, 33, 41, 44]: the easiness in the deployment and maintenance (i.e., soft-

ware updates) of the architecture;
• Denial-of-Service Resilience [12, 23, 25, 35]: the intrinsic resilience of the architecture to

Denial-of-Service (DoS) attacks;
• Minimization of CSP Vendor Lock-in [23, 45]: the easiness in switching CSP in the architecture

(e.g., from AWS to Azure);
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Table 3. Single Entity Effect on Goals

• On-premise Monetary Savings [21, 23, 25, 33, 45]: the monetary savings due to not adding
entities to the on-premise domain;
• CSP Monetary Savings [21, 23, 25, 33, 45]: the monetary savings due to not adding entities to

the CSP domain, e.g., because the organization already has an internal infrastructure.

7.2 Effect on Goals

We adopt a modular approach to evaluate the effect that an architecture has on the various goals.
We consider the effect of each entity—when contained in a certain domain—on each goal in isola-
tion. We summarize our considerations in Table 3 by discussing the effects on the goals identified
in Section 7.1. Each entity-domain pair may have either a positive (+), negligible (=), or negative
(−) effect on a goal.

• Effect on Redundancy. The CSP is a geographically distributed domain with mechanisms for
replicating data across large areas [7]. On the contrary, the on-premise domain limited to
one location. Therefore, redundancy is enhanced when entities are in the CSP domain;
• Effect on Scalability. As with the redundancy goal, scalability is a peculiarity of CSPs [7].

The more entities are in the CSP domain, the more scalable is the architecture. Also, the
architecture gets more scalable when the proxy is deployed in the clientu domain, thus the
burden of cryptographic operations is distributed among the users;
• Effect on Reliability. As for the redundancy goal, the CSP is generally more reliable than the

on-premise domain [7]. Entities deployed in the on-premise domain create SPOFs and make
the whole architecture less robust;
• Effect on Maintenance. The presence of entities in the on-premise domain leads to greater

deployment (e.g., setup and configuration of the infrastructure) and maintenance (e.g.,
operative systems and runtime environments updates) effort. These issues are delegated to
a third-party when entities are deployed in the CSP domain;
• Effect on DoS Resilience. The CSP domain is intrinsically resistant to DoS attacks [7]. There-

fore, the more entities are in the CSP (or clientu) domain, the more the architecture is DoS re-
sistant. On the contrary, DoS attacks affect the availability of on-premise entities more easily;
• Effect on Minimization of CSP Vendor Lock-in. Intuitively, each entity in the CSP stresses the

vendor lock-in effect. On the contrary, vendor lock-in is minimized when entities are in the
on-premise and clientu domains;
• Effect on On-premise Monetary Savings. The less the organization runs entities internally,

the more the on-premise-related costs are reduced;
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• Effect on CSP Monetary Savings. The less the organization deploys entities in the CSP, the
more CSP-related costs are reduced.

From Table 3, we see that using the CSP yields advantages on several goals. This favours the
use of the CSP in the architectures of CAC schemes. Indeed, as discussed in Section 4, CAC may
be unnecessary in architectures not using the CSP.

In contrast, hybrid architectures tend to balance the pros and cons. For instance, assume that an
architecture expects the MS to stay in the CSP domain and that the storage service is billed based
on the amount of data stored (e.g., like AWS S3 pricing).13 In a hybrid architecture, metadata are
split and stored in two MSs, one MS in the on-premise domain and one MS in the CSP domain.
Supposedly, the MS in the CSP domain would store only half of the metadata, resulting in half of
the price (i.e., half of the savings). Therefore, we assume that hybrid architectures do not affect the
goals. This is just an example and the effect of hybrid architectures, as well as the others, can be
tuned depending on the specific scenario and organization. In other words, the organization can
easily tune the effects in Table 3 based on its specific needs.

7.3 Pre-filters

We note that not all architectures arc ∈ ARC may be of interest for a particular scenario. For
instance, as said in Section 5.4, the architectures of some CAC schemes do not expect the RM. In
this case, we should exclude fromARC every architecture expecting the presence of the RM. Fur-
thermore, depending on the organization and scenario, there may or not be sensitive metadata.
Architectures associating sensitive metadata with a domain not guaranteeing metadata confiden-
tiality should also be excluded. For instance, an RM using or an MS hosting sensitive metadata
cannot stay in the CSP domain. To formalize this, we define the Pre-Filters set containing the ar-
chitectures that shall be excluded from the MOCOP. Consequently, we defineARCsub ⊆ ARC as
the set of architectures in ARC but not in Pre-Filters:

ARCsub = {arc ∈ ARC|arc � Pre-Filters} (4)

7.4 Multi-objective Combinatorial Optimization Problem

We consider the simple approach of combining the effect of each pair 〈ent ,dom〉 on a goal, under
the assumption that the effects are independent of each other. In practice, we “add” together the
+, − and = symbols as adding the numbers +1, −1, and 0, respectively. Formally, this is equivalent
to considering an objective function д : ARCsub �→ Z associated with each goal. Having as input
the set of 〈ent ,dom〉 pairs of an architecture arc ∈ ARCsub, the objective function returns the sum
д(arc) of the symbols (+, −, and =) associated to each 〈ent ,dom〉 pair, as defined in each row of
Table 3. Note that hybrid architectures have two 〈ent ,dom〉 pairs for the same ent .

To be conservative, we aggregate the 18 risk levels associated with an architecture (from Sec-
tion 6) by assuming the worst risk level across all the attackers for each CIA property. For this, we
add three more objective functions, namely, дC ,дI ,дA. Since we are considering the maximization
of the objective functions, we make дC ,дI , and дA measure the complement of the risk (i.e., the
protection level) of each CIA property. To calculate the protection levels, we simply invert the
scale of risk levels and associate a number from 0 (negligible protection, high risk level) to 3 (high
protection, negligible risk level).

We observe that the Multi-objective Optimisation Problem (MOOP) we introduced in Refer-
ence [3] belongs to a particular sub-class of MOOP called MOCOP [24], whereby the set of possible
solutions is discrete and is endowed with a particular algebraic structure. Indeed, the setARCsub

13https://aws.amazon.com/s3/pricing/.
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Table 4. MOCOP Formalization

of candidate architectures is finite and it is structured according to the relations introduced in Sec-
tion 5 (Figure 3(a)). When considering cloud-based CAC schemes only, ARCsub is also bounded
(as already observed in Section 5.4, it contains 81 elements). However, we highlight that the ar-
chitectural model presented in Section 5 can be extended to other paradigms as well (e.g., IoT,
Edge Computing). In turn, this would allow us to identify further domains, entities and resources
(e.g., publish/subscribe IoT brokers, intermediate edge computing nodes), thus expanding the set
ARCsub. As we explain below, these observations allow us to reuse available techniques for the
solution of instances of the MOCOP to perform the trade-off analysis necessary to identify the
best candidate architectures for a given deployment. We highlight that, when considering only
the three objective functions дC , дI , and дA in the MOCOP, the trade-off analysis reduces to a risk
assessment, i.e., to the problem of finding the most secure architectures for a given scenario. In-
stead, when considering only goals, the trade-off analysis reduces to the problem of finding the
most performant architectures for a given scenario.

We are now ready to formalize as a MOCOP [24] the problem of finding the set of architectures
ARCopt ⊆ ARCsub such that the tuple (дRedundancy, . . . ,дC ,дI ,дA) of objective functions measur-
ing the degree of achievement of the goals and the protection levels (see Table 4 for an example)
is maximum:

max
arc∈ARCsub

(дRedundancy (arc), . . . ,дC (arc),дI (arc),дA (arc)) (5)

Particular care should be put in the definition of the operator max as it may be impossible
to find a solution (a single architecture, in our case) that simultaneously maximizes all objective
functions in Equation (5). In fact, for any non-trivial MOCOP, there is no single solution that is
simultaneously optimal for every goal (e.g., see Reference [24]). Instead, there may exist several
architectures (i.e., ARCopt is a finite set of cardinality equal or larger than 1) that can be consid-
ered equally good, called Pareto Optimal [24]. Formally, an architecture arc∗ ∈ ARCsub is Pareto

Optimal if and only if there is no architecture arc ∈ ARCsub such that дi (arc) ≥ дi (arc∗) for each
дi in the set of objective functions G and дj (arc) > дj (arc∗) for at least one дj ∈ G. In other words,
an architecture is Pareto Optimal if there does not exist another architecture that improves one
objective function without detriment to another. In this case, following the notation in Reference
[14], we write arc∗ � arc to denote that arc∗ ties or is higher than arc on each objective function
and it is strictly higher on at least one, i.e., arc∗ dominates arc.

Since the set ARCsub of possible solutions is finite (recall that ARC ⊇ ARCsub ⊇ ARCopt ),
it is possible to enumerate all vectors of objective function values and then find those satisfying
the definition of Pareto optimality; the decidability of Equation (5) is thus obvious. Below, we
discuss two possible approaches to solve the MOCOP, i.e., the definition of a set of Pareto Optimal

ACM Transactions on Privacy and Security, Vol. 25, No. 1, Article 2. Publication date: November 2021.



Formal Modelling and Automated Trade-off Analysis of Enforcement Architectures 2:23

ALGORITHM 1: Best algorithm from Reference [14]

Input: ARCsub

Output: ARCopt

let ARCopt = ∅; // Initialize the empty set of Pareto Optimal Solutions

while ARCsub is not empty do

let arc∗ = shift(ARCsub); // Get the first architecture

foreach arc in ARCsub do

if (arc � arc∗) then

arc∗ = arc; // Replace the Pareto Optimal Solution

end

add(arc∗, ARCopt ); // Add the new Pareto Optimal solution to ARCopt

foreach arc in ARCsub do

if (arc∗ � arc) then

remove(arc, ARCsub); // Remove the architecture from ARCsub

end

end

architectures (Section 7.5) and the reduction of Equation (5) to a single objective optimisation
problem (Section 7.6).

7.5 Solving the MOCOP—Multi-dimensional Maximum Vector Problem

One straightforward approach to solve Equation (5) consists in transforming the MOCOP into the
multi-dimensional maximum vector problem [14] that amounts to identifying the maximals over
a collection of vectors. The idea is to consider the vectors of values obtained by evaluating the
objective functions on all the architectures in ARCsub (e.g., see the rows in Table 4 as vectors)
and then reuse off-the-shelf the available algorithms for solving the multi-dimensional maximum
vector problem (e.g., those in Reference [14]). In this way, we do not exploit the algebraic structure
of the set ARCsub as suggested in Reference [24] to develop appropriate heuristics for improved
performance. However, this is acceptable in our context in which the cardinality of ARCsub is
bounded by 81 (Section 5.4), although dedicated heuristics should be defined when extending the
architectural model to arbitrarily complex scenarios (e.g., IoT, Edge Computing) in which the cardi-
nality ofARCsub (andARCopt ) can be assumed to be unbounded. We highlight that the number of
objective functions can be assumed to be unbounded as well, since further goals can be considered
besides the ones presented in Section 7.1. Below, we discuss the complexity of solving Equation
(5) with the multi-dimensional maximum vector approach.

Letk = |G | be the number of objective functions,n = |ARCsub | the number of possible solutions
(i.e., architectures) and p = |ARCopt | the number of Pareto Optimal solutions. The first step to
solve Equation (5) is to evaluate all objective functions for each architecture; this is easily seen to
have complexityO (k ·n). Then, to solve the resulting multi-dimensional maximum-vector problem,
we use the Best algorithm described in Reference [14] (and shown as Algorithm 1): Best first
iterates over the set of possible solutions ARCsub to find a single Pareto Optimal solution arc∗.
Then, Best removes from ARCsub all solutions that are not Pareto Optimal with respect to arc∗.
In following iterations, more solutions can be found. Finally, Best ends when ARCsub is empty.

As Best iterates overARCsub once for each Pareto Optimal solution, the complexity depends on
p. In the best case there is a single Pareto Optimal solution (i.e., p = 1) and Best iterates only twice
on ARCsub by making k comparisons for each arc ∈ ARCsub, with a complexity of O (k · n). The
worst case, where every architectures is optimal (i.e.,p = n), requiresn iterations with a complexity
of O (k · n2). Finally, in the average case (i.e., 1 < p < n), the complexity is O (k · n · p). Generally,
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the complexity of Best is the sum ofO (k ·n), to calculate the values of objective functions, i.e., the
vectors, and O (k · p · n), to compute ARCopt . Therefore, the final complexity is O (k · n · p).

After running Best, an organization is still left with the task of choosing one among the optimal
solutions in ARCopt . This requires some ingenuity by experts in security and in the other fields
to which the objectives belong (e.g., performance and quality of service). A possible strategy is
that each group of experts independently evaluate the alternative architectures inARCopt . Then,
they meet to reach a consensus on the architecture that strikes the best possible trade-off by using
priorities on the various goals or using criteria that are difficult to formalize as an objective function
to be included in the MOCOP Equation (5). Assuming that an organization already defined the
priorities among the various objectives, it is possible to reduce the MOCOP Equation (5) into a
single objective optimization problem that amounts to considering one objective function obtained
by a linear combination of the objective functions in Equation (5) where the coefficients are weights
representing priorities. Below, we elaborate on this idea by mapping Equation (5) into a single
objective optimization problem.

7.6 Solving the MOCOP—Single-objective Optimisation Problem

After having solved the multi-dimensional maximum vector problem described in Section 7.5, ad-
ministrators have to decide by themselves which architecture among the Pareto Optimal ones
best fits their scenario. To provide a further tool to help administrators, we give the possi-
bility to translate the MOCOP Equation (5) into a Single-objective Optimization Problem

(SOOP). Again, we note that this is one possible formalization, where also others are pos-
sible (e.g., Minimum-cost Flow [18], Generalized Assignment Optimization Problem [31]). In
the SOOP, the objective function to optimize is the weighted sum of the objective functions
дRedundancy (arc ), . . . ,дC (arc ),дI (arc ),дA (arc ). In other words, we construct an objective function
of the form

∑
дi ∈G wдi

· дi . The constants wдi
∈ R’s are weights and model the importance of

achieving a certain protection level or goal. Technically, it is necessary to assume weights to be
positive for guaranteeing that the solution of the transformed problem belongs to the setARCopt

of Pareto Optimal solutions [24]. While the multi-dimensional maximum vector problem returns
a set of architectures ARCopt , the SOOP exploits the a priori knowledge encoded in the weights
defined by administrators to return a single architecture arc∗, i.e., the one deemed to be the best
among the Pareto Optimal architectures.

However, we note there are two semantically distinct metrics with respect to which evaluate
an architecture, i.e., the protection levels and the security and usability goals. As a validation
example, we choose to keep separate these two metrics and formulate two different SOOPs. We
highlight that this is one possible option, while others are available (e.g., normalize the two metrics
by the respective maximum value and then calculate the weighted sum). Given the MOCOP in
Equation (5) and a tuple (wRedundancy, . . . ,wC ,wI ,wA) of weights, we derive the following two
SOOPs:

max
arcgoals∈ARCsub

(wRedundancy · дRedundancy (arc) + . . . +wCSPSavings · дCSPSavings (arc)) (6)

max
arcprotection∈ARCsub

(wC · дC (arc) +wI · дI (arc) +wA · дA (arc)) (7)

When solved, these two problems identify the two architectures that are best with respect to
performance and risk exposure. The two architectures are guaranteed to be Pareto Optimal for the
original MOCOP Equation (5) only if they coincide, i.e., they are the same architecture [24]. If the
solutions are different, then administrators should manually find the best one for their scenario.
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ALGORITHM 2: AdHoc Algorithm

Input: ARCsub , (wRedundancy (arc ), . . . , wC (arc ), wI (arc ), wA (arc )) for each arc ∈ ARCsub

Output: arcgoals, arcprotection ∈ ARCsub

let arraygoals = []; // Array of pairs 〈weighted summed goals, architecture〉
let arrayprotection = []; // Array of pairs 〈weighted summed protection levels, related architecture〉

foreach arc in ARCsub do
arraygoals.push( (wRedundancy · дRedundancy (arc) + . . . +wCSPSavings · дCSPSavings (arc), arc) )

arrayprotection.push( (wC · дC (arc) +wI · дI (arc) +wA · дA (arc), arc) )

end

let arcgoals = max(arraygoals)[1] // The best architecture for goals

let arcprotection = max(arrayprotection)[1] // The best architecture for protection levels

Since relying on scenario-specific priorities, we name the algorithm to solve the two SOOPs as
AdHoc and show it as Algorithm 2. As in Section 7.5, the first step is the evaluation of all objective
functions for each architecture, i.e., O (k · n). Then, objective functions are weighted and summed
together to obtain two values (i.e., goals and protection levels) for each architecture; the complexity
is again O (k · n). Finally, to find the two best architectures, we simply select the two respective
maximum values with complexity 2 ∗O (n). Therefore, the final complexity is O (k · n);

Finally, we can compare the complexity of Best (Algorithm 1) and AdHoc (Algorithm 2). By
comparing the two complexities, i.e., knp > kn, we note that the complexity of Best is greater
when p > 1. This means that the two algorithms perform the same in the best case only, while in
all other cases the AdHoc algorithm is faster. In the next section, we describe an implementation
of the algorithms in a proof-of-concept application to assist administrators in the deployment
of the best CAC schemes architectures for the eHealth Section 3.1 and eGovernment Section 3.2
scenarios.

8 ASSISTED DEPLOYMENT OF CAC SCHEMES

In this section, we present how our architectural model and the MOCOP Equation (5) can be
used to assist administrators in the deployment of CAC schemes architectures. The workflow is
summarized in Figure 5 as a two-step deployment process. The idea is to provide administrators
with a dashboard in which they can set pre-filters, trust assumptions, and requirements on the
risk levels and security and usability goals of their scenario. In the first step, the dashboard
allows performing a thorough “What-if” analysis to carefully assess the protection levels and
the security and usability goals of architectures in ARCsub. For this, we provide an automated
MOCOP Solver, which embeds both the Best and AdHoc algorithms. Through the What-if
analysis, the administrators can find the most suitable architecture arc∗ for their scenario. In the
second step, the administrator inputs arc∗ in the Blueprint Generator to automatically generate a
deployable specification (Blueprint) based on the TOSCA14 OASIS standard; a database containing
blueprint fragments (Fragments) is used by the Blueprint Generator to build a TOSCA compliant
representation of arc∗. We rely on the TOSCA-based Cloudify framework to automatically deploy
the generated blueprint in the major CSPs, using the CAC entities we implemented (i.e., blue
icons). The ultimate purpose is to optimize and simplify the time consuming and error-prone
activity of manually selecting and deploying CAC schemes architectures in the cloud. As a
final remark, in our deployment process, we are not considering configuration tasks (e.g., the

14https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca.
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Fig. 5. Two-step deployment process.

installation of the Cloudify framework software) or prerequisites (e.g., the subscription to the
CSP to obtain administrator credentials) that are implicitly appointed to the organisation.

Below, we describe the dashboard and a proof-of-concept application of the two-step deploy-
ment process for the eHealth (Section 3.1) and eGovernment (Section 3.2) scenarios. We report
the Blueprint fragments for the architecture arc∗ of the eGovernment scenario in complementary
material.15 Finally, we describe the use of TOSCA and Cloudify to deploy the architecture arc∗ for
the eGovernment scenario (Section 8.4) and briefly discuss the implementation of a CAC scheme
supporting this architecture (Section 8.5).

8.1 Web Dashboard

We implement both Best (Algorithm 1) and AdHoc (Algorithm 2) in a dashboard developed with
web technologies (i.e., HTML, Javascript, CSS). Administrators can set pre-filters to defineARCsub

and assign a likelihood to each attacker. The dashboard allows administrators to decide which
algorithm to use; if AdHoc is chosen, then administrators can provide the weights wдi

∈ R and
decide whether to evaluate the architectures on the goals or on the protection levels. The dashboard
solves the MOCOP Equation (5) with the chosen algorithm and shows either the set ARCopt of
Pareto Optimal architectures (Best) or the single two best architectures (AdHoc) along with the
details on the goals or protection levels.

In some cases, a constrained variant of the SOOP may be of interest. From the descriptions
in Section 3.1 and Section 3.2, scenarios may benefit from the enforcement of hard and soft con-
straints. These are, respectively, mandatory and optional thresholds values expressing conditions
on the single objective functions. When an (optional) threshold is undefined, we set its value to an
arbitrarily large number; similarly, when a constraint associated with an objective is hard, we set
the penalty value to an arbitrarily large number. For a given objective function д and associated
threshold t and penalty v value, we define [д]t

v as follows:

[д]t
v (arc) = if д(arc) < t then д(arc) −v else д(arc)∀arc ∈ ARCsub (8)

Given a MOCOP Equation (5), a tuple (wRedundancy (arc), . . . ,wC (arc),wI (arc)wA (arc)) of
weights, a tuple (tRedundancy (arc), . . . , tC (arc), tI (arc)tA (arc)) of threshold values and a tuple

15https://stfbk.github.io/complementary/TOPS2020_2.
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Table 5. Performance Analysis of Best and AdHoc

Time in milliseconds.

of penalty values (vRedundancy (arc), . . . ,vC (arc),vI (arc)vA (arc)), we derive the following two
constrained variants of the original SOOPs:

max
arc∈ARCsub

(w
Redundancy

·[дRedundancy]
vRedundancy
tRedundancy

(arc)+ · · ·+wCSPSavings ·[дCSPSavings]
vCSPSavings
tCSPSavings

(arc))

(9)

max
arc∈ARCsub

(wC · [дC ]vC
tC

(arc) +wI · [дI ]vI
tI

(arc) +wA · [дA]vA
tA

(arc)) (10)

To give a clearer indication of the time needed to solve the MOCOP Equation (5), we measure
the efficiency (i.e., the run time) of the Best and (constrained) AdHoc algorithms in the best, worst
and average cases. To do so, we manually tune the values of the objective functions to have only
one Pareto Optimal architecture (best case), all Pareto Optimal architectures (worst case) and only
half Pareto Optimal architectures (average case). For each case, we then run 1,000 iterations of the
Best and the AdHoc algorithms to reduce possible measurement errors. We performed the tests
on a Dell 7577 laptop equipped with an Intel Core(TM) i7-7700HQ processor and 16 GB of DDR4
RAM. We report the results in milliseconds in Table 5.

In the best case (p = 1), the time required to solve the MOCOP Equation (5) by the Best and
(constrained) AdHoc algorithms is still comparable, as the computational complexity for both is the
same, i.e.,O (k ·n). As expected, the run time of Best increases as the cardinality of the setARCopt

grows. In any case, we can argue that the actual time needed to solve the MOCOP is negligible (at
most 131.702 ms, less than one-eighth of a second). Below, we present two concrete applications
to the eHealth (with Best) and eGovernment (with constrained AdHoc) scenarios.

8.2 MOCOP Application on the eHealth Scenario

As presented in Section 3.1, we suppose the presence of a clinic treating mental disorders. We
report in Figure 6 a screenshot of the web dashboard configured to find ARCopt for the eHealth
scenario with the Best algorithm.

The “Pre-Filters” section allows administrators to set pre-filters to defineARCsub. For instance,
the requirement eHR1 (need to hide metadata to avoid information leaking) makes metadata
sensitive, excluding therefore architectures with the MS or RM entity in the CSP domain, i.e.,
ARCsub = {arc ∈ ARC|〈MS,CSP〉 � arc, 〈RM,CSP〉 � arc}. As said in Section 5.1, metadata
could be encrypted and turned into not-sensitive metadata at the cost of additional overhead on
the CAC scheme. This would allow the MS to stay in the CSP domain. The RM, however, would
still need to access plain-text metadata, so the RM could not stay in the CSP domain anyway. Con-
sidering a highly specialized clinic with well-paid doctors, eHA1 (there is a low probability of
disgruntled doctors) lowers the likelihood of an on-premise malicious insider, for instance to low.
Instead, for the same reasons explained in Section 3.1, eHA2 (CSP may be curious about medical
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Fig. 6. Web dashboard for eHealth scenario (Best algorithm).

data and metadata) suggests that a CSP may actively try to access medical record, suggesting a
high likelihood for a CSP malicious insider.

The “Best Architectures” section in Figure 6 shows the resulting Pareto Optimal architectures.
Having all zero or positive objective function values, the first architecture of the list may seem the
optimal choice for the eHealth scenario. However, it also has zero protection level on the confiden-
tiality and integrity of sensitive data. This is due to the high number of communication channels
and the presence of the proxy entity in the client domain, which amplify the impact of MitM
and MatD attackers. However, while having several negative objective function values, the three
architectures at the end of the list are instead more secure, as they imply fewer communication
channels and no entities in the client domain. Even though not identifying a single architecture
for scenarios in which requirements are not known a priori, the web dashboard allows organisa-
tions to investigate the trade-off between functionality and risk exposure to make more informed
decisions through a “What-if” analysis.

8.3 MOCOP Application on the eGovernment Scenario

As presented in Section 3.2, we consider a PA that wants to allow citizens to access government-
issued personal documents (e.g., tax certificates) anywhere and anytime. We report in Figure 7 a
screenshot of the web dashboard to find arcgoals and arcprotection for the eGovernment scenario with
the constrained AdHoc algorithm.

The requirement eGR1 (need to enable citizens’ access from anywhere) may suggest storing
data in a public cloud to allow for ubiquitous access to encrypted data. This implies exclud-
ing architectures with the DS entity in the on-premise domain, i.e., ARCsub = {arc ∈ ARC
|〈DS,on-premise〉 � arc}. With the AdHoc algorithm, administrators can set their requirements in
terms of weights w i ∈ R and constraints on the values of the objective functions of goals and pro-
tection levels. For instance, the requirement eGR2 (simplify the maintenance of the architecture)
can be translated as a hard constraint that excludes architectures with a negative value on the
maintenance goal. Instead, the requirement eGR3 (limit CSP-related costs for budget constraints)
can be translated as a soft constraint imposing a penalty (e.g., −5) for architectures with a negative
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Fig. 7. Web dashboard for eGovernment scenario (AdHoc algorithm).

value on the CSP monetary savings goal. The requirement eGR4 (prioritize the scalability of the
services) can assign a higher weight to the scalability and reliability goals. For instance, the values
can weight twice as much (i.e., wдScal abil ity

= 2,wдReliabil ity
= 2). In line with the requirement

eGR1, we could set the weight of the availability property to two (i.e., wдC
= 2). Finally, the trust

assumption eGA1 (the presence of disgruntled employees is possible) suggests a high likelihood
for on-premise malicious insiders. Moreover, the trust assumption eGA2 (communication channels
may not always be secure) could set the likelihood of MitM attackers to medium.

We can see from Figure 7 that the two architectures arcgoals and arcprotection for the eGovernment
scenario coincide. The resulting architecture uses CSP services as much as possible. This reflects
the scalability and reliability priorities. At the same time, this architecture enhances the simplicity
of deployment and maintenance while avoiding the use of the on-premise domain (due to the high
likelihood of a malicious insider).

8.4 Architecture Modeling with Cloudify

Once identified the most suitable CAC scheme architecture for a scenario, we need a CSP-
independent modelling. We rely on the TOSCA OASIS standard for a flexible and portable
representation of the architecture. TOSCA is a YAML-based modelling language addressing the
lack of a standardized view on cloud services (e.g., storage, cloud functions). The goal of TOSCA
is to reduce cost and time associated with the migration of cloud applications across different
CSPs. For the actual modelling, we choose Cloudify,16 a TOSCA-based cloud orchestration

16https://cloudify.co/.
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framework supporting major CSPs (e.g., Azure, AWS, Google, OpenStack). Cloudify allows
graphical modelling of cloud applications by creating and configuring cloud services like servers
and network appliances. The graphical model is translated to a TOSCA-compliant YAML called
“blueprint” and it is composed of nodes representing cloud services (e.g., security groups, cloud
functions) and relationships (e.g., a database hosted by a server). Given a blueprint, Cloudify
automatically deploys and orchestrates the cloud application. We manually develop the blueprint
template of the most suitable CAC scheme architecture of the eGovernment scenario and report
it in complementary material.17 In detail, we model an AWS relational database service (i.e.,
MS), a Lambda cloud function (i.e., RM) and the S3 storage service (i.e., DS). The proxy is not
part of the blueprint, since it is expected to be installed in users’ computers. Further blueprints
corresponding to other architectures can be deployed as easily. Finally, we highlight that, while
automating as much as possible the deployment of the CAC scheme architecture, some steps
(e.g., the subscription to the CSP to obtain administrator credentials, the installation of Cloudify)
cannot be automated and are appointed to the organisation.

8.5 CAC Scheme Implementation

As the last step to make our approach operational, we provide a fully working implementation of
the CAC scheme proposed in Reference [12]. We choose this scheme because it natively supports
the architecture of the eGovernment scenario as well as many others. As explained in Section 2.2,
the CAC scheme in Reference [12] uses hybrid encryption; we choose RSA [38] for asymmetric
encryption and AES for symmetric encryption.

We implement the proxy as a Java program, named CryptoAC, to be installed in the computer of
each user. The users’ secret key is generated and stored inside the user’s proxy, which then allows
the administrator to manage the AC policy and users to add, read, and write files accordingly. We
deploy the other entities (i.e., MS, RM, and DS) using AWS services. In particular, we implement
the MS as an AWS RDS MySQL database. To limit the disclosure of the AC policy to the users,
we employ views and row-level permissions to automatically filter entries not associated with the
user querying the database. In this way, each user knows his portion of the AC policy only, and
we respect the need-to-know principle (i.e., each user has access only to the information strictly
needed to accomplish his task). Then, we implement the RM with Lambda functions and the DS
with AWS S3. Through the Java AWS SDK, the proxy can invoke the RM to send add and write
files requests and the DS to download (encrypted) files, respectively.

Finally, we test our implementation with several simulated sequences of operations involving
the creation of users and roles, assignment and revoking of permissions and the creation, update
and management of files. We also implemented a graphical user interface for the proxy based on
web technologies18 and made available RESTful Application Programming Interfaces (APIs)s
for a possible centralized use (i.e., proxy on-premise). We made CryptoAC open-source,19 along
with other resources.20

9 RELATED WORK

The topic of preserving the confidentiality of data hosted in the cloud has been widely addressed
both in theory and practice. In this section, we report related work from both industry and research.

17https://stfbk.github.io/complementary/TOPS2020_2.
18https://stfbk.github.io/complementary/TOPS2020_2.
19https://github.com/stfbk/CryptoAC.
20https://stfbk.github.io/complementary/TOPS2020_2.
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9.1 Cryptography in Remote Storage through External Software

Many free and commercial services are available to protect data stored in the cloud. Below, we
offer a comprehensive analysis of the most mature solutions currently available in the market.

Mega21 offers cloud storage services accessible through the Mega open-source client. Each file
is encrypted with an AES key derived from a user’s password.

Similarly, AxCrypt22 is an open-source software for encrypting personal data with AES keys
derived from user-chosen passwords. Users can then share their data as long as the receiver has
an AxCrypt account. AxCrypt also offers an online service to manage users’ password.

Kruptos 223 encrypts personal files and synchronises them across multiple devices. It supports
several remote storage services like OneDrive, Google Drive, and Dropbox. Also, it allows users
to share their files with anyone by packaging encrypted data along with a decrypting routine and
sharing through an external channel the password used to derive the decrypting key.

Cubbit24 takes instead a different approach, as it does not rely on traditional CSPs. In fact, Cubbit
provides to each user the hardware (called “Cubbit Cell”) for storing and managing their data.
Besides claiming a smaller environmental impact, the main motivation behind this approach is the
possibility of decentralizing data storage in a peer-to-peer network of Cubbit Cells to achieve high
redundancy and fault-tolerance. In addition, Cubbit Cells encrypt users’ data with a symmetric key
that is in turn encrypted with the users’ password. In this way, data are protected from external
attackers and malicious insiders. While being functional for individuals, AxCrypt, Kruptos 2, and
Cubbit cannot scale to accommodate the needs of an organization.

Qumulo25 is a file data platform offering a software-defined file system running both on-premise
and on CSP like AWS or Google Cloud. From version 3.1.5, Qumulo Core is featuring encryption
at rest to preserve the privacy of sensitive data in on-premise clusters. Unfortunately, Qumulo still
relies on cloud-side encryption for cloud clusters, allowing CSPs to access sensitive data.

Zadara26 is an enterprise storage solution compatible with AWS, Google Cloud, and Azure. Al-
though Zadara offers encryption at rest, this is on a coarse-grained volume-by-volume basis. More-
over, this feature is disabled by default. A volume is encrypted with a randomly generated AES
key, which is in turn encrypted with a master key derived from a user’s password.

Boxcryptor27 targets organizations by providing end-to-end encryption and data sharing at both
user and group level. All data are stored in the data centre of Boxcryptor’s company. Each user is
given a pair of public-private keys, stored client-side and encrypted with a symmetric key derived
from a password chosen by the user. The modification of the AC policy following the revocation
of permissions is not specified in the technical report.28

LucidLink29 simulates a Network-attached Storage (NAS) on users’ devices, while data are
stored in a CSP. Each user is provided with an RSA key pair; the public key is stored as metadata,
while the private key is encrypted with a user’s password. Each file is encrypted using AES-256
and the encryption key of the parent folder wraps each file key. The administrator gives to a user
access to a folder or file by encrypting the key of the folder or file with the user’s public key. Files
are split into multiple segments to enhance performance, while metadata are synchronized by a

21https://mega.nz/.
22https://www.axcrypt.net/.
23https://www.kruptos2.co.uk/.
24https://www.cubbit.io/technology.
25https://qumulo.com/.
26https://www.zadara.com/.
27https://www.boxcryptor.com.
28https://www.boxcryptor.com/en/technical-overview/.
29https://www.lucidlink.com/.
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central service. Again, the handling of revocation of permissions is not mentioned in the technical
reports.30

Concluding, several tools are available to preserve the confidentiality of cloud-hosted sensitive
data and enforce AC policies. However, such tools either target individuals (i.e., Mega, AxCrypt,
Kruptos 2, Cubbit), provide coarse-grained AC (i.e., Zadara), do not protect data from the CSP (i.e.,
Qumulo) or have architectural constraints (i.e., Boxcryptor and LucidLink). While not having the
same level of maturity, our solution addresses instead exactly these issues.

9.2 Cryptography in Remote Storage Through CSPs’ Services

CSPs offer now several cryptography-based solutions to secure customers’ data from external at-
tackers. OneDrive features now a new security module, Personal Vault.31 Besides enforcing strong
authentication, Personal Vault offers encryption of data at rest and in transit. MongoDB, a popu-
lar database engine, started offering from version 4.2 a client-side field-level encryption feature,32

which preserves the confidentiality of data with respect to external attackers and also the server
hosting the database by performing all encryption and decryption operations in the client.

These solutions offered by CSPs enhance the security of users’ data through cryptography. How-
ever, they either perform cloud-side encryption, thus relying on a central trusted entity to mediate
users’ accesses (i.e., cloud-side AWS, OneDrive), or do not propose a mechanism to define and
enforce AC policies (i.e., client-side AWS, MongoDB).

A different cloud-based solution to achieve secure and regulated data sharing could be the use
of Hardware-based Trusted Execution Environments (TEE). A TEE is a secure area of the pro-
cessor that guarantees the confidentiality and integrity of data and instructions through isolated
execution. ARM TrustZone33 and Intel SGX34 are two instances of TEE that are now becoming
available in major CSPs (e.g., Google Cloud,35 Azure36). In CAC, a TEE may be used as a tool to
store cryptographic keys and encrypt and decrypt sensitive data. Kurnikov et al. [26] implemented
a TEE-based Cloud Key Store (CKS) using password-based remote attestation to authenticate
users and grant the use of cryptographic keys. Furthermore, CKS provides the possibility to define
AC policies over keys so to share them among users. With respect to traditional CAC, CKS solves
the issue of key revocation, as no user actually access any key. However, all cryptographic opera-
tions (i.e., encryption and decryption of files) occur within the TEE, possibly limiting the scalability
of the approach. Indeed, it would be interesting to study the two approaches (i.e., traditional CAC
like Reference [12] and TEE-based CAC like Reference [26]) to compare the relative performance
in different scenarios.

9.3 Cryptographic Access Control

CAC has been applied in several scenarios, like local filesystems [17] and the cloud [12]. Goyal
et al. [17] developed a CAC scheme based on ABE. In their scheme, users can delegate their per-
missions but not revoke them. This makes the whole scheme not usable for a dynamic scenario.
In Reference [28], the authors proposed a similar scheme while also avoiding the disclosure of the

30https://www.lucidlink.com/security/.
31https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-

additional-storage/.
32https://docs.mongodb.com/manual/release-notes/4.2/.
33https://developer.arm.com/ip-products/security-ip/trustzone.
34https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html.
35https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-

confidential-computing-challenge.
36https://azure.microsoft.com/en-us/solutions/confidential-compute/.
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AC policy itself, deemed to be sensitive metadata. Still, run-time modifications of the policy were
not addressed. In Reference [2], the authors considered the revocation of permissions, but they did
not discuss the computational burden that a revocation implies. Garrison et al. [12] studied the
computational usability of a simple dynamic Role-based CAC scheme. They concluded that, even
when considering a minimally dynamic scenario, the CAC scheme is likely to produce significant
computational overheads. Besides, many other trust assumptions (e.g., presence of internal attack-
ers) and usability goals (e.g., scalability, reliability) are often overlooked when designing a CAC
scheme. Mainly, this is because a concrete deployment for a given scenario is seldom considered.
These issues are instead thoroughly investigated in our solution.

9.4 Cryptographic Access Control Architectures

There are few works [13, 22, 34, 41, 45–47] that presented an architecture for their CAC scheme.
In Reference [41], the authors developed a scheme to allow multiple owners to give access to

their data to multiple users, following a mixed Attribute-role-based CAC scheme. The architecture
is composed of four modules responsible for users’ authentication, AC policy management and
data encryption. The authors discussed scalability and performance in read and write operations.
However, the authors did not evaluate other usability goals, nor they discussed the way the four
modules should be deployed by the organization or how they should interact with the CSP. Also,
they did not provide alternative designs for the architecture. The set up of many modules may
carry considerable overhead, making the whole scheme unappealing for small companies.

In Reference [47], the authors employ Role-based Encryption to cryptographically enforce
RBAC policies in the cloud. In their architecture, a CSP stores encrypted data while sensitive meta-
data are stored on-premise. Users communicate only with the CSP. In their architecture, the CSP
is supposed to run cryptographic operations on behalf of the users and to communicate with the
on-premise domain to retrieve the needed metadata. However, the authors did not discuss the fea-
sibility of this communication, nor they analysed other goals of the architecture. The authors im-
plemented their CAC scheme just for analysing the performance of the read and write operations.

In Reference [46], the authors proposed a CAC scheme enabling users’ anonymous access to
data stored in the CSP. The authors implemented a prototype interacting with AWS, providing an
interface so that further CSPs can be supported. However, trust assumptions and usability goals
were not considered. The architecture is fixed and cannot be modified to accommodate different
scenarios.

In Reference [45], the authors proposed and implemented a CAC scheme in a proof-of-concept
tool named “FADE.” The architecture comprehends a quorum of key managers deployed on-
premise. Users interact with a FADE client that can be run in the users’ devices or on-premise.
Multiple CSPs can be supported, and performance and monetary costs were analysed. However,
each file is associated with a single policy, hindering the scalability and maintainability of the
whole AC scheme. The authors also considered extending the scheme with ABAC, but no concrete
design is given.

Ghita et al. [13] implemented a cryptographic CAC scheme using ABE. Even though they devel-
oped a working prototype, many aspects were overlooked. For instance, in their CAC scheme it is
not possible to add roles to the AC policy. This is a tight limitation on the usability of the scheme.
The architecture is fixed and forces the proxy to run in the on-premise domain.

In Reference [34], the authors propose a CAC scheme similar to the one presented in Reference
[12]. However, revocation is handled through onion encryption; each time a permission is revoked,
the CSP adds an encryption layer with a new symmetric cryptographic key on each affected file. For
reading a file, an authorized user has to decrypt all the encryption layers. The administrator can set
a threshold to the number of encryption layers, after which a de-onioning procedure occurs. The
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authors implemented their scheme and obtained only slightly worse performances with respect
to Reference [12] (i.e., 7.2%) while being able to immediately block access to files by revoked users.
Unfortunately, they did not discuss the monetary costs their onion mechanism incurs due to the
many cryptographic operations performed by the CSP. Moreover, metadata are necessarily stored
in the CSP, and the architecture was never discussed explicitly. Again, the implementation had the
only purpose of measuring the efficiency of the CAC scheme.

In Reference [22], the authors designed and implemented a CAC scheme based on non-
monotonic ciphertext-policy ABE. An administrator is responsible for creating cryptographic keys
from users’ attributes and each user has a proxy interacting with the CSP. Unfortunately, the au-
thors used a programming library that not portable to other platforms. Most importantly, the CAC
scheme does not support the dynamicity of the policy as it was left as future work.

Djoko et al. [8] proposed to cryptographically enforce AC policies in the cloud by leveraging
TEEs at client-side. The authors developed NeXUS, a CSP-independent stackable filesystem map-
ping generic APIs exported by the TEE to the actual underlying storage platform. NeXUS can
enforce discretionary access control policies over shared volumes (i.e., at directory level) by attach-
ing cryptographically protected metadata (e.g., file system layout, cryptographic keys, AC policy)
and encrypting each object in the volume with a symmetric key. Each symmetric key is in turn
encrypted with the volume symmetric key called rootkey. Volume sharing happens by securely
sending the volume rootkey to other users through SGX Remote Attestation. Even though users
have access to the rootkey and could therefore decrypt the whole volume, the TEE, acting as a RM,
can securely enforce the AC policy embedded in the metadata.

To summarize, even though approaching the problem from different points of view, the focus of
these works is mainly proposing new CAC schemes with novel high-level features. Because of this,
little space is left for additional analysis on trust assumptions and goals or alternative architectures
responsive to the requirements of a given scenario.

10 CONCLUSION AND FUTURE DIRECTIONS

In this article, we proposed a methodology to find the most suitable architecture of CAC schemes
for the trust assumptions and the requirements of different scenarios. First, we discussed cen-
tralized vs. decentralized AC to define under which conditions traditional AC suffices to protect
sensitive data from both external attackers and partially trusted CSPs. Then, we identified com-
mon elements involved in the architecture of CAC schemes and provided an architectural model
expressing the set ARC of the candidate architectures. We performed a risk assessment to iden-
tify the risk levels associated with different architectures, depending on the trust assumptions of
the specific scenario. Then, we showed how to evaluate different architectures based on security
and usability goals. To find the optimal architectures, we formalized a MOCOP so to leverage well-
known techniques for Pareto optimality. We proposed two different algorithms to solve the MO-
COP and defined their computational complexity. For concreteness, we gave a proof-of-concept
application of how the architectural model and the MOCOP can be used to assist administrators
in the deployment of CAC schemes architectures. We implemented a web dashboard to solve the
MOCOP and perform a “What-if” analysis on the resulting architectures to carefully assess the
trade-offs of the protection levels and the security and usability goals. Furthermore, we evaluated
the efficiency of the two algorithms in the dashboard and showed how the results are returned
nearly in real-time. We used the TOSCA OASIS standard and the Cloudify framework to autom-
atize the deployment of the architecture for the eGovernment scenario. Finally, we implemented
a CAC scheme supporting this architecture and provide a fully working prototype with AWS. As
a final remark, we highlight that our contributions are completely independent of the underlying
CAC scheme and AC policy model.
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Future Directions. While being an example and not the focus of this work, the goals we identified
may not be enough to express the requirements of all scenarios like eBusiness, eBanking, and
FinTech. Besides, we could design an extended architectural model to consider other paradigms
besides cloud, like IoT and Edge Computing. Another interesting improvement would be extending
our tool to support additional blueprints associated with more CAC schemes. Also, once defined
a specific CAC scheme, its assets and operations, it would be interesting to perform a more fine-
grained and formal analysis to automate the risk assessment on the CIA properties of resources to
explore the impact on sensitive data. Finally, it would be interesting to compare the performance
of traditional and TEE-based CAC in different scenarios.
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