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Aggressive driving is known to be a cause of vehicle accidents. Individuals with Attention-deficit hyperactivity
disorder (ADHD) are prone to more aggressive behavior and that also leads to aggressive driving. To prevent
aggressive driving, we strive to first understand aggressive driving and find patterns in this type of driving
behavior. In an effort to uncover to identify patterns in aggressive driving, we examine sensor data and video
data of trips taken by drivers with ADHD and identify our distinct aggressive driving patterns. Using the sensor

data, we extend our findings to all aggressive trips in our dataset and generate a model to detect aggressive
driving patterns. By finding the similarity between trips and then using these distances to produce a KNN model,
we are able to model our data and classify it into 4 driving patterns. This analysis can better inform us of the type
of driving patterns that appear in aggressive driving. Using this analysis, we can also better understand which
patterns are produce better precision and recall using this methodology.

Introduction

The World Health Organization reported 1.25 million deaths glob-
ally from vehicle accidents in 2013 (World Health Organization, 2015).
In a 2015 report, the WHO set road accident prevention as an important
goal and highlights a number of causes of road accidents including
human error (World Health Organization, 2015). One cause of human
error is aggressive driving behavior (Zhao et al., 2019). A number of
previous research projects have examined methods for classifying
aggressive driving using different data and methods. One category of
research uses sensor data and then relies on traditional machine learning
techniques like random forests or support vector machines in combi-
nation with statistical analysis. Ma et al. conducted a compared a
number of machine learning techniques including Gaussian mixture
models, support vector regression (SVR), and partial least squares
regression (Ma et al., 2018). This research project produced an F1 score
of 0.77 at most but showed that each of the algorithms had some ability
to predict aggressive trips using sensor data. Manzoni et al. used a model
based on variables like acceleration and vehicle position to distinguish
between aggressive and non-aggressive driving behavior (Manzoni
etal., 2010). Wang et al. produced an algorithm based on support vector
machine (SVM) to classify aggressive driving using sensor data (Wang
etal., 2017). Abou-Zeid et al. studied aggressive driving patterns using a
study including 24 participants and examined their driving using sensor
data in a simulator environment (Abou-Zeid et al., 2011). There are also
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research projects applying deep learning to sensor data for detection of
aggressive driving. Lee et al. studied the classification of driver emotion
during aggressive and non-aggressive driving using a convolutional
neural network (CNN) (Lee et al., 2018). In a review of aggressive
driving detection using deep learning, Alkinani et al. list a number of
studies that were able to predict aggressive driving with varying degrees
of success but not without some issues (Alkinani et al., 2020). They cited
Matousek et al. as producing a deep learning algorithm that relies
heavily on the post processing of the recent history of the vehicle to
achieve good model performance (Matousek et al., 2019). They also
cited Xing et al. who developed a model for estimating energy con-
sumption that includes an analysis of acceleration and deceleration
patterns. This model defines aggressive behavior using only acceleration
and deceleration patterns which misses aggressive behavior that has
other characteristics. These studies focus on classifying aggressive
driving using certain criteria to define aggressive driving like accelera-
tion and deceleration. However, they do not identify multiple types of
aggressive driving.

Additionally, there is research into classifying specific aggressive
driving patterns. Kovaceva et al. examined aggressive driving in situa-
tions where the driver is too close to the vehicle in front (Kovaceva et al.,
2020). Their study focused mostly on statistical analysis rather than a
predictive model. Kim et al. looked at a number of different aggressive
behaviors such as driving too close and erratic lane changing (Kim et al.,
2018). Their study includes 32 participants and performed a statistical
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analysis of the driving data. This study examined data from a driving
simulator while our study looks at naturalistic driving. The study had
some overlap in the patterns they chose to detect — following too closely,
erratic lane changes, and sudden change of speed without changing
lanes.

Attention Deficit Hyperactivity Disorder (ADHD) is a condition
typically detected during the school years that may affect an individual
during their entire life (Swanson et al., 1998). The primary symptoms of
ADHD are hyperactivity, impulsivity, and poor sustained attention
(Barkley, 1997). Long term effects of the condition include significant
risk of low educational achievement, difficulties with relationships,
delinquency, and mental illness (Biederman et al., 2006). According to
research on ADHD we know that the condition is generally inherited,
though some environmental factors may influence it as well (Faraone
and Doyle, 2001). The disorder has a prevalence rate of about 2.5% in
adults (Simon et al., 2009). Research has shown that ADHD drivers are
particularly at risk of accidents from aggressive driving due to the nature
of this disorder as causing impulsive behavior and poor sustained
attention (Fuermaier et al., 2017). Over the past few decades, multiple
studies have shown that individuals with ADHD are indeed more prone
to driving aggressively which can lead to more vehicle accidents (Jer-
ome et al., 2006; Richards et al., 2006; Romo et al., 2019; Zamani Sani
et al., 2020).,

In addition to identifying a relationship between ADHD and road
accidents, other researchers have also identified a relationship between
ADHD and certain types of risky driving behavior - particularly
aggressive driving (Deshmukh and Patel, 2019) which is a known cause
of vehicle accidents (Ma et al., 2018). To prevent these behaviors, we
must identify them as they occur. By examining the multivariate time
series (MTS) that is produced from vehicle sensors, we investigate how
to identify this behavior in order to prevent it. A significant challenge
that is presented when trying to identify aggressive driving behavior is
that the behavior may occur at any time during the trip. This creates a
challenge for researchers when studying this MTS data since it is harder
to take data that has previously confirmed to contain aggressive
behavior and compare our newly observed MTS driving data to find
similarities between the two trips. In this research, we aim to charac-
terize the different patterns of aggressive behaviors that ADHD drivers
may engage in during a trip. We compare pairs of trips and group
together the most similar trips in terms of driving patterns. Using the
insight from the pairwise similarity of trips, we develop a classification
algorithm that will accurately distinguish between the types of trips and
identify the different types of aggressive behavior. This algorithm will
then be generalized to classify the behaviors of all aggressive drivers.
This classification algorithm will be able to identify the different types of
aggressive behavior regardless of when they happen during a trip.

In this research, we examine multivariate time series data to identify
patterns in naturalistic driving data collected from vehicle sensors. By
comparing trips in a holistic manner, we are able to detect patterns in
the data that may not be detected by examining the multivariate time
series data alone. Our analysis includes two steps to identify patterns in
aggressive driving. In the first step of our analysis, we examine aggres-
sive driving in ADHD drivers to search for patterns that can be defined in
an empirical manner rather than relying on human annotation. Since
multiple studies have shown that individuals with ADHD are more prone
to aggressive behavior, and particularly aggressive driving, we have
chosen to examine ADHD drivers in the first step of this analysis. ADHD
drivers are shown to be significantly more aggressive and therefore,
these patterns are more pronounced in their driving. By applying this
methodology to aggressive driving performed by drivers with ADHD, we
are able to identify distinct driving patterns that can be observed in the
videos of the trips. In the second step of the analysis, we use sensor data
to generate a model that can identify distinct behavior patterns that
occur throughout a trip. This model can be applied to other aggressive
driving behavior in the future and produces labels for naturalistic
driving data without the need to analyze video recordings of the trips
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algorithmically. This research eliminates the need for subjective coding
of the data and instead allows us to utilize sensor data to detect
aggressive behavior patterns. Additionally, the patterns that emerge
using this methodology can identify behaviors that happen at any point
in the trip and allow us to examine whole trips rather than identifying
when a behavior occurred in each trip.

Materials and methods
The SHRP2 dataset

The Second Strategic Highway Program (SHRP2) is a Naturalistic
Driving Study (NDS) that followed approximately 3000 drivers from
multiple states between the years 2010-2013. The study has recorded
data about approximately 40,000 trips and contains video recordings as
well as time series data and metadata for each trip. Additionally, the
study included the collection of the drivers’ medical history and de-
mographics as well as information each driver’s vehicle. The metadata
for each trip contains human annotated variables, including variables
that describe the driver behavior observed during the trip. There are 59
types of driver behavior labels that have been assigned to each trip. Up
to 3 driver behaviors may be assigned to a trip. The most common label
assigned is that no risky behavior is observed. However, the remaining
58 labels indicate that risky behavior has been observed. There are two
labels that indicate aggressive driver behavior. The labels are “aggres-
sive driving, specific directed menacing actions” and “aggressive
driving, other” (“SHRP2 Event Detail Table,” 2015). These trips are
defined in the SHRP2 data dictionary as trips where the driver displays
aggressive behaviors like road rage or reckless behavior like weaving in
and out of lanes. The trips in this group have been used in this research.
When examining the subgroups of aggressive drivers and ADHD drivers
in the SHRP2 dataset, we find that ADHD drivers are overrepresented in
the subset of trips where aggressive driving behavior is detected. There
are 271 trips where aggressive driving is detected in the SHRP2 dataset.
After removing trips containing missing data, we are left with 237
aggressive driving trips. Of the 237 aggressive driving trips, 38 trips are
performed by drivers with ADHD. This means that ADHD drivers ac-
count for approximately 16% of aggressive driving trips while their
overall number of trips account for only 5% of trips in the study. Table 1
shows the breakdown of drivers in the dataset.

Data processing

The data used in this research is extracted from the time series
dataset in SHRP2. Our data contains both raw variables from the SHRP2
dataset as well as derived variables. Fig. 1 demonstrates the axis in the
sensor data.

Raw Variables (Variable Notations).

Accel X (v1¢) — Vehicle acceleration in the longitudinal direction
versus time in units of g.

Accel Y (v2;) — Vehicle acceleration in the lateral direction versus
time in units of g.

Accel Z (v3;) — Vehicle acceleration vertically (up or down) versus
time in units of g.

Gyro X (v4,) — Vehicle angular velocity around the longitudinal axis
in units of degrees per second.

Gyro Y (vs;) — Vehicle angular velocity around the lateral axis in
units of degrees per second.

Table 1
Distribution of Trips Containing Aggressive Driving and Performed by ADHD
Drivers.

All Drivers ADHD Drivers

All Trips 35,578 1787
Aggressive Driving Trips 237 38
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Fig. 1. A Diagram Illustrating the 3 Axes in Recording the Sensor Data.

Gyro Z (ver) — Vehicle angular velocity around the vertical axis in
units of degrees per second.

Derived Variables.

Range X (v7.) - This variable is derived from the range variables
which measure the velocity of the nearest 8 vehicles from the subject
vehicle. Each of the 8 variables measures the velocity of the vehicles
around our vehicle in m/s. However, we only consider whether a vehicle
is present in each of the 8 tracks. Using this data, we derive a variable
that counts how many vehicles are at a distance of one second away or
less from our vehicle in the longitudinal axis. The goal of measuring the
number of vehicles less than one second away from our vehicle at its
current velocity is to count how many vehicles are too close to our
vehicle which helps us identify when sudden breaking happens or when
a safe distance is not maintained.

Range Y (vg;) - Likewise, we count the number of vehicles at a dis-
tance of one second away or less from our vehicle on the lateral axis.

Theory and calculation

In the process to identify patterns in the data recorded during trips
that contained aggressive driving, we looked at the similarity between
trips by comparing entire trips and finding the pairwise similarity of all
pairs of trips. This was computed using the Eros similarity score. We
then developed a model for predicting the type of risky driving using the
Eros similarity score. This model enables us to identify 4 different
aggressive driving patterns in ADHD drivers as well as other drivers.

Eros similarity

The Eros (Extended Frobenius Norm) similarity metric is a metric
primarily used for comparing multivariate time series data (Yang and
Shahabi, 2004). Intuitively, the Eros similarity metric compares two
multivariate time series by measuring the distance between the principal
components using the aggregated eigenvalues as weights and consid-
ering the variance for each principal component. The research by Yang
and Shahabi has shown the Eros similarity measure to be an improve-
ment in performance compared to other techniques like Euclidean dis-
tance and dynamic time warping. Therefore, since the Eros similarity
metric is a metric that is geared towards MTS, and Yang and Shahabi’s
research shows that it performs better than multiple other similarity
metrics including dynamic time warping, PCA similarity factor and
weighted sum SVD, we have selected the metric to compare all trips in
our data and group together all similar trips.

The Eros similarity metric is computed using the eigenvalues and
eigenvectors of the two multivariate time-series compared. We represent
a single trip as a multivariate time series V = {v;;} € R™*T where we
havei=1,--,Mvariablesand t = 1, ---, T time observations. We have N
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trips that were taken by the ADHD drivers in our study, each containing
a multivariate time series. We select two multivariate time series V; and
V; from our dataset of trips and compute the Eros similarity of the two
MTS using the equation:

Eros(Vi, Vi,0) = Y o[ (w7 )}

n
= Z w;|cosb;|
i1

where w = [uy1, -+, Uxm) and u = [ug1, -+, U] are the sets of eigenvec-
tors of Vi and V; respectively and o is the aggregated weight vector
generated based on the eigenvalues of the entire MTS dataset (in other
words, while the Eros similarity only compares one pair of trips, the
weight vector w is computed using all trips). We assert > 1 ;w; = 1 and
; > 0 for alli. The computed pairwise similarities of MTS items are used
for projecting each MTS item into low-dimensional (2-D or 3-D) space,
which will be calculated using multivariate t-SNE (t-distributed Sto-
chastic Neighbor Embedding). The Eros similarity score ranges between
0 and 1 where a value closer to 1 means the two multivariate time series
are more similar. While other research has used different similarity
metrics to compare time series data, we will be using the Eros similarity
metric to compare and group trips. In our case, we would like to
compute the Eros similarity between two trip vectors. By comparing
each pair of trips, patterns in the data emerge and we can identify similar
trips, even when the similar behavior occurs at different points in the
trip.

Multivariate t-SNE

To visualize our data, we opt to reduce the dimensions of the Eros
similarity matrix using multivariate t-distributed stochastic neighbor
embedding (or m-TSNE). T-SNE is a dimensionality reduction technique
developed primarily for the visualization of high dimensional data (van
der Maaten and Hinton, 2008). We opt to use a variation of t-SNE called
m-TSNE since this technique treats the MTS data as a whole and captures
the correlations between the variables in the data (Nguyen et al., 2017).
To visualize our Eros similarity matrix that was derived from multi-
variate time series data, we use m-TSNE which is a technique further
developed by Nguyen et al. for visualizing multivariate time series data.

T-SNE reduces the dimensions of our data by computing the
Euclidean distance between two points and then converting the distance
between the points to a conditional probability distribution. m-TSNE
visualizes the data by projecting it into lower dimensional space while
preserving the pairwise similarity relation between observation. This
means that two similar points in high dimensional space will remain
closer or farther apart after the transformation. We compute the prob-
ability that two observations will remain similar py; in equation (2).

exp(— Vi = Vill*/o7)

p =
TS e (— Vi Vi ) @
r#k

In equation (2), we describe the probability that point vy will be the
neighbor of point v; if both points are in proportion to their probability
density using a Gaussian distribution with variance o, (Nguyen et al.,
2017).

When reducing the data to a lower dimension, the probabilitygy; for
our new vectors Wy and W in the lower dimension space. In this case,
our variance will be set to % and our probability g will be equal to:

= exp(— Wi — Wilf*)
Zexp( L Al ®

7k

We find the lower dimension representation of the data where the
mismatch between gy and py is minimized. To do this, we use the
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Kullback-Leibler divergence metric to construct a cost function C.

P
C= ;KL(PkHQk) :pk,logq—:; &)

where Py and Qy represent the conditional probability distributions of
the high dimensional data and the mapped lower dimension data,
respectively.

Research by Nguyen et al. has shown that the Eros similarity metric is
more suitable for visualizing MTS data with t-SNE rather than using
other dimensionality reduction techniques like PCA. m-TSNE proposes a
better than PCA method to minimize the mismatch between high-
dimensional and low-dimensional spaces (Nguyen et al., 2017).

Using m-TSNE in this analysis allows us to uncover relationships
between the temporal variables and identify risky behaviors in trips
regardless of when the behavior happens in each trip.

KNN model based on Eros similarity

The K-Nearest Neighbors algorithm (or KNN) is a classification or
regression algorithm that determines the label of a point based on the
observations closest to it (or its neighbors). We determine proximity of
points using a chosen distance metric. In the case of using KNN for
classification, we use the K nearest points and apply the most frequent
label in those points to the observation we want to label.

In our case, we use the Eros distance as a distance metric. For features
V and labels Y = 1, .., 4, given the distances computed between all trips,
we find an optimal K = 5 and assign the label with the largest proba-
bility. Given our multivariate time series data V = {v;;} € R™*7, the
probability of a trip [ having label j is:

1 .
Py =jlV=V)=2>1(" =j) ®)

i€A

where A is the set of K nearest observations.
We utilize algorithm 1 in our predictive model to assign a label to
each trip.
Algorithm 1 KNN Model Based on Eros Similarity

Input: n x n distance matrix of Eros similarity between trips
n x 1 vector of labels y
k — number of neighbors used to apply label
Output: Vector of predicted labels for test data
Split the data to train and test samples
For each observation jin test:
dj = dj1,...,djx # The k closest observations in train to j using the Eros
similarity
¢j = Cj1,--, Gj4 # Vector containing counts of the number of closest
observations for each label
Y unweightea —argmax(c)
a<accuracy(y, Yunveightea)
Generate the optimization vector r
r<For each observation jin test perform an exhaustive search for
hyperparameters for labels 1-4 in the space [0.1,4]by optimizing for accuracy
y<max(cer)
Returny

Results

In this research, we utilize the Eros similarity metric for analyzing
the MTS data and create a model that can identify four patterns of
aggressive driving patterns. We compute the Eros similarity between all
pairs of trips to get a holistic view of the trips and how they compare to
each other which enables us to detect patterns throughout the entire
trip. Our analysis will use the MTS data to extract insight about the data
where we look for patterns that happen at any point in the trips.
Therefore, we do not compare trips second by second. Instead, we look
at larger trends in the MTS data.

Our initial goal is to classify all ADHD aggressive trips. We aim to
perform this analysis by visualizing all aggressive trips using m-TSNE
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and particularly highlighting the ADHD driver trips. Since t-SNE is a
technique meant for visualization and not for inference (van der Maaten
and Hinton, 2008), we use the visualization as a guideline to identify the
clusters of aggressive driving.

We start by plotting the m-TSNE visualization of the ADHD aggres-
sive trips. By looking at the plot in Fig. 2, we observe a separation be-
tween 4 groups. However, as seen in Fig. 2, the groups on the bottom and
right are clearly separated while the top and left are separated but
without a clear boundary. When we examine the two groups on the left
side of the graph, we cannot determine where the boundary between the
two groups lies. Since t-SNE plots act as a visual guide to detect sepa-
ration between groups, we use this information and then manually label
the data.

After manually labeling the data, we see that the groups in the right
and bottom have distinct behavior and the group on the left can be split
into two distinct behaviors as well. This is shown in Fig. 3.

When plotting just the ADHD trips, we see separation between 4
groups in the plot for most points. T-SNE plots serve as a visual guide for
detecting separation between groups in the data (van der Maaten and
Hinton, 2008), therefore, we use the visually separate groups as a guide
for labeling the data.

Driving patterns were identified by watching the videos. The videos
were viewed 3 times to ensure correct classification. The videos showed
that distinct driver patterns emerged from the data that were identified
as 4 distinct groups. These groups were assumed to produce different
time series patterns in the 8 different variables that have been used in
this analysis. There are a few observations that did not fit perfectly into
either of the groups in the t-SNE visualization; however, after labeling
the data, we were able to apply an appropriate label to these observa-
tions that matched the content of the videos. These labels are shown in
Fig. 3.

The patterns are further observed in Fig. 4 after reintegrating all
aggressive driving trips into the visualization. We can better observe the
separation into 4 groups. We notice that two observations do not exactly
fit into a cluster, but these were labeled as well and found to have a
consistent pattern with their adjacent cluster.

We can also confirm that the points group together around a centroid
by generating 4 clusters of points from our Eros data using k-means and
plotting the clusters in Fig. 5. While we get 4 distinct clusters centered
similarly to the manual labels, some points in the boundaries are asso-
ciated with different clusters in this case.

When examining the labeled points, we see 4 distinct driving pat-
terns occurring during the trips.

Pattern 1 — stop and go driving. This pattern occurs when the
aggressive driver does not maintain a safe distance with the vehicle in
front. This causes the aggressive driver to hard press the brakes as they
approach the vehicle in front. Table 2 contains the mean of the absolute
value of the raw variables in our dataset for each driving pattern. We
observe that due to the constant acceleration and deceleration in this
driving pattern, it has the highest mean value for the absolute value of
the X acceleration and the Y acceleration.

Fig. 6 demonstrates this behavior with screenshots from a video of a
trip containing this pattern. The screenshots are extracted from the trip
at intervals of one second between shots. In screenshot 1 we see a white
vehicle in front of the subject vehicle. By screenshot 11, the vehicle has
moved farther away and by screenshot 20 we see the vehicle in front to
be closely in front of the subject vehicle. This is what typical stop and go
driving looks like in the videos recorded of the trips.

Pattern 2 — Abruptly changing lanes. This driving pattern mainly
occurs when an aggressive driver suddenly changes lane due to not
paying attention to the road conditions. This behavior could happen
when there is a slower vehicle ahead or another driver legally attempts
to change lane and the aggressive driver only notices at the last moment.
This causes a sudden change in the driving angle due to a sharp swerve.
In Fig. 7, we see screenshots from a trip containing this behavior pattern
that were taken from a video representative of pattern 2. The
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Fig. 2. Two-dimensional m-TSNE plot of the Eros Similarity Between all Pairs of Trips in the Dataset.
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Fig. 3. Two-Dimensional m-TSNE Plot of the Eros Similarity of ADHD trip pairs.

screenshots were taken at a 1 s interval. In screenshot 1, we see a white
vehicle in front of the subject vehicle. By screenshot 8, the vehicle be-
comes closer and closer to the subject vehicle. The subject vehicle
changes lanes so abruptly that by screenshot 9, the white vehicle is to the
left of the subject vehicle. We continue to see the white vehicle to the left
of the subject vehicle till the end of the clip.

Pattern 3 - Driving too fast for road conditions. This pattern is mostly
observed in weather conditions that should limit a vehicle’s speed.
Drivers do not necessarily make any sudden maneuvers like in the pre-
vious driving pattern. Instead, they engage in aggressive driving by
driving too fast in conditions like rain or fog. There are also drivers who
engage in aggressive behavior in this driving pattern who are driving too
fast in a lane that seems to be momentarily free flowing even though
there is upcoming traffic congestion or in a parking lot where there may
be pedestrians.

Pattern 4 — Not properly maintaining lane or zigzagging. This driving
pattern is characterized by aggressive driving behavior where the driver
changes lane multiple times to avoid slowing down. This means that

these drivers engaged in constant angle change throughout the trip due
to their zigzagging. Zigzagging has been documented in the literature to
be observed when there is a change angular velocity in the y axis (Jeong
etal., 2013) as is observed in this research as well. In fact, in each trip, at
least 8 changes from positive to negative in this group. This is the highest
number of changes in angular direction of all patterns. Additionally, this
pattern produced the highest mean absolute value of change in angle in
the y axis, as can be observed in table 2.

Most trips contained only one aggressive driving pattern; however,
in the case of more than one pattern appearing in a single trip, we
classified the trip by selecting the driving behavior that appeared the
longest in the trip. We defined this behavior to be the dominant pattern.
Typically, the non-dominant pattern was much shorter in comparison.
For example, if a driver was displaying stop and go driving throughout
the trip but also zigzagged for a small portion of the trip, we would
determine that the trip contained stop and go driving for the purpose of
assigning a label. After labeling our data with the different driving
patterns, we then expand our analysis to all aggressive trips in the
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Fig. 5. Two-Dimensional m-TSNE Plot of the Eros Similarity of ADHD trip pairs grouped using K-Means.

Table 2
Mean of the Absolute Value of Raw Variables for Each Driving Pattern.
Driving Pattern X Acceleration Y Acceleration Z Acceleration X Angular Velocity Y Angular Velocity Z Angular Velocity
(€3] ) (€3] (degrees/second) (degrees/second) (degrees/second)
Stop and Go Driving 6.093 64.788 0.315 12.233 1.722 1.571
Changing Lanes 4.665 44.569 0.480 11.326 1.555 2.902
Abruptly
Driving too fast 4.423 47.248 0.504 1.167 10.488 15.056
Zigzagging 4.287 49.025 0.509 3.569 15.313 2.617

dataset. The primary reason for this is because the sample of ADHD
aggressive trips is very small and creating a predictive model using less
than 40 trips would not produce any meaningful insight. The study
performed by Lambert for NHTSA compared drivers with ADHD to
drivers who did not have ADHD (Lambert and University of California,
1995) and found that there were no significant difference in many areas
related to driving such as the age of obtaining a license for men as well as
the prevalence of driving under the influence between the two groups.
The main difference between drivers with and without ADHD is in the
prevalence of aggressive driving behavior in drivers with ADHD which
led to more moving violations and an increased risk of accidents.

Therefore, we extend our initial result to all aggressive trips using the
ADHD driver data. The trips were labeled as aggressive by human an-
notators. These annotators examined the trip data which includes video
of the front and rear windows, the facial expressions of the driver, and
the sensor data. Based on these data sources they determined whether
the driving was aggressive. However, the data dictionary does not
mention the criteria for judging whether the driving is considered
aggressive. By identifying patterns in the sensor data that correspond to
the aggressive driving label, we are able to extend the finding to auto-
matically assign the aggressive driving label based on a predictive
model.
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Fig. 6. Screenshots from a Trip Containing Stop and Go Behavior.

To find a pattern in our data, we must first look at the similarity
between the trips. As previously mentioned, the Eros distance has been
shown to produce better results as a similarity measure for multivariate
time series data. Therefore, we will look at the Eros distance between the
MTS data for all trips. Using a combination of Eros and t-SNE for visu-
alizing MTS data has been outlined in the research by Wong and Chung
(Wong and Chung, 2019) and will be employed in this research. The
data in this study has been reduced to all aggressive trips. After

eliminating observations with missing videos, we are left with 148 trips.
We compute the Eros distance between each pair of trips and then
visualize the data using m-TSNE. All trips were viewed 3 times and one
of the four labels was applied to the trip. The trips were then separated
into test and training data. To classify our data to one of the four pat-
terns, we create a case-based reasoning model where we use a KNN
model of the Eros distance to classify the trips.

Our initial analysis revealed that there are 4 distinct labels when
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Fig. 7. Screenshots from a Trip Containing an Abrupt Change in Lane.

examining the Eros similarity between the trips. Therefore, our predic-
tion model will be a KNN model that is based on the Eros similarity
between the trips. We start by computing the pairwise Eros similarity of
all pairs of trips in the data. This produces a n x n distance matrix. We
select k based on the accuracy score and find that k = 5 produces the
highest accuracy score. Our algorithm then identifies the 5 closest trips
in the training data to each trip in the test data. It computes the count of
trips with each label and assigns that label to the trip in the test data.
Additionally, we add a weight to each label. We optimize the weights
that the counts are adjusted by. We end up with a weight of
[1,1.5,0.5,1.5] (in other words, the count for label 1 is multiplied by 1,
the count for label 2 is multiplied by 1.5, and the count of labels 3 and 4
are multiplied by 0.5 and 1.5 respectively). We compute the accuracy
using the count of correct predictions divided by all prodictions as
described in Table 3. Our model is described in algorithm 1 and results
in a test accuracy of 81% and precision and recall described in Tables 4
and 5. We visualize the labels applied by the KNN algorithm in Fig. 8.
Even though we used the Eros distances without applying the m-TSNE
transformation in the KNN algorithm, when applying the labels to the

Table 3
Confusion Matrix.

Observed

False Positive
True Negative

True Positive
False Negative

Predicted

Table 4
Total Model Performance.
Accuracy Precision Recall F1
Total Model 0.8103 0.8448 0.8103 0.82719

Table 5
Model Performance by Driving Pattern.

Precision  Recall F1

Stop and go driving (pattern 1) 1 0.3636  0.533333
Abruptly changing lanes (pattern 2) 1 0.8571  0.84375

Driving too fast for road conditions (pattern 3)  0.75 0.9643  0.923077
Not properly maintaining lanes (pattern 4) 0.8333 0.8333  0.833333

observations in the visualizations, we still get a clear separation of the 4
patterns. However, we do observe that the boundary between the pat-
terns has slightly moved.

We compute the accuracy, precision, recall, and F1 score for the
entire model as well as for each driving pattern. Recall that when using a
prediction model, we get 4 types of predictions shown in the confusion
matrix in table 3.

The accuracy is computed by dividing the number of correctly clas-
sified observations by the total number of observations. We compute
precision, recall, and the F1 statistic using the following equations:



M. Monselise and C.C. Yang

Transportation Research Interdisciplinary Perspectives 14 (2022) 100625

@ Pattern 1 - Stop and go driving

Pattern 2 - Abruptly changing lanes
@ Pattern 3 - Driving too fast for road conditions
® Pattern 4 - Not properly maintaining lane

10 1 * .
2 ¥
. .
5.
L ]
5 ol .
=z
& s
- . ® -
-5 .
. .
.y .
=10 - - ]
T T T T T T T T
t-SNE dim 1

Fig. 8. Two-Dimensional m-TSNE Plot of the Eros Similarity of ADHD trip pairs grouped using the KNN algorithm.

.. True Positive
Precision = — — ©
True Positive + False Positive

True Positive
Recall = — - )
True Positive + False Negative

Fl—2x Precziszian X Recall 8)
Precision + Recall

We compute the total accuracy and find that it is 81.03%. While the
accuracy we achieve is satisfactory, the model performs better for some
patterns than others. When we look at the model performance across all
patterns, we observe that pattern 1 had the lowest recall. With a recall of
less than 50%, we note that we have more false negatives than true
positives for pattern 1. Pattern 3 had the best recall but the lowest
precision. This means that pattern 3 had the greatest number of false
positives but the smallest number of false negatives.

Discussion
Identifying patterns from the general population of trips

Some patterns of aggressive driving could be identified by examining
the pool of all aggressive trips since they are distinct patterns containing
sharp angle changes or extreme changes back and forth in the number of
cars around our vehicle. On the other hand, other behaviors would
require additional data to identify. Pattern 3 contains all trips that are
classified as too driving fast for road conditions. When viewing all
aggressive trips that are classified as too fast for road conditions, these
trips occur in road conditions like rain, fog, snow, or in heavy traffic.
There are few or no risky maneuvers performed by the driver like sharp
swerves or zigzagging between lanes. What makes this driving pattern
risky is the driver’s failure to adapt their driving to the road conditions.
Since these trips do not differ in their behavior from trips that were not
classified as aggressive, to extend our algorithm to the general popula-
tion, we would have to add additional data to our model. The SHRP2
dataset currently contains information about external factors like time of
day and weather conditions. To extend this work to detecting these
patterns of risky behaviors, we would need to include this additional
information in our model.

Difference in classification performance

While we have an 81% accuracy for the model overall, we observe
that for pattern 1 — stop and go driving, recall was 36%. We find that
these trips are not easily identified by comparing them one to another.

Stop and go trips are most incorrectly classified as driving too fast for
road conditions. This means that when tailing the car in front, our
subject vehicle might be pressing the brake as much as in the driving too
fast for road conditions category. In this case, we may differentiate be-
tween the categories using the distance kept between the vehicles in
front and behind our subject vehicle. Furthermore, we observe that there
are bursts of activity when the driver presses the gas and the brakes over
and over. Using these bursts, we can better identify stop and go
behavior. Another issue that we notice is that in pattern 3, we observe
the lowest precision of all patterns since this pattern contains trips where
aggressive driving is characterized by driving too fast for road condi-
tions. This pattern has multiple false positives since these trips are
characterized by driving recklessly during poor conditions rather than a
specific pattern like swerving or stopping and going.

ADHD drivers and aggressive driving patterns

Prior research has shown that among aggressive drivers, there is a
higher prevalence of ADHD (Malta et al., 2005). Other research suggests
this may be caused by the fact that individuals with ADHD are more
likely to exhibit anger and aggression in general and not just in driving
(Ramirez et al., 1997; Whalen et al., 2002). We also observe this in the
SHRP2 dataset where there is an overrepresentation of ADHD drivers in
all aggressive trips. Aggressive trips performed by ADHD drivers account
for 16% of all aggressive trips while ADHD drivers represent only 5% of
all trips in the study. While we extended the model from ADHD
aggressive drivers to all aggressive drivers, the model classifies ADHD
aggressive trips with an even higher accuracy than the general popula-
tion of aggressive trips, which indicates that the model is well suited for
them since it was initially developed using ADHD aggressive driving
data only. When filtering the test data to only ADHD trips, the accuracy
score is 0.857. Other studies suggest that ADHD drivers are more prone
to risky driving behaviors like sudden lane changing and driving too
close to the vehicle in front of them (Reimer et al., 2005).

Limitations

In our research, we identify patterns in aggressive driving. We use
the sensor data to detect patterns that can be used to classify trips that
were annotated by human annotators. However, in this research, we
have not used nonaggressive trips in our dataset. We found that
nonaggressive trips may sometimes contain similar driving patterns
(such as speeding and slowing down frequently). Therefore, the inclu-
sion of nonaggressive trips in the dataset may cause us to detect the
existence of one of the four patterns in these trips as well.
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Furthermore, due to the low prevalence of aggressive driving trips in
our dataset, the sample size is small. This means that a few misclassified
observations can sway the accuracy of the model greatly. Since the data
collection for this project ended in 2013, new data cannot be added to
the sample.

Conclusions

In this research, we examined the aggressive driving behavior of
ADHD drivers as well as the general population of aggressive drivers.
The SHRP2 data has been labeled by human annotators who described
many things about each trip including a field that noted whether a trip
was aggressive (Kamrani et al., 2019). Our goal was to detect distinct
aggressive driving patterns in both ADHD drivers and the general pop-
ulation of drivers. By doing this, we will be able to circumvent the
process of manual labeling and instead detect aggressive driving pat-
terns using the sensor data. We found that using this model, we were
able to take the subjective label of aggressive driving that was assigned
to the trips by human annotators and detect what is specifically meant
by aggressive driving. We observed 4 driving patterns: stop and go
driving, abruptly changing lanes, driving too fast for road conditions,
and not properly maintaining lane (or zigzagging). By identifying 4
different types of aggressive driving, we were able to find what char-
acterizes these driving behaviors and quantify this information using the
sensor data to produce a predictive model. Our predictive model
compared all pairs of trips using the Eros distance (Yang and Shahabi,
2004) and then used these distances in a KNN model. We found that
some patterns had better precision and recall than others since detecting
some patterns required more reliance on the actual information in the
sensor data rather than a comparison between the trips. These conclu-
sions may assist in driver assistance vehicle systems. Since this work
relies on vehicle velocity and acceleration as well as radar sensors to
detect adjacent vehicles, this work can present a lower cost alternative
research that proposes using cameras to detect driving behaviors such as
the research by Wang et al. (Wang et al., 2013). Our future work will
focus on creating a model that will depend on the sensor data and its
unique features. For example, stop and go driving had low recall with
this model. We plan on detecting this driving pattern more successfully
using a model that can better observe the changes in acceleration in the x
and y dimensions of the subject vehicle. Similarly, we may integrate
environmental features into our model like weather conditions and time
of day which may improve the prediction of driving too fast for road
conditions.
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