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Introduction: Distracted driving has been well researched, however the comparison between different age-gender
groups on the impact of distracted driving has not been explored. Most crash analysis research does not
distinguish driver responsibility, so the role that distractions has in at-fault crashes is unknown. Without dis-
tinguishing at-fault crashes from all-cause crashes, distracted driving’s detrimental effects could be
underestimated.

Objective: This study aims to systematically assess the risk of at-fault crashes associated with different sources of
distraction among six groups by driver age (Teens 16-19, Adults 20-64, Seniors 65+) and gender.

Methods: Crashes where a study participant was deemed at fault were identified using human expert annotated
variables from the Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study dataset. Gener-
alized linear mixed models were performed to assess the adjusted odds ratios of 10 distraction types associated
with the at-fault crashes while controlling for environmental factors.

Results: The main findings are (1) The highest contributing distraction types in at-fault crashes were In-Cabin
Objects, Mobile Device, External Scenes, and In-Vehicle Information Systems (IVIS) as indicated by their influ-
ence on multiple age-gender groups and the magnitude of odds ratios; (2) Teens and adults were more
distraction-prone than seniors, although seniors had the greatest at-fault crash risks associated with In-Cabin
Objects, Mobile Device, and IVIS; (3) Distractions impacted females and males similarly; (4) At-fault crashes
were more likely to have the significant distraction types present than all-cause crashes.

Conclusion: This study adds to the limited literature on at-fault crashes particularly as it explores the role of driver
demographics and distracted driving. Analyzing the risks of distracted driving by age-gender group shows that
specific activities can be riskier for a certain population. The effects of distractions may be overlooked without
fault determination. Distractions by external scenes, in-vehicle technologies, and in-cabin objects should not be
overlooked, in addition to mobile device use.

1. Introduction

Distractions are closely associated with motor vehicle crashes and
have been the subject of crash analysis and road safety research. In its
most recent report, the National Highway Traffic Safety Administration
(NHTSA) found that 8% of fatal crashes and 15% of injury crashes were
affected by distractions (National Highway Traffic Safety Administra-
tion, 2020). As far as we know, this study is the first to systematically
assess the at-fault crash risk associated with different distraction types
among six age-gender groups using the Strategic Highway Research
Program 2 (SHRP2) Naturalistic Driving Study (NDS) dataset.

1.1. Distraction in motor vehicle crashes

Distraction is defined as “a specific type of inattention that occurs
when drivers divert their attention from the driving task to focus on
some other activity instead” by the NHTSA, although distraction and
driver inattention are often used interchangeably (National Highway
Traffic Safety Administration, 2020). Common distractions include cell
phone use and texting, eating, interacting with passengers, and adjust-
ing in-vehicle technologies, among which cell phone use has garnered
national and international attention. The detrimental effects of texting
have been extensively studied with simulators and closed test tracks,
usually focusing on one age group and without differentiating gender
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differences (Caird et al., 2014).

Several studies sought to re-assess crash risk related to driver dis-
tractions as data from naturalistic driving studies such as the SHRP2
became available, which provided high-fidelity recordings of driver
behaviors and traffic conditions in a naturalistic driving environment.
For example, Dingus et al., performed univariate, mixed-effect logistic
regression to examine a variety of driver distractions and impairments as
risk factors; the authors highlighted that handheld electronic devices
had high use rates and risk (Dingus et al., 2016). Another study found
that the highest correlations with crash risk included the duration of
distractions through dialing on a cellphone, texting, and reaching for an
object (Arvin and Khattak, 2020). Among different distractions related
to cellphones, visual-manual tasks increased the odds of severe crashes
more so than overall cellphone distraction and cellphone talking (Lu
et al., 2020). Drivers used both hands to manipulate the phone during
17% of phone use time, and the standard deviations of speed, headway,
and lane offset were significantly lower during phone use periods (Wang
et al., 2020).

In terms of driver demographics, Lu et al., cautioned that unac-
counted income level and age could lead to biased risk estimation (Lu
et al., 2020). Another group of researchers found that texting in the
WhatsApp app deteriorated driving performances for all age groups,
especially for older participants (Ortiz et al., 2018). Passenger presence
significantly increased the mean proportion of time having elevated g-
force events in curves among young drivers, and male drivers may better
maintain a lane position than females (Zhang et al., 2019).

Studies have also analyzed the ranking of perceived risks of different
distraction types by drivers, arguably shaped by their policy environ-
ment. One study revealed that drivers ranked tasks that are unnecessary
or socially frowned upon to be riskier, such as mobile phone use, reading
(a map or book), and grooming, whereas familiar and socially accept-
able tasks such as listening to music, talking to passengers and looking at
road signs were considered to have low risk levels (Patel et al., 2008).
Parnell et al., highlighted how policymakers worldwide chose to strictly
penalizes the use of handheld cell phones since the early 2000’s but
largely overlooked other in-vehicle technologies, thereby creating a
relaxed condition that allows for driver distraction from in-vehicle de-
vices (Parnell et al., 2017). In an updated study by the same group, the
authors observed that youngers drivers in Australia perceived the law on
non-phone-call use of smart mobile devices facilitated by Bluetooth to be
ambiguous, although such use presents a competing draw of the driver’s
cognitive capacity (Kaviani et al., 2021).

1.2. At-fault crashes associated with driver distraction and characteristics

Research on the characteristics of at-fault crashes is limited. Fault
assignment lacks standard analytical procedures. Responsibility deter-
mination may be difficult at the roadside because drivers’ recounts
could be inaccurate due to the shock of the crash or the incentive to
avoid penalization (Bakiri et al., 2013). Third-party retrospective ana-
lyses of crash recordings have also been employed to determine fault.
The U.S. Department of Transportation identified 17 Unsafe Driving Acts
(UDA), including driver judgment, speed-related, right-of-way or
headway-related, and lane position-related, to be the criteria for fault
assignment (Council et al., 2003). In contrast, Robertson and Drummer
tackled the problem from the opposite angle. They developed a crash
responsibility instrument that counted the presence of mitigating factors
considered to reduce driver responsibility: road environment, vehicular
factors, traffic conditions, type of crash, traffic rule obedience, and
difficulty of the driving task; if a sufficient number of mitigating factors
were found, the driver was deemed not responsible for the crash (Rob-
ertson and Drummer, 1994). A modified version of the instrument was
adapted in interviews with emergency department patients involved in
road injuries and was found to have a moderately high agreement with
human expert evaluation of driver responsibility (Bakiri et al., 2013).

Despite the rich literature on the effects of distraction and driver
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characteristics on crash risk, few studies examined their effects specif-
ically on at-fault crashes. Among the limited studies on driver re-
sponsibility, Bakiri et al. found that picking up an object inside the
vehicle, smoking, and inattention due to distracting events occurring
outside were associated with an increased probability of being at fault in
France (Bakiri et al., 2013). Having a distracted mind prior to a crash as
well as the propensity to mind wander in everyday life were shown to be
independently associated with responsibility for a traffic crash (Gil-
Jardiné et al., 2017). Teen drivers who were found at fault in a crash had
a significantly lower perception of risk than those who were not at fault
(Penmetsa et al., 2017). Senior drivers aged 65+ were more likely than
younger drivers to be at fault in a crash (Sagar et al., 2020). Years of
driving experience, annual driving distance, and use of a location
tracking system were found to be significantly associated with at-fault
crashes by bus drivers in Taiwan (Tseng, 2012).

To summarize, this study seeks to address two research gaps in the
distracted driving literature: (1) a systematic comparison of different
age-gender groups on the impact of distracted driving is needed because
driver demographics and driving environments can confound the effect
of distractions; (2) Most crash analyses do not distinguish driver re-
sponsibility. Little is known about the impact of distraction on at-fault
crashes. The detrimental effect of distraction could be underestimated
if a certain distraction type was only prevalent in at-fault scenarios, as
lumping at-fault crashes into all-cause crashes would attenuate the
concentration of the distraction. As such, this study aims to address these
two unknowns by evaluating the risk of at-fault crashes associated with
common distraction types among six driver age-gender groups adjusting
for environmental factors.

2. Material and methods
2.1. Data source

The study analyzed data from the Strategic Highway Research Pro-
gram 2 (SHRP2) Naturalistic Driving Study (NDS) (Dingus et al., 2014;
Hankey et al., 2016). Over a study period of three years, 50 million miles
were driven at six study sites in the United States: Florida, Indiana, New
York, North Carolina, Pennsylvania, and Washington. Study partici-
pants’ vehicles were instrumented with cameras and radars capable of
capturing the external environment, traffic condition, as well as in-cabin
activities of the driver. Total video recordings accumulated over a
million hours. This allows for retrospective analyses of the circum-
stances involved in motor vehicle crashes. A standardized data reduction
effort was carried out at the Virginia Technology Transportation Insti-
tute (VTTI), where trained data reductionists annotated the video re-
cordings of sampled segments of trips following a pre-established data
dictionary. The unit of analysis is six-second clips (epochs), five seconds
before and one second after the onset of a crash, which captured the
preceding sequence of events and driver behaviors. For trips that did not
involve a crash, driver distractions and other variables were also an-
notated based on video samples randomly selected with the overarching
goal that the total sampled time for each driver was proportional to their
total driving time in the study.

2.1.1. Human subjects protection

The SHRP2 NDS was approved by the Institutional Review Boards of
the Virginia Tech and the National Academy of Sciences (NAS). Issuance
of a Certificate of Confidentiality was initiated through the National
Institutes of Health (NIH). Study participants consented to have data
collected from their main vehicle when it was driven during the study
period, as well as to provide a broad set of functional assessments;
participants who were minors at the time of study provided assent to
participate, and consent for participation was provided by a parent.
Participants were compensated for study participation (Dingus et al.,
2014).

The current study is a secondary data analysis of the SHRP2 NDS
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dataset. The data use of this study (Protocol Number 1902007017) was
exempt by the Drexel University Institutional Review Board (IRB)
because no identifiable private information of participants was obtained
or analyzed.

2.1.2. Responsibility determination

Data reductionists assigned responsible party only when it was
observable that one party committed an error that led to a crash;
otherwise, a crash was deemed “unable to determine fault” (5/1039,
0.5%). The responsible party could be a study participant (757/1039,
72.9%), the driver of vehicle 2 or non-motorist (176,/1039, 16.9%), or
the driver of vehicle 3 or non-motorist (2/1039, 0.2%). If a crash was
caused by animals or objects on the road, “not applicable” was assigned
(98/1039, 9.4%). If part of the video recording was missing or there was
visual obstruction that limited the reviewer’s perspective, the trip was
deemed “fault unknown” (1/1039, 0.1%). In this study, at-fault crashes
referred to those whose responsible party was a study participant, not
the driver of vehicle 2 or vehicle 3 as their distraction states would be
unknown. Crashes deemed “unable to determine fault”, “fault un-
known”, or “not applicable” were excluded from the analysis.

2.2. Study design

The risk of motor vehicle crashes is considered time-variant, that is,
the longer a driver is on the road, the greater their exposure to risk
factors. In naturalistic driving studies, the total duration of risk exposure
(e.g., distractions) cannot be accurately determined by manual effort
due to the sheer volume of data. Guo proved that such risk exposure can
be approximated by the odds ratio using a stratified baseline sampling
strategy that ensures the risk exposure levels are consistent with the
population from which the cases were drawn; the comparison of an
exposure status for cases and controls can shed light on the risk level
associated with the exposure of interest (Guo, 2009).

In this study, cases are crashes, defined as any contact that the study
participant’s vehicle had with a moving or fixed object, at any speed in
which kinetic energy is measurably transferred or dissipated. Such cases
included severe crash (marked by an airbag deployment or bodily injury
of involved parties, 107/1039, 10.3%), police-reportable crash (marked
by significant property damage or acceleration greater than +1.3 g, 177/
1039, 17.0%), and minor crash (physical contact with another object but
did not reach the previous two levels, 755/1039, 72.7%). The SHRP2
NDS also includes as crashes non-premeditated departures of the
roadway where at least one tire hit unintended travel surface. Those
were excluded from this study because they present low risk to drivers.
The control consists of uneventful trips sampled in a balanced fashion
that proportionally reflects each driver’s total traveling time in the study
(Hankey et al., 2016).

The study population (N = 3,453) drove a total of 20,767 qualifying
trips, of which 1,039 resulted in crashes or 757 at-fault crashes. These
trips were stratified into six groups by driver age (Teens 16-19, Adults
20-64, Seniors 65+) and gender in this study (Table 1). Trips of which
the driver’s age or gender was unknown were excluded.

Table 1
Number of trips by age-gender group.
Teen Teen Adult Adult Senior Senior
Female Male Female Male Female Male
Case - At-fault 110 91 200 184 84 88
Crashes
Case - All- 148 116 293 264 105 113
cause
Crashes
Control - 1414 1260 6666 5881 1862 2645
Balanced-
Sample

Baseline
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2.3. Data analysis

Because most study participants generated more than one trip
recording, univariate mixed-effect logistic models had been used in
similar studies in the past to factor in the random effects of individual
driver characteristics (Dingus et al., 2016; Klauer et al., 2014). The
current study constructed six generalized linear mixed models (GLMMs)
for each age-gender group to respectively estimate their crash risks
associated with different distraction types while adjusting for environ-
mental risk factors. Such a design can (1) reflect the latent heterogeneity
in driver characteristics not otherwise captured by age and gender, (2)
remove the bias related to the imbalance of environmental exposure in
naturalistic driving studies pointed out by (Lu et al., 2020). The model is
as follows:

8(E(Y)) =Xp+Zu+e

E(y) = P(Y = y|X,Z)

4(-) = log (ﬁ)

where

y is the outcome variable,

g(+) is the logistic link function for a binomial outcome,

p is the estimated probability of a positive outcome,

X Is a matrix of n trips and q variables,

pis a g x 1 vector of the fixed-effect regression coefficients,

Z is a matrix of N trips and d drivers designating the driver-specific
random effects,

uis a d x 1 vector of the random intercepts,

and e is the general error term not explained by the model.

Each GLMM incorporated 18 independent variables, including 10
distraction types as predictors, and seven environmental factors and one
unique identifier of the study participant as covariates. The dependent
variable was whether a trip resulted in an at-fault crash. The only dif-
ference between the six models was the underlying age-gender
subgroup.

We categorized distraction types based on the grouping of the an-
notated secondary tasks from the SHRP2 Researcher Dictionary for
Video Reduction Data (Virginia Tech Transportation Institute, 2015).
For example, the category Mobile Device included all annotated driver
movements involving a cell phone or a tablet. The mapping details can
be found in Appendix A. Accordingly, the 10 distraction types were
Entertainment, External Scenes, Food & Beverage, In-Cabin Objects,
Interaction with Passengers, In-Vehicle Information Systems (IVIS),
Mobile Device, Personal Hygiene, Smoking, and Other. They were then
converted into dummy variables in the model. To be specific, label value
1 denoted the presence of one or more secondary tasks in the same
distraction category, and O suggested the absence of the distraction. A
trip can involve more than one distraction category as input variables. In
addition, we included seven environmental factors as control variables:
Weather, Lighting Condition, Presence of Junction, Road Alignment,
Road Grade, Surface Condition, and Traffic Density. They were treated
as categorical variables with the least demanding driving scenario as the
reference group for the generalized linear regression. The mapping of
the environmental variables is included in Appendix B.

We used the lme4 package (Bates et al., 2015) in R (R Core Team,
2020) to estimate the model parameters via maximum likelihood, which
implemented the adaptive Gauss-Hermite quadrature approximation
that is less likely to produce biased fixed-effect estimates in GLMMs
when compared to the penalized quasi-likelihood approach (Capanu
et al., 2013; Pan and Thompson, 2003).

2.3.1. Goodness-of-fit
While no confirmatory tests are available to assess the adequacy of
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the fixed effects in linear mixed models, the most commonly used
method is to test for the significance of additional terms in embedded
models (Bates, 2010; Pan and Lin, 2005; Tang et al., 2014). To evaluate
the goodness-of-fit of the models, we used the likelihood ratio tests to
compare the deviance of the full model fit with the null model, which
were constructed as follows. In addition, two alternative hypotheses, i.
e., one with only distraction types as predictors, the other with only
environmental covariates, were also included in the comparison.

glmm full: Outcome~ Entertainment+IVIS+InCabinObjects
+ExternalScenes+FoodBeverage 4 PersonalHygiene 4 Interaction
-+ MobileDevice + Smoking + OtherSecondaryTasks
-+weatherBinary +surfaceBinary + gradeBinary
+alignmentBinary +lightingFactor
+trafficDensityFactor +intersectionFactor
-+ (1|anonymousParticipantID)

@

glmm distractions.only : Outcome ~ Entertainment +IVIS
+InCabinObjects + ExternalScenes + FoodBeverage
+ PersonalHygiene + Interaction +MobileDevice
+ Smoking + OtherSecondaryTasks
+ (1JanonymousParticipantID)
(2)

glmm_environment_only : Outcome ~ weatherBinary + surfaceBinary
-+ gradeBinary + alignmentBinary + lightingFactor
+ trafficDensityFactor + intersectionFactor
+ (1|anonymousParticipantID)

3

glmm_null : Outcome ~ 1+ (1|anonymousParticipantID) “4)

For all six age-gender groups, the distractions-only model had
significantly lower deviance than that of the null model; and the full
model had significantly lower deviance than that of the distraction-only
model. The deviance, chi-squared, degree of freedom, and p value can be
found in Appendix C. Bates cautioned that this approach of using a chi-
squared distribution to calculate a p value for the change in the deviance
is conservative in the sense that it is larger than a simulation-based p
value (Bates, 2010). Thus, the full models in the current study were
shown to have better fit than the null model even using this conservative
approach.

2.3.2. Multiplicity adjustment

Multiple subgroup comparisons introduce multiplicity that could
lead to inflated type I error. Multiplicity adjustment therefore is rec-
ommended, especially when the analysis is to test specified subgroup
hypotheses to inform decision making (Li et al., 2017). The Bonferroni
adjustment is a classical method to adjust for multiplicity by requiring a
significance level of a/k, where k is the number of comparisons and « is
the desired experiment-wise error rate. The disadvantages of this
approach include low power and being overly conservative (Li et al.,
2017). This study used the Benjamini-Hochberg (BH) procedure, which
ensures the overall false discovery rate (i.e. the expected proportion of
the rejected null hypotheses which are erroneously rejected) is less than
the desired experiment-wise error rate and has more power than the
Bonferroni adjustment (Benjamini and Hochberg, 1995).

2.3.3. Compare at-fault crash risk to all-cause crash risk

To assess if distraction is associated with at-fault crashes in a similar
fashion as they do with all-cause crashes, the same set of analyses was
also performed on all crashes identified in the study without fault
determination, of which results were compared.
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3. Results
3.1. Prevalence of distractions

The prevalence of distractions in everyday driving can be approxi-
mated by the randomly and proportionally sampled control group. The
three most common distractions for teens were Interaction, Entertain-
ment, and Mobile Device. For adults, these distractions were Interaction,
External Scenes, and Mobile Device (joint second). Interaction, External
Scenes, and Entertainment (a distant third) were the most common
distractions for seniors. Table 2 presents the diversity in common
distraction types among different age-gender groups. For instance, using
chi-squared test, we showed that teens were more likely to be distracted
by Entertainment and Interaction than adults (y? = 20.64, P <.001) and
seniors (y? = 199.99, P < .001). The prevalence of Mobile Device was
significantly higher among teens (y? = 365.41, P < .001) and adults
(y? = 400.05, P < .001) than seniors, while the prevalence of External
Scenes distraction was significantly higher among seniors than teens

2 =62.36, P < .001). Overall speaking, teens (y? = 193.21, P < .001)
and adults (y? = 274.54, P < .001) were more distraction-prone than
seniors as evident in the prevalence of No Distraction.

3.2. Effects of distraction on different age-gender groups

Table 3 shows the exponentiated coefficients for each distraction
type, which are odds ratios of the distractions being associated with at-
fault or all-cause crashes. In-Cabin Objects had large odds ratios ranging
between 5.46 and 13.27, significant for all six groups, with the greatest
effect on senior males (OR = 13.27, 95% CI 5.78-30.50). Mobile Device
related distractions impacted all groups but senior females, with the
greatest impact on senior males (OR = 8.01, 95% CI 1.99-32.18). The
odds ratios of External Scenes distraction being involved in at-fault
crashes ranged from 1.24 to 2.74, significant among all six groups but
adult males. In-Vehicle Information System (IVIS) had significant asso-
ciation with teen males, adult females, adult males, and senior females,
affecting senior females the most (OR = 4.12, 95% CI 1.74-9.76). Food
& Beverage and Personal Hygiene distractions increased the odds of at-
fault crash risk by 3.09 (95% CI 1.16-8.26) for teen females and 1.93

Table 2
Prevalence of distraction by type and driver age-gender group.
Teen Teen Adult Adult Senior Senior
Female Male Female Male Female Male
Number of Trips n (%) n (%) n (%) n (%) n (%) n (%)
Involving
Distraction
Entertainment 193 134 650 520 73 86
(13.6) (10.6) (9.8) (8.8) (3.9 (3.3)
External Scenes 84 124 584 720 234 367
(5.9) 9.8) (8.8) (12.2) (12.6) (13.9)
Food & 41 34 281 202 39 52 (2)
Beverage (2.9) 2.7) 4.2) (3.4) (2.1)
In-Cabin Objects 26 26 179 155 39 38
(1.8) 2.1) (2.7) (2.6) (2.1) 1.4)
Interaction 278 244 983 920 280 407
(19.7) (19.49) (14.7) (15.6) (15) (15.49)
VIS 62 51 (4) 244 227 52 69
4.4 3.7) 3.9 2.8) (2.6)
Mobile Device 165 126 730 573 27 18
(11.7) (10) (11) 09.7) (1.5) 0.7)
Personal 74 48 328 213 40 45
Hygiene (5.2) (3.8) (4.9) (3.6) (2.1) 1.7)
Smoking 8 (0.6) 5 92 74 12 28
0.49) 1.4 (1.3) (0.6) (1.1)
Other 53 60 260 249 50 98
3.7) (4.8) (3.9) (4.2) 2.7) (3.7)
No Distraction 587 558 3022 2671 1114 1580
(41.5) (44.3) (45.3) (45.4) (59.8) (59.7)
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Table 3
The association between distraction and at-fault crashes or all-cause crashes in
odds ratios and 95% confidence intervals.

At-Fault Crashes All-Cause Crashes

OR (95% CI) OR (95% CI)
Teen Female Teen Male Teen Female Teen Male
Entertainment 1.52(0.83, 1.13 (0.55, 1.42 (0.84, 1.06 (0.55,
2.77) 2.34) 2.38) 2.05)
External Scenes 2.40 (1.21, 2.08 (1.10, 1.91 (1.02, 1.64 (0.90,
4.73) * 3.95) * 3.58) 3.00)
Food & 3.09 (1.16, 0.32 (0.04, 2.18 (0.84, 0.59 (0.13,
Beverage 8.26) 2.71) 5.68) 2.80)
In-Cabin 7.51 (3.48, 5.56 (2.34, 6.72 (3.35, 5.46 (2.50,
Objects 16.20) *** 13.19) *** 13.49) *** 11.90) ***
Interaction 1.08 (0.61, 1.18 (0.65, 1.05 (0.64, 1.32(0.80,
1.91) 2.13) 1.71) 2.19)
VIS 1.16 (0.43, 3.12 (1.39, 0.99 (0.40, 2.72 (1.31,
3.15) 7.01) * 2.45) 5.64) *
Mobile Device 3.12 (1.80, 3.26 (1.83, 2.34 (1.43, 2.80 (1.66,
5.40) 5.79) * 3.83) *** 4.73) *
Personal 1.52 (0.61, 1.07 (0.31, 1.55 (0.73, 1.40 (0.53,
Hygiene 3.78) 3.69) 3.30) 3.74)
Smoking 3.14 (0.61, 5.84 (0.92, 2.63 (0.53, 4.26 (0.70,
16.17) 37.13) 13.15) 26.03)
Other 2.70 (1.15, 0.88 (0.29, 2.63 (1.26, 0.89 (0.34,
6.37) 2.63) 5.50) 2.36)
Adult Adult Male Adult Adult Male
Female Female
Entertainment 1.09 (0.65, 0.90 (0.50, 1.18 (0.78, 1.18 (0.76,
1.81) 1.62) 1.77) 1.84)
External Scenes  2.23 (1.43, 1.24 (0.77, 1.65 (1.11, 1.40 (0.97,
3.47) *xx 1.98) 2.45) * 2.04)
Food & 0.79 (0.34, 1.10 (0.44, 0.95 (0.50, 1.07 (0.51,
Beverage 1.81) 2.71) 1.79) 2.23)
In-Cabin 11.20 (7.23, 7.74 (4.69, 10.80 (7.58, 6.77 (4.44,
Objects 17.35) *** 12.76) *** 15.38) *** 10.34) ***
Interaction 1.01 (0.63, 1.26 (0.81, 1.20 (0.83, 1.19 (0.82,
1.63) 1.95) 1.72) 1.72)
VIS 2.53 (1.38, 2.49 (1.35, 1.80 (1.04, 2.58 (1.57,
4.62) * 4.59) * 3.12) 4.25) ***
Mobile Device 3.27 (2.22, 2.80 (1.85, 2.85 (2.07, 2.10 (1.46,
4.81) *** 4.23) ¥ 3.92) *#* 3.03) ***
Personal 1.93 (1.07, 0.99 (0.38, 1.59 (0.95, 1.36 (0.69,
Hygiene 3.48) 2.58) 2.64) 2.70)
Smoking 0.55 (0.07, 1.77 (0.57, 0.60 (0.14, 1.22(0.41,
4.17) 5.52) 2.59) 3.59)
Other 1.08 (0.48, 0.80 (0.32, 0.91 (0.45, 0.93 (0.46,
2.42) 2.03) 1.84) 1.87)
Senior Senior Male Senior Senior Male
Female Female
Entertainment 1.06 (0.34, 0.68 (0.16, 1.37 (0.54, 0.52 (0.12,
3.32) 2.99) 3.50) 2.28)
External Scenes  2.26 (1.25, 2.74 (1.61, 1.98 (1.15, 1.98 (1.20,
4.10) * 4.64) *** 3.42) * 3.27) *
Food & 1.32 (0.32, Not enough 1.58 (0.48, 0.36 (0.04,
Beverage 5.41) cases 5.24) 2.98)
In-Cabin 11.53 (5.41, 13.27 (5.78, 8.94 (4.41, 11.32 (5.32,
Objects 24.57) *** 30.50) *** 18.13) *** 24.08) ***
Interaction 1.05 (0.51, 0.57 (0.26, 1.13 (0.62, 0.72 (0.38,
2.16) 1.23) 2.08) 1.35)
VIS 4.12 (1.74, 0.64 (0.14, 2.82 (1.22, 0.80 (0.23,
9.76) * 2.93) 6.50) * 2.81)
Mobile Device 2.00 (0.40, 8.01 (1.99 1.53 (0.32, 6.10 (1.54,
9.87) 32.18) 7.21) 24.09) *
Personal 1.39(0.31, 1.27 (0.24, 1.09 (0.25, 1.84 (0.53,
Hygiene 6.27) 6.71) 4.77) 6.37)
Smoking 2.27 (0.23, 1.23 (0.15, 1.75 (0.19, 0.94 (0.11,
22.22) 10.35) 16.09) 7.89)
Other 2.03 (0.59, 1.29 (0.43, 1.49 (0.45, 1.00 (0.34,
6.97) 3.81) 4.92) 2.90)

Significance codes: P < 0.001 “***”, 0.001 <=P < 0.01 “**”, 0.01 <=P < 0.05
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(95% CI 1.07-3.48) for adult females, respectively, although their
adjusted p values became greater than the predefined threshold (o =
0.05). The at-fault crash risks associated with distractions by age-gender
groups were visualized in Fig. 1. The coefficients, standard errors, and
adjusted p values from the model outputs are included in Appendix D.

Comparing to the odds ratios associated with all-cause crashes, the
estimated risks were more pronounced among at-fault crashes as indi-
cated by the higher odds ratios. External Scenes distraction was signif-
icantly associated with at-fault risks across all groups except adult
males, but it had smaller associations with all-cause crashes among only
three of the six age-gender groups.

4. Discussion

To summarize the study findings, we found that at-fault crashes were
more likely to have the significant distraction types present than all-
cause crashes. The distraction types that contributed most to at-fault
crashes included In-Cabin Objects, Mobile Device, External Scenes,
and In-Vehicle Information Systems (IVIS). Specific distraction types
influenced specific age-gender groups differently. While teens and
adults were more likely to be distracted during driving than seniors,
seniors were more prone to at-fault crash risks associated with In-Cabin
Objects, Mobile Device and IVIS.

In-Cabin Objects were associated with an elevated risk of at-fault
crashes for all age-gender groups, and Mobile Device, External Scenes
and IVIS for most groups. They all involve a component of visual redi-
rection off the roadway ahead. Furthermore, In-Cabin Objects, IVIS, and
Mobile Device also involve coordinated eye-hand movement to ma-
neuver and interact with an object inside the cabin.

Comparing the study findings to previous research, the estimated
odds ratios of all-cause crashes are similar to those reported in the
(Dingus et al., 2016) study, which also used the SHRP2 dataset but
without fault determination and environmental variables. For example,
Dingus et al., reported the univariate crash odds ratio was 2.5 associated
with “in-vehicle device” (similar to IVIS), 3.6 with cell phone use
(similar to Mobile Device), 7.1 with “extended glance duration to
external object” (similar to External Scenes), and 9.1 with “reaching for
a non-cell phone object” (similar to In-Cabin Objects). By distinguishing
between different age-gender groups, we recognized that the associated
risks differed from the aggregate numbers. For example, the all-cause
crash risk associated with mobile device use was almost twice in the
senior male group (OR = 6.10) than the all-population risk estimate, and
teen females (OR = 0.99) and senior males (OR = 0.80) did not seem to
be as affected by the IVIS distraction as the other groups did. Analyzing
the risks of distracted driving by age-gender group shows that specific
activities can be riskier for a certain population.

Among specific age groups, Gershon et al., used naturalistic driving
data of teenage drivers from the Supervised Practice Driving cohort
study and analyzed similar distraction types as those of this study but
without fault determination (a limitation the author pointed out); their
analysis found similarly increased risk associated with manual cellphone
use (OR = 2.7) and reaching/handling objects (OR = 6.9), but not with
External and IVIS distractions, which this study did. This study found
mild significance (0.01 <= P < 0.05) associated with IVIS among teen
males, but not among teen females, so it is possible that the distraction
effects were attenuated when combining genders. This study reported
mild significance (0.01 <=P < 0.05) on the association between
External Scenes and at-fault crashes, but not all-cause crashes, which
suggests the effects of distraction may be overlooked without fault
determination.

For older drivers, Huisingh et al., using the SHPR2 dataset reported
increased risks associated with cell phone use (OR = 3.79) and “other
glances into the interior of the vehicle” (similar to In-Cabin Objects and
IVIS) (OR = 2.55). However, external distraction was found to be
associated with a decreased risk of crash involvement (Huisingh et al.,
2019), contrary to the elevated crash risk found in this study. The



0.S. Liang and C.C. Yang

Accident Analysis and Prevention 165 (2022) 106505

Entertainment External

Food & Beverage

In-Cabin Objects Interaction

304

)
=3
f

=)
L

Odds Ratio (Outcome | Secondary Tasks)

oA Significance
wis Mobile Device Personal Hygiene Smoking Other increased risk
insignificant
304
204
104 }
0 g g
I S — T — T — T — T
(] o o o o
3T 23 e 82 § 235 e F g 3§ o5 e g T ezesrL Feg e E L
13 © £ ) £ © £ © c £ © £ © £ [ £ o £ [ £ ©
s = 5 = QO =2 s = & = 9 =2 T = & = O =2 T = & = O =2 s = & = O =2
L oe & = +© 5 L e &L = - 5 L e L = - 5 L e L = - 5 L e L = 5
5§ 8 3 3 2 % § 8 3 3 2 % &8 8 3 3 2 % § 8 3 3 2 3 § &8 3 3 2 3
o - T < 5 & o - T < 5 3 o - T < § & > - T < 5 & o - T < 5 3
= < s @ = < s @ = < s ? - < s ° = < s
Outcome

Fig. 1. The association between distraction types and at-fault crashes.

authors explained that the analysis did not control for driving environ-
ment, road type, time of day, and weather, which this study did and may
explain the difference.

While much attention has focused on assessing the danger of using
cell phones (Gariazzo et al., 2018; Poysti et al., 2005; Truong and
Nguyen, 2019), our research identifies detrimental distraction types
previously understudied. For example, although looking at road signs, a
form of External Scenes distraction, is a socially acceptable distraction
(Patel et al., 2008), it can be dangerous. Coupled with its high preva-
lence, External Scenes distraction is both common and contributes sig-
nificant risk. In-vehicle technologies prove to be as hazardous as mobile
devices, although current legislation has not taken a stance against in-
vehicle technology use (Parnell et al., 2017). In-cabin Objects univer-
sally elevated the odds of at-fault crashes, but has not been extensively
studied.

This study has several limitations. The fault determination is based
on the manual assessment of human experts. Some could argue that this
process is subjective or arbitrary, however other ways of determining
fault are limited. Another limitation is the generalizability of the study
as the study population was sampled from six cities in the United States,
however our findings on in-cabin objects and external distraction are
similar to one study conducted in France (Bakiri et al., 2013). Lastly, this
study did not explain why certain distraction types contribute significant
risk. To address this question, further research will focus on how drivers
adapt their driving behaviors while engaging in secondary tasks.

5. Conclusions

A better understanding of at-fault crashes is much needed. In this
study, we compared the at-fault crash risk of distractions among six age-
gender groups using mixed-effect logistic regression and controlling for
environment factors and driver heterogeneity. Analyzing the risks of
distracted driving by age-gender group shows that specific activities can
be riskier for a certain population. This study provides evidence that the
detrimental effect of distraction may be underestimated without dis-
tinguishing at-fault crashes from all-cause crashes.
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