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Abstract
In this article, we study stochastic functional linear models (SFLM) driven by an
underlying square integrable stochastic process X(t)which is generated by a standard
Brownian motion. Utilizing the magnificent Itô integrals and Malliavin calculus, X(t)
is expanded into a summation of orthogonal multiple integrals, i.e., Wiener-Itô chaos
expansions,which is the counterpart of theTaylor expansionof deterministic functions.
Based on the expansion, we show that the fourth moments of linear functionals of
underlying stochastic process X(t) are bounded by the square of their secondmoments
when X(t) is a finite linear combination ofmultiple Itô integrals. Therefore, an optimal
minimax convergence rate in mean prediction risk of SFLM is valid if eigenvalues
of related linear operators are of order k−2r by using results in literature when the
underlying process X(t) is a linear combination of multiple Itô integrals. A sufficient
and necessary condition of finite fourth moment of random functions of multiple Itô
integrals is proved, which is a key condition in methodology and convergence rates of
functional linear regressions. Our results show that the optimal minimax convergence
rate inmean prediction risk can be applied to the class of linear combination ofmultiple
Itô integralswhich are not necessarilyGaussian processes.Moreover, the sufficient and
necessary condition of finite fourth moment for multiple Itô integrals can be directly
applied to showmethodology and convergence rates of functional linearmodels. Using
the theory of stochastic analysis, onemay construct a reproducing kernel Hilbert space
(RKHS) associated with a square integrable stochastic process to facilitate analysis of
functional data.
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1 Introduction

For high-dimension data such as those of next-generation sequencing, functional data
analysis technique has been found to be very useful in compressing and drawing
valid information in data analysis. In literature, various decomposition methods are
proposed to study functional regressions such as functional principal component anal-
ysis (FPCA) (Hall and Hosseini-Nasab 2006; Wang et al. 2016; Yao et al. 2005a, b).
Functional canonical correlation analysis (FCCA) is developed to measure functional
correlation (Eubank and Hsing 2008; He et al. 2003, 2010). In addition, reproducing
kernel Hilbert space (RKHS) is widely used in dissecting functional data (Hsing and
Ren 2009; Yuan and Cai 2010).

In comparison, the progress of theoretical research using stochastic analysis to
functional models is not very fast and mature. The sophisticated theory of stochastic
processes is not fully utilized in the theoretical dissection of functional data. To our
knowledge, the utilization of stochastic integrations in statistical analysis is still not
beyond the well-respected work of Dr. Wahba about 50 years ago, i.e., single layer
Itô integral of Brownian motion in splines (Kimeldorf and Wahba 1970a, b, 1971;
Wahba 1978, 1990). It is well-known that there is a family of zero-mean Gaussian
random variables associated with a positive-definite function in the continuous case by
Kolmogorov consistency theorem (Kolmogorov 1933). Statisticians are familiar with
RKHS associated with positive-definite function but not very much research is done
using the theory of stochastic processes. The gap is due to a lack of communications
between statistics and stochastic analysis (or statisticians and probabilists).

In stochastic analysis, there has been three major milestones in 20th century: Itô
integrals, Doob-Meyer decomposition of super-martingales, and Malliavin calculus.
Itô integrals and Doob-Meyer decomposition of super-martingales are successfully
applied to statistics such as survival analysis.Malliavin calculus, however, is notwidely
known for statisticians. One core of Malliavin calculus is a Wiener-Itô chaos expan-
sion of random functions, which is similar to the Taylor expansion of deterministic
functions. Originally, the Malliavin calculus is developed as an infinite-dimensional
differential calculus on the Wiener space to provide a probabilistic proof of Hör-
mander’s hypoellipticity theorem (Hairer 2011; Hörmander 1967; Malliavin 1978).
It defines derivatives of random variables on the Wiener space and then it develops
related calculus, which is used to decompose square integrable random variables and
square integrable stochastic processes into an orthogonal summations of multiple Itô
integrals.

In the last 40 years, the Malliavin calculus has found many fruitful applications,
such as application to show the existence and smoothness of densities of stochastic
functionals of Gaussian processes and application to finance (Fournié et al. 1999,
2001; Nualart 2018; Ocone 1984; Ocone and Karatzas 1991). To study probabilis-
tic approximations, Malliavin calculus is combined into Stein’s methods to provide
a complete characterization of Gaussian approximations and central limiting theo-
rems for sequences of multiple stochastic integrals (Nourdin and Peccati 2009, 2012;
Nualart and Peccati 2005; Nualart and Ortiz-Latorre 2008).

In this paper, we apply the Malliavin calculus and multiple Itô integrals to analyze
functional data. We study stochastic functional linear models (SFLM) to connect
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Stochastic functional linear models and Malliavin calculus 593

a scalar random variable with a square integrable stochastic process X(t) which is
generated by a standard Brownian motion. The SFLM naturally explains that the
variation of the scalar variable is intrinsically driven by the Brownian motion (or the
stochastic process X(t)) and is influenced by errors. We show that the fourth moments
of linear functionals of underlying stochastic process X(t) are bounded by the square
of their second moments when X(t) is a finite linear combination of multiple Itô
integrals. Therefore, an optimal minimax convergence rate in mean prediction risk of
SFLM is valid if eigenvalues of related linear operators are of order k−2r , r > 0, by
using results in literature when X(t) is a linear combination of multiple Itô integrals
(Cai and Hall 2006; Cai and Yuan 2012; Yuan and Cai 2010; Crambes et al. 2009). We
provide a sufficient and necessary condition for fourth moment to be finite, which is a
key condition in methodology and convergence rates of functional linear regressions
(Ferré and Yao 2003, 2005; Delaigle and Hall 2012; Hall and Horowitz 2007; Li and
Hsing 2007, 2010).

The reminder of this article is organized as follows. In Sect. 2, we introduce the
SFLM and establish a relation between the SFLM and minimization procedure to esti-
mate the mean of the scalar random variable with a stochastic functional component.
In Sect. 3, Itô integrals and Wiener-Itô chaos expansions of Malliavin calculus are
briefly introduced. In Sect. 4, we provide theoretical results of stochastic functional
linear models: we show an optimal minimax convergence rate in mean prediction risk
in Sects. 4.1 and 4.2, we provide a sufficient and necessary condition of finite fourth
moment with applications to functional inverse regression and rates of convergence.
Section 5 presents results of simulation studies. We conclude with discussion and
some remarks in Sect. 6.

2 Stochastic functional linear models

Let W = W (t) = W (t, ω), ω ∈ �, t ∈ [0, 1], be a standard Brownian motion or a
one-dimensional Wiener process on a complete probability space (�,F , P), where
the σ -field F is given by F = σ {W (t) : 0 ≤ t ≤ 1} . Let x0(t) be a square integrable
function defined on [0, 1], X(t, ω) be a square integrable stochastic process defined on
[0, 1] satisfying EX(t) = x0(t) and

∫ 1
0 EX2(t)dt < ∞. For all t ∈ [0, 1], assume that

X(t) is F-measurable. Let Y be a scalar random variable generated by a functional
linear model

Y = α +
∫ 1

0
X(t)β(t)dt + ε,

= α +
∫ 1

0
x0(t)β(t)dt +

∫ 1

0
[X(t) − x0(t)]β(t)dt + ε, (1)

where α is an intercept, β(t) ∈ H = L2([0, 1]) is a square integrable regression
coefficient function, and ε is an error term such that Eε = 0 and Eε2 = σ 2

e < ∞.
Assume that ε is independent of W (t), t ∈ [0, 1]. Denote the covariance function of
X(t) by C(s, t) = Cov[X(s), X(t)].
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594 R. Fan, H.-B. Fang

Given a sample of data ((X1,Y1), . . . , (Xn,Yn) consisting of n independent copies
of (X ,Y ), let us denote

η(Xi ) = α +
∫ 1

0
Xi (t)β(t)dt .

Thus, themodel (1) can be re-written asYi = η(Xi )+εi ,where εi are independent error
terms of copies of ε, i = 1, . . . n. An estimate η̂nλ(x) of η(x) is obtained by finding
α̂ ∈ R and β̂(t) ∈ H to minimize 1

n

∑n
i=1[Yi − η(Xi )]2 + λJ (β) = 
n(η) + λJ (β),

where 
n(η) = 1
n

∑n
i=1[Yi −η(Xi )]2, λ > 0 is a smoothing parameter, J is roughness

penalty on β (Cai and Yuan 2012; Li and Hsing 2007; Yuan and Cai 2010). Therefore,
η̂nλ is a regularization estimate of η given by

η̂nλ = argminα∈R,β∈H

{
1

n

n∑

i=1

[Yi − η(Xi )]2 + λJ (β)

}

. (2)

Let (Xn+1,Yn+1)be anewcopyof (X ,Y )which is independent of ((X1,Y1), . . . , (Xn,

Yn)). Given the estimate η̂nλ(x), the prediction accuracy can bemeasured by the excess
risk (Cai and Yuan 2012)

E(η̂nλ) = E ∗[Yn+1 − η̂nλ(Xn+1)
]2 − E ∗[Yn+1 − η(Xn+1)

]2

= E ∗[η̂nλ(Xn+1) − η(Xn+1)
]2

, (3)

where E ∗ represents an expectation taken over (Xn+1,Yn+1). The relation (3) can be
verified since Yn+1 = η(Xn+1)+εn+1 and εn+1 is an error term which is independent
of εi , i = 1, . . . n.

Let the penalty functional J be a squared semi-norm on H such that the null
space H0 = {β ∈ H : J (β) = 0} is a finite subspace of H with orthonormal basis
{ξ1(t), . . . , ξN (t)}. Let HK be the orthogonal complement of H0 such that H =
H0 ⊕ HK . For h ∈ H , it can be uniquely decomposed into h = h0 + h1 such that
h0 ∈ H0 and h1 ∈ HK are projections onto H0 and HK . Let K (·, ·) be the reproducing
kernel (RK) of HK such that J (h1) = ||h1||2K .

Note HK ⊂ H is the RKHS of K (s, t), i.e., HK is the closed subspace of H formed
by all finite linear combinations of form

∑
i ai Kti (t), where Kti (t) = K (ti , t). For

f (·) = Ks(·) and g(·) = Kt (·) in HK , their inner product is

〈 f (·), g(·)〉K = 〈Ks(·), Kt (·)〉K = K (s, t),

which leads to 〈Kt (·), f (·)〉K = f (t). The following representer theorem is from
literature (Cai and Yuan 2012; Yuan and Cai 2010).

Theorem 2.1 Assume that K (s, t) is continuous and the 
n depends on η only through
η(X1), η(X2), . . . , η(Xn). Then there exist d = (d1, . . . , dN ) and c = (c1, . . . , cn)
such that
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β̂nλ(t) =
N∑

k=1

dkξk(t) +
n∑

j=1

c j LK X j (t),

α̂nλ = Ȳ −
∫ 1

0
X̄(t)β̂nλ(t)dt,

where Ȳ = 1
n

∑n
k=1 Yi , X̄(t) = 1

n

∑n
k=1 Xk(t), and LK X j (t) is an operator defined

via

LK h(t) =
∫ 1

0
K (t, s)h(s)ds, h ∈ H .

3 A brief introduction of Malliavin calculus

Let H = L2([0, 1]) be a Hilbert space defined by an inner product and an norm ‖ ·‖H

〈g, h〉H =
∫ 1

0
g(t)h(t)dt and ‖g‖2H = 〈g, g〉H .

For each h ∈ H , let us denote the Wiener integral of h by W (h) = ∫ 1
0 h(t)dWt . Note

that

E[W (h)W (g)] = 〈g, h〉H .

Hence, the mapping h −→ W (h) can be extended to a linear isometry between the
Hilbert space H and the Gaussian space L2(�,F , P).

For n ≥ 1, let H⊗n = L2([0, 1]n) be a Hilbert space defined by an inner product

〈g, h〉H⊗n =
∫

[0,1]n
g(t1, . . . , tn)h(t1, . . . , tn)dt1 . . . dtn .

Let L2
S([0, 1]n) ⊂ L2([0, 1]n) be a space of symmetric square integrable Borel real

functions. For any h ∈ L2
S([0, 1]n), we have

‖h‖2H⊗n = n!
∫

�n

h2(t1, . . . , tn)dt1 . . . dtn,

where �n = {(t1, . . . , tn) ∈ [0, 1]n : 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}. For g ∈ L2
S([0, 1]n),

define its multiple stochastic integral as an Itô integral (Itô 1951)

In(g) = n!
∫ 1

0

∫ tn

0
· · ·

∫ t2

0
g(t1, . . . , tn)dWt1 . . . dWtn

= n!
∫

�n

g(t1, . . . , tn)dWt1 . . . dWtn .
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596 R. Fan, H.-B. Fang

From Itô (1951) or Nualart (2006, 2018) or Nunno et al. (2009), we have for g, h ∈
L2
S([0, 1]n)

E[In(g)Im(h)] =
{
0 if n �= m

n!〈g, h〉H⊗n if n = m
. (4)

If g ∈ L2([0, 1]n) is not necessarily symmetric, define its symmetrization as

g̃(t1, . . . , tn) = 1

n!
∑

σ

g(tσ1, . . . , tσn ),

where the sum is taken over all permutations σ of (1, 2, . . . , n). Then, we may define
a stochastic integral In(g) = In(g̃). The following Wiener-Itô decomposition is well-
known in the theory of Malliavin calculus (Itô 1951; Nunno et al. 2009; Oksendal
2003; Wiener 1938).

Lemma 3.1 Let F(ω) ∈ L2(�,F , P) be a square integrable random variable.
There exists a constant f0 and a sequence of symmetric square integrable functions
fn(t1, . . . , tn) ∈ L2

S([0, 1]n), n = 1, 2, . . ., such that

F = f0 +
∞∑

n=1

In( fn). (5)

In addition, the sum of (5) converges in L2(�,F , dP) and

E(F2) = f 20 +
∞∑

n=1

EI 2n ( fn) = f 20 +
∞∑

n=1

n!‖ fn‖2H⊗n < ∞.

One may note that the mean of the random variable F in Lemma 3.1 is equal to f0
and the variance of F is

∑∞
n=1 n!‖ fn‖2H⊗n .

Lemma 3.2 Let X(t) be a measurable stochastic process and x0(t) be a square inte-
grable function on [0, 1] such that ∫ 1

0 EX2(t)dt < ∞ and EX(t) = x0(t), i.e., X(t) is
square integrable with a mean function x0(t). There exists a sequence of deterministic
measurable kernels xn(t1, . . . , tn, t) ∈ L2([0, 1]n+1) on [0, 1]n+1, n = 1, 2, . . ., such
that

X(t) = x0(t) +
∞∑

n=1

In(xn(·, t)) (6)
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and all xn(t1, . . . , tn, t) are symmetric with respect to the variables t1, . . . , tn. In
addition, the sum of (6) converges in L2(� × [0, 1], dP × dt) and

E‖X‖2H =
∫ 1

0
EX2(t)dt

=
∫ 1

0
x20 (t)dt +

∞∑

n=1

∫ 1

0
EI 2n (xn(·, t))dt

=
∫ 1

0
x20 (t)dt +

∞∑

n=1

n!‖xn‖2H⊗(n+1) .

4 Theoretical results

4.1 Optimal rates of convergence

Let K (s, t) be the RK of the penalty functional J (β) introduced in the Sect. 2. By
the spectral theorem, there exists a complete orthonormal system {φ1, φ2, . . .} ∈ HK

such that LKφi = κiφi , where κi ≥ 0 is eigenvalue corresponding to φi , i = 1, 2 . . ..
Moreover, κ1 ≥ κ2 ≥ · · · > 0. Let LK 1/2 be a linear operator defined by LK 1/2φi =√

κiφi .
For the RK K (s, t) and the covariance function C(s, t), define a linear operator

LK 1/2CK 1/2 by LK 1/2CK 1/2h = LK 1/2(LC (LK 1/2h)), where LC is an operator defined
via

LCh(t) =
∫ 1

0
C(t, s)h(s)ds, h ∈ H .

By the spectral theorem, there exists a complete orthonormal system {ψ1, ψ2, . . .}
such that LK 1/2CK 1/2ψi = siψi , where si ≥ 0 is eigenvalue corresponding to ψi , i =
1, 2 . . .. Moreover, s1 ≥ s2 ≥ · · · > 0.

For two positive sequences ak and bk , ak � bk means that ak/bk is bounded away
from 0 and ∞ as k → ∞. In Cai and Yuan (2012), an optimal minimax convergence
rate in mean prediction risk is proved under an assumption that the fourth moments
of linear functionals of X(t) are bounded by the square of their second moments. In
the following theorem, we show the result without the assumption if X(t) is a linear
combination of multiple Itô integrals.

Theorem 4.1 Assume that X(t) = x0(t) + ∑N
n=1 In(xn(·, t)), N ≥ 1, is a square

integrable stochastic process on (�,F , P),F = σ {W (t) : 0 ≤ t ≤ 1}. Let E(η̂nλ) be
the mean prediction risk defined by the relation (3). Suppose the eigenvalues {sk : k ≥
1} of the linear operator LK 1/2CK 1/2 satisfy sk � k−2r for some constant 0 < r < ∞,
then

lim
A→∞ lim

n→∞ sup
β∈H(K )

P
{
E(η̂nλ) ≥ An− 2r

2r+1

}
= 0,
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when λ is of order n−2r/(2r+1).

Proof By Theorem 2 of Cai and Yuan (2012), we only need to show that there exists
a constant CN such that

E

(∫ 1

0
X(t) f (t)dt

)4

dt ≤ CN

[

E

(∫ 1

0
X(t) f (t)dt

)2
]2

, (7)

for any square integrable function f (t) ∈ H . The proof of the inequality (7) is provided
in sectionAof the SupplementaryMaterials by three lemmas, i.e., LemmaA.1, Lemma
A.2, and Lemma A.3. The first two Lemma A.1 and Lemma A.2 are used to prove
Lemma A.3 which shows the inequality (7). ♣

Remark 4.1 The Theorem 2.1 is slightly different from that in Cai and Yuan (2012),
since we use the framework in Yuan and Cai (2010). The two papers use slightly
different penalties. In Yuan and Cai (2010), in keeping with splines, the penalty is a
squared semi-norm on the RKHS, i.e., it does not penalize constant or linear terms of
H0 as represented by the {ξi , . . . , ξN (t)}. Cai andYuan (2012) uses a penalty that is the
squared norm on the RKHS so it penalizes everything. As the un-penalized subspace
H0 is finite dimensional, it does not lead to any difference in the results. The similar
frameworks as Yuan and Cai (2010) are used in Du and Wang (2014) and Sun et al.
(2018). Therefore, the difference of the two frameworks is that a finite dimensional
null space H0 is included in our framework as Yuan and Cai (2010), while H0 = ∅ is
empty in Cai and Yuan (2012).

Remark 4.2 The relation (7) states that the fourthmoments of linear functionals of X(t)
are bounded by the square of their second moments and so have bounded kurtosis.
When N = 1, the stochastic process X(t) = x0(t)+ I1(x1(·, t)) is a Gaussian process
and the inequality (7) is an equality and C1 = 3. When N > 1, X(t) = x0(t) +∑N

n=1 In(xn(·, t)) is not a Gaussian process and cN > 3. To show the inequality (7),
we will use the theory of Itô integrals andMalliavin calculus to show the three lemmas
in the Supplementary Materials.

4.2 Sufficient and necessary condition of finite fourthmoments

The following Theorem provides a sufficient and necessary condition for fourth
moment to be finite, which is a key condition in methodology and convergence rates
of functional linear regressions (Delaigle and Hall 2012; Hall and Horowitz 2007).

Theorem 4.2 Assume that X(t) = In(xn(·, t)), n ≥ 1. Then X has finite fourth
moment in that E

∫ 1
0 X4(t)dt < ∞ if and only if

∫ 1

0
‖xn(·, t)‖4H⊗n dt =

∫ 1

0

[∫

[0,1]n
x2n (t1, . . . , tn, t)dt1 . . . dtn

]2
dt < ∞.
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The proof of this Theorem is similar to that of Lemma A.2. For completion of presen-
tation, we provide the details in section B of the Supplementary Materials.

Li and Hsing (2007) requires a finite fourth moment of m-th derivative X (m). The
following result provides a necessary and sufficient condition for finite fourth moment
of X (m) which can be proved as Theorem 4.2.

Theorem 4.3 Assume that X(t) = In(xn(·, t)), n ≥ 1, and xn(t1, . . . , tn, t) belongs
to the Sobolev space of order m

Wn,m
2 =

{

g ∈ H⊗(n+1)) : g is m-times differentiable with respect to t and
∂mg

∂tm
∈ H⊗n+1

}

.

Then X (m)(t) = In
(

∂mxn
∂tm (·, t)

)
has finite fourth moment in that E

∫ 1
0

[
X (m)(t)

]4
dt <

∞ if and only if

∫ 1

0

∥
∥
∥
∥
∂mxn
∂tm

(·, t)
∥
∥
∥
∥

4

H⊗n
dt =

∫ 1

0

[∫

[0,1]n

(
∂mxn
∂tm

(t1, . . . , tn, t)

)2

dt1 . . . dtn

]2

dt

< ∞.

In the Wiener-Itô chaos expansion (6), X(t) is decomposed into a summation of an
infinite orthogonal Itô integrals. In practice, a finite number of terms should be enough
to model functional data. The following theorem extends the results of Theorems 4.2
and 4.3.

Theorem 4.4 Assume that X(t) = ∑N
n=1 In(xn(·, t)), N ≥ 1. Then,

1. X has finite fourth moment in that E
∫ 1
0 X4(t)dt < ∞ if for all n = 1, . . . , N,

∫ 1

0
‖xn(·, t)‖4H⊗n dt =

∫ 1

0

[∫

[0,1]n
x2n (t1, . . . , tn, t)dt1 . . . dtn

]2
dt < ∞.

2. Assume that for all n = 1, . . . , N, xn(t1, . . . , tn, t) belongs to the Sobolev space

Wn,m
2 of order m. Then X (m)(t) = ∑N

n=1 In
(

∂mxn
∂tm (·, t)

)
has finite fourth moment

in that E
∫ 1
0

[
X (m)(t)

]4
dt < ∞ if for all n = 1, . . . , N,

∫ 1

0

∥
∥
∥
∥
∂mxn
∂tm

(·, t)
∥
∥
∥
∥

4

H⊗n
dt =

∫ 1

0

[∫

[0,1]n

(
∂mxn
∂tm

(t1, . . . , tn, t)

)2

dt1 . . . dtn

]2

dt

< ∞.

Proof We will show the first conclusion since the second one is implied by the
first. Note that X4(t) consists of five type terms I 4n (xn(·, t)), I 3n (xn(·, t))Im(xm(·, t)),
I 2n (xn(·, t))I 2m(xm(·, t)), I 2n (xn(·, t))Im(xm(·, t))Ik(xk(·, t)), In(xn(·, t))Im(xm(·, t))
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Ik(xk(·, t))I
(x
(·, t)), n,m, k, 
 = 1, . . . , N , and n,m, k, 
 are all different. There-
fore, we only need to show that

∫ 1
0 EI 4n (xn(·, t))dt < ∞, n = 1, . . . , N , implies that

the rest four terms have finite moment, which is implied by

∫ 1

0
E
[
I 2n (xn(·, t))I 2m(xm(·, t))

]
dt

≤
(∫ 1

0
EI 4n (xn(·, t))dt

∫ 1

0
EI 4m(xm(·, t))dt

)1/2

< ∞,

∫ 1

0
E
[
I 3n (xn(·, t))Im(xm(·, t))

]
dt

≤
(∫ 1

0
EI 4n (xn(·, t))dt

∫ 1

0
E
[
I 2n (xn(·, t))I 2m(xm(·, t))

]
dt

)1/2

< ∞,

∫ 1

0
E
[
I 2n (xn(·, t))Im(xm(·, t))Ik(xk(·, t))

]
dt

≤
(∫ 1

0
EI 4n (xn(·, t))dt

∫ 1

0

[
EI 2m(xm(·, t))I 2k (xk(·, t))

]
dt

)1/2

< ∞,

∫ 1

0
E [In(xn(·, t))Im(xm(·, t))Ik(xk(·, t))I
(x
(·, t))] dt

≤
(∫ 1

0
E
[
I 2n (xn(·, t))I 2m(xm(·, t))

]
dt

∫ 1

0

[
EI 2k (xk(·, t))I 2
 (x
(·, t))

]
dt

)1/2

< ∞.

♣

Theorem 4.5 Assume that X(t) = ∑∞
n=1 In(xn(·, t)). Then,

1. X has finite fourth moment in that E
∫ 1
0 X4(t)dt < ∞ if

sup
N≥1

(

N 3
N∑

n=1

∫ 1

0
‖xn(·, t)‖4H⊗n dt

)

=
[

sup
N≥1

N 3
N∑

n=1

∫ 1

0

(∫

[0,1]n
x2n (t1, . . . , tn, t)dt1 . . . dtn

)2

dt

]

< ∞.

2. Assume that for all n = 1, 2, . . ., xn(t1, . . . , tn, t) belongs to the Sobolev space

Wn,m
2 of order m. Then X (m)(t) = ∑∞

n=1 In
(

∂mxn
∂tm (·, t)

)
has finite fourth moment

in that E
∫ 1
0

[
X (m)(t)

]4
dt < ∞ if
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sup
N≥1

(

N 3
N∑

n=1

∫ 1

0

∥
∥
∥
∥
∂mxn
∂tm

(·, t)
∥
∥
∥
∥

4

H⊗n
dt

)

= sup
N≥1

⎡

⎣N 3
N∑

n=1

∫ 1

0

(∫

[0,1]n

(
∂mxn
∂tm

(t1, . . . , tn, t)

)2

dt1 . . . dtn

)2

dt

⎤

⎦ < ∞.

Proof Note that

(
N∑

n=1

In(xn(·, t))
)4

=
⎡

⎣

(
N∑

n=1

In(xn(·, t))
)2⎤

⎦

2

≤
[

N
N∑

n=1

I 2n (xn(·, t))
]2

≤ N 3
N∑

n=1

I 4n (xn(·, t)).

Taking expectation of the above relation and letting N → ∞ will show the theorem.
♣

In functional sliced inverse regression and convergence rates of functional linear
models, a finite fourth Hilbertian norm moment in that E ‖X‖4H < ∞ is required
(Ferré and Yao 2003, 2005; Li and Hsing 2007, 2010). The following corollary shows
that the finite fourth moment of E

∫ 1
0 X4(t)dt < ∞ implies E ‖X‖4H < ∞.

Corollary 4.1 Assume that X(t) is a stochastic process defined on [0, 1]. Then X has
finite fourth moment in that E

∫ 1
0 X4(t)dt < ∞ implies E‖X‖4H < ∞.

Proof Note that the conclusion holds since

E‖X‖4H = E

[∫ 1

0
X2(t)dt

]2
≤ E

∫ 1

0
X4(t)dt .

♣

Corollary 4.2 Assume that X(t) is a stochastic process defined on [0, 1], and X (m)(t)

exists. Then X (m)(t) has finite fourth moment E
∫ 1
0

[
X (m)(t)

]4
dt < ∞ implies

E‖X (m)‖4H < ∞.

In functional inverse regressions, three conditions are required (Ferré andYao 2003,
2005; Hsing and Ren 2009; Li and Hsing 2010):
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1. E ‖X‖4H < ∞.
2. For any function f , β1, . . . , βK ∈ H , there exist constants c0, . . . , cK such that

E [〈 f , X〉H | 〈β1, X〉H , · · · , 〈βK , X〉H ] = c0 +
K∑

k=1

〈βk, X〉H . (8)

3. X has an elliptically contoured distribution.

If X(t) is a Gaussian process given by X(t) = x0(t) + I1(x1(·, t)), the linear span
(8) is valid due to that the projections of X are jointly normal and X has an elliptically
contoured distribution. In addition, the characteristic function is given by

E
[
exp (i〈β, X〉H )

] = exp

[

i〈β, x0〉H −
∫

[0,1]

(∫ 1

0
x1(t1, t)β(t)dt

)2

dt1

]

.

Based on the relation (4) and Wiener-Itô chaos expansion (6), the covariance func-
tion of a square integrable stochastic process X(t) is

C(s, t) = Cov[X(t), X(s)]
= E [X(t) − x0(t)][X(s) − x0(s)]
=

∞∑

n=1

n!〈xn(·, t), xn(·, s)〉H⊗n

=
∞∑

n=1

n!
∫

[0,1]n
xn(t1, . . . , tn, t)xn(t1, . . . , tn, s)dt1 . . . dtn . (9)

From the relation (9), the variance of random term
∫ 1
0 X(t)β(t)dt is given by

Var

(∫ 1

0
X(t)β(t)dt

)

=
∫ 1

0

∫ 1

0
β(s)C(s, t)β(t)dsdt

=
∞∑

n=1

n!
∫

[0,1]n

(∫ 1

0
xn(t1, . . . , tn, t)β(t)dt

)2

dt1 . . . dtn .

In Delaigle and Hall (2012), a different version of finite fourth moment is used,

which is E
[∫ 1

0

∫ 1
0 X(s)C(s, t)X(t)dsdt

]2
< ∞. The following corollary shows that

the finite fourth moment of E‖X‖4H < ∞ implies it.

Corollary 4.3 Assume that X(t, ω) is a stochastic process defined on [0, 1]. Then X has

finite fourthmoment in thatE ‖X‖4H < ∞ impliesE
[∫ 1

0

∫ 1
0 X(s)C(s, t)X(t)dsdt

]2
<

∞.
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Proof Note that

∫ 1

0
Var[X(t)]dt =

∫ 1

0
C(t, t)dt =

∞∑

n=1

n!‖xn‖2H⊗(n+1) < ∞.

Thus, C(s, t) is square integrable since -

∫ 1

0

∫ 1

0
C2(s, t)dt =

∫ 1

0

∫ 1

0
[Cov[X(t), X(s)]]2 dsdt

≤
∫ 1

0

∫ 1

0
Var[X(s)]Var[X(t)]dsdt

=
[ ∞∑

n=1

n!‖xn‖2H⊗(n+1)

]2

< ∞. (10)

Therefore, we have

E

[∫ 1

0

∫ 1

0
X(s)C(s, t)X(t)dsdt

]2

≤ E

[(∫ 1

0

∫ 1

0
(X(s)X(t))2 dsdt

)(∫ 1

0

∫ 1

0
C2(s, t)dsdt

)]

= E ‖X‖4H
∫ 1

0

∫ 1

0
C2(s, t)dsdt < ∞.

♣

5 Simulations studies

For simplicity, the intercept α is taken as 0 in the stochastic functional linear model (1).
The interval [0, 1] is partitioned by a vector of 100 equally spaced points to represent
a predictor curve. Such as Yuan and Cai (2010), the true slope function β(t) is given
by β(t) = ∑50

k=1 4(−1)k+1k−2φk(t), where φ1(t) = 1 and φk+1(t) = √
2 cos(kπ t)

for k ≥ 1. For the stochastic process X(t) in the model (1), we simulate data using
four processes:

• A standard Brownian motion, i.e., X(t) = W (t). The covariance function of X(t)
is C(s, t) = min(s, t).

• An Ornstein-Uhlenbeck process, which is given by the following stochastic dif-
ferential equation (Bishwal 2007; Bouleau and Lepingle 1992; Iacus 2008)

dX(t) = −θ1X(t)dt + θ2dW (t), (11)

where θ1 = 1 and θ2 = 5. The covariance function of X(t) is C(s, t) =
θ22 exp(−θ1|t − s|)/(2θ1).
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• A non-Gaussian process X(t) = ∫ t
0 dW (v)

∫ v

0 (exp(−γ v) + exp(−γ u)) dW (u),

γ = 0.75. If t ≤ s, the covariance function of X(t) is given by (Pavliotis 2014;
Ikeda and Watanabe 1989)

C(s, t) =
∫ t

0
dv

∫ v

0

[
exp(−γ v) + exp(−γ u)

]2
du

= 1

2

∫ t

0
dv

∫ t

0

[
exp(−2γ v) + 2 exp(−γ v − γ u) + exp(−2γ u)

]
du

=
∫ t

0
dv

∫ t

0
exp(−2γ v)du +

[∫ t

0
exp(−γ u)du

]2

= t

2γ
(1 − exp(−2γ t)) + 1

γ 2 (1 − exp(−γ t))2 . (12)

• A process of Yuan and Cai (2010), i.e., X(t) = ∑50
k=1 ζk Zkφk(t), where

ζk = (−1)k+1k−1, Zk is independently sampled from a uniform distribution on
[−√

3,
√
3]. One may note that the process is used in literature of functional linear

models (Cai and Yuan 2012; Du and Wang 2014; Sun et al. 2018). The covariance
function of X(t) is C(s, t) = ∑50

k=1 k
−2φk(s)φk(t).

Correspondingly, we consider four reproducing kernels as follows: K (s, t) =
min(s, t) of Brownian motion, K (s, t) = θ22 exp(−θ1|t − s|)/(2θ1) of Ornstein-

Uhlenbeckprocess, K (s, t)= ∫ t
0 ds

∫ s
0

[
exp(−γ s) + exp(−γ u)

]2
du of non-Gaussian

process, and K (s, t) = B2(s)B2(t)/4 − B4(|s − t |)/24 of cubic spline, where Bm(·)
is the m-th Bernoulli polynomial (Gu 2013; Wang 2011). By Theorem 4.1, the pro-
cesses of Brownian motion, Ornstein-Uhlenbeck process, and non-Gaussian integral
X(t) = ∫ t

0 ds
∫ s
0 (exp(−γ s) + exp(−γ u)) dW (u) have a minimax rate of conver-

gence n−2r/(2r+1), and so does the process of Yuan and Cai (2010).
For the standard Brownian motion W (t), the Karhunen-Loève expansion is given

by

W (t) =
∞∑

k=1

θk Zkψk(t), (13)

where θk = 2
(2k−1)π , {Zk : k ≥ 1} are identically and independently distributed (iid)

N (0, 1) random variables, and ψk(t) = √
2 sin

( 1
2 (2k − 1)π t

)
[Iacus 2008; Pavliotis

2014]. Therefore, the covariance function of W (t) is C(s, t) = ∑∞
k=1 θ2k ψk(s)ψk(t).

Therefore, it is worthy of noting that both covariance functions ofW (t) and the process
of Yuan and Cai (2010) are given by trigonometric functions in the order of k−2. The
covariance function ofW (t) is condensed as C(s, t) = min(s, t)while the covariance
function of the process of Yuan and Cai (2010) is a truncated summation.

To make a comparison with the existing methods in functional data analysis, we
analyze the data using function fRegress in fda to estimate the function β(t) by two
spline bases: B-spline basis and Fourier basis (Ramsay and Silverman 2005; Ramsay
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Fig. 1 True coefficient function β(t) and its mean estimates as well as means of 95% confidence limits
based on 1000 data replicates when X(t) is a standard Brownian motion. In plot (a1), the reproducing kernel
(RK) of Brownian motion is used; in plot (a2), the RK of Ornstein-Uhlenbeck process is used; in plot (a3),
the RK of non-Gaussian is used; and in plot (a4), the RK of cubic spline is used. The function fRegress in
fda is used to estimate the function β(t) by two spline bases: B-spline basis in plot (a5) and Fourier basis
in plot (a6)

et al. 2009). One may want to note that the function fRegress in fda is similar to
function fregre.basis in fad.usc (Febrero-Bande and Oviedo de la Fuente 2012).

In Figs. 1, 2, 3, and 4, we show the true coefficient function β(t) and its mean
estimates aswell asmeans of 95%confidence limits basedon1000data replicateswhen
X(t) is the standard Brownian motion, Ornstein-Uhlenbeck process, non-Gaussian
process, and the process of Yuan and Cai (2010), respectively. In each figure, the RKs
K (s, t) of Brownian motion, Ornstein-Uhlenbeck process, non-Gaussian process, and
cubic spline are used to build RKHS. For each data set, an estimate of β(t) and its 95%
point-wise confidence intervals are calculated on a grid of t ∈ [0, 1]. The confidence
intervals are derived in the same way of section 4 of Du and Wang (2014). Then, the
mean of β(t) and its mean confidence intervals are calculated based on the 1000 data
replicates. It can be seen that the estimated coefficient functions track the true function
well in each figure. In addition, the estimated coefficient functions are similar for the
four RKs. The estimations using function fRegress in plots (a5) and (a6) of Figs. 1, 2,
3, and 4 are close to the true function β(t) but the confidence intervals are wide except
those in Fig. 2.

To assess the mean prediction accuracy, we generate an additional n∗ = 200 inde-
pendent predictor curves X∗

1, . . . X
∗
200 for each data replicate. Then, we calculate a

mean squared error MSE = 1
n∗

∑n∗
i=1

(
η

β̂
(X∗

i ) − ηβ(X∗
i )

)
, where β̂ is the estima-

tor obtained from the data replicate. Figure 5 gives box plots of log10(MSE) based
on the 1000 data replicates. For the four processes, the box plots of log10(MSE)

show similar results for the four RKs of Brownian motion, Ornstein-Uhlenbeck pro-
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Fig. 2 True coefficient function β(t) and its mean estimates as well as means of 95% confidence limits
based on 1000 data replicates when X(t) is anOrnstein-Uhlenbeck process. In plot (a1), the RK of Brownian
motion is used; in plot (a2), the RK of Ornstein-Uhlenbeck process is used; in plot (a3), the RK of non-
Gaussian is used; and in plot (a4), the RK of cubic spline is used. The function fRegress in fda is used to
estimate the function β(t) by two spline bases: B-spline basis in plot (a5) and Fourier basis in plot (a6)
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Fig. 3 True coefficient function β(t) and its mean estimates as well as means of 95% confidence limits
based on 1000 data replicates when X(t) is a non-Gaussian process. In plot (a1), the RK of Brownianmotion
is used; in plot (a2), the RK of Ornstein-Uhlenbeck process is used; in plot (a3), the RK of non-Gaussian
is used; and in plot (a4), the RK of cubic spline is used. The function fRegress in fda is used to estimate the
function β(t) by two spline bases: B-spline basis in plot (a5) and Fourier basis in plot (a6)
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Fig. 4 True coefficient function β(t) and its mean estimates as well as means of 95% confidence limits
based on 1000 data replicates when X(t) is the process in Yuan and Cai (2010). In plot (a1), the RK of
Brownian motion is used; in plot (a2), the RK of Ornstein-Uhlenbeck process is used; in plot (a3), the RK
of non-Gaussian is used; and in plot (a4), the RK of cubic spline is used. The function fRegress in fda is
used to estimate the function β(t) by two spline bases: B-spline basis in plot (a5) and Fourier basis in plot
(a6)

cess, non-Gaussian process, and cubic spline. The mean squared errors using function
fRegress are higher than those of the four RKs.

For each data set, an estimation error (EE) is calculated as the integrated squared

error of the estimate, i.e.,
∫ 1
0

(
β̂(t) − β(t)

)2
dt . Figure 6 shows box plots of

log10(EE) based on the 1000 data replicates. The box plots of log10(EE) show that
results for the four RKs are similar and the estimation errors using function fRegress
are higher.

In summary, the results in the six figures show that the results by the four processes
or RKs are better than those of function fRegress since the variations from the four
RKs are smaller. In addition, the estimations of the function β(t) shown in Figs. 1, 2,
3, and 4 are similar by the four RKs and function fRegress.

6 Discussion and concluding remarks

In functional regressions, various decomposition methods are proposed to approxi-
mate the stochastic processes X(t) such as FPCA. In addition, FCCA is developed to
measure functional correlation. In this article, we decompose the stochastic process
X(t) viaWiener-Itô chaos expansions in Malliavin calculus. Based on the expansions,
we show that the fourth moments of linear functionals of X(t) are bounded by the
square of their secondmomentswhen the underlying stochastic process is a finite linear
combination of multiple Itô integrals. Moreover, a sufficient and necessary condition
of finite fourth moment is provided.
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Fig. 5 Box plots of log10(MSE) based on 1000 data replicates. In plot (a1), X(t) are simulated byBrownian
motion; in plot (a2), X(t) are simulated by Ornstein-Uhlenbeck process; in plot (a3), X(t) are simulated by
the non-Gaussian process; and in plot (a4), X(t) are simulated by the process in Yuan and Cai (2010). In
each plot, box plots of log10(MSE) are shown for four RKs and two spline bases. The four RKs are from
Brownian motion (BM), Ornstein-Uhlenbeck (OU) process, non-Gaussian (NonGau) process, and cubic
spline (Cubic). The two spline bases are B-spline basis (BS) and Fourier basis (FS) used in fRegress
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Fig. 6 Box plots of log10(EE) based on 1000 data replicates. In plot (a1), X(t) are simulated by Brownian
motion; in plot (a2), X(t) are simulated by Ornstein-Uhlenbeck process; in plot (a3), X(t) are simulated by
the non-Gaussian process; and in plot (a4), X(t) are simulated by the process in Yuan and Cai (2010). In
each plot, the box plots of log10(EE) are shown for four RKs and two spline bases. The four RKs are from
Brownian motion (BM), Ornstein-Uhlenbeck (OU) process, non-Gaussian (NonGau) process, and cubic
spline (Cubic). The two spline bases are B-spline basis (BS) and Fourier basis (FS) used in fRegress
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When the underlying process X(t) is Gaussian, Cai and Hall (2006) establishes an
early version of convergence rate of functional linear models. Since then, condition
(7) is assumed to prove the optimal minimax convergence rate in mean prediction
risk (Cai and Yuan 2012; Yuan and Cai 2010). It can be seen that the condition (7)
mimicks Gaussian processes. Therefore, the minimax rate is basically established for
the Gaussian processes in literature.

In this paper, we show that the condition (7) is satisfied by a linear combination
of multiple Itô integrals. Therefore, the optimal minimax convergence rate in mean
prediction risk is valid if eigenvalues of related linear operators are of order k−2r . Our
results show that the optimal minimax convergence rate in mean prediction risk can
be directly applied to the class of linear combinations of multiple Itô integrals. Note
that multiple Itô integrals are not necessarily Gaussian processes. Our work makes
it clear that the optimal minimax convergence rate holds for a linear combination of
multiple Itô integrals which are driven by the standard Brownian motion. The result
shows that multiple Itô integrals can be readily applied to analyze functional data.

The literature to study functional linear models using FPCA and FCCA and RKHS
is large. We don’t enumerate the applications of sufficient and necessary condition
of finite fourth moment in details. Nevertheless, readers can apply the Wiener-Itô
decomposition to dissect functional linear models in various situations. One should
bear in mind that the sufficient and necessary condition of finite fourth moment can be
readily verified by elementary calculus in applications which facilitates data analysis.

To prove central limiting theorems for sequences of multiple Itô integrals to con-
verge to a standard normal, a key condition is that the fourth moments converge to
a constant 3 which provides a complete characterization of Gaussian approximations
(Nourdin and Peccati 2009, 2012; Nualart 2009; Nualart and Peccati 2005; Nualart
and Ortiz-Latorre 2008). Interestingly, finite fourth moment condition is required to
achieve the optimal minimax convergence rate in mean prediction risk of functional
linear regressions. This paper provides a characterization of the finite fourth moment
condition that can be easily verified by ordinary calculus techniques. The sufficient and
necessary condition of finite fourth moment of multiple Itô integrals can be directly
applied to show methodology and convergence rates of functional linear models.

Computational aspects: Our derivations and results are based on Itô integrals of the
standardBrownianmotions. SinceBrownianmotions and Itô integrals arewell-studied
in stochastic analysis, we can use them to facilitate computing and data analysis.
For instance, the RKs of Brownian motion and Ornstein-Uhlenbeck process can be
used to build RKHS. Moreover, we use a non-Gaussian process to build a RK and
related RKHS. By simulation studies, we show their RKs can be used to estimate true
function well. In terms of computational complexity, the calculation is pretty fast. The
simulation of the 6 figures in the paper can be done in less than 3 hours on a personal
computer. In addition,we have developedR codes to implement the proposedmethods,
which are available upon request.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00180-021-01142-y.
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