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Abstract

Genetic studies of two related survival outcomes of a pleiotropic gene are

commonly encountered but statistical models to analyze them are rarely

developed. To analyze sequencing data, we propose mixed effect Cox pro-

portional hazard models by functional regressions to perform gene‐based joint

association analysis of two survival traits motivated by our ongoing real

studies. These models extend fixed effect Cox models of univariate survival

traits by incorporating variations and correlation of multivariate survival traits

into the models. The associations between genetic variants and two survival

traits are tested by likelihood ratio test statistics. Extensive simulation studies

suggest that type I error rates are well controlled and power performances are

stable. The proposed models are applied to analyze bivariate survival traits of

left and right eyes in the age‐related macular degeneration progression.
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1 | INTRODUCTION

Pleiotropy describes the genetic effects of a single gene,
known as pleiotropic gene, on multiple correlated phe-
notypic traits (Stearns, 2010; Williams, 1957). The mul-
tiple phenotypic traits of a pleiotropic gene are usually
correlated to each other and cannot be analyzed as in-
dependent traits. For many studies, next‐generation se-
quencing genetic data are available which include both
common and rare variants (Ansorge, 2009; Metzker,
2010; Rusk & Kiermer, 2008; Shendure & Ji, 2008). The
minor allele frequency (MAF) of rare variants is usually
low (e.g., ≤0.03), which leads to low power if only a
single variant is used in an analysis. A genetic region
usually contains a large number of variants identified by
high‐throughput sequencing technology. These variants
may be associated with causal variants that jointly affect
multiple phenotypic traits. To analyze sequencing data, it
is a common practice to perform gene‐based analysis to
increase power. For quantitative traits, there are ex-
tensive research to perform multivariate gene‐based
analysis (Broadaway et al., 2016; Maity et al., 2012;
Vsevolozhskaya et al., 2016; Wang et al., 2015). However,
there is no statistical method to perform a joint gene‐
based analysis for multivariate survival traits.

There have been studies which collect correlated two
survival traits. In age‐related eye disease study (AREDS),
the times to age‐related macular degeneration (AMD) of
two eyes are collected and they are pleiotropic survival
traits (Age‐Related Eye Disease Study Research Group,
1999). In addition to bivariate survival traits of the times
to AMD, both common and rare variants are available in
AREDS using a customized exome chip and next‐
generation sequencing technologies (Fritsche et al., 2013,
2016). In Fan, Wang, Qi, et al. (2016), a univariate gene‐
based analysis was carried out to left eye data of AREDS
while right eye traits were not used, since there was no
analytic methods for two survival traits. It is interesting
and important to develop statistical models and software
to perform gene‐based joint analysis for two survival
traits for next‐generation sequencing data.

Association analysis has been done by univariate/mul-
tivariate common variant analysis and univariate gene‐
based analysis for eye diseases. Two gene regions, CFH and
ARMS2, are associated with the risk of AMD and its pro-
gression by univariate analysis (Seddon et al., 2007). Each
of the two genes is associated with the progressions to ad-
vanced AMD. For single common variant analysis, one may
use mixed effect Cox models to perform a joint association
analysis of two survival traits or use fixed effect Cox models
to analyze the traits one by one (Therneau, 2019; Therneau
& Grambsch, 2000). By bivariate common variant analysis,
it is shown that the two gene regions contain single

nucleotide polymorphisms (SNPs) which are associated
with the risk of macular degeneration by single common
variant bivariate analysis Ding et al. (2017). The single
variant analysis techniques in Ding et al. (2017), however,
cannot be applied to analyze rare variants.

For gene‐based analysis of sequencing data which
contain a large number of rare variants, the available
methods can only analyze univariate traits (Chein et al.,
2017; Chen et al., 2014; Chiu, Yuan, et al., 2019; Chiu,
Zhang, et al., 2019; Fan, Wang, Qi, et al., 2016). To
analyze univariate survival traits, Fan, Wang, Qi, et al.
(2016) has developed gene‐based Cox models and related
test statistics to analyze the sequencing data. It is still a
gap to analyze multivariate survival traits for a joint
analysis and the gap needs to fill.

Since the high dimensionality of next‐generation se-
quencing data, functional regression (FR) models are
utilized to efficiently reduce the dimensionality and draw
useful information. The strategy has been successfully
used in previous study of quantitative and dichotomous
traits (Fan et al., 2013, 2014, 2015; Fan, Chiu, et al., 2016;
Fan, Wang, Chiu, et al., 2016; Fan, Wang, Qi, et al., 2016;
Luo et al., 2011, 2012, 2013; Vsevolozhskaya et al., 2014).
The basic idea is to treat the observed genetic variant
data as functions, rather than as a sequence of discrete
observations (Ross, 1996). The objective of this article is
to develop mixed effect Cox models by FRs to analyze
two survival traits to perform gene‐based association
analysis. To deal with the correlation and variation of
multivariate traits, mixed effect Cox models are used to
accommodate variance structure of the traits.

The organization of the article is as follows. In
Section 2, we introduce FR‐based mixed effect Cox
models to perform gene‐based association analysis for
two survival traits. After an introduction of the model in
Section 2.1, detailed techniques for parameter estimation,
test statistics, and simulation settings are presented in
Sections 2.2–2.4. In Section 3, we present simulation re-
sults of type I error rates and empirical power levels. The
methods are applied to analyze AREDS survival traits.
Section 4 provides a discussion with respect to the model
and its usage in gene‐based analysis of sequencing data.

2 | METHODS

2.1 | FR‐based mixed effect cox models

Consider n individuals who are phenotyped at two traits
and sequenced in a genomic region that has m variants.
Assume that the m variants are located in a region with
known ordered physical positions ≤ ⋯u u0 < < m1 ,
which can be normalized to [0, 1] for notation simplicity.
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For the ith individual, let ℓTi denote the survival times
and ℓCi denote the respective right‐censoring times,
ℓ = 1, 2. Let ℓ ℓ ℓy T C= min( , )i i i be the observed time‐to‐
events and ℓ ℓ ℓ

δ = 1i y T( = )i i
be the censoring indicators. In

addition, let X x u x u= ( ( ), …, ( ))′i i i m1 denote a genotype
vector of the m variants, in which x u( )(=0, 1, 2)i j is the
number of minor alleles of ith individual at position uj,
and Z z z= ( , …, )′i i ic1 denote a c × 1 vector of fixed effect
covariates.

To accommodate random variations and relation be-
tween the two traits, denote a 2 × 2 variance‐covariance
matrix as Σ. In addition to the time‐to‐event observation ℓyi
and covariates of ith individual, a genetic variant function
(GVF) of individual i is denoted by ∈X u u( ), [0, 1]i . To
study the relation between GVF and time‐to‐event outcomes
while adjusting for covariates, consider the following
FR‐based mixed effect Cox proportional hazard model

∫

∣ℓ ℓ

ℓ( )
λ s Z X G

λ s Z α X u β u du G

( , , )

= ( )exp + ( ) ( ) + ,

i i i i

i i i0
′

0

1
(1)

where λ s( )0 is a baseline hazard function, α is a c × 1

vector of fixed regression coefficients of covariates, β u( )

is a genetic effect function of the position u of GVFs
X u( )i , and G Gi i n( , 2)′, = 1, 2, …,i1 , are independent
random vectors with mean 0 and variance‐covariance
matrix ≤ ≤σ

ρ

ρ
ρΣ =

1

1
, −1 12

⎛
⎝⎜

⎞
⎠⎟ .

In model (1), the GVFs X u( )i are assumed to be
smooth. This assumption can be relaxed by considering
the following mixed effect beta‐smooth only Cox model

∑

∣ℓ ℓ

ℓ

λ s Z X G

λ s Z α x u β u G

( , , )

= ( )exp + ( ) ( ) + ,

i i i i

i

j

m

i j j i0
′

=1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ (2)

where the genetic effect function β u( ) is continuous/
smooth. Notice that the integration term∫ X u β u du( ) ( )i0

1

in model (1) is replaced by a summation term
∑ x u β u( ) ( )

j

m
i j j=1

. This substitution relieves the assump-
tion of smoothness of GVF X u( )i , thus being applicable
to use raw genotype data directly. Compared with model
(1), there is no need to use smoothed GVF in model (2),
so this model is called a beta‐smooth only Cox model.

For univariate survival trait, Fan, Wang, Qi, et al. (2016)
developed fixed effect Cox models by FR to analyze un-
related population data, while Chiu, Zhang, et al. (2019)
developed mixed effect Cox models to analyze pedigree data.
In this article, models (1) and (2) are proposed to analyze
two correlated traits. To model the correlated traits, random
terms ℓGi are utilized to model the variation and correlation
between the two survival traits.

2.2 | Revised mixed effect cox models

The genetic effect function β u( ) in the Cox models (1) and
(2) is assumed to be smooth, that is, β u( ) is a continuous
function of physical positionu. It can be expanded by either
B‐spline or Fourier basis functions. Without loss of gen-
erality, assume the genetic effect function β u( ) is expanded
by a series of Kβ basis functions ψ u ψ u( ), …, ( )K1 β

as
β u ψ u ψ u( ) = ( ( ), …, ( ))K1 β

β β ψ u β( , …, )′ = ( )′K1 β
, where

β β β= ( , …, )′K1 β
is a K × 1β vector of coefficients and

ψ u ψ u ψ u( ) = ( ( ), …, ( ))′K1 β
. As mentioned early, two sets

of basis functions are applicable: (1) the B‐spline basis:
ψ u B u k K( ) = ( ), = 1, …,k k β; and (2) the Fourier basis:
ψ u( ) =1 ψ u πru1, ( ) = sin(2 ),r2 +1 and ψ u( ) =r2 πrucos(2 ),

∕r K= 1, …, ( − 1) 2β , where Kβ is taken as a positive odd
integer for Fourier basis (Ramsay & Silverman, 2005).

To estimate GVFs X u( )i from observed genotypes Xi,
ordinary linear square smoother is generally used (de
Boor, 2001; Ferraty & Romain, 2010; Horváth &
Kokoszka, 2012). Let ϕ u k K( ), = 1, …,k , be a series of K
basis functions, either the B‐spline basis or Fourier basis
functions. Let Φ denote them K× matrix containing the
values ϕ u( )k j , and let ϕ u ϕ u ϕ u( ) = ( ( ), …, ( ))′K1 . Using
the discrete realizations X x u x u= ( ( ), …, ( ))′i i i m1 , the
GVF X u( )i can be estimated by ordinary linear square
smoother as follows

X u x u x u ϕ uˆ ( ) = ( ( ), …, ( ))Φ[Φ′Φ] ( ).i i i m1
−1 (3)

Assume that the genetic effect function β u( ) is ex-
panded by a series of basis functions ψ u k K( ), = 1, …,k β,
as β u ψ u β( ) = ( )′ . Replacing X u( )i in the FR‐based
mixed effect Cox model (1) by X uˆ ( )i in (3) and β u( ) by
the expansion, a revised Cox model is

∫

∣ℓ ℓ

ℓ

ℓ

( )
( )

λ s Z X G

λ s Z α x u x u ϕ u ψ u duβ G

λ s Z α W β G

( , , )

= ( )exp + ( ( ), …, ( ))Φ[Φ′Φ] ( ) ′( ) +

= ( )exp + ′ + ,

i i i i

i i i m i

i i

0
′

1
−1

0

1

0
′ (4)

where ∫W x u x u ϕ u ψ u du′ = ( ( ), …, ( ))Φ[Φ′Φ] ( ) ′( )i i m1
−1

0

1
.

In the statistical packages R, codes to calculate Φ[Φ′Φ]−1

and ∫ ϕ u ψ u du( ) ′( )
0

1
are readily available (Ramsay

et al., 2009).
For the beta‐smooth only mixed effect Cox model

(2), β u( )j is the genetic effect at the position uj. In this
article, the genetic effect function β u( ) is a continuous
function of the physical position u. Therefore,
β u j m( ), = 1, 2, …,j , are the values of function β u( ) at
the m physical positions. Expanding β u( )j by B‐spline
or Fourier basis functions as above, the mixed effect
Cox model (2) can be revised as
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∑

∣ℓ ℓ

ℓ

ℓ

( )

( )

λ s Z X G

λ s Z α x u ψ u ψ u β β G

λ s Z α W β G

( , , )

= ( )exp + ( ) ( ), …, ( ) ( , …, )′ +

= ( )exp + ′ + ,

i i i i

i

j

m

i j j K j K i

i i

0
′

=1

1 1

0
′

β β

⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞

⎠
⎟⎟

(5)

where ∑W x u ψ u ψ u′ = ( )( ( ), …, ( ))
j

m
i j j K j=1 1 β

.

2.3 | Test statistics

To test the association between the m genetic variants
and the survival trait, is equivalent to test the hy-
pothesis in which the null is H β β β: = ( , …, )′ = 0K0 1 β

.
In Cox models (4) and (5), this hypothesis can be tested
by a χ2‐distributed likelihood ratio test (Cox FR LRT)
statistic with Kβ degrees of freedom (Cox, 1972; Cox &
Oakes, 1984; Therneau & Grambsch, 2000). For data
analysis and simulation, the order of B‐spline basis is 4,
the number of B‐spline basis functions is K K= = 10β ,
and the number of Fourier basis functions is K K= = 11β .
A wide range of parameters: ≤ ≤K K6 = 13β for
B‐spline and Fourier basis functions are examined to
ensure that the results are valid and stable. For com-
putational convenience, basis functions are created by
fda R package. We utilize mixed effects Cox model
package coxme to implement the proposed models
(Therneau, 2019).

2.4 | Simulation studies

By generating bivariate survival traits, we carry out ex-
tensive simulation studies to evaluate the performance of
the proposed models in terms of empirical type I error
rates and power levels. In the simulations, a variant is
defined to be rare if its MAF is ≤0.03. Two scenarios are
considered: (a) some variants are common (10%) and the
rest are rare (90%); (b) all variants are rare. We first si-
mulate both phenotypic traits and variant data described
as follows. For sample size n= 2000 or n= 2500, the data
are analyzed using a variance‐covariance structure of

( )σΣ = 1 1
1 1

2 . For sample size n = 500, the data are

analyzed using a variance‐covariance structure

of ≤ ≤σ
ρ

ρ
ρΣ =

1

1
, −1 12

⎛
⎝⎜

⎞
⎠⎟ .

2.4.1 | Genetic variants

The sequence data are of European ancestry from 10,000
chromosomes covering a 1 Mb region, simulated by Yun

Li at the University of North Carolina, Chapel Hill using
the calibrated coalescent model as programmed in Core‐
Standard‐Idea model (COSI). The sequence data are
generated using COSI's calibrated best‐fit models, and
the generated European haplotypes mimic Centre
d'Etude du Polymorphisme Humain (CEPH) Utah in-
dividuals with ancestry from northern and western
Europe in terms of the site frequency spectrum and
linkage disequilibrium (LD) patterns (Schaffner et al.,
2005; The International HapMap Consortium, 2007).

2.4.2 | Type I error simulations

For a constant a > 0, let U U a~ (0, ) denote a uniform
random variable on a(0, ). To evaluate the type I error rates
of the proposed LRT statistics, we generate baseline survival
time from a Weibull (2, 2) by (Bender et al., 2005)

ℓ ℓ

ℓ

ℓ

T z z G

U

z z G

( , , )

= −
4 log

exp(0.005( − 50) + 0.05 + )
,

i i i i

i

i i i

1 2

1 2

(6)

where ℓUi are uniformly distributed random variables
ℓU z(0, 1), = 1, 2, i1 is a continuous covariate to model

age from a normal distribution N z(50, 5 ), i
2

2 is a di-
chotomous covariate to model gender taking values 0 and

1 with probability of 0.5, and G G( , )i i1 2
′ is generated as a

normal vector with mean 0 and a covariance matrix

σΣ = ΩG
2 , where σ = 0.2G and ( )Ω =

1 0.5
0.5 1

. Four

censoring schemes are considered: (a) ∞ℓC =i , no cen-
soring, (b) ℓC U~ (0, 10)i , (c) ℓC U~ (0, 5)i , and (d)

ℓC U~ (0, 3)i . The time‐to‐event time is calculated by

ℓ ℓ ℓy T C= min( , )i i i and the censoring indicator is calcu-

lated by ℓ ≤ℓ ℓ
δ = 1i T C( )i i

for a random sample

ℓℓ ℓT C i n, , = 1, 2, …, , = 1, 2i i . The proportions of cen-
sored observations in the four censoring schemes are 0%,
17.5%, 35.0%, and 56.5%, respectively.

Genotypes are selected from variants in 6 and 9 kb
subregions which are randomly selected from the 1 Mb
region. Note that under the null hypothesis, trait values
are not related to genotypes. For each censoring scheme
of sample size n= 2000 or n= 2500, 250 independent
seeds are used and 4000 data sets are generated for a seed
or 400 independent seeds are used each with 2500 data
sets to calculate a type I error rate. For a combination of a
sample size and a censoring scheme, 106 phenotype‐
genotype data sets are generated and analyzed using a

variance‐covariance structure of ( )σΣ = 1 1
1 1

2 . Within
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each data set, the proposed Cox models (1) and (2) are
applied to calculate LRT statistics and p values. These
individual p‐values are then be summarized as empirical
type I error rates defined as the proportion of p values
which are smaller than a given significant level α.

For a censoring scheme of sample size n = 500, 105

data sets are generated and analyzed using a variance‐

covariance structure of ≤ ≤σ
ρ

ρ
ρΣ =

1

1
, −1 12

⎛
⎝⎜

⎞
⎠⎟ , to

calculate type I error rates.

2.4.3 | Empirical power simulations

To evaluate the power of the proposed LRT statistics,
data sets are simulated under the alternative hypothesis
by randomly selecting 6 and 9 kb subregions to obtain
causal genetic variants. For each sample data set, a subset
of q causal variants located in the selected subregion is
randomly selected, yielding genotypes X =i
x u x u( ( ), …, ( )i i q1

′. Then, we generate the survival time by

⋯

ℓ ℓ

ℓ

ℓ

T z z G

U

z z β x u

β x u G

( , , )

= −
4 log

exp(0.005( − 50) + 0.05 + ( )

+ + ( ) + )

,

i i i i

i

i i i

q i q i

1 2

1 2 1 1

(7)

where zi1 and zi2 are the same as in the type I error model
(6), X x u x u= ( ( ), …, ( )i i i q1

′ are genotypes of the ith in-
dividual at the causal variants, and the β's are additive
effects for the causal variants defined as follows. Let
β c MAF| | = | log ( )|j j10 , where MAFj is the MAF of the jth
variant. Three different settings are considered: 5%, 10%,
and 15% of variants in the 6 kb subregion are chosen as
causal variants. When 5%, 10%, and 15% of the variants
are causal and all causal variants are rare,

∕ ∕c k k= log(90) , log(70) and ∕klog(50) , respectively.
When 5%, 10%, and 15% of the variants are causal and
some causal variants are common and the rest are rare,

∕ ∕c k k= log(90) (2 ), log(70) (2 ) and ∕ klog(50) (2 ), re-
spectively. For scenario that some variants are common
and the rest are rare, the constants k and genetic effect
sizes decrease as region sizes increase

k =
5.50 if region size = 6kb,

6.00 if region size = 9kb.

⎧⎨⎩ (8)

For scenario that all variants are rare, the constants k are
defined by

k =
1. 25 if region size = 6kb,

1. 50 if region size = 9kb.

⎧⎨⎩ (9)

In addition to varying the percentage of causal var-
iants in the subregion, three types of effect directions are
considered as follows: (a) all causal variants have positive
effects, (b) 20%/80% causal variants have negative/posi-
tive effects, and (c) 50%/50% causal variants have nega-
tive/positive effects. For each setting, 1,000 data sets are
simulated to calculate the empirical power as the pro-
portion of p values which are smaller than a given α
level. For each data set, the causal variants are the same
for all the individuals in the data set, but we allow the
causal variants to be different from data set to data set.

2.5 | Real data analysis: Application to
AREDS

The proposed FR‐based mixed effect Cox model are applied
to analyze AREDS data (Age‐Related Eye Disease Study
Research Group, 1999). AREDS is a clinical trial to learn
about the risk factors for macular degeneration and catar-
act, two leading causes of vision loss in older adults. A total
of 2911 individuals are included in this analysis with de-
mographic recorded, in which 1650 individuals are males
and 1261 are females. The mean age of the 2911 individuals
is 68.65 years with a standard deviation 4.92. The propor-
tions of censored observations are 76% in the left eyes and
72% in the right eyes, respectively. In the analysis, we adjust
for age and gender as covariates. Each individual has long‐
term phenotypic data and is genotyped using a customized
exome chip (Fritsche et al., 2013, 2016). Two gene regions,
CFH and ARMS2, are of primary interest. In each of the two
gene regions, single variant analysis shows that some
SNPs are associated with the risk of macular degeneration
and its progression (Seddon et al., 2007). The proposed
mixed effect Cox models are applied to jointly test associa-
tion between time to advanced AMD of two eyes for each of
the two genes.

3 | RESULTS

3.1 | Empirical type I error rates

For sample size n= 2000 or n= 2500 and the variance‐

covariance structure of ( )σΣ = 1 1
1 1

2 , the empirical type

I error rates of the proposed Cox FR LRT statistics are
reported in Tables 1 and 2 at four significance levels
α= 0.05, 0.01, 0.001, and 0.0001. In Table 1, all variants

ZHANG ET AL. | 459



(common and rare) are used to generate genotype data
under null hypothesis, while in Table 2 only rare variants
are used. Overall, the Cox FR LRT statistics of models (1)
and (2) control type I error rates correctly. These two
models, being both stable under two region sizes of 6kb

and 9kb as well as sample sizes of 2000 and 2500, show
very similar results. These two tables also suggest that
B‐spline and Fourier basis functions provide similar re-
sults. Moreover, censoring scheme appears to have un-
noticeable impact on type I error rate as no increasing or

TABLE 1 Empirical type I error rate of Cox FR LRT statistics at nominal levels α = 0.05, 0.01, 0.001, and 0.0001, when region sizes are 6
and 9 kb, and some variants are common and the rest are rare

Sample
size (n)

Region size
(# variants)

The censoring
scheme

Nominal
level (α)

Model (1) Model (2)

B‐spline Fourier B‐spline Fourier

2000 6 kb (117) ∞ 0.05 0.051899 0.051907 0.052109 0.052105

0.01 0.010485 0.010495 0.010597 0.010592

0.001 0.001086 0.001096 0.001058 0.001053

0.0001 0.000124 0.000134 0.000127 0.000122

U (0, 10) 0.05 0.052060 0.052065 0.052147 0.052149

0.01 0.010468 0.010473 0.010721 0.010723

0.001 0.001092 0.001098 0.001130 0.001130

0.0001 0.000137 0.000142 0.000131 0.000131

U (0, 5) 0.05 0.052106 0.052107 0.052288 0.052289

0.01 0.010576 0.010577 0.010743 0.010744

0.001 0.001083 0.001084 0.001146 0.001147

0.0001 0.000107 0.000108 0.000119 0.000120

U (0, 3) 0.05 0.052029 0.052029 0.052881 0.052880

0.01 0.010678 0.010678 0.010997 0.010997

0.001 0.001066 0.001066 0.001176 0.001176

0.0001 8.60E‐05 8.60E‐05 0.000128 0.000127

9 kb (176) ∞ 0.05 0.052025 0.052024 0.051766 0.051770

0.01 0.010699 0.010700 0.010583 0.010585

0.001 0.001126 0.001127 0.001125 0.001128

0.0001 0.000115 0.000116 0.000129 0.000132

U (0, 10) 0.05 0.052049 0.052062 0.051876 0.051865

0.01 0.010698 0.010707 0.010651 0.010640

0.001 0.001139 0.001146 0.001125 0.001117

0.0001 0.000132 0.000140 0.00015 0.000142

U (0, 5) 0.05 0.051637 0.051638 0.051709 0.051704

0.01 0.010630 0.010631 0.010650 0.010645

0.001 0.001079 0.001080 0.001113 0.001108

0.0001 0.000110 0.000111 0.000114 0.000109

U (0, 3) 0.05 0.051418 0.051416 0.051517 0.051516

0.01 0.010349 0.010347 0.010590 0.010588

0.001 0.001030 0.001028 0.001082 0.001080

0.0001 0.000105 0.000103 0.000115 0.000113

2,500 6 kb (117) ∞ 0.05 0.051963 0.051954 0.052114 0.052114

0.01 0.010508 0.010500 0.010589 0.010589

0.001 0.001015 0.001007 0.001070 0.001070

0.0001 0.000109 0.000101 0.000117 0.000117

U (0, 10) 0.05 0.051293 0.051292 0.051714 0.051712

0.01 0.010586 0.010585 0.010497 0.010495

0.001 0.001098 0.001097 0.001102 0.001100

0.0001 0.000122 0.000120 0.000123 0.000121
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decreasing patterns observed in both tables. In summary,
the proposed Cox FR LRT statistics are stable in terms of
region sizes, censoring schemes, nominal levels,
smoothing methods, and basis functions.

For sample size n = 500 and the variance‐covariance

structure of σ
ρ

ρ
Σ =

1

1
2
⎛
⎝⎜

⎞
⎠⎟, the empirical type I error

rates are slightly higher than the nominal levels (data not
shown, but available from the authors).

3.2 | Statistical power evaluation

Power performance of the proposed Cox FR LRT statis-
tics is evaluated using data simulated under the alter-
native hypothesis by relation (7). Since the type I error
rates of LRT statistics of models (1) and (2) are well‐
controlled, the power comparison makes sense. When
the sample size 2,000, the power levels are provided in

Figures 1‐4. In Figures 1 and 3, some variants are com-
mon and the rest are rare. In Figures 2 and 4, all variants
are rare. The structure of the four figures is the same, in
which there are nine plots representing different com-
binations of simulation setting. Take Figure 1 as an ex-
ample to illustrate the structure of each figure. From the
left to right, the percentage of causal variants ranges from
5%, 10%, to 15%. From the top to bottom, the percentage
of negative effect variants ranges from 0%, 20%, to 50%.

In each plot of the four figures, the power levels of
four Cox FR LRT statistics are compared: two are based
on B‐spline basis functions and two are based on Fourier
basis functions by models (1) and (2), respectively. The
four Cox FR LRT statistics of the proposed Cox models
have similar power. Thus, the Cox FR LRT statistics are
very stable in terms of power performance because they
do not strongly depend on whether the genotype data are
smoothed or not, or which basis functions are used. The
power levels of bi‐variate traits by models (1) and (2) are
higher than univariate Cox FR LRT by Fan, Wang, Qi,

TABLE 1 (Continued)

Sample
size (n)

Region size
(# variants)

The censoring
scheme

Nominal
level (α)

Model (1) Model (2)

B‐spline Fourier B‐spline Fourier

U (0, 5) 0.05 0.051608 0.051605 0.052044 0.052043

0.01 0.010520 0.010517 0.010677 0.010675

0.001 0.001118 0.001115 0.001042 0.001040

0.0001 0.000101 9.80E‐05 0.000103 0.000101

U (0, 3) 0.05 0.051541 0.051540 0.052192 0.052192

0.01 0.010578 0.010577 0.010646 0.010646

0.001 0.001085 0.001084 0.001148 0.001148

0.0001 0.000114 0.000113 0.000123 0.000123

9 kb (176) ∞ 0.05 0.051604 0.051600 0.051364 0.051364

0.01 0.010328 0.010324 0.010355 0.010355

0.001 0.001061 0.001057 0.001061 0.001061

0.0001 0.000114 0.000110 0.000121 0.000121

U (0, 10) 0.05 0.051566 0.051569 0.051648 0.051648

0.01 0.010619 0.010617 0.010668 0.010666

0.001 0.001102 0.001100 0.001119 0.001119

0.0001 0.000106 0.000104 0.000119 0.000119

U (0, 5) 0.05 0.051422 0.051422 0.051200 0.051198

0.01 0.010363 0.010362 0.010395 0.010393

0.001 0.001094 0.001093 0.001067 0.001065

0.0001 0.000107 0.000106 0.000109 0.000107

U (0, 3) 0.05 0.050953 0.050953 0.051317 0.051317

0.01 0.010521 0.010521 0.010423 0.010423

0.001 0.001039 0.001039 0.001021 0.001021

0.0001 0.000100 1.00E−04 0.000119 0.000119

Note: The order of B‐spline basis is 4, the number of B‐spline basis functions is K=Kβ= 10, and the number of Fourier basis functions is is K=Kβ= 11. Here,
we assume that the correlation of an individual's traits is equal to 1.

Abbreviations: FR, functional regression; LRT, likelihood ratio test.
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TABLE 2 Empirical type I error rate of Cox FR LRT statistics at nominal levels α = 0.05, 0.01, 0.001, and 0.0001, when region sizes are 6
and 9 kb, and all variants are rare

Sample
size (n)

Region size
(# variants)

The censoring
scheme

Nominal
level (α)

Model (1) Model (2)

B‐spline Fourier B‐spline Fourier

2,000 6 kb (106) ∞ 0.05 0.052338 0.052336 0.052635 0.052633

0.01 0.010726 0.010724 0.010675 0.010674

0.001 0.001070 0.001069 0.001056 0.001056

0.0001 0.000118 0.000117 0.000117 0.000117

U (0, 10) 0.05 0.052390 0.052387 0.052897 0.052896

0.01 0.010757 0.010755 0.010810 0.010810

0.001 0.001186 0.001184 0.001160 0.001161

0.0001 0.000141 0.000139 0.000151 0.000152

U (0, 5) 0.05 0.052877 0.052878 0.053566 0.053568

0.01 0.010752 0.010755 0.011131 0.011131

0.001 0.001112 0.001115 0.001174 0.001174

0.0001 0.000121 0.000124 0.000112 0.000112

U (0, 3) 0.05 0.054044 0.054044 0.055376 0.055378

0.01 0.011246 0.011246 0.011575 0.011576

0.001 0.001132 0.001132 0.001291 0.001290

0.0001 0.000120 0.000120 0.000132 0.000131

9 kb (159) ∞ 0.05 0.052238 0.052237 0.052319 0.052327

0.01 0.010698 0.010699 0.010767 0.010773

0.001 0.001147 0.001148 0.001128 0.001134

0.0001 0.000132 0.000133 0.000127 0.000133

U (0, 10) 0.05 0.052353 0.052362 0.052318 0.052317

0.01 0.010576 0.010583 0.010687 0.010686

0.001 0.001083 0.001090 0.001090 0.001091

0.0001 0.000126 0.000133 0.000124 0.000125

U (0, 5) 0.05 0.052183 0.052186 0.052528 0.052529

0.01 0.010562 0.010565 0.010752 0.010753

0.001 0.001069 0.001072 0.001090 0.001091

0.0001 0.000110 0.000113 0.000117 0.000118

U (0, 3) 0.05 0.052037 0.052037 0.052960 0.052960

0.01 0.010514 0.010514 0.010615 0.010615

0.001 0.001085 0.001085 0.001121 0.001121

0.0001 1.00E‐04 1.00E‐04 9.90E‐05 9.90E‐05

2,500 6 kb (106) ∞ 0.05 0.052644 0.052644 0.052279 0.052277

0.01 0.010651 0.010650 0.010696 0.010695

0.001 0.001059 0.001057 0.001082 0.001081

0.0001 0.000119 0.000117 0.000137 0.000136

U (0, 10) 0.05 0.051970 0.051972 0.052407 0.052407

0.01 0.010649 0.010648 0.010754 0.010754

0.001 0.001108 0.001107 0.001132 0.001133

0.0001 0.000127 0.000126 0.000129 0.000130

U (0, 5) 0.05 0.053018 0.053017 0.053323 0.053321

0.01 0.010903 0.010902 0.010966 0.010964

0.001 0.001113 0.001112 0.001107 0.001105

0.0001 0.000116 0.000115 0.000119 0.000117

U (0, 3) 0.05 0.053565 0.053568 0.054582 0.054580

0.01 0.010999 0.011002 0.011395 0.011393

0.001 0.001196 0.001199 0.001223 0.001221
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et al. (2016). Hence, it is advantageous to analyze the bi‐
variate traits jointly.

3.3 | Real application to AREDS

We first analyze AREDS data by assuming that the cor-

relation of two traits is 1, that is, ( )σΣ = 1 1
1 1

2 . Table 3

shows the results of association analysis of AREDS data
for the two genes, CFH and ARMS2, using the proposed
Cox FR LRT. The data are analyzed three times: (a) all
genetic variants; (b) common variants only; and (c) rare
variants only. Note that the rare variants here are defined
as those with MAF ≤ 0.05, while common variants are
referred to those with MAF > 0.05.

By considering all genetic variants, two gene regions
show significant effects because all the p values of Cox
FR LRT statistics are small. This finding gives support to
the argument that the proposed gene‐based method can
be used in the genome‐wide association study of two
survival traits. Compared with results of Supporting in-
formation Tables A1 and A2, in which we analyze the left
eye and the right eye data separately, the p values of Cox
FR LRT statistics in corresponding cells of Table 3 are
considerably smaller, implying that analyzing two eyes

jointly rather than separately could improve the power to
detect significant signals.

For the ARMS2 gene, the results of analyzing com-
mon variants only exhibits little difference from the re-
sults of including all genetic variants by Cox FR LRT.
This may be due to that there are only seven rare variants
which do not provide any convergent results. For the
CFH gene, there are 103 rare variants in the gene region
and analyzing rare variants only does provide significant
results, and there are 59 common variants which provide
more significant results than the rare variants. Therefore,
both common and rare variants in the CFH gene affect
the progression of AMD.

The results of the Cox FR LRT statistics of beta‐
smooth only by model (2) in Table 3 are similar to the
results of the Cox FR LRT statistics of smoothing both
GVFs X u( )i and genetic effect function β u( ) by model
(1). This outcome reveals that smoothing GVFs has very
limited impact on the data analysis. Similar conclusion
can also be observed for quantitative and dichotomous
traits in Fan et al. (2013, 2014, 2015); Fan, Chiu,
et al. (2016); Fan, Wang, Chiu, et al. (2016); Fan, Wang,
Qi (2016); and Wang et al. (2015).

Second, we analyze AREDS data by assuming that the

correlation of two traits is ≤ ≤ρ−1 i e σ
ρ

ρ
1, . ., Σ =

1

1
2
⎛
⎝⎜

⎞
⎠⎟.

TABLE 2 (Continued)

Sample
size (n)

Region size
(# variants)

The censoring
scheme

Nominal
level (α)

Model (1) Model (2)

B‐spline Fourier B‐spline Fourier

0.0001 0.000137 0.000140 0.000141 0.000139

9 kb (159) ∞ 0.05 0.051570 0.051570 0.051493 0.051487

0.01 0.010375 0.010376 0.010434 0.010428

0.001 0.001050 0.001048 0.001086 0.001080

0.0001 0.000120 0.000118 0.000123 0.000117

U (0, 10) 0.05 0.051697 0.051697 0.052195 0.052196

0.01 0.010569 0.010566 0.010570 0.010572

0.001 0.001102 0.001099 0.001086 0.001088

0.0001 0.000109 0.000106 0.000123 0.000125

U (0, 5) 0.05 0.052101 0.052103 0.052244 0.052246

0.01 0.010522 0.010524 0.010694 0.010695

0.001 0.001028 0.001030 0.001065 0.001066

0.0001 0.000110 0.000112 0.000112 0.000113

U (0, 3) 0.05 0.052052 0.052052 0.052686 0.052686

0.01 0.010599 0.010599 0.010637 0.010637

0.001 0.001087 0.001087 0.001076 0.001076

0.0001 9.20E−05 9.20E−05 0.000102 0.000102

Note: The order of B‐spline basis is 4, the number of B‐spline basis functions is K=Kβ= 10, and the number of Fourier basis functions is is K=Kβ= 11. Here,
we assume that the correlation of an individual's traits is equal to 1.

Abbreviations: FR, functional regression; LRT, likelihood ratio test.
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The results of association analysis of AREDS data are re-
ported in Table 4, which are similar to those in Table 3.

4 | DISCUSSION

The objective of this article is to develop mixed effect FR‐
based Cox models for a joint gene‐based association
analysis of two survival traits to analyze sequencing data.
In the proposed models, genetic variant data are viewed
as stochastic functions of physical position and the ge-
netic effects are treated as a function of physical position
(Ross, 1996). The trait variation and correlation structure
are modeled by mixed effect Cox models, in which each
individual is treated as a block. We consider two sce-
narios: (1) the correlation of an individual's traits is equal

to 1; (2) the correlation of an individual's traits is equal to
a parameter ≤ ≤ρ ρ, −1 1.

Simulation study shows that empirical type I errors of
its test statistics, i.e., Cox FR LRT, are well controlled no
matter common variants are included or not. In the si-
mulations, roughly 10% variants are common and the
rest are rare. Moreover, a comparison with univariate
results reveals that the proposed bi‐variate models have
higher statistical power. This is because that the uni-
variate analysis only uses part of the data while the
proposed mixed models can analyze the whole data
jointly. The proposed models are then applied to analyze
AREDS data, in which two genes are found to provide
significant signals as in previous studies.

In the data analysis and simulations of this article, we
use functions in the fda R package to create the basis

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

FIGURE 1 The empirical power of the Cox FR LRT statistics at α = 0.001 when sample size is 2000, region size is 6 kb, and some
variants are common and the rest are rare. The order of B‐spline basis is 4, the number of B‐spline basis functions is K K= = 10β , and the
number of Fourier basis functions is K K= = 11β . Here, we assume that the correlation of an individual's traits is equal to 1
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functions. The order of the B‐spline basis was 4, the number
of B‐spline basis functions was K K= = 10β , and the
number of Fourier basis functions was K K= = 11β . In the
simulations, we find that almost all models successfully
converge (≥99.99%). For univariate fixed effect Cox models
in Fan, Wang, Qi, et al. (2016), we examined a wide range of
parameters to make sure that the results are valid and stable:
≤ ≤K K6 = 13β for B‐spline and Fourier basis functions.

For the mixed effect Cox models (1) and (2), each individual
has two survival traits and this may actually improve the
convergence rates because the number of traits is two times
of sample size.

If the number K K= β of the basis functions is too
small, we may not be able to draw enough information
from the genotype data and then the power level can be
low. On the other hand, if it is too big, the type one error

rates can be inflated. To answer the question, we perform
intensive simulation to get an appropriate answer. A
wide range of parameters: ≤ ≤K K6 = 13β for B‐spline
and Fourier basis functions are examined to ensure that
the results are valid and stable. We provide results
K K= = 12β and 13 in Supporting Information II. It can
be seen from Supporting Information Tables C1 and
C2 that the type error rates are fine at nominal levels
0.05, 0.01, and 0.001. At nominal level 0.0001, the type I
error rates can be inflated in Supporting Information
Tables C1 and C2. Hence, we choose K K= = 10β and 11
as our choice.

Our simulation study shows that we can analyze a data
set with 2000 or 2500 individuals quickly using a correla-

tion matrix ( )1 1
1 1

. Thus, we report the results by assuming

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

FIGURE 2 The empirical power of the Cox FR LRT statistics at α = 0.001 when sample size is 2000, region size is 6 kb, and all variants
are rare. The order of B‐spline basis is 4, the number of B‐spline basis functions is K K= = 10β , and the number of Fourier basis functions is
K K= = 11β . Here, we assume that the correlation of an individual's traits is equal to 1
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a correlation between the two traits is 1 for 2000 and 2500
sample size data sets. Theoretically, the correlation matrix

of the two traits should be
ρ

ρ

1

1

⎛
⎝⎜

⎞
⎠⎟. If we use a correlation

matrix
ρ

ρ

1

1

⎛
⎝⎜

⎞
⎠⎟, it is possible to analyze data sets with a

moderate sample size 500 individuals, which takes about 25
min to analyze a data set on a PC computer. For a large
sample size data set of 1000 individuals, it takes more than
10 h to analyze a data set. Hence, it is not feasible to ana-
lyze large sample data sets.

For the correlation matrix
ρ

ρ

1

1

⎛
⎝⎜

⎞
⎠⎟, there are two

parameters σ2 and ρ since σ
ρ

ρ
Σ =

1

1
2
⎛
⎝⎜

⎞
⎠⎟. This is similar

to Chiu, Zhang, et al. (2019) to analyze pedigree data, in
which we performed simulation based on a 50 pedigree
template with 456 individuals. In our simulation, the
type I error rates are slightly higher than the nominal

levels for sample size 500 when we use the correlation

matrix
ρ

ρ

1

1

⎛
⎝⎜

⎞
⎠⎟ (data not shown). In summary, we may

use a correlation matrix ( )1 1
1 1

to analyze large sample

size data, which provide us reasonable type I error rates

and power levels. Using a correlation matrix
ρ

ρ

1

1

⎛
⎝⎜

⎞
⎠⎟, we

may analyze small or moderate sample size data.
Computational time is noteworthy to consider. In

our type I error rate calculations, we divided 106 data

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

FIGURE 3 The empirical power of the Cox FR LRT statistics at α = 0.001 when sample size is 2000, region size is 9 kb, and some
variants are common and the rest are rare. The order of B‐spline basis is 4, the number of B‐spline basis functions is K K= = 10β , and the
number of Fourier basis functions is K K= = 11β . Here, we assume that the correlation of an individual's traits is equal to 1
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sets into 250 independent jobs by different random
seeds, and each job simulated and analyzed 4000 data
sets. Roughly, it takes 7–8 days to finish the calcula-
tions. Hence, it took about 1 day to simulate and
analyze 600 data sets. In real data analysis, our soft-
ware can be used to perform genome‐wide association
analysis by dividing the analysis into independent jobs.
Hence, the proposed models can be used to analyze
candidate genes for large samples. For the whole
genome or exome association studies with moderate
sample size, these models can be utilized by dividing

large number of gene regions to be small number in a
parallel way to speed up the analysis.

FR‐based models are proved feasible and efficient to
association analysis for quantitative and dichotomous traits.
This article fills the gap by applying them to the two related
survival traits. Even though, advanced models are needed
to deal with more involved data type like sample of related
survival traits or repeated measurements. In foreseeable
future, extensive FR‐based models would surely be pro-
posed to accommodate more complicated cases and would
be applied widely in gene‐based studies.

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

FIGURE 4 The empirical power of the Cox FR LRT statistics at α = 0.001 when sample size is 2000, region size is 9 kb, and all variants
are rare. The order of B‐spline basis is 4, the number of B‐spline basis functions is K K= = 10β , and the number of Fourier basis functions is
K K= = 11β . Here, we assume that the correlation of an individual's traits is equal to 1
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available from the web https://sites.google.com/a/
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TABLE 3 Association analysis of Age‐Related Disease Study (AREDS) data, assuming that the correlation of the two traits is 1

P values of Cox FR LRT statistics

The type of
variants

The name
of gene

The number
of SNPs

Basis of both GVF and β u( ) Basis of beta‐smooth only

B‐sp basis Fourier basis B‐sp basis Fourier basis

All CFH 162 1.69 × 10−70 4.00 × 10−66 3.06 × 10−70 2.41 × 10−66

ARMS2 25 5.01 × 10−58 4.29 × 10−58 4.55 × 10−58 6.11 × 10−58

Common CFH 59 1.98 × 10−73 2.27 × 10−65 8.77 × 10−73 4.78 × 10−66

ARMS2 18 1.06 × 10−59 2.32 × 10−58 2.37 × 10−59 1.62 × 10−58

Rare CFH 103 4.82 × 10−13 5.21 × 10−8 5.38 × 10−13 5.48 × 10−8

ARMS2 7 NA NA NA NA

Note: The results of “Basis of both GVF and β u( )” are based on the Cox model (4) by smoothing both the GVF and the genetic effect function β u( ), and the
results of “Basis of beta‐Smooth Only” are based on the Cox model (5) by smoothing the genetic effect function β u( ) only. The order of B‐spline basis is 4, and
the number of B‐spline basis functions is K K= = 10β ; the number of Fourier basis functions is K K= = 11β . The rare variants are defined as those that the
MAF≤ 0.05, and common variants are defined as those that the MAF> 0.05.

Abbreviations: GVF, genetic variant function; LRT, likelihood ratio test; MAF, minor allele frequency; SNP, single nucleotide polymorphisms.

TABLE 4 Association analysis of Age‐Related Disease Study (AREDS) data, assuming that the correlation of the two traits
is ≤ ≤ρ−1 1

p Values of Cox FR LRT statistics

The type of
variants

The name
of gene

The number
of SNPs

Basis of both GVF and β u( ) Basis of beta‐smooth only

B‐sp basis Fourier basis B‐sp basis Fourier basis

All CFH 162 4.17 × 10−70 6.92 × 10−66 4.17 × 10−70 6.92 × 10−66

ARMS2 25 2.34 × 10−56 5.48 × 10−57 2.34 × 10−56 5.48 × 10−57

Common CFH 59 1.98 × 10−72 1.48 × 10−65 1.98 × 10−72 1.48 × 10−65

ARMS2 18 1.30 × 10−56 7.41 × 10−56 1.30 × 10−56 7.41 × 10−56

Rare CFH 103 2.40 × 10−13 3.65 × 10−10 2.40 × 10−13 3.65 × 10−10

ARMS2 7 NA NA NA NA

Note: The results of “Basis of both GVF and β u( )” are based on the Cox model (4) by smoothing both the GVF and the genetic effect function β u( ), and the
results of “Basis of beta‐Smooth Only” are based on the Cox model (5) by smoothing the genetic effect function β u( ) only. The order of B‐spline basis is 4, and
the number of B‐spline basis functions is K K= = 10β ; the number of Fourier basis functions is K K= = 11β . The rare variants are defined as those that the
MAF≤ 0.05, and common variants are defined as those that the MAF> 0.05.

Abbreviations: GVF, genetic variant function; LRT, likelihood ratio test; MAF, minor allele frequency; SNP, single nucleotide polymorphisms.
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