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1 | INTRODUCTION

In genetic study, many phenotypes are naturally ordered
and discrete values, that is, ordinal traits. For instance,
Age-Related Eye Disease Study (AREDS) collects ordinal
traits such as eye drusen size, drusen area, age-related
macular degeneration (AMD) categories, and AMD
severity scale (Age-Related Eye Disease Study Research
Group, 1999, 2001, 2005). In addition, both common and
rare variants are available in AREDS using a customized
exome chip and next-generation sequencing technologies
(Fritsche et al., 2013, 2016). It is interesting and
important to develop statistical models and software to
perform association analysis for ordinal traits.

Two strategies can be applied to an association
analysis: (1) using a common variant or a few common
variants in an analysis such as genome-wide association
studies (GWAS), and (2) using a large number variants of
sequencing data for a gene-based analysis. For common
variant analysis, a few methods have been developed for
the analysis of ordinal traits. German et al. (2020)
proposes score test statistics based on ordinal logistic
regression (OLR) for GWAS of biobank data. Morris et al.
(2010) uses multinomial regression for GWAS on multi-
category traits. By using single-nucleotide polymorphism
(SNP) data, proportional odds models and modified
proportion odds models are proposed to analyze ordinal
traits, which are similar to OLR models (Wang et al.,
2019; Xue et al., 2019; Zhang & Li, 2016). For the AMD
study, cumulative genetic risk score analysis is applied to
drusen progression by unadjusted single variant analysis
(Hoffman et al., 2016). OLR is well-studied in ordinal
categorical data analysis (Agresti, 2010, 2018; Bilder &
Loughin, 2014), which can be readily utilized in the
analysis of common variants.

The well-studied OLR in statistics cannot be directly
applied to rare variant analysis due to the high
dimensionality of rare variant data. First, analysis of a
single rare variant or a few rare variants at a time may
lead to low power and numerous results which are hard
to interpret. Second, an analysis by putting all variants in
the OLR model directly can cause convergence problems
or can lead to high false positives (e.g., additive OLRs in
Section 2.2). To analyze a large number of rare variants
or a combination of rare and common variants, it is
necessary to build novel gene-based models to overcome
convergence problems, to control type I error rates

properly, to maintain high power, and to be able to make
valid interpretation.

To our knowledge, the gene-based analytic methods
are very limited for analysis of ordinal traits. For
multilocus association testing, Wang, Ma et al. (2018)
proposes a permutation based test that combines multi-
ple p values from single SNP level testings for rare
variant analysis which needs intensive computation for a
large number of variants. Wang, Philip et al. (2018)
develops an approach based on Bayesian generalized
linear mixed model with the cumulative logit link
function which can be computationally expensive.

In this paper, we propose a gene-level association
testing procedure to analyze ordinal traits through
functional ordinal logistic regression (FOLR). The FOLR
procedure is built upon functional data analysis and the
basic idea is to treat dense genetic data as stochastic
functions (de Boor, 2001; Ferraty & Romain, 2010;
Horvath & Kokoszka, 2012; Ramsay et al., 2009; Ramsay
& Silverman, 2005; Ross, 1996). The proposed methods
can achieve the goal of reducing high dimensionality of
dense genetic variants of the next-generation sequencing
data via functional regressions. In addition, the genetic
effects are treated as a smooth function of genetic
positions since very dense sequencing data lead to strong
linkage disequilibrium, high dependence of variants, and
continuity of the genetic effects. Moreover, the proposed
methods are computationally manageable, facilitate model
convergence, properly control type I errors, and maintain
power levels. The methods are applied to analyze AREDS
ordinal traits to show their practical applications.

The organization of the paper is as follows. In
Section 2, we introduce additive OLR and FOLR models
to perform gene-based association analysis for ordinal
traits. After a presentation of OLR models in Section 2.1,
we introduce an additive OLR model and point out its
problem in Section 2.2, and then we introduce theoretical
FOLR models in Section 2.3. The theoretical FOLR
models are revised to analyze variant data in Section 2.4.
Based on the revised FOLR models, likelihood ratio test
(LRT) statistics are built in Section 2.5. Simulation
settings and AREDS ordinal traits and genetic data are
presented in Sections 2.6, 2.7, and 2.8. In Section 3, we
present the results of simulation studies and data
analysis. Section 4 provides a discussion with respect to
the FOLR models and their usage in gene-based analysis
of sequencing data.
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2 | METHODS

2.1 | Ordinal logistic regressions

Consider a study with a population sample consisting of
ordinal phenotypic traits, covariates, and genetic data. For
an individual in the population, let Y denote her/his
ordinal trait that has L > 2 categories {1,2,..,L},
Z = (2, ...%) a cx1 vector of covariates, and X =
(x (w), ..., x(uy))" a genotype vector of m variants at the
physical locations 0 <1y < u, < ---< Uy, where x(u;)
(=0, 1, 2) is the number of minor alleles at the jth variant.
To relate trait variable Y to covariates Z and genotpye X,
one may use an OLR model with a logistic link

<
1-P(Y<4Z, X) @)

¢€=1,2,..,,L -1,

where o, are regression intercepts (¢ = 1,2, ..,L — 1),y
is a ¢ X 1 vector of fixed effect coefficients of covariates,
and & is a function of genotype. The model (1) assumes
that regression coefficient vector y has the same effects
and so the genetic effect #(X) on each of the response
categories but each category has its own intercept
a,. Therefore, the intercepts a, increase in ¢ =1, 2,
...L —1, since P(Y < #IX,Z) increases in ¢ for each
fixed value of Z and X. The function h can be modeled
parametrically or nonparametrically. The OLR model (1)
is also called the proportional odds model or the
cumulative logit model (Agresti, 2010; Bilder & Loughin,
2014; Faraway, 2016; German et al., 2020). With the
inverse-logistic transformation of the cumulative proba-
bilities, the cell probabilities are obtained by

exp{ag + Z'y + h(X)}
1+ explay + Z'y + h(X)}'
exp{a, + Z'y + h(X)}
1+ expfay + Z'y + h(X)}
exp{as_1+ Z'y + h(X)}
1+ explag + Z'y + h(X)}
2<¢<L-1,
P(Y=LIZ,X)=1- YL P(Y = 01z, X).

P(Y=1ZX)=

P(Y=10Z,X)=

@)

Let {o} = a1, ..., a1, and 6 = ({a;}, 7, h). Given the

cell probabilities, one can obtain the likelihood function
for an observation as follows:

LOY,Z,X)=TL5_,[P(Y = €1Z, X)|'(Y=0), 3)

where I(Y = ¢) is the indicator function of Y = ¢.
Given a sample of data, one may estimate parameters/

coefficients through maximum-likelihood estimate
procedure.

2.2 | Additive OLR models

For the simplicity, we use the notations
e = P(Y < ¢1Z,X) and logit(-) as the logistic function
in this section and thereafter. To model the function h in
the OLR model (1), one may use an additive effect model:
h(X) = ij:lx (uj)[ﬁ’j. This gives us the following additive
OLR model

m
logit(my) =ap + Z'y + D, xW)B, € =1,..,L — 1. @
j=1

The additive OLR model (4) has a straightforward model
form and it models effects of covariates and genetic
variants directly. If the number m of variants is small and
all variants are common, it can be useful as German et al.
(2020). However, if the number m of genetic variants is
large and some variants are rare such as sequencing data,
the additive OLR model (4) may run into convergence
problems and the power can be low. To overcome the
problem, we incorporate a dimension reduction proce-
dure for genotype data in the model fitting by FOLR
models.

2.3 | FOLR models

To consider the dimension reduction on genotype
data and to handle rare variants, one may use functional
regressions to convert the genotype data of an
individual into a genetic variant function (GVF) (Fan
et al.,, 2013, 2014). The idea of functional regressions
is to view the observed discrete genotypes
(x(u), ..., x(uy,))’ of an individual as a realization of
an unobserved stochastic function X (u) (Ross, 1996).
Let the physical locations of the m variants be
normalized on the unit region [0,1]. To relate the
GVF to the trait status adjusting for covariates, we
consider the following FOLR model:

1

logit(my) = ay + Z'y + f XWAWdw, € =1, L — 1,
0

(5)

where (u) is the genetic effect of GVF X (1) at position u,
and the other terms are the same as those in the additive
OLR model (4). In the FOLR model (5), the GVF X (u) is
assumed to be smooth. This assumption can be relaxed by
considering the following -smooth only FOLR model:
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logit(me) = ap + Z'y + D, x(w)Buy), ¢ =1,..,L — 1,
j=1
(6)

where the genetic effect function (u) is assumed to be
continuous/smooth and so it is called -smooth only
FOLR model. In model (6), we use the observed genotype
data X = (x(w), ..., x;i(u,,))" directly rather than the
smooth GVF X (u) as in (5).

2.4 | Revised FOLR models

To estimate the genetic effect function S(u) in FOLR
model (5) and -smooth only FOLR model (6), one may
expand it using B-spline or Fourier basis functions.
Specifically, given a series of Kz basis functions
P, (), ..., z,bKB(u), we have the expansion B(u)=
(#’1(”)9 eeey z)bKﬁ(u))(ﬁp eeey SKB)I = lp(u)/ﬁs ﬁ =
By s ‘BKB)’ is a Kgx1 vector of coefficients and
) = (P, (w), ...,z,bKﬁ(u))’. One may choose B-spline

basis or Fourier basis (Ramsay et al., 2009; Ramsay &
Silverman, 2005).

where

To estimate the GVF X (u) with observed genotypes
X, we use an ordinary linear square smoother (Ramsay
et al., 2009; Ramsay & Silverman, 2005). Let
¢, (), k=1,..,K, be a series of K basis functions. Let
® denote the m x K matrix containing the values ¢, (),
and we let ¢(u) = (¢;(u), ..., ¢ (u))’. Using discrete
realization X = (x(uy), ..., x(u,,))’, we estimate the GVF
X (u) using an ordinary linear square smoother as follows:

K@) = @), . X))@ P, (7)

Assume that the genetic effect function S(u) is
expanded by a series of basis functions ¥, (u), k=
1,..,Kg, as B(u) = P(u)’'B. Replacing X (u) in the FOLR
model (5) with X (1) in (7) and 8 (u) with the expansion,
we have the following revised FOLR:

logit(,) = ap + Z'y + (x(uy), ..o, X () ) O [®' D] !

1
fo $ (W)W’ (w)dup,

=a,+Z'y+ W' ¢€=1,.,L—-1,
(®)

where W' = (t(w), ., ¥ (1)) @@ [ '8 W)y (u)du.
In the statistical packages R, codes to calculate ®[®’'®]!
and fo 1<,{>(u)z,b’(u)du are readily available (Ramsay et al.,
2009).

For the @-smooth only FOLR model (6), B(u;) is
introduced as genetic effect at the position u; and §(u) is
the genetic effect function. Expanding g(u;) with
predetermined basis functions, the f-smooth only FOLR
model (6) can be revised as follows:

logit(,) = a, + Z'y + [z;.';lx(u,-)(;bl(uj),

$i, ) |(Bys 0 B

=a,+Z'y+Wp,¢=1,..,L—-1,
9)

where W' = Y70, x ()@, (W), ..., g, ().

2.5 | LRT statistics

Given n independent individuals with observed informa-
tion of ordinal traits, covariate vectors, and genotype
vectors as Y,Z;, and X;, let m=0 and
My =P, <0Z,X),1<¢<L,i=1,2,..,n, be the
cumulative probability of Y, conditional on the ith
subject's covariates and genotpyes, respectively. Based
on relation (3), the likelihood function is

L{ae}, B, y) = O I, [P(Y; = €1Z;, X)) P =9
=T 0 [ — 7,01 T =0,

(10)

In the likelihood (10), m,'s can be obtained with the
choice of the additive OLR model (4), FOLR model (8),
and f-smooth only FOLR model (9), respectively. With
the likelihood function, one can calculate the maximum-
likelihood estimate of the parameters and then obtain the
LRT statistics.

To test for association between the ordinal trait and
the m genetic variants, the null hypothesis is
Hy:B=(...B8,) =0 for additive OLR model (4),
and H,: B = (B, ...,6Kﬁ)’ = 0 for FOLR model (8) and
the B-smooth only FOLR model (9). Under the null of no
association between the trait and the genotype data, the
models (4), (8), and (9) are simplified as follows:

logit(zmy) = ap+ Z'y, ¢ =1,2,..,L — 1. (11)
By fitting the FOLR model (8) or (9) and the null model
(11), we may test the null Hy : 8 = 0 by a y2-distributed
LRT statistic with degrees of freedom K. For the additive
OLR model (4) and the null model (11), the LRT statistic
has degrees of freedom m.

One can use the MASS R package to fit the proposed
models using polr function to calculate the LRT statistics
and related p values (Venables & Ripley, 2002).
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TABLE 1
and figures

Notation used in the tables

Notation Description and interpretation
LRT_FOLR_BS LRT of FOLR model (8) with the B-Spline basis versus null
model (11)
LRT_FOLR_FR LRT of FOLR model (8) with the Fourier basis versus null model (11)
LRT_beta_BS LRT of FOLR model (9) with the B-Spline basis versus null
model (11)
LRT_beta_FR LRT of FOLR model (9) with the Fourier basis versus null model (11)
2.6 | Simulation studies

To assess the performance of the proposed LRT statistics of
FOLR models, we perform simulation studies to evaluate
their empirical type I error rates and power levels. In total,
we consider four test statistics presented in Table 1 based on
the FOLR model (8) or (9) and the null model (11). A variant
is considered to be rare if its MAF is <0.03. We consider two
scenarios of genetic variants: (1) some variants are common
and the rest are rare, and (2) all variants are rare only. We
generate ordinal traits with three, five, six, and eight
categories, respectively. In each simulated sample, 2000 or
4000 subjects are generated.

2.6.1 | Genetic variants

We generate sequencing data from 10,000 chromosomes
over 1 Mb regions under a coalescent model by using the
software package COSI (Schaffner et al, 2005; The
International HapMap Consortium, 2007). The sequence
data are generated using COSI's calibrated best-fit models,
and the generated European haplotypes mimic Centre
d'Etude du Polymorphisme Humain (CEPH) Utah indivi-
duals with ancestry from northern and western Europe in
terms of the site frequency spectrum and linkage dis-
equilibrium (LD) patterns. We randomly select subregions of
size 6, 12, 18, 24, and 30kb from the 1 Mb region to draw
genetic variants for the simulation studies. In the simula-
tions, roughly 10% variants are common and the rest
are rare.

2.6.2 | Type I error simulations

To estimate type I error rates of the LRT statistics, we
generate the ordinal trait for each subject using the
following null model:

logit(m,) = ap + 0.1z + 0.275, ¢ =1, ..., L — 1
(12)
where (o, ) = (—0.7,0.7) for the case with three
categories, (o, &, a3, a4) = (—1.39, —0.41, 0.41, 1.39) for

the case with five -categories, (ay,...,as) = (—0.37,
0.31, 0.88, 1.49, 2.35) for the case with six categories,
(e, ..., a7) = (—0.60, 0.00, 0.46, 0.88, 1.33, 1.87, 2.67) for the
case with eight categories, z; is a dichotomous covariate
taking values 0 and 1 with a probability of 0.5, and z, is a
continuous covariate from a standard normal distribution
N(0,1).

For each simulation scenario, 10° phenotype-genotype
data sets are generated to fit the models and to calculate the
test statistics and related p values. The empirical type I error
rate is calculated as the proportion of 10 p values which are
smaller than a given a level.

2.6.3 | Empirical power simulations

To evaluate the power of proposed tests, trait status is
determined for each individual based upon the
genotypes. The data sets under the alternative hypoth-
esis are simulated by randomly selecting subregions to
obtain causal variants. For each sample, a subset of m
causal variants located in the selected subregion is
then randomly selected from those matching the
desired minor allele frequency criteria (e.g., either a
combination of common and rare or only rare),
yielding genotypes (x(u),...,x(u,;)). For each data
set, the causal variants are the same for all the
individuals in the data set, but we allow the causal
variants to be different from data set to data set. Then,
we generate the ordinal phenotypic traits by the
following cumulative logit model,

logit(my) = atp + 0.1z3 + 0.2z + B;x(wy)

ot lgmx(um),€ =1,2,..,L — 1,
(13)

where a,'s, 77 and z; are the same as in the type I error
model (12), (x (), ..., x (u,,))’ are genotypes of m causal
variants, and the fs are additive effects for the causal
variants defined as follows. For genetic effect sizes, we
use the approach in Wu et al. (2011) by setting
I8l = cllog,(MAF))I/2, where MAF; is the MAF of the
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TABLE 2 Empirical type I error rates of the LRT statistics when some variants are common and the rest are rare

. . Type I error rate of LRT statistics
Number of Region size

Ordinal (mean # of  Nominal FOLR model (8) B-smooth only FOLR model (9)  Additive
categories variants) level « LRT _FOLR_BS LRT FOLR_FR LRT_beta_BS LRT beta_FR OLR (4)
3 categories 6kb (117) 0.001 0.000999 0.001112 0.001153 0.001113 0.016532
0.0001 0.000083 0.000112 0.000097 0.000112 0.002134

0.00001 0.000008 0.000009 0.000009 0.000009 0.000230

12 kb (235) 0.001 0.000957 0.001037 0.001065 0.001038 0.076013

0.0001 0.000078 0.000105 0.000086 0.000105 0.014971

0.00001 0.000008 0.000013 0.000010 0.000013 0.002397

18 kb (352) 0.001 0.000975 0.001070 0.001070 0.001072 0.200935

0.0001 0.000100 0.000123 0.000117 0.000123 0.056926

0.00001 0.000006 0.000020 0.000007 0.000020 0.013102

24 kb (469) 0.001 0.000968 0.001052 0.001065 0.001053 0.383890

0.0001 0.000094 0.000113 0.000109 0.000113 0.149493

0.00001 0.000012 0.000013 0.000013 0.000013 0.046424

30 kb (586) 0.001 0.000975 0.001059 0.001068 0.001060 0.584945

0.0001 0.000107 0.000121 0.000116 0.000121 0.299986

0.00001 0.000007 0.000005 0.000007 0.000005 0.121670

5 categories 6kb (117) 0.001 0.000857 0.001122 0.001190 0.001124 0.021473
0.0001 0.000096 0.000126 0.000141 0.000127 0.003275

0.00001 0.000010 0.000015 0.000015 0.000015 0.000416

12 kb (235) 0.001 0.000838 0.001123 0.001125 0.001124 0.091105

0.0001 0.000099 0.000130 0.000132 0.000130 0.021203

0.00001 0.000012 0.000020 0.000015 0.000020 0.004149

18 kb (352) 0.001 0.000796 0.001065 0.001094 0.001066 0.230415

0.0001 0.000081 0.000104 0.000110 0.000104 0.076388

0.00001 0.000009 0.000017 0.000015 0.000017 0.021094

24 kb (469) 0.001 0.000808 0.001065 0.001044 0.001072 0.426695

0.0001 0.000078 0.000112 0.000107 0.000112 0.190394

0.00001 0.000008 0.000009 0.000008 0.000009 0.069766

30 kb (586) 0.001 0.000838 0.001098 0.001126 0.001100 0.626729

0.0001 0.000086 0.000113 0.000114 0.000114 0.360809

0.00001 0.000008 0.000010 0.000012 0.000011 0.170301

6 categories 6kb (117) 0.001 0.000734 0.001136 0.001170 0.001136 0.021527
0.0001 0.000070 0.000120 0.000116 0.000120 0.003424

0.00001 0.000005 0.000014 0.000006 0.000014 0.000468

12 kb (235) 0.001 0.000762 0.001096 0.001150 0.001100 0.089623

0.0001 0.000074 0.000107 0.000113 0.000107 0.021275

0.00001 0.000004 0.000012 0.000006 0.000012 0.004288

18 kb (352) 0.001 0.000737 0.001104 0.001121 0.001107 0.225137

(Continues)
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TABLE 2 (Continued)

Number of e e Type I error rate of LRT statistics

ordinal (mean # of  Nominal FOLR model (8) B-smooth only FOLR model (9)  additive

categories variants) level « LRT FOLR_BS LRT FOLR_FR LRT_beta_BS LRT beta_FR OLR (4)

0.0001 0.000076 0.000125 0.000119 0.000125 0.075485

0.00001 0.000006 0.000019 0.000011 0.000019 0.020952

24 kb (469) 0.001 0.000676 0.001069 0.001052 0.001075 0.414842

0.0001 0.000065 0.000105 0.000107 0.000106 0.185763

0.00001 0.000003 0.000013 0.000010 0.000013 0.068433

30 kb (586) 0.001 0.000669 0.001077 0.001053 0.001080 0.611524

0.0001 0.000071 0.000107 0.000112 0.000107 0.350946

0.00001 0.000003 0.000006 0.000008 0.000006 0.167192

8 categories 6 kb (117) 0.001 0.000712 0.001046 0.001141 0.001046 0.021077

0.0001 0.000073 0.000117 0.000124 0.000117 0.003380

0.00001 0.000005 0.000011 0.000013 0.000011 0.000505

12 kb (235) 0.001 0.000736 0.001067 0.001054 0.001067 0.084392

0.0001 0.000068 0.000098 0.000099 0.000098 0.020338

0.00001 0.000006 0.000008 0.000012 0.000008 0.004283

18 kb (352) 0.001 0.000735 0.001014 0.001064 0.001014 0.210493

0.0001 0.000076 0.000099 0.000115 0.000099 0.071192

0.00001 0.000005 0.000006 0.000011 0.000006 0.020263

24 kb (469) 0.001 0.000727 0.001086 0.001124 0.001088 0.390165

0.0001 0.000078 0.000132 0.000130 0.000132 0.173864

0.00001 0.000006 0.000017 0.000012 0.000017 0.064960

30 kb (586) 0.001 0.000699 0.001054 0.001032 0.001057 0.571122

0.0001 0.000076 0.000121 0.000118 0.000121 0.323878

0.00001 0.000007 0.000010 0.000012 0.000010 0.153897

Note: The order of B-spline basis is 4, the number of basis functions of B-spline is K = Kg = 10, the number of Fourier basis functions is K = Kz = 11, and

sample size is 2000.

Jjth variant. Two different settings are considered: 5% and
10% of variants in the subregions are chosen as causal
variants, respectively. When 5% and 10% of the variants
are causal, ¢ = log(30)/k and log(20)/k, respectively.
When some variants are common and the rest are rare
and 5% of variants in the subregions are chosen as causal
variants, the constants k increase and genetic effect sizes
decrease as region sizes increase

1.25 ifregion size = 6 kb,
k =<:2.25 ifregion size = 18 kb,
3.25 ifregion size = 30 kb.

(14)

and when all variants are rare and 10% of variants in the
subregions are chosen as causal variants, the constants k

increase and genetic effect sizes decrease as region sizes
increase

1.15 ifregion size = 6 kb,
k=1{175
2.35

if region size = 18 kb,

(15)

if region size = 30 kb.

For the direction of genetic effects, we consider three
situations: (i) all causal variants have positive effects; (ii)
20%/80% causal variants have negative/positive effects;
and (iii) 50%/50% causal variants have negative/positive
effects. The empirical power are calculated as the
proportion of p values which are smaller than a given
a level based on 1000 simulations.
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TABLE 3 Empirical type I error rates of the LRT statistics when all variants are rare
Number of T e Type I error rate of LRT statistics
Ordinal (mean # of  Nominal FOLR model (8) B-smooth only FOLR model (9)  Additive
categories variants) level « LRT _FOLR_BS LRT FOLR_FR LRT_beta_BS LRT beta_FR OLR (4)
3 categories 6kb (117) 0.001 0.001147 0.001320 0.001378 0.001322 0.016619
0.0001 0.000123 0.000141 0.000151 0.000141 0.002030
0.00001 0.000014 0.000021 0.000018 0.000021 0.000231
12 kb (235) 0.001 0.001013 0.001113 0.001139 0.001114 0.074101
0.0001 0.000114 0.000097 0.000129 0.000098 0.014063
0.00001 0.000013 0.000011 0.000016 0.000011 0.002208
18 kb (352) 0.001 0.001027 0.001131 0.001153 0.001133 0.191173
0.0001 0.000113 0.000116 0.000129 0.000116 0.052133
0.00001 0.000009 0.000006 0.000010 0.000006 0.011337
24 kb (469) 0.001 0.000988 0.001078 0.001112 0.001079 0.361997
0.0001 0.000126 0.000133 0.000136 0.000133 0.134576
0.00001 0.000013 0.000016 0.000015 0.000016 0.039353
30 kb (586) 0.001 0.001003 0.001113 0.001102 0.001113 0.553245
0.0001 0.000102 0.000122 0.000114 0.000122 0.268802
0.00001 0.000009 0.000011 0.000010 0.000011 0.102334
5 categories 6kb (117) 0.001 0.000862 0.001241 0.001319 0.001248 0.021662
0.0001 0.000076 0.000122 0.000138 0.000122 0.003250
0.00001 0.000003 0.000021 0.000012 0.000021 0.000411
12 kb (235) 0.001 0.000847 0.001165 0.001206 0.001166 0.088747
0.0001 0.000079 0.000109 0.000116 0.000110 0.020183
0.00001 0.000009 0.000010 0.000012 0.000010 0.003848
18 kb (352) 0.001 0.000836 0.001123 0.001182 0.001128 0.218923
0.0001 0.000095 0.000110 0.000130 0.000110 0.070008
0.00001 0.000010 0.000014 0.000013 0.000014 0.018698
24 kb (469) 0.001 0.000794 0.001085 0.001070 0.001086 0.402191
0.0001 0.000080 0.000104 0.000123 0.000104 0.171852
0.00001 0.000008 0.000008 0.000010 0.000008 0.059913
30 kb (586) 0.001 0.000797 0.001089 0.001089 0.001089 0.597675
0.0001 0.000095 0.000110 0.000123 0.000110 0.327213
0.00001 0.000010 0.000011 0.000014 0.000011 0.146294
6 categories 6 kb (106) 0.001 0.000725 0.001270 0.001322 0.001273 0.021853
0.0001 0.000070 0.000134 0.000129 0.000135 0.003400
0.00001 0.000007 0.000013 0.000013 0.000013 0.000478
12kb (212) 0.001 0.000679 0.001124 0.001111 0.001125 0.087204
0.0001 0.000074 0.000121 0.000130 0.000123 0.019984
0.00001 0.000007 0.000017 0.000010 0.000017 0.003940
18 kb (318) 0.001 0.000696 0.001106 0.001115 0.001108 0.212792
0.0001 0.000075 0.000127 0.000128 0.000127 0.069040

(Continues)
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TABLE 3 (Continued)

Number of e e Type I error rate of LRT statistics

ordinal (mean # of  Nominal FOLR model (8) B-smooth only FOLR model (9)  additive

categories variants) level « LRT FOLR_BS LRT FOLR_FR LRT_beta_BS LRT beta_FR OLR (4)

0.00001 0.000010 0.000007 0.000015 0.000007 0.018673

24 kb (424) 0.001 0.000729 0.001052 0.001121 0.001055 0.390141

0.0001 0.000075 0.000117 0.000132 0.000118 0.167493

0.00001 0.000004 0.000012 0.000012 0.000012 0.059134

30 kb (530) 0.001 0.000666 0.001081 0.001057 0.001084 0.586116

0.0001 0.000055 0.000104 0.000090 0.000104 0.322396

0.00001 0.000003 0.000010 0.000009 0.000010 0.146330

8 categories 6 kb (106) 0.001 0.000648 0.001170 0.001233 0.001173 0.021567

0.0001 0.000063 0.000103 0.000123 0.000103 0.003381

0.00001 0.000006 0.000009 0.000014 0.000009 0.000483

12 kb (212) 0.001 0.000648 0.001021 0.001040 0.001021 0.082130

0.0001 0.000060 0.000097 0.000110 0.000098 0.019331

0.00001 0.000007 0.000009 0.000012 0.000009 0.003958

18 kb (318) 0.001 0.000682 0.001099 0.001072 0.001103 0.198625

0.0001 0.000062 0.000105 0.000103 0.000105 0.064946

0.00001 0.000006 0.000009 0.000012 0.000009 0.017900

24 kb (424) 0.001 0.000716 0.001053 0.001116 0.001053 0.366685

0.0001 0.000716 0.001053 0.001116 0.001053 0.156551

0.00001 0.000008 0.000009 0.000011 0.000009 0.056070

30 kb (530) 0.001 0.000706 0.001043 0.001094 0.001046 0.557364

0.0001 0.000071 0.000110 0.000112 0.000110 0.303248

0.00001 0.000008 0.000016 0.000013 0.000016 0.137448

Note: The order of B-spline basis is 4, the number of basis functions of B-spline is K = Kg = 10, the number of Fourier basis functions is K = Kz = 11, and

sample size is 2000.

2.7 |
AREDS

Real data analysis: Application to

2914 individuals is 68.65 years with a standard

deviation 4.92. A covariate analysis

shown in

The proposed FOLR models are applied to analyze
AREDS data (Age-Related Eye Disease Study Research
Group, 1999, 2005). AREDS is a clinical trial to learn
about the risk factors for macular degeneration and
cataract, two leading causes of vision loss in older
adults. For right eye, a total of 2911 individuals are
included in this analysis with recorded demography, in
which 1261 individuals are males and 1650 are
females. The race composition is provided in
Table S.9 and most people are white. The mean age
of the 2911 individuals is 68.65 years with a standard
deviation 4.92. For left eye, a total of 2914 individuals
are included in the analysis, in which 1263 individuals
are males and 1651 are females. The mean age of the

Table S.10 indicates that age is very significant and
race is significant for all the ordinal traits, and gender
is significant for some traits. In the analysis, we adjust
for age, race and gender as covariates.

Each individual has ordinal phenotypic traits and is
genotyped using a customized exome chip (Fritsche
et al., 2013, 2016). Two gene regions, CFH and ARMS2,
are of primary interest. In each of the two gene regions,
single variant analysis shows that some single nucleotide
polymorphisms (SNPs) are associated with the risk of
macular degeneration and its progression (Seddon et al.,
2007). The ordinal traits include eye drusen size, drusen
area, AMD categories, and AMD severity scale (Age-
Related Eye Disease Study Research Group, 1999, 2001,
2005). The drusen size has six categories ranging from 0
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TABLE 4 Empirical type I error rates of the LRT statistics when some variants are common and the rest are rare

Number of
ordinal
categories

3 categories

5 categories

6 categories

Region size
(mean # of
variants)

6kb (117)

12kb (212)

18kb (352)

24 kb (424)

30kb (586)

6kb (117)

12kb (212)

18 kb (352)

24Kkb (424)

30kb (586)

6kb (117)

12kb (235)

18kb (352)

Nominal
level @

0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001
0.001
0.0001
0.00001

0.001
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FOLR model (8)

B-smooth only FOLR model (9)

LRT_FOLR_BS LRT FOLR_FR

0.000981
0.000095
0.000012
0.000977
0.000087
0.000007
0.000912
0.000079
0.000006
0.000979
0.000096
0.000011
0.000967
0.000105
0.000012
0.000806
0.000066
0.000006
0.000860
0.000075
0.000008
0.000850
0.000090
0.000006
0.000794
0.000076
0.000010
0.000808
0.000080
0.000010
0.000767
0.000063
0.000008
0.000754
0.000076
0.000005

0.000736

0.001104
0.000109
0.000008
0.001074
0.000111
0.000016
0.000982
0.000090
0.000006
0.001048
0.000109
0.000008
0.001036
0.000123
0.000009
0.001003
0.000100
0.000005
0.001020
0.000090
0.000010
0.001022
0.000109
0.000008
0.001019
0.000097
0.000008
0.001032
0.000113
0.000011
0.001118
0.000108
0.000015
0.001079
0.000119
0.000008

0.001027

LRT_beta_BS
0.001091
0.000108
0.000013
0.001059
0.000092
0.000007
0.001021
0.000089
0.000007
0.001059
0.000105
0.000013
0.001057
0.000113
0.000012
0.001081
0.000097
0.000009
0.001096
0.000096
0.000011
0.001095
0.000111
0.000009
0.001040
0.000098
0.000013
0.001053
0.000110
0.000013
0.001115
0.000106
0.000011
0.001046
0.000107
0.000013

0.001059

LRT beta_FR

0.001105
0.000109
0.000008
0.001075
0.000111
0.000016
0.000984
0.000090
0.000006
0.001048
0.000109
0.000008
0.001037
0.000123
0.000009
0.001003
0.000100
0.000005
0.001020
0.000090
0.000010
0.001022
0.000109
0.000008
0.001021
0.000097
0.000008
0.001034
0.000113
0.000011
0.001118
0.000108
0.000015
0.001079
0.000119
0.000008

0.001028

Additive
OLR (4)

0.017605
0.002479
0.000338
0.070333
0.014638
0.002580
0.169688
0.048336
0.011441
0.312307
0.116298
0.035418
0.476416
0.223332
0.084792
0.018362
0.002803
0.000399
0.067112
0.014791
0.002865
0.159437
0.047421
0.012056
0.288968
0.109922
0.035552
0.424382
0.199814
0.078334
0.017892
0.002887
0.000417
0.063366
0.014350
0.002795

0.149371

(Continues)
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TABLE 4 (Continued)

Number of s Type I error rate of LRT statistics

ordinal (mean # of Nominal FOLR model (8) f-smooth only FOLR model (9) Additive

categories variants) level « LRT FOLR_BS LRT _FOLR_FR LRT beta_BS LRT beta_FR OLR (4)

0.0001 0.000069 0.000094 0.000097 0.000095 0.044462

0.00001 0.000006 0.000006 0.000008 0.000006 0.011391

24 kb (469) 0.001 0.000750 0.001014 0.001088 0.001015 0.266247

0.0001 0.000074 0.000101 0.000110 0.000101 0.100272

0.00001 0.000006 0.000008 0.000009 0.000008 0.031960

30 kb (586) 0.001 0.000728 0.001049 0.001066 0.001051 0.383829

0.0001 0.000065 0.000095 0.000089 0.000096 0.176130

0.00001 0.000004 0.000012 0.000007 0.000012 0.068118

8 categories 6 kb (117) 0.001 0.000678 0.001039 0.001069 0.001039 0.016471

0.0001 0.000065 0.000106 0.000091 0.000106 0.002624

0.00001 0.000007 0.000009 0.000015 0.000009 0.000385

12 kb (235) 0.001 0.000714 0.001054 0.001029 0.001055 0.056476

0.0001 0.000067 0.000097 0.000096 0.000097 0.012477

0.00001 0.000006 0.000009 0.000008 0.000009 0.002449

18 kb (352) 0.001 0.000723 0.001021 0.001071 0.001021 0.131669

0.0001 0.000089 0.000117 0.000120 0.000117 0.038182

0.00001 0.000005 0.000002 0.000008 0.000002 0.009717

24 kb (469) 0.001 0.000683 0.001081 0.001029 0.001082 0.230455

0.0001 0.000057 0.000099 0.000094 0.000099 0.084140

0.00001 0.000002 0.000003 0.000006 0.000003 0.026262

30 kb (586) 0.001 0.000735 0.001009 0.001059 0.001011 0.324460

0.0001 0.000069 0.000111 0.000107 0.000111 0.142084

0.00001 0.000003 0.000009 0.000005 0.000009 0.053246

Note: The order of B-spline basis is 4, the number of basis functions of B-spline is K = Kg = 10, the number of Fourier basis functions is K = Kz = 11, and

sample size is 4000.

(none) to 5, the drusen area has eight categories ranging
from 0 (none) to 7, AMD categories has six levels, and
AMD severity scale has 12 levels. The proposed FOLR
models are applied to test association between each
ordinal trait and each of the two genes.

2.8 | Functional data analysis
parameters

In the data analysis and simulations, we use functions from
the fda R package to create the basis functions (Ramsay
et al., 2014). In the simulations and data analysis presented
in the main text, the order of the B-spline basis is 4, the
number of B-spline basis functions is K = Kz = 10, and the
number of Fourier basis functions is K = Kz = 11. To make

sure that the results are stable, we examine a wide range of
parameters: 6 < K = Kg < 17 for B-spline and Fourier basis
functions. In the Supporting Information Materials, we
present additional simulation results when the order of the
B-spline basis is 4, the numbers of B-spline basis functions
are K = Kz = 6 and 16, and the numbers of Fourier basis
functions are K = Kz = 7 and 17, respectively.

3 | RESULTS

3.1 | Empirical type I error rates

In the main text, the order of the B-spline basis is 4,
the number of B-spline basis functions is K = Kg = 10,
the number of Fourier basis functions is K = Kg = 11.
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TABLE 5 Empirical type I error rates of the LRT statistics when all variants are rare
Number of T e Type I error rate of LRT statistics
Ordinal (mean # of  Nominal FOLR model (8) B-smooth only FOLR model (9)  Additive
categories variants) level « LRT _FOLR_BS LRT FOLR_FR LRT_beta_BS LRT beta_FR OLR (4)
3 categories 6 kb (106) 0.001 0.001081 0.001173 0.001236 0.001173 0.017894
0.0001 0.000110 0.000136 0.000130 0.000136 0.002483
0.00001 0.000008 0.000009 0.000008 0.000009 0.000301
12 kb (212) 0.001 0.000919 0.001054 0.001032 0.001054 0.070134
0.0001 0.000101 0.000098 0.000117 0.000098 0.014343
0.00001 0.000012 0.000008 0.000015 0.000008 0.002519
18 kb (318) 0.001 0.000984 0.001076 0.001096 0.001077 0.166531
0.0001 0.000102 0.000120 0.000115 0.000120 0.046609
0.00001 0.000015 0.000015 0.000017 0.000015 0.010598
24 kb (424) 0.001 0.001038 0.001041 0.001149 0.001041 0.302994
0.0001 0.000096 0.000105 0.000113 0.000105 0.110538
0.00001 0.000013 0.000008 0.000013 0.000008 0.032623
30 kb (530) 0.001 0.000936 0.001097 0.001045 0.001099 0.462092
0.0001 0.000104 0.000128 0.000119 0.000128 0.210000
0.00001 0.000013 0.000015 0.000013 0.000015 0.077271
5 categories 6kb (106) 0.001 0.000801 0.001081 0.001134 0.001081 0.018780
0.0001 0.000078 0.000102 0.000112 0.000103 0.002873
0.00001 0.000007 0.000014 0.000011 0.000014 0.000411
12 kb (212) 0.001 0.000857 0.001100 0.001129 0.001101 0.066935
0.0001 0.000083 0.000111 0.000116 0.000111 0.014761
0.00001 0.000012 0.000013 0.000014 0.000013 0.002865
18 kb (318) 0.001 0.000807 0.001036 0.001078 0.001038 0.155790
0.0001 0.000090 0.000117 0.000126 0.000117 0.045385
0.00001 0.000009 0.000015 0.000013 0.000015 0.011430
24 kb (424) 0.001 0.000728 0.001038 0.000958 0.001042 0.282982
0.0001 0.000071 0.000089 0.000090 0.000089 0.105670
0.00001 0.000005 0.000008 0.000007 0.000008 0.033433
30 kb (530) 0.001 0.000809 0.001058 0.001077 0.001059 0.434417
0.0001 0.000094 0.000101 0.000119 0.000101 0.201703
0.00001 0.000008 0.000009 0.000013 0.000009 0.077891
6 categories 6kb (106) 0.001 0.000678 0.001091 0.001081 0.001091 0.018541
0.0001 0.000061 0.000109 0.000105 0.000109 0.002951
0.00001 0.000008 0.000013 0.000015 0.000013 0.000422
12kb (212) 0.001 0.000731 0.001023 0.001044 0.001023 0.063308
0.0001 0.000077 0.000124 0.000117 0.000124 0.014275
0.00001 0.000008 0.000011 0.000009 0.000011 0.002704
18 kb (318) 0.001 0.000731 0.001024 0.001021 0.001026 0.145568

(Continues)
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TABLE 5 (Continued)

Number of e e Type I error rate of LRT statistics

ordinal (mean # of  Nominal FOLR model (8) B-smooth only FOLR model (9)  additive

categories variants) level « LRT FOLR_BS LRT FOLR_FR LRT_beta_BS LRT beta_FR OLR (4)

0.0001 0.000076 0.000103 0.000104 0.000103 0.042510

0.00001 0.000009 0.000008 0.000011 0.000008 0.010686

24 kb (424) 0.001 0.000729 0.001076 0.001057 0.001078 0.264657

0.0001 0.000064 0.000095 0.000098 0.000095 0.098028

0.00001 0.000008 0.000006 0.000011 0.000006 0.030742

30 kb (530) 0.001 0.000680 0.001084 0.001044 0.001088 0.411177

0.0001 0.000072 0.000117 0.000098 0.000118 0.187902

0.00001 0.000006 0.000021 0.000011 0.000021 0.071838

8 categories 6 kb (106) 0.001 0.000637 0.001016 0.001089 0.001018 0.017008

0.0001 0.000064 0.000108 0.000099 0.000108 0.002753

0.00001 0.000004 0.000004 0.000009 0.000004 0.000391

12 kb (212) 0.001 0.000720 0.001061 0.001079 0.001063 0.056502

0.0001 0.000070 0.000121 0.000111 0.000120 0.012493

0.00001 0.000006 0.000013 0.000011 0.000013 0.002400

18 kb (318) 0.001 0.000742 0.001041 0.001056 0.001042 0.128207

0.0001 0.000065 0.000098 0.000112 0.000098 0.036692

0.00001 0.000007 0.000010 0.000009 0.000010 0.009136

24 kb (424) 0.001 0.000768 0.001022 0.001059 0.001023 0.234431

0.0001 0.000079 0.000110 0.000106 0.000110 0.084631

0.00001 0.000007 0.000013 0.000009 0.000013 0.026070

30 kb (530) 0.001 0.000699 0.001032 0.000984 0.001033 0.368797

0.0001 0.000069 0.000124 0.000116 0.000124 0.162141

0.00001 0.000008 0.000016 0.000010 0.000016 0.060753

Note: The order of B-spline basis is 4, the number of basis functions of B-spline is K = Kg = 10, the number of Fourier basis functions is K = Kz = 11, and

sample size is 4000.

When the sample size is 2000, the empirical type I
error rates of the proposed LRT statistics are reported
in Tables 2 and 3 at three significance levels a = 0.001,
0.0001, and 0.00001. When the sample size is 4000, the
empirical type I error rates of the proposed LRT
statistics are reported in Tables 4 and 5. In Tables 2
and 4, all variants (common and rare) are used to
generate genotype data under null hypothesis, while
in Tables 3 and 5 only rare variants are used. Overall,
the LRT statistics of FOLR model (8) and the -
smooth only FOLR model (9) control type I error rates
correctly. These two models, being both stable under
five region sizes of 6, 12, 18, 24, and 30 kb, show very
similar results. These four tables also suggest that B-
spline and Fourier basis functions provide similar

results. The proposed LRT statistics of FOLR models
are stable in terms of region sizes, nominal levels,
smoothing methods, and basis functions. However,
the LRT of additive OLR model (4) inflates type I error
rates severely and getting worse when the region size
is getting bigger. In summary, the FOLR models (8)
and (9) can be used to analyze high dimension
sequencing data; however, the additive OLR model
(4) can not be used.

When the order of the B-spline basis is 4, the number
of B-spline basis functions is K= Kg=6, and the
number of Fourier basis functions is K = Kz = 7, the
empirical type I error rates of the proposed LRT statistics
are reported in Tables S.1, S.2, S.3, and S.4 in the
Supporting Information Materials. Similarly to those in
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FIGURE 1 The empirical power of the statistics at @ = 0.001with 2000 subjects and six categories, when some variants are common and
the rest are rare, genetic effect sizes are given by (14), and 5% of variants are causal. The order of B-spline basis is 4, the number of basis
functions of B-spline is K = Kg = 10, and the number of Fourier basis functions is K = Kg = 11. (al-a3) are power levels when the region
size is 6kb and the percentage of negative effect variances is 0%, 20%, and 50%, respectively. (b1-b3) are power levels when the region size is
18kb and the percentage of negative effect variances is 0%, 20%, and 50%, respectively. (c1-c3) are power levels when the region size is 30kb
and the percentage of negative effect variances is 0%, 20%, and 50%, respectively. Neg_beta_pct, percentage of causal variants which have

negative effects

Tables 2, 3, 4, and 5, the type I error rates of the LRT
statistics of FOLR model (8) and the beta-smooth only
FOLR model (9) are well controlled.

When the order of the B-spline basis is 4, the number
of B-spline basis functions is K = Kz =16, and the
number of Fourier basis functions is K = Kg = 17, the
empirical type I error rates of the proposed LRT statistics
are reported in Tables S.5, S.6, S.7, and S.8 in the
Supporting Information Materials. When the sample size
is 2000, the type I error rates of the LRT statistics of
FOLR model (8) and the beta-smooth only FOLR model
(9) can be inflated in Tables S.5 and S.6 when the region

size is 6 and 12kb. When the sample size increases to
4000, the type I error rates are well controlled as shown
in Tables S.7 and S.8.

3.2 | Statistical power evaluation

Power performance of the proposed LRT statistics of
FOLR is evaluated using data simulated under the
alternative hypothesis by relation (13). Since the type I
error rates of LRT statistics of FOLR model (8) and the
beta-smooth only FOLR model (9) are well-controlled,
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FIGURE 2 The empirical power of the statistics at &« = 0.001 with 2000 subjects and six categories, when variants are all rare, genetic
effect sizes are given by (15), and 10 percent of variants are causal. The order of B-spline basis is 4, the number of basis functions of B-spline

is K = Kz = 10, and the number of Fourier basis functions is K = Kg = 11. Neg_beta_pct, percentage of causal variants which have negative
effects. (al-a3) are power levels when the region size is 6kb and the percentage of negative effect variances is 0%, 20%, and 50%, respectively.
(b1-b3) are power levels when the region size is 18kb and the percentage of negative effect variances is 0%, 20%, and 50%, respectively.
(c1-c3) are power levels when the region size is 30kb and the percentage of negative effect variances is 0%, 20%, and 50%, respectively.

the power comparison makes sense. The LRT of additive
OLR model (4) inflates type I error rates and so we do not
use it for power comparison. When the sample size 2000
and six category traits, the power levels are provided in
Figures 1 and 2. In Figure 1, some variants are common
and the rest are rare. In Figure 2, all variants are rare.
The structure of the two figures is the same, in which
there are nine plots representing different combinations
of simulation setting. Take Figure 1 as an example to
illustrate the structure of each figure. From the left to
right, the percentage of negative effect variants ranges

from 0%, 20%, to 50%. From the top to bottom, the region
sizes are 6, 18, and 30 kb, respectively.

In each plot of the two figures, the power levels of four
LRT statistics of FOLR are compared: two are based on B-
spline basis functions and two are based on Fourier basis
functions by FOLR model (8) and the -smooth only FOLR
model (9), respectively. The four LRT statistics of the FOLR
models have similar power. Thus, the proposed LRT
statistics are very stable in terms of power performance
since they do not strongly depend on whether the genotype
data are smoothed or not, or which basis functions are used.
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TABLE 6 Association analysis of Age-Related Disease Study (AREDS) left eye data
The p values of LRT statistics
Type of variants FOLR model (8) beta-smooth only FOLR model (9)
Gene (number of variants) Trait LRT FOLR_BS LRT_FOLR_FR LRT_beta_BS LRT_beta_FR
ARMS2 Common Only (18) DrusenSize 3.29E-23 3.29E-23 3.28E-23 1.21E-22
DrusenSizeBL 1.00E—24 1.00E—24 9.85E—25 3.15E—-24
DrusenArea 2.28E—-20 2.28E—-20 2.28E—-20 8.12E—-20
DrusenAreaBL 1.40E-31 1.40E-31 1.39E-31 8.83E-31
AMDCAT 1.83E-31 1.83E-31 1.78E-31 1.69E-31
SevScaleBL 4.30E—-40 4.30E—40 4.27E—-40 1.84E—-39
SevScaleMax 6.48E—60 6.48E—60 6.43E—60 1.72E-59
SevScale.1 1.43E-56 1.43E-56 1.39E-56 4.29E—-56
SevScale.2 1.11E-54 1.11E-54 1.09E-54 3.16E—54
Rare & Common (25) DrusenSize 5.28E-23 5.28E-23 5.25E-23 3.30E—22
DrusenSizeBL  6.23E—25 6.23E—-25 6.12E-25 3.97E-24
DrusenArea 7.87E-21 7.87E-21 7.83E-21 2.63E—-19
DrusenAreaBL 1.48E—31 1.48E-31 1.37E-31 1.20E-30
AMDCAT 2.90E-32 2.90E—-32 2.71E-32 3.29E-31
SevScaleBL 3.06E—40 3.06E—40 3.00E—-40 5.91E—40
SevScaleMax 1.50E—59 1.50E—59 1.50E—59 5.72E-59
SevScale.1 1.91E-56 1.91E—-56 1.90E—-56 8.19E—56
SevScale.2 1.51E-54 1.51E-54 1.51E-54 5.56E—54
Rare Only (7) DrusenSize NA NA 0.805775 1
DrusenSizeBL NA NA 1 1
DrusenArea 1 1 0.940895 1
DrusenAreaBL NA NA 0.649658 1
AMDCAT NA NA 0.133268 1
SevScaleBL NA NA 0.127257 1
SevScaleMax NA NA 0.12549 1
SevScale.1 NA NA 0.125519 1
SevScale.2 NA NA 0.117099 1
CFH Common Only (59) DrusenSize 1.06E—36 1.06E—36 1.05E—36 4.59E—33
DrusenSizeBL  4.06E—30 4.06E—-30 3.96E—-30 3.50E—28
DrusenArea 9.18E—25 9.18E—25 9.12E-25 2.04E-22
DrusenAreaBL 3.66E—35 3.66E—35 3.66E—35 2.77E-33
AMDCAT 2.01E-31 2.01E-31 2.00E-31 3.79E-30
SevScaleBL 2.31E—42 2.31E—42 2.24E—-42 3.44E—40
SevScaleMax 1.57E—-61 1.57E—-61 1.56E—61 3.86E—57
SevScale.1 1.48E—64 1.48E—64 1.48E—64 1.01E—-60
SevScale.2 8.91E—63 8.91E—63 8.87E—63 5.89E—59

(Continues)
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TABLE 6 (Continued)

The p values of LRT statistics

Type of variants

FOLR model (8)

beta-smooth only FOLR model (9)

Gene (number of variants) Trait LRT FOLR_BS LRT_FOLR_FR LRT_beta_BS LRT beta_FR
Rare & Common (162) DrusenSize 2.03E—-37 2.03E-37 2.01E-37 6.27E—36
DrusenSizeBL  1.06E—30 1.06E—30 8.48E—-31 1.16E—29
DrusenArea 1.23E—-24 1.23E—-24 8.61E—25 3.83E-23
rusenAreaBL 6.78E—34 6.78E—34 1.60E—34 8.47E-34
AMDCAT 3.43E-31 343E-31 3.33E-31 2.04E-30
SevScaleBL 5.17E—42 5.17E—42 4.52E—42 1.42E—40
SevScaleMax 9.69E—61 9.69E—61 8.03E—-61 2.08E—58
SevScale.1 3.05E—63 3.05E—-63 2.39E-63 1.18E—61
SevScale.2 2.12E-61 2.12E-61 1.48E—61 9.46E—60
Rare Only (103) DrusenSize 1.16E—07 1.16E—07 1.08E—07 7.77E—05
DrusenSizeBL  0.001748 0.001748 0.001542 0.008923
DrusenArea 0.004748 0.004748 0.00437 0.012091
DrusenAreaBL 0.014061 0.014061 0.006773 0.015361
AMDCAT 0.089432 0.089432 0.045615 0.011745
SevScaleBL 0.001391 0.001391 0.000399 0.001139
SevScaleMax 9.14E—06 9.14E—-06 5.62E—06 0.000188
SevScale.1 4.19E—-05 4.19E—-05 2.58E—05 6.11E—-05
SevScale.2 9.94E—05 9.94E—05 6.89E—05 0.000123

Note: The order of B-spline basis is 4, the number of basis functions of B-spline is K = Kg = 10, and the number of Fourier basis functions is K = Kz = 11.
Notations: DrusenSize is drusen size, DrusenSizeBL is drusen size at baseline, DrusenArea is drusen area, DrusenAreaBL is drusen area at baseline, AMDCAT
is AMD categories, SevScaleBL is AMD severity scale at baseline, SevScaleMax is AMD maximal severity scale, SevScale.1 is the 1st measure of AMD severity

scale, and SevScale.2 is the 2nd measure of AMD severity scale.

In the Supporting Information Materials, we present
two Figures S.1 and S.2 using the number of B-spline
basis functions K = Kz = 6 and the number of Fourier
basis functions K =Kz=7. The power levels in
Figures S.1 and S.2 are lower than those in Figures 1
and 2. Hence, it may draw more information by using the
number of B-spline basis functions K = Kz = 10 and the
number of Fourier basis functions K = Kz = 11.

3.3 | Application to age-related macular
degeneration data

We analyze nine ordinal traits of AREDS data by the
proposed FOLR model (8) and the $-smooth only FOLR
model (9) models. Tables 6, 7, S.11, and S.12 show the
results of association analysis of AREDS data for the two
genes, CFH and ARMS2. The results of left eye are
shown in Tables 6 and S.11, and the results of right eye
are shown in Tables 7 and S.12. The data are analyzed
three times: (a) all genetic variants; (b) common variants

only; and (c) rare variants only. Note that the rare
variants here are defined as those with MAF <0.05,
while common variants are referred to those with
MAF > 0.05. By considering all genetic variants, two
gene regions show significant effects because all the
p values of LRT statistics are small. This finding gives
support to the argument that the proposed gene-based
method can be used in the genome-wide association
study of two survival traits.

For the ARMS2 gene, the results of analyzing
common variants only exhibits little difference from
the results of including all genetic variants by the
proposed LRT statistics of FOLR models. This may be
due to that there are only seven rare variants which do
not provide much results. For the CFH gene, there are
103 rare variants in the gene region and analyzing rare
variants only does provide significant results, and there
are 59 common variants which provide more signifi-
cant results than the rare variants. Therefore, both
common and rare variants in the CFH gene affect the
progression of AMD.



CHIU Er AL.

TABLE 7 Association analysis of Age-Related Disease Study (AREDS) right eye data

Gene

ARMS2

CFH

Type of variants (number of
variants)

Common only (18)

Rare and common (25)

Rare only (7)

Common only (59)

Trait
DrusenSize
DrusenSizeBL
DrusenArea
DrusenAreaBL
AMDCAT
SevScaleBL
SevScaleMax
SevScale.1
SevScale.2
DrusenSize
DrusenSizeBL
DrusenArea
DrusenAreaBL
AMDCAT
SevScaleBL
SevScaleMax
SevScale.1
SevScale.2
DrusenSize
DrusenSizeBL
DrusenArea
DrusenAreaBL
AMDCAT
SevScaleBL
SevScaleMax
SevScale.1
SevScale.2
DrusenSize
DrusenSizeBL
DrusenArea
DrusenAreaBL
AMDCAT
SevScaleBL
SevScaleMax
SevScale.1

SevScale.2

The p values of LRT statistics
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FOLR model (8)

B-smooth only FOLR model (9)

LRT_FOLR_BS LRT FOLR_FR

3.31E-23
8.86E—25
2.04E-20
9.47E-32
1.69E-31
1.03E-36
4.80E—60
1.20E—-56
9.24E-55
5.42E-23
5.56E—25
7.33E-21
9.97E-32
2.78E—32
2.55E-37
1.13E-59
1.61E—56
1.26E—54
NA

NA

NA

NA

NA

NA

NA

NA

NA

1.10E—36
4.45E-30
9.86E—25
5.90E-35
2.32E-31
7.43E—-40
2.14E-61
1.70E—64
1.05E—62

3.31E-23
8.86E—25
2.04E-20
9.47E-32
1.69E-31
1.03E-36
4.80E—60
1.20E—-56
9.24E-55
5.42E-23
5.56E—25
7.33E-21
9.97E-32
2.78E-32
2.55E-37
1.13E-59
1.61E-56
1.26E—54
NA

NA

NA

NA

NA

NA

NA

NA

NA

1.10E—-36
4.45E-30
9.86E—25
5.90E—35
2.32E-31
7.43E—40
2.14E—-61
1.70E—64
1.05E—62

LRT_beta_BS
3.30E-23
8.72E-25
2.04E-20
9.38E—32
1.65E-31
1.02E—-36
4.76E—60
1.17E-56
9.08E—-55
5.38E—23
5.46E—25
7.29E-21
9.23E-32
2.60E—32
2.54E-37
1.13E-59
1.61E—-56
1.26E—54
0.805700
1
0.942297
0.645099
0.133263
0.689769
0.121721
0.122950
0.114734
1.09E—36
4.34E-30
9.78E-25
5.90E—-35
2.31E-31
7.39E—40
2.14E—-61
1.70E—64
1.04E—62

LRT beta_FR

1.24E-22

2.79E-24

7.23E-20

5.78E-31

1.64E-31

1.09E-36

1.32E-59

3.65E—56

2.67E—54

3.22E-22

3.41E-24

2.19E-19

7.64E—31

3.01E-31

5.59E—-37

4.27E-59

6.89E—56

4.64E—-54

1

1
1

4.68E—33

3.97E-28

1.95E-22

4.85E—33

4.91E-30

2.68E—37

4.99E—-57

1.22E—-60

7.18E—59

(Continues)
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TABLE 7 (Continued)

The p values of LRT statistics

Type of variants (number of

FOLR model (8)

B-smooth only FOLR model (9)

Gene  variants) Trait LRT_FOLR_BS LRT_FOLR_FR LRT_beta_BS LRT_beta_FR
Rare and common (162) DrusenSize 2.31E-37 2.31E-37 2.29E—-37 6.84E—36
DrusenSizeBL  1.28E—30 1.28E—30 1.01E-30 1.28E—29
DrusenArea 1.58E—24 1.58E—24 1.10E—24 3.91E-23
DrusenAreaBL 1.27E—33 1.27E-33 3.04E-34 1.48E—-33
AMDCAT 4.57E-31 4.57E—-31 4.43E-31 2.58E—30
SevScaleBL 4.01E-39 4.01E-39 3.97E-39 6.06E—38
SevScaleMax 1.49E—60 1.49E—-60 1.24E—60 2.71E—58
SevScale.1 3.99E-63 3.99E—-63 3.14E—-63 1.38E—61
SevScale.2 2.79E—-61 2.79E—-61 1.96E—61 1.11E-59
Rare only (103) DrusenSize 1.24E-07 1.24E—07 1.17E—07 8.44E—05
DrusenSizeBL  0.001753 0.001753 0.001549 0.009216
DrusenArea 0.004923 0.004923 0.004549 0.012800
DrusenAreaBL 0.014324 0.014324 0.006894 0.016439
AMDCAT 0.090875 0.090875 0.046953 0.013201
SevScaleBL 0.006792 0.006792 0.001884 0.003571
SevScaleMax 1.00E—05 1.00E—05 6.25E—06 0.000220
SevScale.1 4.51E—-05 4.51E—-05 2.81E-05 6.95E—05
SevScale.2 0.000107 0.000107 7.46E—05 0.000140

Note: The order of B-spline basis is 4, the number of basis functions of B-spline is K = Kg = 10, and the number of Fourier basis functions is K = Kz = 11.
Notations: DrusenSize is drusen size, DrusenSizeBL is drusen size at baseline, DrusenArea is drusen area, DrusenAreaBL is drusen area at baseline, AMDCAT
is AMD categories, SevScaleBL is AMD severity scale at baseline, SevScaleMax is AMD maximal severity scale, SevScale.1 is the first measure of AMD severity

scale, and SevScale.2 is the second measure of AMD severity scale.

The results of the LRT statistics of 3-smooth only by
FOLR model (9) in Tables 6, 7, S.11, and S.12 are
similar to the results of the LRT statistics of smoothing
both GVFs X;(u) and genetic effect function §(u) by
FOLR model (8). This outcome reveals that smoothing
GVFs has very limited impact on the data analysis.
Similar conclusion is also observed for quantitative,
dichotomous, and survival traits in Fan et al. (2013,
2014, 2016).

4 | DISCUSSION

The discrete phenotypic traits, including dichotomous
and ordinal traits, are commonly seen in association
studies of complex diseases. Ordinal traits are categorical
traits with at least three categories where possible values
are ordered on a scale. Although a lot of research has
been done to analyze dichotomous traits, the ordinal
traits have attracted relatively less attention in genetic

association studies. One may collapse an ordinal trait to
be binary and analyzes the binary trait using logistic
regressions. However, ignoring order information may
lead to decreased power and loss of information (German
et al., 2020). The goal of this article is to develop
functional regression based models for gene-based
association analyses of ordinal traits without collaps-
ing them.

In this paper, we develop FOLR models to analyze
ordinal traits. In the proposed FOLR models, genetic
variant data are viewed as stochastic functions of physical
positions and the genetic effects are treated as a function
of physical positions (Ross, 1996). The FOLR models are
built upon functional data analysis which can be revised
to analyze the ordinal traits and high dimension genetic
data (de Boor, 2001; Ferraty & Romain, 2010; Ramsay
et al., 2009; Ramsay & Silverman, 2005). The proposed
methods are capable of dealing with dense genotype data
which is usually encountered in analyzing the next-
generation sequencing data. The methods are flexible and
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TABLE 8 Computational efficiency

Region size 6 kb 18 kb 30kb
(Mean # of variants) (106) (318) (530)
Sample size 2000 4000 2000 4000 2000 4000

Time in second 0.36 0.56 0.57 091 087 1.66

Note: Running times for one simulated data set calculation which include
generating a rare variant data set and analyzing it for each of three region
sizes.

can handle three cases: (1) rare variants only, (2) common
variants only, and (3) a combination of rare and common
variants. Simulation studies show that empirical type I
errors of the proposed LRT statistics of FOLR models are
well controlled no matter common variants are included
or not.

In the data analysis and simulations of this article, we
find that almost all models successfully converge
(>99.99%). A wide range of parameters: 6 < K = Kz < 17
for B-spline and Fourier basis functions are examined to
ensure that the results are valid and stable. We provide
results in Tables 2, 3, 4, 5, S.1, S.2, S.3, and S.4 to show that
type I error rates are well controlled when K = K < 11. If
the parameter numbers increase to K = Kz = 16, one
needs large sample size to properly control the type I error
rates (S.5, S.6, S.7, S.8 in the Supporting Information
Materials).

In terms of computation efficiency, we record running
times for one simulated data set calculation which include
generating a rare variant data set and analyzing it for each of
three region sizes, 6, 18, and 30kb. Table 8 shows the
running times of the proposed functional-model-based
methods with 10 basis functions by B-spline for a five
categorical trait analysis, using a R script running single-
threaded on a laptop with a 2.7 GHz Intel Core i7-6820
processor and 16 GB memory. From the results in Table 8, it
takes 1.66 s to generate and analyze a data set with 530 rare
variants and 4000 subjects, which is the maximum in table.
Thus, it is possible to analyze 60 X 60/1.66 =~ 2169 such
data sets in 1h. The proposed method is computational
feasible.

The proposed methods achieve the goals of analyzing
ordinal traits directly, reducing high dimensionality of
dense genetic variants, being computationally manage-
able, facilitating model convergence, properly controlling
type I errors, and maintaining high power levels. The
proposed models are then applied to analyze AREDS
data, in which two genes are found to strongly associate
with four ordinal traits. In our previous work, functional
regression based models are proved feasible and efficient
for association analysis of quantitative, dichotomous, and
survival traits. This article fills the gap of no suitable
methods to analyze ordinal traits at the gene levels.

Our proposed logistic ordinal regression model
requires proportional odds assumption. The reason we
use this model is that it is the common used model in
analyzing the ordinal data. If the proportional odds
assumption is violated, one may need to use other
models, such as partial proportional odds models
(Peterson & Harrell, 1990). It is interesting in developing
methods to investigate the robustness of the methods in
our future studies.
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