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Abstract

Here, we present a Gaussian-based method for estimation of protein-protein bind-
ing entropy to augment the Molecular Mechanics Poisson Boltzmann Surface Area
(MM/PBSA) method for computational prediction of binding free energy (AG). The
method is termed f5-MM/PBSA/E; where “E” stands for entropy and 5 for five ad-
justable parameters. The enthalpy components of AG (molecular mechanics, polar and
non-polar solvation energies) are computed from a single implicit solvent Generalized
Born (GB) energy minimized structure of protein-protein complex while the binding
entropy is computed using independently GB energy minimized unbound and bound
structures. It should be emphasized that the f5-MM/PBSA/E method does not use
snapshots, just energy minimized structures, and is thus very fast and computationally
efficient. The method is trained and benchmarked in five-fold validation test over a
dataset consisting of 46 protein-protein binding cases with experimentally determined
dissociation constant K4 values. This dataset has been used for benchmarking in re-
cently published protein-protein binding studies that apply conventional MM /PBSA

and MM /PBSA with enhanced sampling method. The f5-MM /PBSA/E tested on the
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same dataset achieves similar or better performance than these computationally de-
manding approaches, making it an excellent choice for high throughput protein-protein

binding affinity prediction studies.

1 Introduction

Protein-protein interactions (PPIs) are involved in diverse kinds of cellular processes and
any deviation from the wild-type PPIs may be deleterious. Thus, aberrant PPIs have been
associated with various diseases, including cancer, neurodegenerative and infectious dis-
eases. 1 ® Understanding the nature of PPIs and responsible features lays a foundation for
studying their association with diseases and reveals the molecular mechanism causing it.*”
Revealing these assists development of pharmaceutical interventions to modulate disease-
associated dysfunctional PPIs and restores the wild-type function.® 15 However, only a tiny
fraction of existing PPIs has been experimentally explored mainly because of sophisticated
experimental setup, high cost and labor-intensive requirements.%1® Cost-effective and less
resource-demanding computational methods provide an alternative by predicting binding
affinity (or binding free energy AG).19723

Despite the efforts and advancement in the computational methodologies, prediction of
absolute protein-protein AG is a very challenging venture; protein-protein AG predictions
show low correlation with experimentally determined AG.22® The poor correlation between
predicted and experimental AG stems from two factors: quality of experimental data3’ and
accuracy of computational methods.?! One can frequently observe that experimental AG

32-35

reported for the same PPI by different researchers do not agree. Typically, this is due

32-36

to different experimental conditions or experimental techniques which are not clearly

reported in the corresponding publication. On the other hand, computational methods suf-

fer from structural imperfections, insufficient sampling, an inability to incorporate adequate

31,37

experimental conditions, imperfections /shortcomings in the energy functions®® and ap-

proximations and idealizations made in the statistical mechanics treatment.3
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The protein-protein AG prediction methods can be broadly grouped into two categories
depending on the information used for making the predictions: (i) sequence-based meth-
ods; 2% and (ii) structure-based methods.?*?*2" The sequence-based methods for predicting
PPIs affinity utilize the sequence information of the binding proteins by extracting sequence
features/patterns, evolutionary information, physico-chemical properties of amino acids and
so on for the proteins in the benchmarking dataset. A subset of benchmarking dataset called
training set is used to learn the relationships between various features and AG. This learning
phase of model generation is called training. In the next phase the learned associations of
features with AG are used for benchmarking the predictions for the test set examples in the
dataset.?!25 The second class of methods utilizes the protein structure information for devel-
oping a model for AG predictions, which can further be divided into two classes: empirical
methods?*2” and physics-based methods which vary in physical plausibility, computational
cost and accuracy.?*2% Among the physics-based methods, the thermodynamic integration
(TT) and free energy perturbation (FEP) are expected to have high accuracy but are com-
putationally costly“’ and have thus been mostly used for receptor-ligand binding free energy
calculations.?! Alternatively, methods like Molecular Mechanics Poisson-Boltzmann Surface
Areas (MM/PBSA),*? Molecular Mechanics Generalized Born Surface Areas (MM /GBSA)*3
and Linear Interaction Energy (LIE)** are computationally less demanding but are expected
to be less accurate.*® This inaccuracy stems from the traditional protocol that does not ac-
count for (a) entropy and (b) neglects the effect of explicit waters. With regards to entropy,
the failures of MM/PBSA or MM/GBSA methods are considered to be due to approxima-

t,4647 approximations and limitations of

tions made in the statistical mechanical treatmen
the entropy methods,*® inability to do statistically converged sampling of all the relevant
conformations of the systems and so on.*>% Correction of the effects of explicit waters can
be partially done via appropriate modeling of the dielectric function,®®3 although this will

not correct for specific water molecules’ interactions with the macromolecules. To partially

address these issues of the traditional MM/PBSA protocol, here we report a single frame
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f5-MM /PBSA method complemented with an estimator of entropy. It is important to note
that the method does not use snapshots taken from MD simulations, rather it uses only the
energy minimized structures of the complex and monomers.

The goal of this work is to develop a fast and accurate protocol for computing the abso-
lute AG via calculating the average enthalpy and entropy associated with the binding. The
Boltzmann averaged enthalpy in the traditional MM/PBSA method is calculated as the av-
erage of enthalpy over the frames (snapshots) taken from the corresponding MD simulations.
This requires long MD simulations and sequential intensive energy modeling. However, we
have shown in several works that energy minimized structures provide solvation energy which
is very similar to the solvation energy obtained over an ensemble of MD snapshots. 515455
This is true for both traditional two-dielectric PB and Gaussian-based PB.?*? We will use
this observation in the current protocol and will model the enthalpy using single frame, the
energy minimized X-ray structure.

The second component of the method is the evaluation of entropy change caused by
the binding. This is important, since proteins are not static molecules and frequently, they
experience significant conformational changes upon the binding. Thus, neglecting entropy
in the protocol that predicts AG could have a large effect on the accuracy of the method.?°
However, the evaluation of the change of entropy due to binding (or any other process) is not
a trivial task. Most often the entropy estimation requires extensive phase space sampling,
through molecular dynamics (MD) simulations for the complex and the unbound monomers
with simulation time often up to several microseconds. %658

The application of parametric configurational entropy methods, e.g. Normal Mode Anal-
ysis® (NMA), Quasi-harmonic Analysis%’ (QHA), and Multiscale Cell Correlation®! (MCC),
require comparably lesser conformational sampling (usually several 100 ns to microseconds
MD simulations), however they fail to account for anharmonicity and multimodality of

atomic fluctuations. Furthermore, these methods are still very computationally intensive to

be applicable for large-scale calculations. Recently, a method called Interaction Entropy %
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has also been reported which computes entropy from the fluctuations of interaction energies,
bypassing the diagonalization of the hessian matrix (in NMA) or coordinate covariance ma-
trix (in QHA). Yet it also requires the MD simulations to find the distributions of interaction
energies. In addition to the above-mentioned methods which utilize the forces and fluctu-
ation of atomic positions, a molecular geometry-based method “solvent accessible surface
area based method” for estimating conformational entropy was also reported.% However,
this method also requires conformational sampling via MD simulations. The list of entropy
estimation methods can be further extended, but practically all existing methods require
significant simulation time. Here, we present a method that does not require extensive con-
formational sampling and thus is very fast. The proposed method uses energy minimized
structure of the protein-protein complex and corresponding unbound monomers. It is based
on Gaussian based PB approach, where the density of protein molecule is modeled as a
function of the atomic packing. Thus, in the core of the solute the density is high and the
ability of side chains to sample different conformations is highly restricted. In contrast in
low density regions, the residues are capable of sampling different conformations since there
is a room for side chain reorientation. Thus, in this work the entropy change upon complex
formation is then estimated via the change of accessible sidechain rotamers evaluated with
Gaussian-based density calculations from unbound to bound states.

The method, f5-MM/PBSA/E (where E stands for entropy and f5 stands for five ad-
justable parameters) is benchmarked against set of experimental AGs frequently used to

23,26

assess the performance of AG predictors, and it is shown that the inclusion of entropy

greatly improves the accuracy of predictions.

2 Results and Discussion

To check the sensitivity of results with respect to enthalpic and entropic contributions,

we explored three energy formulas as described by Eqns (1-3). This was done to see the



122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

sensitivity of the results with respect to the different energy components, emphasizing the
entropy component. Furthermore, the sensitivity of the results was tested for the solvation
models, and three Generalized Born (GB) models were utilized. The predictions done with
each energy formula and GB model were tested against the dataset PPI-46 (see Materials and
Methods). Furthermore, the effect of other parameters, the value of the internal dielectric
constant and the variance of the Gaussian distribution, were also tested by systematically
varying them and predicting AG compared with experimental ones. Here, we assess the
performance via comparing the performance of the three energy formulas via Multiple Linear
Regression (MLR). In contrast to the standard MM /PBSA model, these models are three,
four, and five parameter fitted models as expressed in Eqgs.1 to 3. To reflect it, we call these
models as f3-MM/PB (Eqn 1: Model-1), f4-MM/PBSA (Eqn 2: Model-2), {f5-MM /PBSA -
TASGaussianEntropy, 0F £5-MM/PBSA /E(Eqn 3: Model-3).

AGpTedicted = + CQAGMM —+ C3AGPB (1)
AGpredicted =c + CQAGMM + C3AGPB + C4AGnonfpola7' (2>
AGpredicted =c + CQAGMM + C3AGPB + C4AGnon7pola7“ + CSTASGE (3)

Additionally, we used all the three energy models over PPI-46 dataset for all the three GB
models for 5-fold repeated cross-validation, where 80% of the cases are randomly selected as
a training set and the remaining are held for testing the model performance. The process is

repeated 25 times and the analysis results are discussed.

2.0.1 Benchmarks for PPI-46 dataset

We have evaluated the three energy models, £3-MM /PB, f4-MM /PBSA, and f5-MM/PBSA /E

over the PPI-46 benchmarking dataset. The GBneck2 minimized structures performed best

6
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(for modeling enthalpy components) in terms of Pearson Correlation Coefficient (PCC) and
Root Mean Squared Error (RMSE) for all the three models shown in Figure 1. Therefore,
here we will discuss results only for GBneck2 energy minimized structures set in the dataset
in detail for modeling enthalpy. At the same time the effect of all three GB models will be

presented in case of entropy.
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Figure 1: Summary of the three energy models (Model-1: f3-MM/PB i.e. Eqn 1, Model-2:
f4-MM/PBSA i.e. Eqn 2 and Model-3: {5-MM/PBSA—TASgg i.e. Eqn 3) performance
with varying internal dielectric constant for GBneck2 energy minimized set of structures of
the PPI-46 benchmarking dataset. a. PCC vs. internal dielectric constant value, and b.
RMSE vs. Internal dielectric constant value.

We observe that Model-1, which considers only AGyy and AGpp energy terms shows
the lowest PCC = 0.429 and largest RMSE=3.044 kcal/mol for solute dielectric constant
€in = 1. Here slight improvement in the performance is observed when ¢;, is varied from 1 to
10, as PCC goes to 0.436 from 0.429 and RMSE comes down to 3.034 kcal/mol from 3.044
kcal/mol. However, when the non-polar solvation energy term AG,p,—poiar 1S also included
in it i.e., Model-2, not only does the performance of the model improves (increases the PCC
to 0.51 and decreases the RMSE to 2.934 kcal/mol), but the effect of variation of solute
dielectric constant is also absorbed. After that, we investigated the performance of Model-3
which includes Gaussian-based binding entropy along with AG iy, AGpp and AG0n—polar-
We found that after the inclusion of entropy the prediction accuracy improves significantly,
as PCC increases to 0.658 and RMSE decreases to 2.60 kcal/mol (Table 1). The constant
coefficients in the models are summarized in Table 2. This implies that Gaussian-based
entropy captures important information about the protein-protein binding which is missing

in the conventional MM /PBSA. In this dataset, we did not find any influence of variation of

7



12 salt concentration on the performance of models evaluated in terms of PCC and RMSE (we

163 varied salt concentration from 0 M to 0.3 M in increments of 0.02 M).
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Figure 2: Summary of the three energy models performance at €;,, = 1 for GBneck2 energy
minimized set of structures of the PPI-46 benchmarking dataset. Scatter plot of predicted
vs. experimental for: (left panel) Model-1 (middle panel) Model-2 and (right panel) Model-3
are shown.

164 We compare our results with other studies using MM /PBSA protocol for the same
165 dataset® to assess the performance of our method. Fu Chen et. al., reported a MM /PB(GB)SA
166 study over the same dataset (PPI-46) using {99, ff02, ff03 and ff14SB force fields, various €;,
17 = 1, 2, 4, 6 and implicit water and explicit water minimization and MD simulations and on
168 assessing the performance using a Linear Regression where total binding energy predicted
160 from the their method is regressed against the experimental binding energy. This study found
o that MM /PBSA gives best PCC = 0.523, when the force field is ff03 and minimization is
11 done in implicit water.®* We achieved higher PCC = 0.658 over the same dataset from single
172 energy minimized structures using MM /PBSA combined with the Gaussian-based binding
173 entropy (see Figure 2). However, here we used a different variation of standard MM /PBSA,
s which we denote as f5-MM/PBSA/E. All benchmarking results are summarized in Table 1.
175 It should be noted that Gaussian entropy does not depend on solute dielectric and salt
176 concentration as it depends only on the local mean Gaussian densities. However, it depends
177 on the Gaussian variance o of the Gaussian dielectric model which is implemented in Poisson

178 Boltzmann Equation (PBE) solver DelPhi,% cutoff radius used to define the local region
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Table 1: Performance of Tested Energy Models and GB Models Combinations over PPI-46
Dataset.®

Model-1° Model-2¢ Model-3¢
GB model®
PCC/ RMSE9 PCC RMSE PCC RMSE
OBC-II 0.423 3.054 0.498 2.957 0.593 2.779
GBneck 0.425 3.051 0.503 2.948 0.631 2.678
GBneck?2 0.429 3.044 0.510 2.934 0.658 2.600

@ Results of benchmarking the performance of three energy models (Eqns 1-3) and GB model used in
energy minimizations are summarized for the PPI-46 dataset with ¢;,, = 1, all the RMSE are reported in
kcal /mol; ® £3-MM/PB model Eqn. 1; ¢ f4-MM/PBSA model Eqn. 2; ¢ f5-MM/PBSA/E model Eqn. 3
with parameters o = 1.20, 7= 0.8 and cutoff radius 4.0 A; ¢ Generalized Born model used in energy
minimization of the structures; / Pearson Correlation Coefficient; ¢ Root Mean Squared Error.

around the atoms and the decay rate parameter r in exponential interpolation which controls
the curvature of the interpolation curve (Figure 7a). The o and cutoff radius parameters
affect the mean Gaussian density computation, while r influences the number of effective
conformations during the interpolation step of the method. Therefore, we also investigated
the influence of parameters related to the Gaussian density-based method of binding entropy
estimation. The three related parameters o, cutoff radius for defining the local region around
the atoms and the decay rate parameter r are varied. The results of the variation of these
parameters on performance of the Model-3 are presented in Figure 3.

In the PPI-46 dataset the performance of the Model-3 improves with increasing values of
Gaussian variance parameter, which was varied from 1.0 to 1.30 in increments of 0.05. We
obtained best results when o = 1.20 (Figure 3a, b). Similarly, on varying the cutoff radius
from 3.0 Ato 8.0 A in steps of 0.5 A, we observe the improvement in the performance of
Model-3 which increases initially and after 3.5 to 4.0 A it starts decreasing with the increasing
cutoff radius (Figure 3¢, d). The decay rate parameter for the exponential interpolation curve
r used to infer the number of effective conformations as a function of mean Gaussian density
of the relevant atoms of a given sidechain torsion y; of some residue j which is amino acid

AA is also systematically varied and performance is tested. We obtained the best correlation
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Table 2: Parameter constant coefficients in the models Model-1 to Model-3.¢

Constant coefficient parameter

GB? EM¢
c1 Co C3 Cy Cs
Model-1¢ -9.515405 0.000148 -0.001327 - -
OBC-II'  Model-2¢ -7.151102 0.000159 -0.000811 0.283298 -
Model-3f  -12.505926 0.000182 -0.001518 0.971501 0.738526
Model-1 -9.525939 0.000155 -0.001369 - -
GBneck Model-2 -7.129749 0.00016 -0.000882 0.288981 -
Model-3  -11.449473 0.000184 -0.001839 0.897985 0.680234
Model-1 -9.511868 0.000153 -0.0013835 - -
GBneck2 Model-2 -7.038626 0.000161 -0.000852 0.296255 -
Model-3  -12.070194 0.000147 -0.001632 1.049871 0.777386

@ Constant coefficient parameters of three energy models (Eqns 1-3) and GB model used in energy
minimizations are summarized for the PPI-46 dataset with €;, = 1; * GB model; ¢ Energy model; ¢
MM/PB model Eqn. 1; © MM/PBSA model Eqn. 2; f MM/PBSA/E model Eqn. 3 with parameters o =
1.20, 7= 0.8 and cutoff radius 4.0 A.

at r = 0.8, when we varied it from 0.5 to 1.2 in increments of 0.1 (Figure 3e, f). In summary,
we reached at the optimal parameters for Gaussian density-based binding entropy for the
PPI-46 dataset which are o = 1.20, cutoff radius = 4.0 A, and decay rate of interpolation
curve r = 0.8. The best GB model for the PPI-46 dataset is GBneck2, however, the effect

on performance is small and PCC and RMSE are comparable among the GB models.

2.1 Models 5-fold cross-validation

After discussing the performance of the protocol on the whole PPI-46 datasets, we would
discuss the validation of the protocol. For which the whole dataset must be splitted into
disjoint training and testing datasets for performance assessment. Considering the small
size of the PPI-46 dataset, we start by splitting the PPI-46 dataset into training set (80%
randomly selected) and remaining as testing set. The process is repeated 25 times to give

25 different training and associated testing sets. The cases in the training set are used to

find the parameter values for £3-MM /PB, f4-MM /PBSA and {5-MM /PBSA /E models for all

10
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Figure 3: Influence of variation of parameters Gaussian variance o (a. and b.) cutoff radius
for atom surrounding (c. and d.) and decay rate r (e. and f.) for Gaussian binding entropy
on the PCC (a., c., and e.) and RMSE (b., d., f.) of Model-3 for PPI-46 dataset.

the three set of GB energy minimized structures (using OBC-II, GBneck and GBneck2) and
these parameter values are used for making prediction for testing set cases. The PCC, and
RMSE values over the training and testing sets are recorded for each repetition and average
and standard deviations of values are tabulated (Table 3) and discussed hereafter.

As shown in Table 3, the £3-MM /PB (Model-1), shows mean PCC between 0.440 to 0.447
for all the three GB minimized structure sets for the training sets and RMSE is between 3.065
to 3.053 kcal /mol and similar average values of PCC and RMSE are also for the testing sets
(Table 3). The four parameter model f4-MM/PBSA (Model-2) shows better performance
in terms of PCC (higher) and RMSE(smaller). After inclusion of entropy as in the f5-
MM/PBSA/E (Model-3) we consistently observe a significant increase in PCC and decrease
in RMSE for all the three sets of GB minimized structures across the training and testing
sets (Table 3). The improvement for both the training and testing sets performance implies
that, Gaussian entropy provides important information about the binding which is missing

in f4-MM/PBSA, and thus the improvement is not merely due to the increased number of

11



Table 3: Summary of cross-validation results of the combinations of three energy models and

GB model used for energy minimization.”

Gpb EM Training Testing
PCC RMSE PCC RMSE
Model-1¢  0.440 4+ 0.045  3.065 + 0.104 0.496 + 0.241  3.245 + 0.672
OBC-II  Model-2¢  0.513 4+ 0.044  2.968 + 0.094 0.519 4+ 0.178  3.295 + 0.832
Model-3/  0.596 & 0.040  2.818 + 0.098 0.651 £ 0.151  2.958 £ 0.894
Model-1  0.442 £+ 0.045  3.061 4+ 0.106 0.495 4+ 0.242  3.246 + 0.678
GBneck  Model-2  0.520 + 0.044  2.955 + 0.098 0.522 + 0.182  3.313 £ 0.867
Model-3  0.653 = 0.042  2.657 + 0.151 0.609 £ 0.205  3.175 + 1.130
Model-1  0.447 + 0.045  3.053 £+ 0.106 0.503 £ 0.241  3.255 + 0.694
GBneck2 Model-2  0.527 + 0.044  2.941 + 0.010 0.529 4+ 0.180  3.306 + 0.884
Model-3  0.675 = 0.040  2.586 + 0.135 0.653 £ 0.151  3.091 + 1.103

@ Summary of PCC and RMSE over training (randomly selected 80%) and testing (remaining 20%) of
PPI-46 dataset for the three energy models (Eqns 1-3) and GB model used in energy minimizations with
€in = 1, repeated 25 times and mean and standard deviation are provided; ® GB model; ¢ Energy model; ¢
MM/PB model Eqn. 1; ¢ MM/PBSA model Eqn. 2; f MM/PBSA/E model Eqn. 3 with parameters o =
1.20, 7= 0.8 and cutoff radius 4.0 A.

23 parameters used in the model.

» 2.2 Computation Time

25 'To analyze the computational requirements of the Gaussian-based method of entropy re-
26 ported here, we recorded the execution time for all the protein-protein cases in the PPI-46
27 dataset. The computations are performed on compute nodes of the Palmetto Cluster of
28 Clemson University. The nodes used for computation have Intel Xeon E5520 processors
220 which have 8 MB Cache and 2.26 GHz frequency. All the jobs are run on a single core of
230 a node and maximum memory reserved for a job was 24 GB. The computation were run
21 three times for each case and the average time taken in minutes vs. the number of residues
232 in the protein-protein complex are shown in Figure 4. Each of these involves running three
233 DelPhi runs and associated Gaussian-based entropy computation for the complex, and the

23 corresponding two unbound proteins.

12
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Figure 4: The number of residues in the protein-protein complex vs. total computation time
for running DelPhi and computing entropy from the Gaussian-density map data is shown.

As shown in the Figure 4, the dataset contains a very wide range of sizes of protein-
protein complexes varying from 116 to 1107 residues. For all the cases the total computation
time taken in minute is linearly related to the size of the complex. These computations do
not require parallel processing and are very computation time and memory efficient. Thus,
these can be performed even on standard desktops, in contrast to other entropy methods

which require significantly higher computation resources and time.

3 Materials and Methods

3.1 Overview of the Method

The proposed method combines MM /PBSA with an estimator of entropy. It does not use
multiple structures obtained via MD simulations, but rather it deals with a single structure
(Figure 5). Thus, the enthalpy components, the MM /PBSA energies, were computed using
the energy minimized 3D structure of the protein-protein complex and utilizing rigid-body
approach, i.e., the structures of unbound monomers were taken from the energy minimized
3D structure of the complex. Thus, the bonded energy cancels out and is not calculated

(Figure 5a). In parallel we tested a protocol that does independent energy minimization of

13
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separated monomers. However, the results were found to be less accurate (data not shown)
than the rigid-body approach and thus in the rest of the paper we present only the results
obtained with enthalpy components modeled with rigid-body protocol in the rest of the
paper. In case of entropy estimation, it was found that rigid-body protocol does not perform
well, and thus the structures of monomers were energy minimized independently from the
energy minimization of the complex and used for entropy change calculations (Figure 5b).

Further discussion is provided in the conclusions section of the manuscript.
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[ MM-PBSA binding energy | |||

AGyw AGpgiar AGnon-polar

Figure 5: Schematic representation of protocols used for computing enthalpy and entropy
components of protein-protein binding free energy. a. The enthalpy energy components are
computed over energy minimized complex structure and monomers are extracted from it.
b. The entropy estimation is done in a protocol that the complex and two monomers are
energy minimized independently.

3.1.1 Benckmarking Dataset

In the present work we will be using a binding affinity benchmarking dataset of 46 protein-
protein experimental AGs published by Kastritis et. al.?%% This dataset lists the PDB ID
of the structure, chains of protein-1 and protein-2, equilibrium dissociation constant K4,
experimental temperature and pH for most of the cases. The PDB IDs, chains of proteins
and pK4 values are provided in Supporting Information (Table S1). This dataset has been
used for benchmarking MM/PBSA and MM/GBSA methods in combination with several

force fields.%* We will refer to this dataset as PPI-46 now onwards. This dataset covers a
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broad range (10 orders of magnitude) of experimental binding affinities.

3.1.2 Structure Preparation and Minimization

The structures of the protein-protein complexes in PPI-46 dataset were downloaded from
the RCSB protein data bank,%"% and chains mentioned in the dataset were extracted. All
the water and hetero atoms were deleted from the structures. All titratable residues were
protonated according to the neutral pH state and all the histidine residues were kept neutral
by placing proton at epsilon position. The charges and parameters were kept consistent with
the AMBER ff14SB% force field. For structure minimizations we have used three OBC-II, ™
GB-neck,™ and GB-neck2™ implicit solvent Generalized Born (GB) models implemented
in AMBER.™ The parameter+topology (.prmtop) and starting coordinate (.inpcrd) files
were created using the LEaP program in AmberTools18.”™ The starting structures were
energy minimized using each of the three GB models to yield three sets of structures for
protein-protein complexes. The energy minimization is performed in two stages first while
restraining all the heavy atoms using a 10 kcal.mol™*.A"2 harmonic potential for 8000 steps of
steepest descent (SD) and 2000 steps of conjugate gradient (CG) followed by 8000 steps of
SD and 2000 CG without restraint. We have used rigid-body protocol for the computation of
enthalpy components of the MM /PBSA approach and the unbound proteins structures were
extracted from the energy minimized complex structures. However, the entropy component
of the binding energy which has great sensitivity to conformational changes upon complex

247475 was estimated from separately minimized unbound proteins and complex.

formation,
The unbound protein structures were extracted from each complex in the dataset prior energy
minimization of the complex. These structures were also prepared, and energy minimized

using the same protocol to yield three sets corresponding to above mentioned three GB

models.
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3.1.3 Binding Free Energy Computation (Enthalpy Component)

AGbincl - ACTYMM + AGpolar + AGnon—polar —TAS (4)
AGMM = AC;bonded + AGnonfbondecl (5)
AC:nonfbcmded = AGelecz‘,rosz‘/atic + AG’L}dW (6)

Here molecular mechanics (MM) part of the binding energy (AGapr) is computed using the
rigid-body protocol so AGponded = 0. The unbound protein structures are extracted from the
energy minimized structure of the complex by removing the partner protein. The non-bonded
terms of binding energy (AGhon—bondea) and polar solvation energy (AGpo,) is computed

65,76 employing tra-

using the popular numerical Poisson Boltzmann equation solver DelPhi
ditional two dielectric model using charge and radii from AMBER ff14SB% force field, grid
spacing 0.5 A, longest solute dimension filling 70% of the grid box, and solvent dielectric con-
stant 80, hence will be referred as AG pg hereafter. The traditional two-dielectric model was
applied instead of Gaussian-based model,***2"" because the Gaussian-based atomic density
model is used to estimate the entropy as outlined below. The solute dielectric constant and
the salt concentration are varied to study the influence of these parameters on the prediction

accuracy of the method. The non-polar solvation energy (AGon—polar) is estimated from the

Solvent Accessible Surface Area (SASA) change (Eqn 7).

AGhon—potar = YASASA + b (7)

The change in SASA (ASASA) is computed as difference of SASA of unbound proteins
from complex in A2, the surface tension v = 0.00542 keal.molt.A-2 and the correction term
b = 0.92 kcal /mol are used. The SASA with solvent probe radius 1.4 A is computed using

Visual Molecular Dynamics. ™®
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3.1.4 Estimation of Entropy Change upon Binding

The basic idea is to estimate the change of the sidechain entropy change upon the binding
by evaluating the accessible rotamers of the corresponding amino acids in monomeric versus
bound states. To avoid the complexity associated with continuum conformation space, each
amino acid sidechain is considered to have finite number of rotamers taken from Dunbrack
library of rotamers.”™ When an amino acid is free in water phase, it is considered that its
sidechain can sample all rotamers provided in the Dunbrack library ™ (see left panel in Figure
6). When it is part of the bound-structure (protein-protein complex) or unbound-structure
(protein structure obtained after removing the binding partner structure from complex) , not
all rotamers are accessible because of the presence of atoms of neighboring residues (right
panel in Figure 6b). Thus, the change of accessible rotamers from unbound to bound states
for each amino acid of the proteins forming a complex is used to estimate the entropy change
upon the binding. Below we outline the details about (i) modeling atomic density (which
will be used to decide if a rotamer is accessible or not), (i) building reference library of
atomic densities for free amino acids, and (iii) estimation of accessible rotamers.

(i) Modeling Atomic Density: Here we build upon our previously proposed Gaussian den-
sity based model of atoms.%%%? In the Gaussian-based model of atom, an atom is represented
as a probability density p;(7) at any arbitrary point 7 in space due to the i'* atom, the p;(7)
is maximum i.e. 1 at its center and it decreases according to a Gaussian distribution as we
move away from it (Eqn 8 and Figure S1). In a multi-atomic molecule, the Gaussian density

at any point in space 7 is resultant of atomic densities due to its all the atoms (Eqn 9).

i) = eap | 2] ®

where R; is van der Waals radius of the i** atom and o is the variance of the Gaussian

distribution.

pa) =1 =[] (1 = pu(7) (9)

i
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The Gaussian density varies from 0 to 1 in space and expresses the extent of atomic packing; a
value of 0 corresponds to a point where there are no atoms of the molecule and 1 corresponds
to centers of atoms of the molecule, with any other value in the range corresponds to higher

density of atoms for higher Gaussian density.

\ \
« A/
VAR

)

\/ W > XS sh O

¥X S Sk B
N &

Figure 6: A schematic representation of the idea of Gaussian-based entropy. An ILE residue
of a protein is shown in black and white ball & stick. Neighboring atoms in radius 4 A are
shown with semi-transparent cyan spheres. Left panel: all possible sidechain conformations
of ILE in unbound protein, and right panel: only one rotamer of the same ILE is accessible
due to presence of neighboring atoms of the binding partner.

(ii) Building Reference Gaussian Density Library: The ability to occupy different confor-
mational states for each of sidechain torsion angle of each amino acid (AA) is hindered due
to spatial packing around the corresponding atoms. Thus, the first step is to identify atoms
that participate in the sidechain torsion angles of each of 20 standard amino acid (Table S2
in Supporting Information). Then the average Gaussian density is computed using 3D struc-
ture of isolated amino acid and applying the Gaussian subroutine implemented in the PBE
solver DelPhi.% The mean Gaussian density is computed as average of Gaussian densities
on all the grid points in a cutoff radius (say 5 A) from the center of all the relevant atoms (as
described above) to x; of given AA and averaged to obtain mean Gaussian density (py, 44)-
The py, 44 computed from isolated amino acid structure is called minimum mean Gaussian
density ™" p,. aa. The maximum number of conformations to given y; of amino acid AA
i.e. nConf,, aa are obtained from Dunbrack rotamer library.” The pair of ™"p,, 14 and
nConf,, aa for each x; of each amino acid AA are saved in a the library for later use for

obtaining effective number of conformation via interpolation.

(iii) Computation of Effective Number of Conformations: The corresponding protein
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structure (the bound and unbound structures/structure of protein obtained after removing
the binding partner structure from complex. see Figure 5b) is energy minimized using the
protocol described above. The mean Gaussian density p;,, a4 for each x; of each residue
7 is computed. Then an effective number of conformations is obtained by exponential in-
terpolation scheme (Figure 7b) having two boundary points: (a) the maximum number of
conformations that are available in isolated residue and yield associated mean Gaussian den-
sity termed “minimum mean Gaussian density”; and (b) minimum number of conformations
i.e. 1 when the mean Gaussian density is maximum possible value 1. The increase in p; , 44
¢t min

in protein w.r. Pyi,A4 due to more compact “dense” surrounding relevant atoms causes

decrease in number of effective number of conformations as expressed in Eqn 10.

nConfjy. aa = a.log(—k.d") (10)

where d = (D44 — ™0y, a4)/(L = ""p,. aa), a = 1/exp(—k), and r is a decay rate

parameter of interpolation curve (Figure 7a).
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Figure 7: Illustration of interpolation scheme. a. the effect of value of decay rate parameter
r, on the curvature of exponential decay curve. b. Illustration of obtaining # effective
conformations for an example case where maximum conformations is 3 at minimum mean
Gaussian density 0.5, the # effective conformations (=~ 2) corresponding to mean Gaussian
density 0.7 is shown.

The effective number of conformations of every sidechain torsion y; of the residue j

which is amino acid AA are multiplied to obtain the effective number of conformations of
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the residue in the protein (Eqn 11).

nConfjaa = HnC’onfj,Xi,AA (11)

Finally, taking the logarithm of effective number of conformations nConf; 44 of the residue
J to get its entropy S; in the protein (Eqn 11). The sum of the entropy of all the residues

in the protein yields entropy of the protein (Eqn 13).

S; = log(nConf; aa) (12)

Sprotein _ Z Sj ( 1 3)

jEprotein

Asbind — Scomplea: o (Sproteinl + SproteinQ) (14)

Thus, the entropy of protein-protein complex S®™!* and unbound proteins SP "l and
Sprotein? are computed and then binding entropy (AS?"?) is obtained via subtracting the

sum of entropy of unbound proteins from that of complex (Eqn 14).

4 Conclusions

In this work, we presented a Gaussian density-based method for estimation of entropy change
caused by protein-protein binding. This method hypothesizes that isolated amino acids
sidechains are free to rotate and occupy all the accessible conformations equiprobably, how-
ever this ability is restricted to a certain extent due to increased atomic packing (estimated
via Gaussian density) when the amino acid is a part of a protein or protein-protein com-
plex. Thus, the change of accessible conformers from unbound to bound states is used to

estimate the entropy change induced by the binding. Combining the entropy change with

20



382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MM /PBSA enthalpic components, resulted in f5-MM/PBSA/E method which was tested
on a popular dataset PPI-46. It is important to mention that MM /PBSA /E method uses
energy minimized structures of the complex and unbound monomers only, not snapshots
obtained via MD simulations, and thus it is fast and less computationally demanding than
traditional MM /PBSA methods. Despite of that, the f5-MM/PBSA/E method achieves
similar or better performance than other methods as benchmarked against experimentally
determined AGs from the PPI-46 dataset.

The protocol, the £5-MM /PBSA /E, considers both enthalpic and entropic contributions
to the free energy of binding. However, the optimal conditions for modeling enthalpic and
entropic components were found to be different: the best performance was obtained with the
rigid-body protocol for enthalpic components calculations, while the optimal performance for
entropic component was achieved when bound and unbound structures were independently
energy minimized. The main reason why rigid-body approach worked better for enthalpic
components modeling was the cancellation of bonded interactions. Our attempt to use in-
dependently minimized bound and unbound structures for enthalpic calculations resulted in
large “bonded interactions” energies which dominated all other component. In contrast, the
best performance in estimating entropy change caused by the binding was found when one
uses independently minimized bound and unbound structures. This observation reflects the
nature of Gaussian-based method for entropy estimation, which is geometry-based. Thus,
small structural changes caused by independently minimizing bound and unbound struc-
tures have significant effect on the entropy change calculations. This indicates that further
improvement may be expected if one extends the Gaussian-based entropy estimator method

to include backbone changes from unbound to bound states.

Supporting Information Available

The following files are available free of charge.
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e This file contains Figure S1: The variation of Gaussian density around an atom as
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