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Abstract1

Here, we present a Gaussian-based method for estimation of protein-protein bind-2

ing entropy to augment the Molecular Mechanics Poisson Boltzmann Surface Area3

(MM/PBSA) method for computational prediction of binding free energy (∆G). The4

method is termed f5-MM/PBSA/E, where “E” stands for entropy and f5 for five ad-5

justable parameters. The enthalpy components of ∆G (molecular mechanics, polar and6

non-polar solvation energies) are computed from a single implicit solvent Generalized7

Born (GB) energy minimized structure of protein-protein complex while the binding8

entropy is computed using independently GB energy minimized unbound and bound9

structures. It should be emphasized that the f5-MM/PBSA/E method does not use10

snapshots, just energy minimized structures, and is thus very fast and computationally11

efficient. The method is trained and benchmarked in five-fold validation test over a12

dataset consisting of 46 protein-protein binding cases with experimentally determined13

dissociation constant K d values. This dataset has been used for benchmarking in re-14

cently published protein-protein binding studies that apply conventional MM/PBSA15

and MM/PBSA with enhanced sampling method. The f5-MM/PBSA/E tested on the16
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same dataset achieves similar or better performance than these computationally de-17

manding approaches, making it an excellent choice for high throughput protein-protein18

binding affinity prediction studies.19

1 Introduction20

Protein-protein interactions (PPIs) are involved in diverse kinds of cellular processes and21

any deviation from the wild-type PPIs may be deleterious. Thus, aberrant PPIs have been22

associated with various diseases, including cancer, neurodegenerative and infectious dis-23

eases.1–3 Understanding the nature of PPIs and responsible features lays a foundation for24

studying their association with diseases and reveals the molecular mechanism causing it.4–725

Revealing these assists development of pharmaceutical interventions to modulate disease-26

associated dysfunctional PPIs and restores the wild-type function.1,8–15 However, only a tiny27

fraction of existing PPIs has been experimentally explored mainly because of sophisticated28

experimental setup, high cost and labor-intensive requirements.16–18 Cost-effective and less29

resource-demanding computational methods provide an alternative by predicting binding30

affinity (or binding free energy ∆G).19–2331

Despite the efforts and advancement in the computational methodologies, prediction of32

absolute protein-protein ∆G is a very challenging venture; protein-protein ∆G predictions33

show low correlation with experimentally determined ∆G.21–29 The poor correlation between34

predicted and experimental ∆G stems from two factors: quality of experimental data30 and35

accuracy of computational methods.31 One can frequently observe that experimental ∆G36

reported for the same PPI by different researchers do not agree.32–35 Typically, this is due37

to different experimental conditions or experimental techniques32–36 which are not clearly38

reported in the corresponding publication. On the other hand, computational methods suf-39

fer from structural imperfections, insufficient sampling, an inability to incorporate adequate40

experimental conditions,31,37 imperfections/shortcomings in the energy functions38 and ap-41

proximations and idealizations made in the statistical mechanics treatment.3942
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The protein-protein ∆G prediction methods can be broadly grouped into two categories43

depending on the information used for making the predictions: (i) sequence-based meth-44

ods;21,25 and (ii) structure-based methods.22,23,27 The sequence-based methods for predicting45

PPIs affinity utilize the sequence information of the binding proteins by extracting sequence46

features/patterns, evolutionary information, physico-chemical properties of amino acids and47

so on for the proteins in the benchmarking dataset. A subset of benchmarking dataset called48

training set is used to learn the relationships between various features and ∆G. This learning49

phase of model generation is called training. In the next phase the learned associations of50

features with ∆G are used for benchmarking the predictions for the test set examples in the51

dataset.21,25 The second class of methods utilizes the protein structure information for devel-52

oping a model for ∆G predictions, which can further be divided into two classes: empirical53

methods22,27 and physics-based methods which vary in physical plausibility, computational54

cost and accuracy.23,26 Among the physics-based methods, the thermodynamic integration55

(TI) and free energy perturbation (FEP) are expected to have high accuracy but are com-56

putationally costly40 and have thus been mostly used for receptor-ligand binding free energy57

calculations.41 Alternatively, methods like Molecular Mechanics Poisson-Boltzmann Surface58

Areas (MM/PBSA),42 Molecular Mechanics Generalized Born Surface Areas (MM/GBSA)4359

and Linear Interaction Energy (LIE)44 are computationally less demanding but are expected60

to be less accurate.45 This inaccuracy stems from the traditional protocol that does not ac-61

count for (a) entropy and (b) neglects the effect of explicit waters. With regards to entropy,62

the failures of MM/PBSA or MM/GBSA methods are considered to be due to approxima-63

tions made in the statistical mechanical treatment,46,47 approximations and limitations of64

the entropy methods,48 inability to do statistically converged sampling of all the relevant65

conformations of the systems and so on.45,49 Correction of the effects of explicit waters can66

be partially done via appropriate modeling of the dielectric function,50–53 although this will67

not correct for specific water molecules’ interactions with the macromolecules. To partially68

address these issues of the traditional MM/PBSA protocol, here we report a single frame69
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f5-MM/PBSA method complemented with an estimator of entropy. It is important to note70

that the method does not use snapshots taken from MD simulations, rather it uses only the71

energy minimized structures of the complex and monomers.72

The goal of this work is to develop a fast and accurate protocol for computing the abso-73

lute ∆G via calculating the average enthalpy and entropy associated with the binding. The74

Boltzmann averaged enthalpy in the traditional MM/PBSA method is calculated as the av-75

erage of enthalpy over the frames (snapshots) taken from the corresponding MD simulations.76

This requires long MD simulations and sequential intensive energy modeling. However, we77

have shown in several works that energy minimized structures provide solvation energy which78

is very similar to the solvation energy obtained over an ensemble of MD snapshots.51,54,5579

This is true for both traditional two-dielectric PB and Gaussian-based PB.50–52 We will use80

this observation in the current protocol and will model the enthalpy using single frame, the81

energy minimized X-ray structure.82

The second component of the method is the evaluation of entropy change caused by83

the binding. This is important, since proteins are not static molecules and frequently, they84

experience significant conformational changes upon the binding. Thus, neglecting entropy85

in the protocol that predicts ∆G could have a large effect on the accuracy of the method.2686

However, the evaluation of the change of entropy due to binding (or any other process) is not87

a trivial task. Most often the entropy estimation requires extensive phase space sampling,88

through molecular dynamics (MD) simulations for the complex and the unbound monomers89

with simulation time often up to several microseconds.56–5890

The application of parametric configurational entropy methods, e.g. Normal Mode Anal-91

ysis59 (NMA), Quasi-harmonic Analysis60 (QHA), and Multiscale Cell Correlation61 (MCC),92

require comparably lesser conformational sampling (usually several 100 ns to microseconds93

MD simulations), however they fail to account for anharmonicity and multimodality of94

atomic fluctuations. Furthermore, these methods are still very computationally intensive to95

be applicable for large-scale calculations. Recently, a method called Interaction Entropy62
96
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has also been reported which computes entropy from the fluctuations of interaction energies,97

bypassing the diagonalization of the hessian matrix (in NMA) or coordinate covariance ma-98

trix (in QHA). Yet it also requires the MD simulations to find the distributions of interaction99

energies. In addition to the above-mentioned methods which utilize the forces and fluctu-100

ation of atomic positions, a molecular geometry-based method “solvent accessible surface101

area based method” for estimating conformational entropy was also reported.63 However,102

this method also requires conformational sampling via MD simulations. The list of entropy103

estimation methods can be further extended, but practically all existing methods require104

significant simulation time. Here, we present a method that does not require extensive con-105

formational sampling and thus is very fast. The proposed method uses energy minimized106

structure of the protein-protein complex and corresponding unbound monomers. It is based107

on Gaussian based PB approach, where the density of protein molecule is modeled as a108

function of the atomic packing. Thus, in the core of the solute the density is high and the109

ability of side chains to sample different conformations is highly restricted. In contrast in110

low density regions, the residues are capable of sampling different conformations since there111

is a room for side chain reorientation. Thus, in this work the entropy change upon complex112

formation is then estimated via the change of accessible sidechain rotamers evaluated with113

Gaussian-based density calculations from unbound to bound states.114

The method, f5-MM/PBSA/E (where E stands for entropy and f5 stands for five ad-115

justable parameters) is benchmarked against set of experimental ∆Gs frequently used to116

assess the performance of ∆G predictors,23,26 and it is shown that the inclusion of entropy117

greatly improves the accuracy of predictions.118

2 Results and Discussion119

To check the sensitivity of results with respect to enthalpic and entropic contributions,120

we explored three energy formulas as described by Eqns (1-3). This was done to see the121
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sensitivity of the results with respect to the different energy components, emphasizing the122

entropy component. Furthermore, the sensitivity of the results was tested for the solvation123

models, and three Generalized Born (GB) models were utilized. The predictions done with124

each energy formula and GB model were tested against the dataset PPI-46 (see Materials and125

Methods). Furthermore, the effect of other parameters, the value of the internal dielectric126

constant and the variance of the Gaussian distribution, were also tested by systematically127

varying them and predicting ∆G compared with experimental ones. Here, we assess the128

performance via comparing the performance of the three energy formulas via Multiple Linear129

Regression (MLR). In contrast to the standard MM/PBSA model, these models are three,130

four, and five parameter fitted models as expressed in Eqs.1 to 3. To reflect it, we call these131

models as f3-MM/PB (Eqn 1: Model-1), f4-MM/PBSA (Eqn 2: Model-2), f5-MM/PBSA –132

T∆SGaussianEntropy, or f5-MM/PBSA/E(Eqn 3: Model-3).133

∆Gpredicted = c1 + c2∆GMM + c3∆GPB (1)

134

∆Gpredicted = c1 + c2∆GMM + c3∆GPB + c4∆Gnon−polar (2)

135

∆Gpredicted = c1 + c2∆GMM + c3∆GPB + c4∆Gnon−polar + c5T∆SGE (3)

Additionally, we used all the three energy models over PPI-46 dataset for all the three GB136

models for 5-fold repeated cross-validation, where 80% of the cases are randomly selected as137

a training set and the remaining are held for testing the model performance. The process is138

repeated 25 times and the analysis results are discussed.139

2.0.1 Benchmarks for PPI-46 dataset140

We have evaluated the three energy models, f3-MM/PB, f4-MM/PBSA, and f5-MM/PBSA/E141

over the PPI-46 benchmarking dataset. The GBneck2 minimized structures performed best142
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(for modeling enthalpy components) in terms of Pearson Correlation Coefficient (PCC) and143

Root Mean Squared Error (RMSE) for all the three models shown in Figure 1. Therefore,144

here we will discuss results only for GBneck2 energy minimized structures set in the dataset145

in detail for modeling enthalpy. At the same time the effect of all three GB models will be146

presented in case of entropy.147

Figure 1: Summary of the three energy models (Model-1: f3-MM/PB i.e. Eqn 1, Model-2:
f4-MM/PBSA i.e. Eqn 2 and Model-3: f5-MM/PBSA−T∆SGE i.e. Eqn 3) performance
with varying internal dielectric constant for GBneck2 energy minimized set of structures of
the PPI-46 benchmarking dataset. a. PCC vs. internal dielectric constant value, and b.
RMSE vs. Internal dielectric constant value.

We observe that Model-1, which considers only ∆GMM and ∆GPB energy terms shows148

the lowest PCC = 0.429 and largest RMSE=3.044 kcal/mol for solute dielectric constant149

εin = 1. Here slight improvement in the performance is observed when εin is varied from 1 to150

10, as PCC goes to 0.436 from 0.429 and RMSE comes down to 3.034 kcal/mol from 3.044151

kcal/mol. However, when the non-polar solvation energy term ∆Gnon−polar is also included152

in it i.e., Model-2, not only does the performance of the model improves (increases the PCC153

to 0.51 and decreases the RMSE to 2.934 kcal/mol), but the effect of variation of solute154

dielectric constant is also absorbed. After that, we investigated the performance of Model-3155

which includes Gaussian-based binding entropy along with ∆GMM , ∆GPB and ∆Gnon−polar.156

We found that after the inclusion of entropy the prediction accuracy improves significantly,157

as PCC increases to 0.658 and RMSE decreases to 2.60 kcal/mol (Table 1). The constant158

coefficients in the models are summarized in Table 2. This implies that Gaussian-based159

entropy captures important information about the protein-protein binding which is missing160

in the conventional MM/PBSA. In this dataset, we did not find any influence of variation of161
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salt concentration on the performance of models evaluated in terms of PCC and RMSE (we162

varied salt concentration from 0 M to 0.3 M in increments of 0.02 M).163

Figure 2: Summary of the three energy models performance at εin = 1 for GBneck2 energy
minimized set of structures of the PPI-46 benchmarking dataset. Scatter plot of predicted
vs. experimental for: (left panel) Model-1 (middle panel) Model-2 and (right panel) Model-3
are shown.

We compare our results with other studies using MM/PBSA protocol for the same164

dataset64 to assess the performance of our method. Fu Chen et. al., reported a MM/PB(GB)SA165

study over the same dataset (PPI-46) using ff99, ff02, ff03 and ff14SB force fields, various εin166

= 1, 2, 4, 6 and implicit water and explicit water minimization and MD simulations and on167

assessing the performance using a Linear Regression where total binding energy predicted168

from the their method is regressed against the experimental binding energy. This study found169

that MM/PBSA gives best PCC = 0.523, when the force field is ff03 and minimization is170

done in implicit water.64 We achieved higher PCC = 0.658 over the same dataset from single171

energy minimized structures using MM/PBSA combined with the Gaussian-based binding172

entropy (see Figure 2). However, here we used a different variation of standard MM/PBSA,173

which we denote as f5-MM/PBSA/E. All benchmarking results are summarized in Table 1.174

It should be noted that Gaussian entropy does not depend on solute dielectric and salt175

concentration as it depends only on the local mean Gaussian densities. However, it depends176

on the Gaussian variance σ of the Gaussian dielectric model which is implemented in Poisson177

Boltzmann Equation (PBE) solver DelPhi,65 cutoff radius used to define the local region178
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Table 1: Performance of Tested Energy Models and GB Models Combinations over PPI-46
Dataset.a

GB modele
Model-1b Model-2c Model-3d

PCCf RMSEg PCC RMSE PCC RMSE

OBC-II 0.423 3.054 0.498 2.957 0.593 2.779

GBneck 0.425 3.051 0.503 2.948 0.631 2.678

GBneck2 0.429 3.044 0.510 2.934 0.658 2.600

a Results of benchmarking the performance of three energy models (Eqns 1-3) and GB model used in
energy minimizations are summarized for the PPI-46 dataset with εin = 1, all the RMSE are reported in
kcal/mol; b f3-MM/PB model Eqn. 1; c f4-MM/PBSA model Eqn. 2; d f5-MM/PBSA/E model Eqn. 3
with parameters σ = 1.20, r= 0.8 and cutoff radius 4.0 Å; e Generalized Born model used in energy
minimization of the structures; f Pearson Correlation Coefficient; g Root Mean Squared Error.

around the atoms and the decay rate parameter r in exponential interpolation which controls179

the curvature of the interpolation curve (Figure 7a). The σ and cutoff radius parameters180

affect the mean Gaussian density computation, while r influences the number of effective181

conformations during the interpolation step of the method. Therefore, we also investigated182

the influence of parameters related to the Gaussian density-based method of binding entropy183

estimation. The three related parameters σ, cutoff radius for defining the local region around184

the atoms and the decay rate parameter r are varied. The results of the variation of these185

parameters on performance of the Model-3 are presented in Figure 3.186

In the PPI-46 dataset the performance of the Model-3 improves with increasing values of187

Gaussian variance parameter, which was varied from 1.0 to 1.30 in increments of 0.05. We188

obtained best results when σ = 1.20 (Figure 3a, b). Similarly, on varying the cutoff radius189

from 3.0 Åto 8.0 Å in steps of 0.5 Å, we observe the improvement in the performance of190

Model-3 which increases initially and after 3.5 to 4.0 Å it starts decreasing with the increasing191

cutoff radius (Figure 3c, d). The decay rate parameter for the exponential interpolation curve192

r used to infer the number of effective conformations as a function of mean Gaussian density193

of the relevant atoms of a given sidechain torsion χi of some residue j which is amino acid194

AA is also systematically varied and performance is tested. We obtained the best correlation195

9



Table 2: Parameter constant coefficients in the models Model-1 to Model-3.a

GBb EMc Constant coefficient parameter
c1 c2 c3 c4 c5

OBC-II
Model-1d -9.515405 0.000148 -0.001327 - -
Model-2e -7.151102 0.000159 -0.000811 0.283298 -
Model-3f -12.505926 0.000182 -0.001518 0.971501 0.738526

GBneck
Model-1 -9.525939 0.000155 -0.001369 - -
Model-2 -7.129749 0.00016 -0.000882 0.288981 -
Model-3 -11.449473 0.000184 -0.001839 0.897985 0.680234

GBneck2
Model-1 -9.511868 0.000153 -0.0013835 - -
Model-2 -7.038626 0.000161 -0.000852 0.296255 -
Model-3 -12.070194 0.000147 -0.001632 1.049871 0.777386

a Constant coefficient parameters of three energy models (Eqns 1-3) and GB model used in energy
minimizations are summarized for the PPI-46 dataset with εin = 1; b GB model; c Energy model; d

MM/PB model Eqn. 1; e MM/PBSA model Eqn. 2; f MM/PBSA/E model Eqn. 3 with parameters σ =
1.20, r= 0.8 and cutoff radius 4.0 Å.

at r = 0.8, when we varied it from 0.5 to 1.2 in increments of 0.1 (Figure 3e, f). In summary,196

we reached at the optimal parameters for Gaussian density-based binding entropy for the197

PPI-46 dataset which are σ = 1.20, cutoff radius = 4.0 Å, and decay rate of interpolation198

curve r = 0.8. The best GB model for the PPI-46 dataset is GBneck2, however, the effect199

on performance is small and PCC and RMSE are comparable among the GB models.200

2.1 Models 5-fold cross-validation201

After discussing the performance of the protocol on the whole PPI-46 datasets, we would202

discuss the validation of the protocol. For which the whole dataset must be splitted into203

disjoint training and testing datasets for performance assessment. Considering the small204

size of the PPI-46 dataset, we start by splitting the PPI-46 dataset into training set (80%205

randomly selected) and remaining as testing set. The process is repeated 25 times to give206

25 different training and associated testing sets. The cases in the training set are used to207

find the parameter values for f3-MM/PB, f4-MM/PBSA and f5-MM/PBSA/E models for all208
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Figure 3: Influence of variation of parameters Gaussian variance σ (a. and b.) cutoff radius
for atom surrounding (c. and d.) and decay rate r (e. and f.) for Gaussian binding entropy
on the PCC (a., c., and e.) and RMSE (b., d., f.) of Model-3 for PPI-46 dataset.

the three set of GB energy minimized structures (using OBC-II, GBneck and GBneck2) and209

these parameter values are used for making prediction for testing set cases. The PCC, and210

RMSE values over the training and testing sets are recorded for each repetition and average211

and standard deviations of values are tabulated (Table 3) and discussed hereafter.212

As shown in Table 3, the f3-MM/PB (Model-1), shows mean PCC between 0.440 to 0.447213

for all the three GB minimized structure sets for the training sets and RMSE is between 3.065214

to 3.053 kcal/mol and similar average values of PCC and RMSE are also for the testing sets215

(Table 3). The four parameter model f4-MM/PBSA (Model-2) shows better performance216

in terms of PCC (higher) and RMSE(smaller). After inclusion of entropy as in the f5-217

MM/PBSA/E (Model-3) we consistently observe a significant increase in PCC and decrease218

in RMSE for all the three sets of GB minimized structures across the training and testing219

sets (Table 3). The improvement for both the training and testing sets performance implies220

that, Gaussian entropy provides important information about the binding which is missing221

in f4-MM/PBSA, and thus the improvement is not merely due to the increased number of222
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Table 3: Summary of cross-validation results of the combinations of three energy models and
GB model used for energy minimization.a

GBb EMc Training Testing
PCC RMSE PCC RMSE

OBC-II
Model-1d 0.440 ± 0.045 3.065 ± 0.104 0.496 ± 0.241 3.245 ± 0.672
Model-2e 0.513 ± 0.044 2.968 ± 0.094 0.519 ± 0.178 3.295 ± 0.832
Model-3f 0.596 ± 0.040 2.818 ± 0.098 0.651 ± 0.151 2.958 ± 0.894

GBneck
Model-1 0.442 ± 0.045 3.061 ± 0.106 0.495 ± 0.242 3.246 ± 0.678
Model-2 0.520 ± 0.044 2.955 ± 0.098 0.522 ± 0.182 3.313 ± 0.867
Model-3 0.653 ± 0.042 2.657 ± 0.151 0.609 ± 0.205 3.175 ± 1.130

GBneck2
Model-1 0.447 ± 0.045 3.053 ± 0.106 0.503 ± 0.241 3.255 ± 0.694
Model-2 0.527 ± 0.044 2.941 ± 0.010 0.529 ± 0.180 3.306 ± 0.884
Model-3 0.675 ± 0.040 2.586 ± 0.135 0.653 ± 0.151 3.091 ± 1.103

a Summary of PCC and RMSE over training (randomly selected 80%) and testing (remaining 20%) of
PPI-46 dataset for the three energy models (Eqns 1-3) and GB model used in energy minimizations with
εin = 1, repeated 25 times and mean and standard deviation are provided; b GB model; c Energy model; d

MM/PB model Eqn. 1; e MM/PBSA model Eqn. 2; f MM/PBSA/E model Eqn. 3 with parameters σ =
1.20, r= 0.8 and cutoff radius 4.0 Å.

parameters used in the model.223

2.2 Computation Time224

To analyze the computational requirements of the Gaussian-based method of entropy re-225

ported here, we recorded the execution time for all the protein-protein cases in the PPI-46226

dataset. The computations are performed on compute nodes of the Palmetto Cluster of227

Clemson University. The nodes used for computation have Intel Xeon E5520 processors228

which have 8 MB Cache and 2.26 GHz frequency. All the jobs are run on a single core of229

a node and maximum memory reserved for a job was 24 GB. The computation were run230

three times for each case and the average time taken in minutes vs. the number of residues231

in the protein-protein complex are shown in Figure 4. Each of these involves running three232

DelPhi runs and associated Gaussian-based entropy computation for the complex, and the233

corresponding two unbound proteins.234
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Figure 4: The number of residues in the protein-protein complex vs. total computation time
for running DelPhi and computing entropy from the Gaussian-density map data is shown.

As shown in the Figure 4, the dataset contains a very wide range of sizes of protein-235

protein complexes varying from 116 to 1107 residues. For all the cases the total computation236

time taken in minute is linearly related to the size of the complex. These computations do237

not require parallel processing and are very computation time and memory efficient. Thus,238

these can be performed even on standard desktops, in contrast to other entropy methods239

which require significantly higher computation resources and time.240

3 Materials and Methods241

3.1 Overview of the Method242

The proposed method combines MM/PBSA with an estimator of entropy. It does not use243

multiple structures obtained via MD simulations, but rather it deals with a single structure244

(Figure 5). Thus, the enthalpy components, the MM/PBSA energies, were computed using245

the energy minimized 3D structure of the protein-protein complex and utilizing rigid-body246

approach, i.e., the structures of unbound monomers were taken from the energy minimized247

3D structure of the complex. Thus, the bonded energy cancels out and is not calculated248

(Figure 5a). In parallel we tested a protocol that does independent energy minimization of249
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separated monomers. However, the results were found to be less accurate (data not shown)250

than the rigid-body approach and thus in the rest of the paper we present only the results251

obtained with enthalpy components modeled with rigid-body protocol in the rest of the252

paper. In case of entropy estimation, it was found that rigid-body protocol does not perform253

well, and thus the structures of monomers were energy minimized independently from the254

energy minimization of the complex and used for entropy change calculations (Figure 5b).255

Further discussion is provided in the conclusions section of the manuscript.256

Figure 5: Schematic representation of protocols used for computing enthalpy and entropy
components of protein-protein binding free energy. a. The enthalpy energy components are
computed over energy minimized complex structure and monomers are extracted from it.
b. The entropy estimation is done in a protocol that the complex and two monomers are
energy minimized independently.

3.1.1 Benckmarking Dataset257

In the present work we will be using a binding affinity benchmarking dataset of 46 protein-258

protein experimental ∆Gs published by Kastritis et. al.28,66 This dataset lists the PDB ID259

of the structure, chains of protein-1 and protein-2, equilibrium dissociation constant K d,260

experimental temperature and pH for most of the cases. The PDB IDs, chains of proteins261

and pK d values are provided in Supporting Information (Table S1). This dataset has been262

used for benchmarking MM/PBSA and MM/GBSA methods in combination with several263

force fields.64 We will refer to this dataset as PPI-46 now onwards. This dataset covers a264
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broad range (10 orders of magnitude) of experimental binding affinities.265

3.1.2 Structure Preparation and Minimization266

The structures of the protein-protein complexes in PPI-46 dataset were downloaded from267

the RCSB protein data bank,67,68 and chains mentioned in the dataset were extracted. All268

the water and hetero atoms were deleted from the structures. All titratable residues were269

protonated according to the neutral pH state and all the histidine residues were kept neutral270

by placing proton at epsilon position. The charges and parameters were kept consistent with271

the AMBER ff14SB69 force field. For structure minimizations we have used three OBC-II,70272

GB-neck,71 and GB-neck272 implicit solvent Generalized Born (GB) models implemented273

in AMBER.73 The parameter+topology (.prmtop) and starting coordinate (.inpcrd) files274

were created using the LEaP program in AmberTools18.73 The starting structures were275

energy minimized using each of the three GB models to yield three sets of structures for276

protein-protein complexes. The energy minimization is performed in two stages first while277

restraining all the heavy atoms using a 10 kcal.mol-1.Å-2 harmonic potential for 8000 steps of278

steepest descent (SD) and 2000 steps of conjugate gradient (CG) followed by 8000 steps of279

SD and 2000 CG without restraint. We have used rigid-body protocol for the computation of280

enthalpy components of the MM/PBSA approach and the unbound proteins structures were281

extracted from the energy minimized complex structures. However, the entropy component282

of the binding energy which has great sensitivity to conformational changes upon complex283

formation,24,74,75 was estimated from separately minimized unbound proteins and complex.284

The unbound protein structures were extracted from each complex in the dataset prior energy285

minimization of the complex. These structures were also prepared, and energy minimized286

using the same protocol to yield three sets corresponding to above mentioned three GB287

models.288
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3.1.3 Binding Free Energy Computation (Enthalpy Component)289

∆Gbind = ∆GMM + ∆Gpolar + ∆Gnon−polar − T∆S (4)

290

∆GMM = ∆Gbonded + ∆Gnon−bonded (5)

291

∆Gnon−bonded = ∆Gelectrostatic + ∆GvdW (6)

Here molecular mechanics (MM) part of the binding energy (∆GMM) is computed using the292

rigid-body protocol so ∆Gbonded = 0. The unbound protein structures are extracted from the293

energy minimized structure of the complex by removing the partner protein. The non-bonded294

terms of binding energy (∆Gnon−bonded) and polar solvation energy (∆Gpolar) is computed295

using the popular numerical Poisson Boltzmann equation solver DelPhi65,76 employing tra-296

ditional two dielectric model using charge and radii from AMBER ff14SB69 force field, grid297

spacing 0.5 Å, longest solute dimension filling 70% of the grid box, and solvent dielectric con-298

stant 80, hence will be referred as ∆GPB hereafter. The traditional two-dielectric model was299

applied instead of Gaussian-based model,50,52,77 because the Gaussian-based atomic density300

model is used to estimate the entropy as outlined below. The solute dielectric constant and301

the salt concentration are varied to study the influence of these parameters on the prediction302

accuracy of the method. The non-polar solvation energy (∆Gnon−polar) is estimated from the303

Solvent Accessible Surface Area (SASA) change (Eqn 7).304

∆Gnon−polar = γ∆SASA+ b (7)

The change in SASA (∆SASA) is computed as difference of SASA of unbound proteins305

from complex in Å2, the surface tension γ = 0.00542 kcal.mol-1.Å-2 and the correction term306

b = 0.92 kcal/mol are used. The SASA with solvent probe radius 1.4 Å is computed using307

Visual Molecular Dynamics.78308
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3.1.4 Estimation of Entropy Change upon Binding309

The basic idea is to estimate the change of the sidechain entropy change upon the binding310

by evaluating the accessible rotamers of the corresponding amino acids in monomeric versus311

bound states. To avoid the complexity associated with continuum conformation space, each312

amino acid sidechain is considered to have finite number of rotamers taken from Dunbrack313

library of rotamers.79 When an amino acid is free in water phase, it is considered that its314

sidechain can sample all rotamers provided in the Dunbrack library79 (see left panel in Figure315

6). When it is part of the bound-structure (protein-protein complex) or unbound-structure316

(protein structure obtained after removing the binding partner structure from complex) , not317

all rotamers are accessible because of the presence of atoms of neighboring residues (right318

panel in Figure 6b). Thus, the change of accessible rotamers from unbound to bound states319

for each amino acid of the proteins forming a complex is used to estimate the entropy change320

upon the binding. Below we outline the details about (i) modeling atomic density (which321

will be used to decide if a rotamer is accessible or not), (ii) building reference library of322

atomic densities for free amino acids, and (iii) estimation of accessible rotamers.323

(i) Modeling Atomic Density : Here we build upon our previously proposed Gaussian den-324

sity based model of atoms.50,52 In the Gaussian-based model of atom, an atom is represented325

as a probability density ρi(~r) at any arbitrary point ~r in space due to the ith atom, the ρi(~r)326

is maximum i.e. 1 at its center and it decreases according to a Gaussian distribution as we327

move away from it (Eqn 8 and Figure S1). In a multi-atomic molecule, the Gaussian density328

at any point in space ~r is resultant of atomic densities due to its all the atoms (Eqn 9).329

ρi(~r) = exp

[
|~r − ~ri|
σ2R2

i

]
(8)

where Ri is van der Waals radius of the ith atom and σ is the variance of the Gaussian330

distribution.331

ρmol(~r) = 1−
∏
i

(1− ρi(~r) (9)
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The Gaussian density varies from 0 to 1 in space and expresses the extent of atomic packing; a332

value of 0 corresponds to a point where there are no atoms of the molecule and 1 corresponds333

to centers of atoms of the molecule, with any other value in the range corresponds to higher334

density of atoms for higher Gaussian density.335

Figure 6: A schematic representation of the idea of Gaussian-based entropy. An ILE residue
of a protein is shown in black and white ball & stick. Neighboring atoms in radius 4 Å are
shown with semi-transparent cyan spheres. Left panel: all possible sidechain conformations
of ILE in unbound protein, and right panel: only one rotamer of the same ILE is accessible
due to presence of neighboring atoms of the binding partner.

(ii) Building Reference Gaussian Density Library : The ability to occupy different confor-336

mational states for each of sidechain torsion angle of each amino acid (AA) is hindered due337

to spatial packing around the corresponding atoms. Thus, the first step is to identify atoms338

that participate in the sidechain torsion angles of each of 20 standard amino acid (Table S2339

in Supporting Information). Then the average Gaussian density is computed using 3D struc-340

ture of isolated amino acid and applying the Gaussian subroutine implemented in the PBE341

solver DelPhi.65 The mean Gaussian density is computed as average of Gaussian densities342

on all the grid points in a cutoff radius (say 5 Å) from the center of all the relevant atoms (as343

described above) to χi of given AA and averaged to obtain mean Gaussian density (ρ̄χi,AA).344

The ρ̄χi,AA computed from isolated amino acid structure is called minimum mean Gaussian345

density minρ̄χi,AA. The maximum number of conformations to given χi of amino acid AA346

i.e. nConfχi,AA are obtained from Dunbrack rotamer library.79 The pair of minρ̄χi,AA and347

nConfχi,AA for each χi of each amino acid AA are saved in a the library for later use for348

obtaining effective number of conformation via interpolation.349

(iii) Computation of Effective Number of Conformations : The corresponding protein350
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structure (the bound and unbound structures/structure of protein obtained after removing351

the binding partner structure from complex. see Figure 5b) is energy minimized using the352

protocol described above. The mean Gaussian density ρ̄j,χi,AA for each χi of each residue353

j is computed. Then an effective number of conformations is obtained by exponential in-354

terpolation scheme (Figure 7b) having two boundary points: (a) the maximum number of355

conformations that are available in isolated residue and yield associated mean Gaussian den-356

sity termed “minimum mean Gaussian density”; and (b) minimum number of conformations357

i.e. 1 when the mean Gaussian density is maximum possible value 1. The increase in ρ̄j,χi,AA358

in protein w.r.t. minρ̄χi,AA due to more compact “dense” surrounding relevant atoms causes359

decrease in number of effective number of conformations as expressed in Eqn 10.360

nConfj,χi,AA = a.log(−k.dr) (10)

where d = (ρ̄j,χi,AA − minρχi,AA
)/(1 − minρχi,AA

), a = 1/exp(−k), and r is a decay rate361

parameter of interpolation curve (Figure 7a).362

Figure 7: Illustration of interpolation scheme. a. the effect of value of decay rate parameter
r, on the curvature of exponential decay curve. b. Illustration of obtaining # effective
conformations for an example case where maximum conformations is 3 at minimum mean
Gaussian density 0.5, the # effective conformations (≈ 2) corresponding to mean Gaussian
density 0.7 is shown.

The effective number of conformations of every sidechain torsion χi of the residue j363

which is amino acid AA are multiplied to obtain the effective number of conformations of364
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the residue in the protein (Eqn 11).365

nConfj,AA =
∏
i

nConfj,χi,AA (11)

Finally, taking the logarithm of effective number of conformations nConfj,AA of the residue366

j to get its entropy Sj in the protein (Eqn 11). The sum of the entropy of all the residues367

in the protein yields entropy of the protein (Eqn 13).368

Sj = log(nConfj,AA) (12)

369

Sprotein =
∑

j∈protein

Sj (13)

370

∆Sbind = Scomplex − (Sprotein1 + Sprotein2) (14)

Thus, the entropy of protein-protein complex Scomplex and unbound proteins Sprotein1 and371

Sprotein2 are computed and then binding entropy (∆Sbind) is obtained via subtracting the372

sum of entropy of unbound proteins from that of complex (Eqn 14).373

4 Conclusions374

In this work, we presented a Gaussian density-based method for estimation of entropy change375

caused by protein-protein binding. This method hypothesizes that isolated amino acids376

sidechains are free to rotate and occupy all the accessible conformations equiprobably, how-377

ever this ability is restricted to a certain extent due to increased atomic packing (estimated378

via Gaussian density) when the amino acid is a part of a protein or protein-protein com-379

plex. Thus, the change of accessible conformers from unbound to bound states is used to380

estimate the entropy change induced by the binding. Combining the entropy change with381
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MM/PBSA enthalpic components, resulted in f5-MM/PBSA/E method which was tested382

on a popular dataset PPI-46. It is important to mention that MM/PBSA/E method uses383

energy minimized structures of the complex and unbound monomers only, not snapshots384

obtained via MD simulations, and thus it is fast and less computationally demanding than385

traditional MM/PBSA methods. Despite of that, the f5-MM/PBSA/E method achieves386

similar or better performance than other methods as benchmarked against experimentally387

determined ∆Gs from the PPI-46 dataset.388

The protocol, the f5-MM/PBSA/E, considers both enthalpic and entropic contributions389

to the free energy of binding. However, the optimal conditions for modeling enthalpic and390

entropic components were found to be different: the best performance was obtained with the391

rigid-body protocol for enthalpic components calculations, while the optimal performance for392

entropic component was achieved when bound and unbound structures were independently393

energy minimized. The main reason why rigid-body approach worked better for enthalpic394

components modeling was the cancellation of bonded interactions. Our attempt to use in-395

dependently minimized bound and unbound structures for enthalpic calculations resulted in396

large “bonded interactions” energies which dominated all other component. In contrast, the397

best performance in estimating entropy change caused by the binding was found when one398

uses independently minimized bound and unbound structures. This observation reflects the399

nature of Gaussian-based method for entropy estimation, which is geometry-based. Thus,400

small structural changes caused by independently minimizing bound and unbound struc-401

tures have significant effect on the entropy change calculations. This indicates that further402

improvement may be expected if one extends the Gaussian-based entropy estimator method403

to include backbone changes from unbound to bound states.404
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The following files are available free of charge.406
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