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Abstract—We propose EdgenAI, a framework to decompose a complex

deep neural networks (DNN) over n available local edge devices with

minimal communication overhead and overall latency. Our framework

creates small DNNs (SNNs) from an original DNN by partitioning its

classes across the edge devices, while taking into account their available

resources. Class-aware pruning is applied to aggressively reduce the

size of the SNN on each edge device. The SNNs perform inference in

parallel, and are configured to generate a ‘Don’t Know’ response when an

unassigned class is identified. Our experiments show up to 17X inference

speedup compared to a recent work, on devices of at most 150 MB

memory when distributing a variant of VGG-16 over 20 parallel edge

devices.

I. INTRODUCTION

In recent years, there has been tremendous development in using

deep neural network (DNN) machine learning algorithms to address

computation-intensive, challenging pattern/object recognition prob-

lems in cutting edge information technology applications such as

object recognition, speech recognition, smart homes, health care,

autonomous vehicle navigation, etc. [2], [10], [7]. In order to achieve

state-of-the-art performance in such real-life applications, DNNs have

become more complex [14], [16], [18]. These translate to higher

memory and computation requirements as in cloud computing.

On the other hand, DNN-based Artificial Intelligence heavily relies

on devices such as sensors to gather application data (which are

projected to grow into billions in near future [1]). A common

solution today is to transfer such raw data via network to the

cloud infrastructure for DNN processing and then transfer the results

back to the edge devices. However, such an approach requires high

communication bandwidth to transfer raw data to the cloud and will

not provide an acceptable latency for real-time user experience.

Many recent approaches have developed strategies for distributed

implementation of DNNs across edge devices to alleviate or com-

pletely eliminate reliance on the cloud. Saguil et al. study strategies

to optimally partition a complex DNN between one edge device and

cloud to minimize the overall latency [12]. Communication overhead

to the cloud is reduced by sending extracted features from edge-

processed layers, as opposed to raw data. Teerapittayanon et al. [17]

propose a DNN partitioning scheme where at the front end, each

device implements a feature extractor. This approach incorporates a

local early exit strategy to avoid cloud for some inferences. But it

still requires multiple levels of wireless communication across edge

devices and it does not completely eliminate reliance on the cloud

for all the inferences. Mao et al. [9] propose a distributed scheme

to completely eliminate reliance on cloud. The approach partitions

an input image and assigns them to distributed, local, worker edge

devices. Wireless communication overhead is reduced using a map-

reduce strategy. The overall latency, however, remains high when

multiple levels of sequential, wireless communication is required.

The above approaches are effective schemes to avoid sending large

volume data to the cloud and utilize local edge devices. However, they

leave significant room for improvement of the overall latency because

sequential stages of wireless communication should be performed for

a single inference. Moreover, they are not designed to utilize available

resource-constrained edge/IoT devices, as many, as projected to

become available in near future [1].

Motivation: This work is inspired by two key factors. First, our

goal is minimize the overall latency of inference for a distributed

implementation of a complex DNN. This goal is naturally coupled

with reducing the communication overhead across devices. Second,

with the rising availability of edge devices, we fundamentally rethink

how an inference may be performed for a distributed implementation.

Instead of focusing on a single or few edge devices, we are motivated

to utilize the available, local edge devices as many as possible to

reduce latency of an inference and hence improve the user experience.

Contributions: We propose EdgenAI, a framework to utilize many

parallel, independent-running edge devices which communicate only

once to a single ‘back-end’ device (also an edge device) to aggregate

their predictions and produce the result of the inference. To achieve

this distributed implementation, EdgenAI first partitions the classes

of the complex DNN into subsets to be assigned across the available

edge devices while considering the computational resources of each

device. The DNN is then aggressively pruned for each device for

its set of assigned classes. Each smaller DNN (SNN) is further

configured to return a ‘Don’t Know’ when it identifies an input from

a class that is not assigned to it. Each SNN is generated by EdgenAI

from the complex DNN at the beginning and then loaded onto its

corresponding edge device, without the need for retraining. Each SNN

will perform an inference based on its received input (which could

be a common input broadcasted to all, or an input taken from the

view of that edge device as in a context-aware distributed setup [3]).

The results of the SNNs are sent to the back-end device which is

trained by EdgenAI as a simple classifier and hence can also fit on

an edge device.

For an effective implementation of EdgenAI, we make the follow-

ing contributions:

• We utilize a normalized entropy metric to compare the prob-

abilities generated for different classes across the SNNs in a

meaningful manner. The normalized entropy is also used to

generate a ‘Don’t Know’ response for each SNN if it identifies

an input that does not belong to any of its assigned classes.

• To decide the subset of classes that should be assigned to each

SNN, we propose an effective procedure to evaluate many class

partitioning candidates. This is the first step prior to generation

of the SNNs. At the heart of our procedure is an efficient method

to estimate the normalized entropy of an unknown SNN, solely

based on the classes that are considered to be assigned to an

edge device.

In our experiments we show how EdgenAI can achieve an effective

distributed implementation for a variety of hardware platforms with

different number of devices. For example, we show up to 17X

speedup in inference latency using EdgenAI with negligible loss in

the overall classification accuracy, compared to a recent work on

distributed implementation [15]. This is when using 21 edge devices
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Fig. 1: (a) Overview of EdgenAI; (b) Abstract hardware model of an edge device. Computation of latency incorporates all these components.

(20 for the SNNs and one for the aggregator in EdgenAI), each with

at most 150 MB on-chip memory (with no off-chip memory).

In the remainder of the paper we give an overview of EdgenAI

and its details in Sections II and III. Simulation results are presented

in Section IV followed by conclusions.

II. OVERVIEW OF EDGE
nAI

Figure 1(a) gives an overview of EdgenAI which resides in the

cloud. Initially, EdgenAI receives information about the available

edge devices, and their memory and computational resources. Based

on this information, the complex DNN is estimated as n smaller

DNNs (SNNs) and an aggregator. (The number of available edge

devices is n + 1). Figure 1(b) shows the abstract hardware model

of each edge device which includes on-chip buffers and memory

(SRAM) and possibly off-chip memory (DRAM), MAC units to

perform the bulk of the computations, and wireless link to send the

results to the aggregator1. Generation of the SNNs by EdgenAI is

performed only once as a pre-processing step.

To perform a distributed inference, each SNN will receive an

input. This input could be the same image that is broadcasted to

all, or it could be different views of the same object taken by

each device, such as in a multi-view setup as in [3]. Each SNN

generates probabilities associated with its assigned classes. In order

for the aggregator to compare these probabilities across all SNNs

in a meaningful way, first a normalized entropy is calculated for

each SNN. This normalized entropy is also evaluated against a

threshold (configured initially by EdgenAI) to generate a ‘Don’t

Know’ response [8], [4] when an SNN identifies its input not to

be from any of the classes that are assigned to it. The aggregator

then combines the results of the SNNs (by looking at the normalized

entropies and the generated Don’t Know responses) and produces

the final inference result. The aggregator is implemented as a neural

network classifier which as we show can be implemented with a

simple structure and small size. Augmenting the network architecture

to add one more output class to generate a Don’t Know response is

also possible but inefficient since it requires retraining each SNN.

To generate the SNNs, first, a subset of the classes of the

original DNN is assigned by EdgenAI to each device through a class

partitioning step. Next, class-aware pruning is applied to prune the

DNN (for each case) and generate a smaller DNN (i.e., an SNN) for

each device based on its subset of assigned classes. This step utilizes

a recent class-aware pruning scheme proposed in [6] which is able

to generate each SNN without need for retraining and with only a

negligible loss in classification accuracy for its assigned classes.

1All of these components are accounted to estimate the inference latency.

Particular challenges for an effective implementation of EdgenAI

include how to fairly compare the per-class probability generated by

individual SNNs against each other, and how to efficiently perform

class partitioning across the available devices so that class-aware

pruning (which can be time-consuming) is only performed a limited

number of times. In the next section, we discuss these details.

Specifically, in Section III-A we discuss calculation of the normalized

entropy and how it helps with fair comparison of results of individual

SNNs, and how it may be configured to generate a Don’t Know

response. We also discuss how the aggregator is designed to generate

the final inference result using this information in Section III-B. In

Section III-C we discuss an efficient procedure to evaluate class-

aware partitioning combinations and identify the most promising

candidates to enhance the overall classification accuracy.

Overall, EdgenAI generates a distributed implementation suitable

to fit in resource-constrained edge devices with minimum latency

because it reduces the most time-consuming step (i.e., wireless

communication) to a single step when sending the outputs from the

SNNs to the aggregator. The transferred data are normalized entropies

so the required bandwidth is minimal.

III. DETAILS OF EDGE
nAI

Here we discuss three important design aspects of EdgenAI. First,

for a set of already-generated SNNs, we discuss how a normalized

entropy is defined to combine their individual inferences in a mean-

ingful manner. We also discuss how normalized entropy is used to

define a Don’t Know signal. Second, we discuss how the aggregator

is designed to combine the results of the SNNs. Third, we discuss

how SNNs are generated in an efficient and effective manner.

A. Normalized Entropy and Generation of A Don’t Know Response

Recall, each SNN is a reduced version of the original DNN when

pruning the DNN for a subset of its classes. These subsets are also

assigned in a way that the SNNs together cover all the classes in

the original DNN. During distributed inference, it is not meaningful

to directly compare the probabilities generated for different classes

across the SNNs with each other. For example, suppose one SNN

infers an input image to be a cat with probability 0.6 because its

output with highest probability corresponds to the class of cats. A

second SNN does not even include cats in its output classes and infers

the same image to be a dog with probability 0.7 because its highest

probability output corresponds to the class of dogs. Simply combining

the results of these two SNNs by taking the maximum probability is

not meaningful and may result in the wrong classification outcome.

To address this issue we first compute a normalized entropy metric

for each input and each SNN, and then use this metric to define
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a Don’t Know response for each SNN to quantify the cases when

an SNN is not certain about its prediction. Given an input, the

normalized entropy (NE) of an SNN is defined as follows [17]:

E(SNN) = −

|C|
∑

c=1

xclog(xc)

log |C|
(1)

where xc is the generated probability by SNN for class c for that

input. Note c ∈ S ⊂ C where S is the subset of classes assigned to

the SNN and C is the set of all the classes (in the DNN), some of

which may not have been assigned to the SNN. Lower values of NE

correlates to higher certainty in the inference.

Calculating A Don’t Know Response: The normalized entropy

metric can further be used to define a Don’t Know response. More

specifically, we configure each SNN to predict if each of its received

inputs is relevant or irrelevant. A relevant input is one predicted to

belong to the set of classes covered by the SNN. An irrelevant input

is predicted to belong to the remaining classes (not covered by SNN).

Our key observation is that, for each SNN, normalized entropy

(NE) is a smaller quantity for relevant inputs compared to the

irrelevant ones. This observation can be used to define a ‘Don’t

Know’ response for each SNN by calculating one threshold (per

SNN) for its NEs. An NE below the threshold means the SNN outputs

an inference result for an input because it identifies it as relevant. In

this case, the NE is directly sent to the aggregator (together with the

index of class with the highest output probability). Otherwise, if the

NE is higher than the threshold, the input is rejected by the SNN for

inference. In this case, a Don’t Know response is encoded by setting

the NE to 1 before sending it to the aggregator to indicate the SNN

is uncertain and rejects the inference.

Algorithm 1 shows how the threshold is calculated by EdgenAI

as a pre-processing step for an SNN. (This algorithm is called

independently for each SNN to find its corresponding threshold.) The

inputs are the vectors NER and NEI . (Parameters Tstart, Tend and

step are also specified as inputs which we set in our experiments.)

The output is the threshold Th for the SNN.

The algorithm starts with a low threshold (T = Tstart) and

counts the number of NEs in NER which are lower than T , as

well as the number of NEs in NEI which are higher than T . (See

lines 3-13.) Next, acceptRecall is calculated as the rate of relevant

inputs which are correctly identified as relevant for that T . These

inputs are correctly accepted by the SNN to make an inference (line

14). Similarly, a rejectRecall is calculated as the rate of irrelevant

inputs which are correctly identified to be irrelevant for that T (line

15). These irrelevant inputs are correctly rejected by the SNN to

make an inference. Next in line 16, performance P is calculated as

multiplication of these two quantities. Higher performance takes into

account that we desire relevant inputs to be identified as relevant

(higher accept recall), as well as irrelevant inputs to be identified as

irrelevant (higher reject recall). Next in lines 17-20, threshold Th

is updated only if P is the largest performance so far. Next, T is

increased by step. The above steps are repeated until Tend is reached.

The above algorithm, in effect searches for the optimal value of

threshold for an SNN within a range (Tstart to Tend with granularity

step) with the objective to maximize the performance. This is because

the overall classification accuracy of the distributed inference depends

on how accurate each individual SNN is at (1) accepting to make an

inference on its relevant inputs; (2) rejecting its irrelevant inputs and

generating ‘Don’t Know’ response.

Figure 2 shows an example of per-device performance and prob-

ability density function (PDF) of normalized entropies of relevant

Algorithm 1 Find normalized entropy threshold for a given SNN.

Inputs: NER: Vector of normalized entropies calculated for relevant

inputs (dimension 1 × |R| ); NEI : Vector of normalized entropies

calculated for irrelevant inputs (dimension 1× |I| ); Tstart; Tend; step.

Outputs: Entropy threshold Th for the SNN.

1: T = Tstart, Pmax = 0
2: while T ≤ Tend do

3: relevantCount = irrelevantCount = 0

4: for each i = 1 to |R| do

5: if NER(i) ≤ T then

6: relevantCount++

7: end if

8: end for

9: for each i = 1 to |I| do

10: if NEI(i) ≥ T then

11: irrelevantCount++

12: end if

13: end for

14: acceptRecall = relevantCount / |R|
15: rejectRecall = irrelevantCount / |I|
16: P = acceptRecall × rejectRecall

17: if P > Pmax then

18: Th = T � Update the entropy threshold.

19: Pmax = P

20: end if

21: T = T + step

22: end while

accept recall 

reject recall 

performance

Fig. 2: Per-device performance and PDF of normalized entropy for

relevant and irrelevant inputs using 3 SNNs.

and irrelevant inputs for a pruned variant of VGG-16 which is

decomposed by EdgenAI into 3 SNNs. Each row in the figure

corresponds to one device (i.e., one SNN). Each plot in the first

column shows 3 curves corresponding to the accept recall, reject

recall, and device performance as a function of the entropy thresholds.

As expected, for all three SNNs, relevant inputs have significantly

smaller normalized entropy compared to irrelevant ones. It can hence

be concluded that each SNN is more likely to correctly accept

an inference when seeing a relevant input, as well as to correctly

reject an irrelevant input and generate a ‘Don’t Know’ response.

Furthermore, as the plots in the first column show, there is a trade

off between accept and reject recalls when the threshold is varied.

Specifically, with increase in the threshold, the accept recall improves

while the reject recall is degraded. Also, different SNNs may have

different entropy thresholds. In this example, the entropy thresholds

(i.e., points with highest performance) are 0.30, 0.25, and 0.25 for

the first, second, and third device, respectively.
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B. Design of the Aggregator

The aggregator receives the following inputs from each SNN. First,

it receives a normalized entropy which also encodes a Don’t Know

signal. (Recall if the normalized entropy is found to be higher than the

SNN’s threshold, then the Don’t Know signal is encoded by setting

the normalized entropy to its highest value =1). It also receives the

index of the class with the highest output probability.

A naive approach is to first eliminate the normalized entropies of

all uncertain devices (all NEs=1), and then pick the inference result

of the device with the lowest NE. However, such an approach cannot

maintain accuracy, as verified, especially as number of SNNs grows.

To tackle this issue, the aggregator is implemented as a lightweight

neural network, featuring only 3 layers with at most 60 neurons

per layer. As a pre-processing step, the aggregator is trained using

stochastic gradient descent algorithm, for at most 10 epochs. To

obtain the training set, we randomly selected an equal number of

samples (50 in our experiments) from each class to ensure that all

classes are covered during training and they all contribute equally

to train the network. We note this training set is different than the

one used to calculate the threshold of normalized entropies in order

to reduce overfitting. To train the aggregator, first the SNNs are

generated by so the actual inputs to the aggregators (generated by

SNNs) may be determined for training purposes.

C. Generation of the SNNs

As shown in Figure 1, EdgenAI is responsible to generate the

SNNs by decomposing a complex DNN as a pre-processing step,

and based on received information about the available edge devices.

This is done as a two step approach. In the first step, EdgenAI

partitions the classes of the complex DNN across the available edge

devices2. For a complex DNN with |C| classes and n+1 edge devices

(for n SNNs and 1 aggregator), each SNN is assigned a subset of the

classes S where |S|= |C|
n

. Each class c ∈ C is assigned to only one

SNN such that the assigned classes to the SNN cover all the classes

in the complex DNN. Once the classes are assigned to the SNNs,

in the second step, each SNN actually gets generated by applying

‘class-aware’ pruning to the original DNN. For class-aware pruning

we use the approach given in the recent work [6]. This algorithm

prunes an already-trained DNN to keep only a subset of the output

nodes, without the need for retraining. It reports negligible loss in

accuracy and promising model size reduction due to pruning. Class-

aware pruning in [6] takes advantage of the correlation between

neurons and output classes which is obtained by measuring class-

specific firing rates of neurons. The details can be found in [6] and

won’t be discussed here due to lack of space. Instead, we focus on

how class partitioning (step 1) is done.

First we motivate the need for an efficient procedure for class-

aware partitioning by explaining how an optimal approach based on

exhaustive search will be impractical.

Consider an ideal scenario where each of the
(

|C|
|S|

)

possible

partitions is evaluated and the best one is selected. To evaluate a parti-

tioning candidate in this ideal case, first the corresponding distributed

implementation must be generated. This means the SNNs must first

be generated by class-aware pruning, and then Algorithm 1 must be

called for each SNN to find the threshold for its normalized entropy.

The aggregator then must be trained. Finally, classification accuracy

corresponding to that partitioning candidate must be measured by

performing inference for that implementation over a testing set. This

2In this work we assume the edge devices have the same amount of
computation and memory resources. We note though that it is possible to
expand EdgenAI to handle non-uniform edge devices.

Fig. 3: Percentage overlap among actual top partitioning candidates

and the ones estimated to be top candidates.

ideal approach is time-consuming which makes it impractical. In fact,

the most time-consuming step and runtime bottleneck in the above

exhaustive search is the class-aware pruning step.

To efficiently evaluate a partitioning candidate, we propose

a scheme to efficiently estimate the normalized entropy (NE) of

each SNN. This estimation is only based on the assigned classes

corresponding to a candidate. Once NE is estimated for an SNN,

the threshold is found using Algorithm 1, and the corresponding

classification accuracy is measured for that candidate, as explained in

the ideal case. These steps together only require a limited number of

inferences and are performed efficiently. After estimation of the NEs,

we identify the top X% candidates with highest estimated classifica-

tion accuracy where X is a small value (5% in our experiment). These

top, few candidates are then accurately evaluated (by measuring the

classifying accuracy with the actual not-estimated NEs), and the one

with highest classification accuracy is selected.

To estimate the NE for a partitioning candidate, we use the

following procedure. The partitioning candidate is specified by a

subset of classes S ∈ C as input to the procedure. First, we generate

|C| pruned variations of the DNN. Each variation is optimized to

accurately classify one of the output classes of the DNN. This step

is done using class-aware pruning of [6] and is efficient because

only |C| number of pruning calls are made to the DNN, as opposed

to
(

|C|
|S|

)

. these single-class pruned variations are referred to as PNNs.

Next, for a given input, the normalized entropy is estimated by

looking at those PNNs which are optimized for the output classes that

belong to S. These are the PNNs which are pruned to each classify

only one of the classes in S accurately. Next, we apply the input

to each PNN independently and measure their corresponding output

probabilities. The normalized entropy is then found using Equation

(1) where class c is only changed within the classes of S and the

probability xc is the output probability generated by each PNN.

The above procedure estimates an unknown SNN using only its

known set of classes S and as union of |S| independent PNNs. It

estimates the NE using the probabilities generated by these PNNs.

Figure 3 shows the effectiveness of estimating the NEs in identi-

fying the top candidates. The Y-axis shows the percentage overlap

between the actual top candidates and the ones found using the

proposed estimation scheme. The X-axis is the number of top

candidates to be identified (i.e., X%). The results are shown when

implementing a variant of VGG-16 using different number of SNNs,

ranging from 2 to 5. We observe a significant overlap between the

two sets. For example for X=30%, the overlap is 50% for 3 SNNs.

IV. RESULTS AND DISCUSSION

We experimented with different variants of VGG-16 and ResNet-

152 networks to evaluate its distributed implementation using

EdgenAI. VGG-16 consists of 13 convolutional layers and 3 fully

connected layers, with each layer being followed by a ReLU function.
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TABLE I: Average model size of the base models after class-aware

pruning when varying the number of output classes.

Number of Classes
VGG-16

model size (MB)

ResNet-152

model size (MB)

10 classes 82 62

20 classes 98 80

50 classes 131 86

70 classes 138 98

100 classes 164 104

VGG-16 ResNet-152

R
e
la

ti
v
e
 M

o
d
e
l 
S

iz
e

Fig. 4: Model size of the largest SNN relative to different base models

(shown in the X axis) when varying the number of generated SNNs.

ResNet-152 includes 151 convolutional layers followed by a single

fully connected layer. The networks are implemented in TensorFlow

and trained and tested on the ImageNet (2012) dataset.

Base Model: We generated different variants of the networks and

used them as different base models to implement using EdgenAI.

We experimented when the number of output classes are varied to

|C|= 10, 20, 50, 70, 100. For each number we randomly selected a

subset of output classes from the original networks (and repeated this

process 10 times). For each subset of selected output classes we then

used the class-aware pruning scheme in [6] and pruned the network to

obtain a base model. Overall, we experimented with 50 base models.

Table I summarizes the relative model size of the pruned base models

when varying the number of output classes for these networks.

A. Comparison of Classification Accuracy and Model Size

We evaluated the effectiveness of EdgenAI in terms of per-

device model size reduction and classification accuracy. We used

the base models described before (|C|= 10, 20, 50, 70, 100) and

implemented them with EdgenAI when the number of SNNs are

n = 2, 5, 10, 15, 20. We set the following parameters in Algorithm

1: Tstart = 0.2, Tend = 0.6, and step = 0.05.

For each variation of base model and number of edge devices, we

report the size of the largest SNN relative to the size of the base

model, along with the top-1 classification accuracy.

Model Size. Figure 4 shows the relative model size of SNNs for

different base models across n + 1 devices for these two networks.

Model size reflects the largest SNN among all generated SNNs and is

measured by the number of its unique parameters including number of

weights and biases. It is then normalized to the number of parameters

in each base model. Finally, for each value of n and |C|, the reported

model size is averaged across the 10 base models with |C| classes.

As the results show, EdgenAI can significantly reduce the size of

each SNN, for all combinations of number of devices and classes.

Furthermore, for a fixed value of |C|, the size of the largest SNN

reduces as we increase the number of devices. This is because with

a higher number of devices, fewer classes will be assigned to each

SNN, leading to more aggressive pruning. For example, in VGG-16,

for a base model with 20 classes implemented on SNNs ranging from

2 to 20, the relative model size is reduced in the range of 0.57 to

0.40, respectively. These numbers change to 0.82 and 0.48 of the

base model respectively, if the number of classes is increased to 100.

Classification Accuracy. Next, Table II reports the top-1 accuracy

for different base models and their distributed implementation with

TABLE II: Comparison of top-1 accuracy of different base models

implemented by EdgenAI as the number of SNNs is varied.

Base

Model

Base

Accuracy

2

SNNs

5

SNNs

10

SNNs

15

SNNs

20

SNNs

VGG-16

10 classes 88.3 87.8 86.7 86.2 – –

20 classes 87.3 86.7 87.1 86.3 86.1 85.8

50 classes 85.1 84.9 84.7 83.1 83.3 83.5

70 classes 84.1 84.3 83.9 83.3 83.1 83.2

100 classes 82.4 81.9 81.6 82.1 82.2 82.3

ResNet-152

10 classes 88.6 87.5 87.1 86.7 – –

20 classes 87.9 87.2 86.8 86.4 86.1 86.3

50 classes 87.1 87.3 86.5 86.3 86.8 86.1

70 classes 85.6 85.1 85.3 84.8 84.3 84.6

100 classes 84.3 84.1 83.8 83.5 83.4 83.2

EdgenAI across different SNNs. As the results show, top-1 accuracy

is maintained for all combinations of number of SNNs and base

models. As an example, for VGG-16, for a base model with 100

output classes, accuracy degradation remains less than 0.5% (0.1%)

once the network is partitioned into 2 (20) SNNs. For ResNet-152

with 100 output classes, accuracy degradation ranges from 0.2% to

1.1% for 2 to 20 SNNs. Also, as can be seen, changing the number

of SNNs affects the top-1 accuracy of the networks given that both

the aggregator design and number of classes assigned per SSN vary.

B. Comparison of Latency on Different Hardware Platforms

Here we evaluate the latency to perform one distributed inference

as generated by EdgenAI and compare it against a recent work [15].

The work [15] distributes a complex DNN by partitioning the output

neurons of each layer. The complex network is partitioned such that

each device calculates only a subset of output neurons of a layer and

then broadcasts them to all remaining devices.

Estimation of Latency: The latency to perform a distributed infer-

ence is calculated as sum of of 3 main components: (1) latency of

the slowest SNN, (2) latency of the wireless communication network,

and (3) latency of the aggregator.

To measure the latency of each SNN, we use the hardware model

shown in Figure 1(b). Delays of computational units including MAC,

Pooling, ReLU are taken from [11], [13]. We also used NVSIM [5]

to measure the latency of on-chip and off-chip memory accesses.

We then constructed an analytical model based on the architecture

shown in Figure 1(b) and the sizes of memories, and number of

computation units. Specifically, we estimated the number of on-chip

and off-chip memory accesses and number of MAC operations for a

hardware platform. To execute a convolutional layer, we assume the

input feature maps are processed in parallel and the output feature

maps in serial, similar to [19]. For the communication network, we

measure the latency by setting the communication bandwidth to 100

Megabits per second (Mbps) as in [15]. Lastly, we use the same

analytical model to measure the latency of SNNs and the aggregator

since they are both neural networks.

Using the above model, we report the latency to perform a

distributed inference using EdgenAI under two different hardware

platforms (both of which have the same architecture shown in Figure

1(b)): (1) edge devices with at most 150 MB on-chip storage per

device and no off-chip memory, and (2) microcontrollers with at

most 500 KB on-chip storage and a shared off-chip storage of 1.6

GB. Furthermore, in both platforms, each device has at most 4608

MAC units (two-input multipliers followed by two-input adders). For

each case we experimented when the number of edge devices to
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(a) (b) (c)

Fig. 5: (a) Per-device required memory size for different variants of the base model (X axis); (b) Speedup to perform one distributed inference

compared to [15] on hardware platform 1, and (c) Speedup on hardware platform 2.

implement the SNNs is varied from 2 to 20. (The total number of

devices including the aggregator is 3 to 21.)

First, Figure 5(a) shows the per-device required memory size

(MB) to run on either platforms. The figure is essentially memory

requirement corresponding to Figure 4. As Figure 5(a) shows, the per-

device required memory can be significantly reduced using EdgenAI.

For example, for a base model (variant of VGG-16 with 100 classes),

the required storage is reduced from 160 MB to around 80 MB when

implementing the base model across 20 parallel edge devices (SNNs).

The actual latencies for each hardware platform are reported as

speedups compared to [15] in Figures 5(b) and (c). Each platform will

result in different number of on-chip and off-chip memory accesses

and hence will result in different latencies. These are shown in for

different base models (X axis) and different number of SNNs.

As can be seen in Figure 5(b) and 5(c), EdgenAI can achieve

a distributed inference with significant speedup for both hardware

platforms. The speedup will increase as we increase the number of

devices. This is because in [15] the communication overhead grows

exponentially with the increase in number of devices (since each

device should broadcast its computed neurons to the remaining n−1
devices). Lastly, EdgenAI achieves a greater speedup on platform 1

compared to platform 2 because edge devices with at most 150 MB

eliminate the need for off-chip memory accesses. Overall, EdgenAI

achieves speedups up to 17X (for platform 1) and 5.5X (for platform

2) for distributed inference of the base model with 100 classes, using

20 edge devices to implement the SNNs.

EdgenAI also improves latency in the case of ResNet-152. The

results are not shown here due to lack of space. For this network,

distributed inference achieves 9X speedup (for platform 1) and 7.5X

speedup (for platform 2) with 100 classes on 20 devices.

Overheads. In terms of the overhead to initially generate the SNNs,

the run-time of EdgenAI is greatly reduced using our technique to es-

timate the normalized entropy. Specifically, estimation of normalized

entropy reduces the run-time of one inference—a step called many

times during SNN generation—to 0.23 of when there is no estimation.

Moreover, generation of SNNs does not incur a significant overhead

since class-aware pruning does not involve any retraining step and

relies on a set of efficient heuristics. Lastly, the overhead of training

the aggregator is minimal (less than 10 epochs in our experiments),

owing to the simple architecture of the network.

V. CONCLUSIONS

In this work, we propose EdgenAI, a novel framework that enables

partitioning and implementing a complex DNN across multiple

edge devices with minimal latency overhead. We showed EdgenAI

achieves up to 17X speed up when distributing a variant of VGG-16

over 20 edge devices, without much loss in accuracy.
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