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Abstract—We propose Edge™ Al a framework to decompose a complex
deep neural networks (DNN) over n available local edge devices with
minimal communication overhead and overall latency. Our framework
creates small DNNs (SNNs) from an original DNN by partitioning its
classes across the edge devices, while taking into account their available
resources. Class-aware pruning is applied to aggressively reduce the
size of the SNN on each edge device. The SNNs perform inference in
parallel, and are configured to generate a ‘Don’t Know’ response when an
unassigned class is identified. Our experiments show up to 17X inference
speedup compared to a recent work, on devices of at most 150 MB
memory when distributing a variant of VGG-16 over 20 parallel edge
devices.

1. INTRODUCTION

In recent years, there has been tremendous development in using
deep neural network (DNN) machine learning algorithms to address
computation-intensive, challenging pattern/object recognition prob-
lems in cutting edge information technology applications such as
object recognition, speech recognition, smart homes, health care,
autonomous vehicle navigation, etc. [2], [10], [7]. In order to achieve
state-of-the-art performance in such real-life applications, DNNs have
become more complex [14], [16], [18]. These translate to higher
memory and computation requirements as in cloud computing.

On the other hand, DNN-based Artificial Intelligence heavily relies
on devices such as sensors to gather application data (which are
projected to grow into billions in near future [1]). A common
solution today is to transfer such raw data via network to the
cloud infrastructure for DNN processing and then transfer the results
back to the edge devices. However, such an approach requires high
communication bandwidth to transfer raw data to the cloud and will
not provide an acceptable latency for real-time user experience.

Many recent approaches have developed strategies for distributed
implementation of DNNs across edge devices to alleviate or com-
pletely eliminate reliance on the cloud. Saguil et al. study strategies
to optimally partition a complex DNN between one edge device and
cloud to minimize the overall latency [12]. Communication overhead
to the cloud is reduced by sending extracted features from edge-
processed layers, as opposed to raw data. Teerapittayanon et al. [17]
propose a DNN partitioning scheme where at the front end, each
device implements a feature extractor. This approach incorporates a
local early exit strategy to avoid cloud for some inferences. But it
still requires multiple levels of wireless communication across edge
devices and it does not completely eliminate reliance on the cloud
for all the inferences. Mao et al. [9] propose a distributed scheme
to completely eliminate reliance on cloud. The approach partitions
an input image and assigns them to distributed, local, worker edge
devices. Wireless communication overhead is reduced using a map-
reduce strategy. The overall latency, however, remains high when
multiple levels of sequential, wireless communication is required.

The above approaches are effective schemes to avoid sending large
volume data to the cloud and utilize local edge devices. However, they
leave significant room for improvement of the overall latency because
sequential stages of wireless communication should be performed for

a single inference. Moreover, they are not designed to utilize available
resource-constrained edge/loT devices, as many, as projected to
become available in near future [1].

Motivation: This work is inspired by two key factors. First, our
goal is minimize the overall latency of inference for a distributed
implementation of a complex DNN. This goal is naturally coupled
with reducing the communication overhead across devices. Second,
with the rising availability of edge devices, we fundamentally rethink
how an inference may be performed for a distributed implementation.
Instead of focusing on a single or few edge devices, we are motivated
to utilize the available, local edge devices as many as possible to
reduce latency of an inference and hence improve the user experience.

Contributions: We propose Edge™Al, a framework to utilize many
parallel, independent-running edge devices which communicate only
once to a single ‘back-end’ device (also an edge device) to aggregate
their predictions and produce the result of the inference. To achieve
this distributed implementation, Edge™AlI first partitions the classes
of the complex DNN into subsets to be assigned across the available
edge devices while considering the computational resources of each
device. The DNN is then aggressively pruned for each device for
its set of assigned classes. Each smaller DNN (SNN) is further
configured to return a ‘Don’t Know’ when it identifies an input from
a class that is not assigned to it. Each SNN is generated by Edge™ Al
from the complex DNN at the beginning and then loaded onto its
corresponding edge device, without the need for retraining. Each SNN
will perform an inference based on its received input (which could
be a common input broadcasted to all, or an input taken from the
view of that edge device as in a context-aware distributed setup [3]).
The results of the SNNs are sent to the back-end device which is
trained by Edge™Al as a simple classifier and hence can also fit on
an edge device.

For an effective implementation of Edge™ Al, we make the follow-
ing contributions:

o We utilize a normalized entropy metric to compare the prob-
abilities generated for different classes across the SNNs in a
meaningful manner. The normalized entropy is also used to
generate a ‘Don’t Know’ response for each SNN if it identifies
an input that does not belong to any of its assigned classes.

o To decide the subset of classes that should be assigned to each
SNN, we propose an effective procedure to evaluate many class
partitioning candidates. This is the first step prior to generation
of the SNNs. At the heart of our procedure is an efficient method
to estimate the normalized entropy of an unknown SNN, solely
based on the classes that are considered to be assigned to an
edge device.

In our experiments we show how Edge™Al can achieve an effective
distributed implementation for a variety of hardware platforms with
different number of devices. For example, we show up to 17X
speedup in inference latency using Edge™ Al with negligible loss in
the overall classification accuracy, compared to a recent work on
distributed implementation [15]. This is when using 21 edge devices
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Fig. 1: (a) Overview of Edge™AI; (b) Abstract hardware model of an edge device. Computation of latency incorporates all these components.

(20 for the SNNs and one for the aggregator in Edge™ Al), each with
at most 150 MB on-chip memory (with no off-chip memory).

In the remainder of the paper we give an overview of Edge™Al
and its details in Sections II and III. Simulation results are presented
in Section IV followed by conclusions.

II. OVERVIEW OF EDGE™AI

Figure 1(a) gives an overview of Edge™ Al which resides in the
cloud. Initially, Edge™Al receives information about the available
edge devices, and their memory and computational resources. Based
on this information, the complex DNN is estimated as n smaller
DNNs (SNNs) and an aggregator. (The number of available edge
devices is n + 1). Figure 1(b) shows the abstract hardware model
of each edge device which includes on-chip buffers and memory
(SRAM) and possibly off-chip memory (DRAM), MAC units to
perform the bulk of the computations, and wireless link to send the
results to the aggregator'. Generation of the SNNs by Edge"Al is
performed only once as a pre-processing step.

To perform a distributed inference, each SNN will receive an
input. This input could be the same image that is broadcasted to
all, or it could be different views of the same object taken by
each device, such as in a multi-view setup as in [3]. Each SNN
generates probabilities associated with its assigned classes. In order
for the aggregator to compare these probabilities across all SNNs
in a meaningful way, first a normalized entropy is calculated for
each SNN. This normalized entropy is also evaluated against a
threshold (configured initially by EdgeAl) to generate a ‘Don’t
Know’ response [8], [4] when an SNN identifies its input not to
be from any of the classes that are assigned to it. The aggregator
then combines the results of the SNNs (by looking at the normalized
entropies and the generated Don’t Know responses) and produces
the final inference result. The aggregator is implemented as a neural
network classifier which as we show can be implemented with a
simple structure and small size. Augmenting the network architecture
to add one more output class to generate a Don’t Know response is
also possible but inefficient since it requires retraining each SNN.

To generate the SNNSs, first, a subset of the classes of the
original DNN is assigned by Edge™ Al to each device through a class
partitioning step. Next, class-aware pruning is applied to prune the
DNN (for each case) and generate a smaller DNN (i.e., an SNN) for
each device based on its subset of assigned classes. This step utilizes
a recent class-aware pruning scheme proposed in [6] which is able
to generate each SNN without need for retraining and with only a
negligible loss in classification accuracy for its assigned classes.

Al of these components are accounted to estimate the inference latency.

Particular challenges for an effective implementation of Edge™ Al
include how to fairly compare the per-class probability generated by
individual SNNs against each other, and how to efficiently perform
class partitioning across the available devices so that class-aware
pruning (which can be time-consuming) is only performed a limited
number of times. In the next section, we discuss these details.
Specifically, in Section III-A we discuss calculation of the normalized
entropy and how it helps with fair comparison of results of individual
SNNs, and how it may be configured to generate a Don’t Know
response. We also discuss how the aggregator is designed to generate
the final inference result using this information in Section III-B. In
Section III-C we discuss an efficient procedure to evaluate class-
aware partitioning combinations and identify the most promising
candidates to enhance the overall classification accuracy.

Overall, Edge™ Al generates a distributed implementation suitable
to fit in resource-constrained edge devices with minimum latency
because it reduces the most time-consuming step (i.e., wireless
communication) to a single step when sending the outputs from the
SNNSs to the aggregator. The transferred data are normalized entropies
so the required bandwidth is minimal.

III. DETAILS OF EDGE™AI

Here we discuss three important design aspects of Edge™ Al First,
for a set of already-generated SNNs, we discuss how a normalized
entropy is defined to combine their individual inferences in a mean-
ingful manner. We also discuss how normalized entropy is used to
define a Don’t Know signal. Second, we discuss how the aggregator
is designed to combine the results of the SNNs. Third, we discuss
how SNNs are generated in an efficient and effective manner.

A. Normalized Entropy and Generation of A Don’t Know Response

Recall, each SNN is a reduced version of the original DNN when
pruning the DNN for a subset of its classes. These subsets are also
assigned in a way that the SNNs together cover all the classes in
the original DNN. During distributed inference, it is not meaningful
to directly compare the probabilities generated for different classes
across the SNNs with each other. For example, suppose one SNN
infers an input image to be a cat with probability 0.6 because its
output with highest probability corresponds to the class of cats. A
second SNN does not even include cats in its output classes and infers
the same image to be a dog with probability 0.7 because its highest
probability output corresponds to the class of dogs. Simply combining
the results of these two SNNs by taking the maximum probability is
not meaningful and may result in the wrong classification outcome.

To address this issue we first compute a normalized entropy metric
for each input and each SNN, and then use this metric to define
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a Don’t Know response for each SNN to quantify the cases when
an SNN is not certain about its prediction. Given an input, the
normalized entropy (NE) of an SNN is defined as follows [17]:

€]

el c
E(SNN) = —;%‘(g‘) )

where x. is the generated probability by SNN for class ¢ for that
input. Note ¢ € § C C where S is the subset of classes assigned to
the SNN and C is the set of all the classes (in the DNN), some of
which may not have been assigned to the SNN. Lower values of NE
correlates to higher certainty in the inference.

Calculating A Don’t Know Response: The normalized entropy
metric can further be used to define a Don’t Know response. More
specifically, we configure each SNN to predict if each of its received
inputs is relevant or irrelevant. A relevant input is one predicted to
belong to the set of classes covered by the SNN. An irrelevant input
is predicted to belong to the remaining classes (not covered by SNN).

Our key observation is that, for each SNN, normalized entropy
(NE) is a smaller quantity for relevant inputs compared to the
irrelevant ones. This observation can be used to define a ‘Don’t
Know’ response for each SNN by calculating one threshold (per
SNN) for its NEs. An NE below the threshold means the SNN outputs
an inference result for an input because it identifies it as relevant. In
this case, the NE is directly sent to the aggregator (together with the
index of class with the highest output probability). Otherwise, if the
NE is higher than the threshold, the input is rejected by the SNN for
inference. In this case, a Don’t Know response is encoded by setting
the NE to 1 before sending it to the aggregator to indicate the SNN
is uncertain and rejects the inference.

Algorithm 1 shows how the threshold is calculated by Edge™Al
as a pre-processing step for an SNN. (This algorithm is called
independently for each SNN to find its corresponding threshold.) The
inputs are the vectors N Er and N Er. (Parameters Tstart, Tena and
step are also specified as inputs which we set in our experiments.)
The output is the threshold T'h for the SNN.

The algorithm starts with a low threshold (" = Tstart) and
counts the number of NEs in INEgr which are lower than 7', as
well as the number of NEs in NE; which are higher than 7. (See
lines 3-13.) Next, accept Recall is calculated as the rate of relevant
inputs which are correctly identified as relevant for that 7'. These
inputs are correctly accepted by the SNN to make an inference (line
14). Similarly, a reject Recall is calculated as the rate of irrelevant
inputs which are correctly identified to be irrelevant for that 7" (line
15). These irrelevant inputs are correctly rejected by the SNN to
make an inference. Next in line 16, performance P is calculated as
multiplication of these two quantities. Higher performance takes into
account that we desire relevant inputs to be identified as relevant
(higher accept recall), as well as irrelevant inputs to be identified as
irrelevant (higher reject recall). Next in lines 17-20, threshold T'h
is updated only if P is the largest performance so far. Next, 1" is
increased by step. The above steps are repeated until 7,4 is reached.

The above algorithm, in effect searches for the optimal value of
threshold for an SNN within a range (Zstart t0 Teng With granularity
step) with the objective to maximize the performance. This is because
the overall classification accuracy of the distributed inference depends
on how accurate each individual SNN is at (1) accepting to make an
inference on its relevant inputs; (2) rejecting its irrelevant inputs and
generating ‘Don’t Know’ response.

Figure 2 shows an example of per-device performance and prob-
ability density function (PDF) of normalized entropies of relevant
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Algorithm 1 Find normalized entropy threshold for a given SNN.

Inputs: NEpg: Vector of normalized entropies calculated for relevant
inputs (dimension 1 X |R| ); NE: Vector of normalized entropies
calculated for irrelevant inputs (dimension 1 X |I| ); Tstart; Tend; Step.
Outputs: Entropy threshold T'h for the SNN.

I: T'= Tstarts Pmaz =0

2: while ' < T,,,4 do

3: relevantCount = irrelevantCount = 0
4: for each i =1 to |R| do

S if NEg(:) <T then

6: relevantCount++

7 end if

8: end for

9: for each i = 1 to |I| do
10: if NE;(i) > T then
11: irrelevantCount++
12: end if
13: end for
14: acceptRecall = relevantCount / |R)|
15: rejectRecall = irrelevantCount / |I|

16: P = acceptRecall x rejectRecall
17: if P > P,,q. then

18: Th=T > Update the entropy threshold.
19: Praz =P
20: end if

21: T =T + step
22: end while

(a) Device Performance (b) Relevant Inputs (c) Irrelevant Inputs
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Fig. 2: Per-device performance and PDF of normalized entropy for
relevant and irrelevant inputs using 3 SNNs.

and irrelevant inputs for a pruned variant of VGG-16 which is
decomposed by Edge™Al into 3 SNNs. Each row in the figure
corresponds to one device (i.e., one SNN). Each plot in the first
column shows 3 curves corresponding to the accept recall, reject
recall, and device performance as a function of the entropy thresholds.

As expected, for all three SNNs, relevant inputs have significantly
smaller normalized entropy compared to irrelevant ones. It can hence
be concluded that each SNN is more likely to correctly accept
an inference when seeing a relevant input, as well as to correctly
reject an irrelevant input and generate a ‘Don’t Know’ response.
Furthermore, as the plots in the first column show, there is a trade
off between accept and reject recalls when the threshold is varied.
Specifically, with increase in the threshold, the accept recall improves
while the reject recall is degraded. Also, different SNNs may have
different entropy thresholds. In this example, the entropy thresholds
(i.e., points with highest performance) are 0.30, 0.25, and 0.25 for
the first, second, and third device, respectively.
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B. Design of the Aggregator

The aggregator receives the following inputs from each SNN. First,
it receives a normalized entropy which also encodes a Don’t Know
signal. (Recall if the normalized entropy is found to be higher than the
SNN’s threshold, then the Don’t Know signal is encoded by setting
the normalized entropy to its highest value =1). It also receives the
index of the class with the highest output probability.

A naive approach is to first eliminate the normalized entropies of
all uncertain devices (all NEs=1), and then pick the inference result
of the device with the lowest NE. However, such an approach cannot
maintain accuracy, as verified, especially as number of SNNs grows.

To tackle this issue, the aggregator is implemented as a lightweight
neural network, featuring only 3 layers with at most 60 neurons
per layer. As a pre-processing step, the aggregator is trained using
stochastic gradient descent algorithm, for at most 10 epochs. To
obtain the training set, we randomly selected an equal number of
samples (50 in our experiments) from each class to ensure that all
classes are covered during training and they all contribute equally
to train the network. We note this training set is different than the
one used to calculate the threshold of normalized entropies in order
to reduce overfitting. To train the aggregator, first the SNNs are
generated by so the actual inputs to the aggregators (generated by
SNNs) may be determined for training purposes.

C. Generation of the SNNs

As shown in Figure 1, Edge™Al is responsible to generate the
SNNs by decomposing a complex DNN as a pre-processing step,
and based on received information about the available edge devices.

This is done as a two step approach. In the first step, Edge™ Al
partitions the classes of the complex DNN across the available edge
devices®. For a complex DNN with |C| classes and n+ 1 edge devices
(for n SNNs and 1 aggregator), each SNN is assigned a subset of the
classes S where |S|= % Each class ¢ € C is assigned to only one
SNN such that the assigned classes to the SNN cover all the classes
in the complex DNN. Once the classes are assigned to the SNNs,
in the second step, each SNN actually gets generated by applying
‘class-aware’ pruning to the original DNN. For class-aware pruning
we use the approach given in the recent work [6]. This algorithm
prunes an already-trained DNN to keep only a subset of the output
nodes, without the need for retraining. It reports negligible loss in
accuracy and promising model size reduction due to pruning. Class-
aware pruning in [6] takes advantage of the correlation between
neurons and output classes which is obtained by measuring class-
specific firing rates of neurons. The details can be found in [6] and
won’t be discussed here due to lack of space. Instead, we focus on
how class partitioning (step 1) is done.

First we motivate the need for an efficient procedure for class-
aware partitioning by explaining how an optimal approach based on
exhaustive search will be impractical.

Consider an ideal scenario where each of the (‘lg“) possible
partitions is evaluated and the best one is selected. To evaluate a parti-
tioning candidate in this ideal case, first the corresponding distributed
implementation must be generated. This means the SNNs must first
be generated by class-aware pruning, and then Algorithm 1 must be
called for each SNN to find the threshold for its normalized entropy.
The aggregator then must be trained. Finally, classification accuracy
corresponding to that partitioning candidate must be measured by
performing inference for that implementation over a testing set. This

’In this work we assume the edge devices have the same amount of
computation and memory resources. We note though that it is possible to
expand Edge™Al to handle non-uniform edge devices.
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ideal approach is time-consuming which makes it impractical. In fact,
the most time-consuming step and runtime bottleneck in the above
exhaustive search is the class-aware pruning step.

To efficiently evaluate a partitioning candidate, we propose
a scheme to efficiently estimate the normalized entropy (NE) of
each SNN. This estimation is only based on the assigned classes
corresponding to a candidate. Once NE is estimated for an SNN,
the threshold is found using Algorithm 1, and the corresponding
classification accuracy is measured for that candidate, as explained in
the ideal case. These steps together only require a limited number of
inferences and are performed efficiently. After estimation of the NEs,
we identify the top X% candidates with highest estimated classifica-
tion accuracy where X is a small value (5% in our experiment). These
top, few candidates are then accurately evaluated (by measuring the
classifying accuracy with the actual not-estimated NEs), and the one
with highest classification accuracy is selected.

To estimate the NE for a partitioning candidate, we use the
following procedure. The partitioning candidate is specified by a
subset of classes S € C as input to the procedure. First, we generate
|C| pruned variations of the DNN. Each variation is optimized to
accurately classify one of the output classes of the DNN. This step
is done using class-aware pruning of [6] and is efficient because
only |C| number of pruning calls are made to the DNN, as opposed
to (I‘g‘l) these single-class pruned variations are referred to as PNNs.

Next, for a given input, the normalized entropy is estimated by
looking at those PNNs which are optimized for the output classes that
belong to S. These are the PNNs which are pruned to each classify
only one of the classes in S accurately. Next, we apply the input
to each PNN independently and measure their corresponding output
probabilities. The normalized entropy is then found using Equation
(1) where class ¢ is only changed within the classes of S and the
probability x. is the output probability generated by each PNN.

The above procedure estimates an unknown SNN using only its
known set of classes S and as union of |S| independent PNNs. It
estimates the NE using the probabilities generated by these PNNs.

Figure 3 shows the effectiveness of estimating the NEs in identi-
fying the top candidates. The Y-axis shows the percentage overlap
between the actual top candidates and the ones found using the
proposed estimation scheme. The X-axis is the number of top
candidates to be identified (i.e., X%). The results are shown when
implementing a variant of VGG-16 using different number of SNNs,
ranging from 2 to 5. We observe a significant overlap between the
two sets. For example for X=30%, the overlap is 50% for 3 SNNs.

IV. RESULTS AND DISCUSSION
We experimented with different variants of VGG-16 and ResNet-
152 networks to evaluate its distributed implementation using
Edge™ Al. VGG-16 consists of 13 convolutional layers and 3 fully
connected layers, with each layer being followed by a ReLLU function.
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TABLE I: Average model size of the base models after class-aware
pruning when varying the number of output classes.

Number of Classes VGG-16 ResNet-152
model size (MB) model size (MB)

10 classes 82 62

20 classes 98 80

50 classes 131 86

70 classes 138 98

100 classes 164 104

VGG-16 ResNet-152
08| mm 25NNs 0s| W 2 SNNs
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Fig. 4: Model size of the largest SNN relative to different base models
(shown in the X axis) when varying the number of generated SNNGs.

ResNet-152 includes 151 convolutional layers followed by a single
fully connected layer. The networks are implemented in TensorFlow
and trained and tested on the ImageNet (2012) dataset.

Base Model: We generated different variants of the networks and
used them as different base models to implement using Edge™ Al
We experimented when the number of output classes are varied to
|C|= 10,20, 50,70, 100. For each number we randomly selected a
subset of output classes from the original networks (and repeated this
process 10 times). For each subset of selected output classes we then
used the class-aware pruning scheme in [6] and pruned the network to
obtain a base model. Overall, we experimented with 50 base models.
Table I summarizes the relative model size of the pruned base models
when varying the number of output classes for these networks.

A. Comparison of Classification Accuracy and Model Size

We evaluated the effectiveness of Edge™Al in terms of per-
device model size reduction and classification accuracy. We used
the base models described before (|C|= 10, 20,50, 70,100) and
implemented them with Edge™AI when the number of SNNs are
n = 2,5,10,15,20. We set the following parameters in Algorithm
l: Totart = 0.2, Teng = 0.6, and step = 0.05.

For each variation of base model and number of edge devices, we

report the size of the largest SNN relative to the size of the base
model, along with the top-1 classification accuracy.
Model Size. Figure 4 shows the relative model size of SNNs for
different base models across n + 1 devices for these two networks.
Model size reflects the largest SNN among all generated SNNs and is
measured by the number of its unique parameters including number of
weights and biases. It is then normalized to the number of parameters
in each base model. Finally, for each value of n and |C|, the reported
model size is averaged across the 10 base models with |C| classes.

As the results show, Edge™ Al can significantly reduce the size of
each SNN, for all combinations of number of devices and classes.
Furthermore, for a fixed value of |C|, the size of the largest SNN
reduces as we increase the number of devices. This is because with
a higher number of devices, fewer classes will be assigned to each
SNN, leading to more aggressive pruning. For example, in VGG-16,
for a base model with 20 classes implemented on SNNs ranging from
2 to 20, the relative model size is reduced in the range of 0.57 to
0.40, respectively. These numbers change to 0.82 and 0.48 of the
base model respectively, if the number of classes is increased to 100.
Classification Accuracy. Next, Table II reports the top-1 accuracy
for different base models and their distributed implementation with
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TABLE II: Comparison of top-1 accuracy of different base models
implemented by Edge™ Al as the number of SNNs is varied.

Base Base 2 5 10 15 20
Model Accuracy SNNs SNNs SNNs SNNs SNNs
VGG-16
10 classes 88.3 87.8 86.7 86.2 - -
20 classes 87.3 86.7 87.1 86.3 86.1 85.8
50 classes 85.1 84.9 84.7 83.1 83.3 83.5
70 classes 84.1 84.3 83.9 83.3 83.1 83.2
100 classes 82.4 81.9 81.6 82.1 82.2 82.3
ResNet-152
10 classes 88.6 87.5 87.1 86.7 - -
20 classes 87.9 87.2 86.8 86.4 86.1 86.3
50 classes 87.1 87.3 86.5 86.3 86.8 86.1
70 classes 85.6 85.1 85.3 84.8 84.3 84.6
100 classes 84.3 84.1 83.8 83.5 83.4 83.2

Edge™ AT across different SNNs. As the results show, top-1 accuracy
is maintained for all combinations of number of SNNs and base
models. As an example, for VGG-16, for a base model with 100
output classes, accuracy degradation remains less than 0.5% (0.1%)
once the network is partitioned into 2 (20) SNNs. For ResNet-152
with 100 output classes, accuracy degradation ranges from 0.2% to
1.1% for 2 to 20 SNNs. Also, as can be seen, changing the number
of SNNs affects the top-1 accuracy of the networks given that both
the aggregator design and number of classes assigned per SSN vary.

B. Comparison of Latency on Different Hardware Platforms

Here we evaluate the latency to perform one distributed inference

as generated by Edge™ Al and compare it against a recent work [15].
The work [15] distributes a complex DNN by partitioning the output
neurons of each layer. The complex network is partitioned such that
each device calculates only a subset of output neurons of a layer and
then broadcasts them to all remaining devices.
Estimation of Latency: The latency to perform a distributed infer-
ence is calculated as sum of of 3 main components: (1) latency of
the slowest SNN, (2) latency of the wireless communication network,
and (3) latency of the aggregator.

To measure the latency of each SNN, we use the hardware model
shown in Figure 1(b). Delays of computational units including MAC,
Pooling, ReL.U are taken from [11], [13]. We also used NVSIM [5]
to measure the latency of on-chip and off-chip memory accesses.

We then constructed an analytical model based on the architecture
shown in Figure 1(b) and the sizes of memories, and number of
computation units. Specifically, we estimated the number of on-chip
and off-chip memory accesses and number of MAC operations for a
hardware platform. To execute a convolutional layer, we assume the
input feature maps are processed in parallel and the output feature
maps in serial, similar to [19]. For the communication network, we
measure the latency by setting the communication bandwidth to 100
Megabits per second (Mbps) as in [15]. Lastly, we use the same
analytical model to measure the latency of SNNs and the aggregator
since they are both neural networks.

Using the above model, we report the latency to perform a
distributed inference using Edge™Al under two different hardware
platforms (both of which have the same architecture shown in Figure
1(b)): (1) edge devices with at most 150 MB on-chip storage per
device and no off-chip memory, and (2) microcontrollers with at
most 500 KB on-chip storage and a shared off-chip storage of 1.6
GB. Furthermore, in both platforms, each device has at most 4608
MAC units (two-input multipliers followed by two-input adders). For
each case we experimented when the number of edge devices to
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Fig. 5: (a) Per-device required memory size for different variants of the base model (X axis); (b) Speedup to perform one distributed inference
compared to [15] on hardware platform 1, and (c) Speedup on hardware platform 2.

implement the SNNs is varied from 2 to 20. (The total number of
devices including the aggregator is 3 to 21.)

First, Figure 5(a) shows the per-device required memory size
(MB) to run on either platforms. The figure is essentially memory
requirement corresponding to Figure 4. As Figure 5(a) shows, the per-
device required memory can be significantly reduced using Edge™ Al
For example, for a base model (variant of VGG-16 with 100 classes),
the required storage is reduced from 160 MB to around 80 MB when
implementing the base model across 20 parallel edge devices (SNNs).

The actual latencies for each hardware platform are reported as
speedups compared to [15] in Figures 5(b) and (c). Each platform will
result in different number of on-chip and off-chip memory accesses
and hence will result in different latencies. These are shown in for
different base models (X axis) and different number of SNNs.

As can be seen in Figure 5(b) and 5(c), Edge™Al can achieve
a distributed inference with significant speedup for both hardware
platforms. The speedup will increase as we increase the number of
devices. This is because in [15] the communication overhead grows
exponentially with the increase in number of devices (since each
device should broadcast its computed neurons to the remaining n — 1
devices). Lastly, Edge™Al achieves a greater speedup on platform 1
compared to platform 2 because edge devices with at most 150 MB
eliminate the need for off-chip memory accesses. Overall, Edge™ Al
achieves speedups up to 17X (for platform 1) and 5.5X (for platform
2) for distributed inference of the base model with 100 classes, using
20 edge devices to implement the SNNs.

Edge™ Al also improves latency in the case of ResNet-152. The
results are not shown here due to lack of space. For this network,
distributed inference achieves 9X speedup (for platform 1) and 7.5X
speedup (for platform 2) with 100 classes on 20 devices.
Overheads. In terms of the overhead to initially generate the SNNs,
the run-time of Edge™ Al is greatly reduced using our technique to es-
timate the normalized entropy. Specifically, estimation of normalized
entropy reduces the run-time of one inference—a step called many
times during SNN generation—to 0.23 of when there is no estimation.
Moreover, generation of SNNs does not incur a significant overhead
since class-aware pruning does not involve any retraining step and
relies on a set of efficient heuristics. Lastly, the overhead of training
the aggregator is minimal (less than 10 epochs in our experiments),
owing to the simple architecture of the network.

V. CONCLUSIONS
In this work, we propose Edge™ Al a novel framework that enables
partitioning and implementing a complex DNN across multiple
edge devices with minimal latency overhead. We showed Edge™ Al
achieves up to 17X speed up when distributing a variant of VGG-16
over 20 edge devices, without much loss in accuracy.
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