
Strain-Based Consensus in Soft, Inflatable Robots

Alexandra Nilles1, Steven Ceron2, Nils Napp1, and Kirstin Petersen1

Abstract— Soft robots actuate themselves and their world
through induced pressure and strain, and can often sense
these quantities as well. We hypothesize that coordination in a
tightly coupled collective of soft robots can be achieved with
purely proprioceptive sensing and no direct communication. In
this paper, we target a platform of soft pneumatic modules
capable of sensing strain on their perimeter, with the goal
of using only the robots’ own soft actuators and sensors as
a medium for distributed coordination. However, methods for
modelling, sensing, and controlling strain in such soft robot
collectives are not well understood. To address this challenge, we
introduce and validate a computationally efficient spring-based
model for two-dimensional sheets of soft pneumatic robots.
We then translate a classical consensus algorithm to use only
proprioceptive data, test in simulation, and show that due to
the physical coupling between robots we can achieve consensus-
like coordination. We discuss the unique challenges of strain
sensors and next steps to bringing these findings to hardware.
These findings have promising potential for smart materials and
large-scale collectives, because they omit the need for additional
communication infrastructure to support coordination.

I. INTRODUCTION

Soft robotics has rapidly developed over the last two
decades, demonstrating simple mechanisms with infinite
degrees of freedom and the ability to passively deform to
external objects [1]. Recently, this field has started to impact
swarm robotics, where many simple robots coordinate locally
to achieve complex emergent behaviors [2]. The two fields
complement each other well. Where soft robots have limited
active degrees of freedom and sensory capabilities, swarms
of soft robots can pool resources to achieve capabilities
beyond the sum of the parts. Meanwhile, soft swarms have
scalable, affordable, multi-functional hardware that is robust
to physical interactions between robots and the environment.

In this article we are inspired by epithelial tissues that
primarily use inter-cell forces to regulate shape and structure
and generate signals that influence tissue growth [3]. This
method of coordination through strain in the shared substrate
is uniquely suited to collectives of soft robots because they
intrinsically couple strain, actuation, and sensing. This lets
us add a layer of system intelligence embodied in the
information-rich interaction between deformable agents.

Adapting methods from distributed robotics to strict pro-
prioceptive sensing requires careful design of both hardware

This work was supported by National Science Foundation grants DMR-
1933284, CNS-2042411, IIS-1846340, and a Packard Fellowship for Science
and Engineering.

1School of Electrical and Computer Engineering, Cornell University,
Ithaca, NY 14853, USA. 2Sibley School of Mechanical and
Aerospace Engineering, Cornell University, Ithaca, NY 14853,
USA. aqn3@cornell.edu, sc2775@cornell.edu,
nnapp@cornell.edu, kirstin@cornell.edu

and algorithms. Traditional consensus algorithms require
agents to directly observe their neighbor’s state or commu-
nicate between agents, and often assume that an individual’s
state change does not affect its neighbors. In contrast, strain
is a proprioceptive sensing technique that does not necessar-
ily allow for full reconstruction of neighboring robot states.
Furthermore, in coupled soft robot collectives, the change of
state (strain) in one individual will have a direct impact on
the state of the neighbors. Our work examines how forces
couple in the collective, and shows that individually felt
strain can serve as a proxy for direct observation of the local
state of the collective. To support our study, we leverage the
latest iteration of the “Foambots”, where many magnetically
coupled pneumatic modules can induce and measure strain
in the collective [4]. We develop a low-dimensional, com-
putationally efficient model and a corresponding simulator,
fitted to and validated against the hardware. We then use this
simulator to investigate how to adapt distributed consensus
to a setting where modules cannot directly communicate,
but only change their own pneumatic state in response to
their own strain measurements. Our work suggests that if
robotic agents comprise the substrate they are actuating,
strain sensing can be an effective method for low-bandwidth
distributed coordination, and these insights can be of benefit
to both soft modular robots and smart materials [5].

Our contributions are the design and characterization of
an updated soft pneumatic robot module (Sec. III); a simple
model of static forces in a collective of such modules
(Sec. IV); the calibration and validation of a software im-
plementation of the model (Sec. IV-C); and finally, imple-
mentation of distributed consensus algorithms in simulation
and a comparison of performance under different constraints
on communication and sensing (Sec. V).

Fig. 1: Platform used to study consensus in soft robot
collectives. (a) Seven foambots in a dense packing, inside
a compliant fabric sleeve. (b) Seven simulated robots (green
polygons) in a dense configuration, showing simulated strain
sensor responses (nondimensional).

II. RELATED WORK

Several past works have suggested ways in which de-
centralized coordination can be achieved in soft/deformable
robot collectives. In [6], deformable robots composed of
flexible PCBs used electromagnetic communication to pass
explicit messages between coupled magnets on their perime-
ters. In the ant-inspired robots in [7] and the voice-coil-based
robots in [8], the authors leveraged mechanical/acoustical
vibration to pass explicit messages between robots. Other
works have leveraged physical interactions, rather than robot-
robot communication, between non-flexible robotic oscil-
lators to achieve behaviors such as collective motion by
understanding the statistical mechanics of the systems [9],
[10]. Also related is coordination through robot-medium
interactions, such as a constrained collective of mobile robots
in granular media [11], where the interactions between robots
and their substrates allow the collective to switch between
several useful modes and thus achieve both locomotion and
grasping behaviors. In contrast to these systems, the focus
of this paper is to demonstrate how collective coordination
can be achieved through distributed sensing and actuation
of strain, which is often implicit to the functionality of soft
robots. Where others mostly focus on producing collective
motion, we focus on strain consensus, though our approach
may be extended to motion in future work.

Other works have investigated the effect of adding a
confining boundary or enclosure to collections of very simple
robots [12], [13], and it is a branch of research that is very
promising for micro-scale applications. There remain many
open questions about the effects of scale, material properties,
and geometry of the boundary on collective behavior in
confinement. In our work, the compliant perimeter is used
to provide more realistic data for simulator validation, but
future work will investigate more direct use of enclosures
and robot-environment interactions.

Best approaches to modelling soft robots is an area of
active research, with methods including rod and beam mod-
els, piece-wise constant curvature models, and finite-element
approaches [14]. In addition, model-free approaches have
been well-established in similar modular, soft systems as
long as they are sufficiently observable [15]. Since our robots
are limited to relatively slow actuation, we do not consider
dynamic effects, and we target distributed algorithms that
only use each agent’s proprioceptive sensors. We support
this work by developing an efficient, validated quasi-static
simulator and use it to analyze said algorithms.

III. HARDWARE PLATFORM
The experimental results are obtained using the Foambots,

originally described in [4]. In this paper we introduce and
use a newer version of these soft modular oscillators, shown
in Fig. 2(a-b). Modules are cylindrical, measuring 84mm in
height with a diameter of 54mm. Their perimeter consists
of an inflatable EcoFlexTM 50 membrane with integrated:
1) spandex fabric for resilience, 2) six pairs of embedded
Neodymium magnets (B631 from K&Jmagnetics) for loose
coupling with their neighbors, and 3) six embedded strain

sensors fabricated as described in [16] to perceive forces
acting on their membrane. Modules have a rigid, 3D printed
core which holds a DIMINUS 6V air pump, an Uxcell
3mm normally-closed valve, and a 3.7V 600mAh Li-Ion
battery for stand-alone operation. Finally, a printed circuit
board on top of the cylinder contains an ATmega324 8bit
microcontroller, six infrared transceivers, a NXP absolute
pressure sensor (max 16.7PSI), and an RGB debugging LED.

A module is capable of increasing its circumference by
∼1.85 times, from 54mm diameter to 100mm diameter. In
spite of the high strain ratio, the membrane response is close
to linear (Fig. 2(c)), likely due to the embedded latex fabric.
It is worth noting that strain sensors capable of this level
of extension are typically based on liquid metals which risk
leakage [1]. Although the resistive sensors on the Foambots
maintain conductivity at maximum strain, they also exhibit
non-linear, temporal behaviors (Fig. 2(d), detailed in [16]).

In Fig. 2(e), we show how the spring constant of a module
and its membrane changes at different inflation states. To
measure the spring constant of a module, we placed a single
inflated module between a hard wall and a 5kg micro load
cell from Phidgets, and varied the distance from the load
cell to the wall, so that the load cell compressed the module.
To measure the spring constant of the membrane, we fixed
one end of membrane material and attached the load cell
to the other end and stretched it. From this experiment we
see 1) that force, F , and displacement, x, have a linear
relationship in all tests; 2) the membrane has a lower spring
constant, km, than the internal spring constant, ki, of the
inflated modules; and 3) when the module is inflated more
(as tinflation increases), it leads to a higher internal spring
constant. It is also worth noting that at tinflation > 7s, the
membrane reaches its maximum possible strain. At this point
the pressure inside the Foambot increases markedly and it
becomes much stiffer. Excluding this data point, we see that
the Foambot spring constant has a linear relationship with
the amount of inflation.

IV. MODEL AND SIMULATION

We present a simple model that predicts the steady-
state configuration of our robot collective, given inflation
setpoints for each robot and the contact topology of the robot
collective. By modelling key aspects of the collective as a
network of springs, we can efficiently estimate how forces
in the collective will scale and change during state changes
in the collective. We are also able to run simulations with
larger numbers of agents, as a first step toward understanding
behaviors of large collectives of deformable agents.

In simulation, a Foambot is constructed from six internal
springs representing the internal air pressure of the Foambot
and six membrane springs representing the membrane. The
spring constants for the simulator were chosen to reflect the
properties of the physical Foambots as described in Sec.III.
The six nodes on the perimeter of each robot represent the
six sensors, and if agents are attached, they are attached at a
sensor node. We are interested primarily with how forces and
strain propagate through the system, especially their relative

Fig. 2: (a) Foambot module in deflated and inflated state.
(b) Exploded view showing rigid core design. (c) Membrane
diameter over 4 inflation and deflation cycles. (d) Hysteresis
in sensor response to rapid inflation and deflation. (e-left)
Force versus displacement of membrane/module inflated for
[2, 3.. 8]s. (e-right) Spring constants.

magnitudes as measured by the sensors on individual robots.
The Foambots inflate and deflate slow, therefore we assume
a quasi-static system which allows us to use least squares
optimization to compute the expected system configuration
and forces after the robots perform their actuation. This low-
dimensional model is simple enough to be useful for quick
iteration on algorithms and physical designs.

To compute the equilibrium position of the system, we use
a least-squares formulation. The input variables are the xy-
coordinates of the vertices and each spring has an associated
output variable with the value

√
k(l − l0), where k and

l0 are properties of the spring and the actual length l is
computed from the input variables. Physically, this means
the least squares solution corresponds to a minimum energy
configuration. This cost function is invariant to isometric
transformations (translation and orientation), and to aid vi-
sualization we fix the orientation and location by excluding

one ”anchor” point from the input variables and adding an
additional output variable that corresponds to the orientation
of an ”anchor edge”.

To compute the solution we use SciPy’s built in least
squares solver with the default Trust Region Reflective (TRF)
algorithm. Since each node is only connected to a few
springs, the TRF solver can take advantage of this inherent
sparsity. To utilize this feature, we explicitly compute the
Jacobian as a sparse matrix (csr sparse). This provides
a speed up of several orders of magnitude compared to
the default 2-point method for computing the Jacobian and
allows us to solve a system of several thousand springs
(hundreds of robots) in a few seconds.

In situations where we want to model a strain-limiting
boundary, we compute the overall boundary perimeter, and
once it reaches a maximum length P , add a new set of
stiff springs to the edges on the boundary that enforce this
constraint. When the boundary is in tension and shrinks
beyond the P threshold we remove these added edges. The
source code of the simulator is available upon request.

A. Simulating Strain Sensors

The strain sensors used in the Foambots generally increase
in resistance when they are stretched or compressed, so the
sensor signal is a function of both the perimeter geometry of
the robot and any external forces acting on the membrane.
Following work in modelling of biological epithelial systems
[17], we model the strain-inducing forces acting on sensor
vertex j of robot α with neighboring robot β as

F (vαj) = km

(∑
e∈CCW

σ(e)(lαe − lα,reste)ûαj

+
∑
f∈CW

σ(f)(lαf − l
α,rest
f)v̂αj

)

+A

(
kβi (`

β
j − `

β,rest
j)l̂βj + kαi (l

α
j − l

α,rest
j)l̂αj

)
.

(1)

Fig. 3 illustrates the vectors involved in the force model
at a single sensor. At a high level, the first term quantifies
strain due to stretching forces, and the second term quantifies
compression of a sensor between a module and its neighbor,
if applicable. The first sum in the first term is over the
counterclockwise (CCW) half of the module edges starting
from node j, and the second term sums over the clockwise
(CW) half of the module; km is the membrane spring
constant (uniform for all modules and all states); `α and
`α,rest are the actual and rest lengths of the edges/springs
along the membrane, and ûαj and v̂αj are the vectors along the
edges incident to vertex j. We include a weighting function,
σ(e), inspired by empirical evidence that deformations to the
membrane do not transmit strain everywhere equally in the
membrane; we assume that “influence” from a deformation
drops off linearly as distance to the sensor increases, and
integrate this linear weight over each edge to compute σ.

Fig. 3: Sketch of how local strain is computed as the sum of
extension and compression forces acting on the sensor. The
red arrows represent the force vectors in Eq. 1.

In the second term, kβi is the internal spring constant of
robot β (a function of the target inflation level), `β,restj is
the rest length of the internal spring between vertex j and
the center of robot β, `βj is the actual length of the internal
spring, and ˆ̀β

j is the unit vector from the center of robot β to
vertex j. A is a system parameter denoting the relative weight
of compression forces vs extension forces in sensor output,
tuned through the validation described in Sec. IV-C, or is zero
if no neighbor is present. To compute the simulated strain
sensor output, we compute the magnitude of each term and
sum the magnitudes, taking these as the normal and tangent
forces to the sensor.

B. Simulating Actuation

Actuation is simulated by changing the rest lengths of
the inner springs in the range (Rmin, Rmax), as well as the
spring constants to reflect the calibration data in Section III.
This method assumes that the radius of the robot increases
linearly with time of inflation, so robot set points can be
made in terms of target radius. We only operate our simulator
in regimes where the actual length of the springs never goes
below Rmin (the radius when the robot is deflated), and thus
we do not explicitly model the rigid centers of the robots.

Given a set of commands (radius setpoints per robot), the
simulator discretizes time and solves the simulation at each
timestep during the actuation, while logging sensor data.

This model easily admits some extensions to increase
realism, such as increasing the discretization resolution with
more springs per module, allowing agents to detach and
attach when inter-module forces or proximity cross a thresh-
old, or including dynamic effects for hardware with faster
actuation or materials that admit more dynamics.

C. Simulator Validation

When validating the simulator and tuning parameters, our
main goal was to replicate the average trends of the loaded
strain sensors, as well as match the individual sensor re-
sponses as much as possible. This strategy permits us to test
algorithms that use aggregate signals across all sensors on a
single module. Real resistive sensors may increase in value
both due to elongation (as the membrane expands into free
space) and cross-sectional compression (when two modules
squeeze against each other). Here, we confine our study to
seven modules arranged in a compliant perimeter (Fig. 1),
with a nominal inflation level of 0.5Rmax. Confining the
collective helps guarantee a fixed contact topology of the

robot collective, and simulates a larger collective since a
module inflating on the boundary will experience resistance
instead of simply inflating into free space without affecting
the center module. We found that in the seven-robot configu-
ration compression forces dominate, i.e. if a module inflates,
the adjacent sensor on the neighboring module will increase
in resistance; if it deflates, the resistance will decrease.

To validate the simulator, we performed a pre-programmed
sequence in the seven-robot configuration with all modules
initialized with 3.5s of inflation. Sensor data from the center
(“listener”) module was collected, while a single bound-
ary (“active”) module inflated to Rmax, paused, then fully
deflated (Fig. 4(a)). In Fig. 4(b) we compare real sensor
signals with simulated sensor signals. For ease of visual
comparison, the simulated sensor signals were scaled to
match the real data’s average response magnitude before the
active module inflates. Note that sensor 5 was not recorded
due to experimental setup constraints.

We qualitatively evaluated three sensor models: 1) a linear
weighting term (σ in Eq.1) 2) an unweighted sum, or 3)
including only the local forces from the two immediately
adjacent springs. The linear weighting term gave the best
match to observed data (average goes up during neighbor
inflation, and down after, and sensor one increases in resis-
tance while others stay flat or decrease). Using this model,
we then tuned the relative magnitude of the compression and
extension forces on the sensors by performing a parameter
sweep over parameter A in Eq. 1, and compared the resulting
simulated sensor data to hardware data, after which we chose
to use A = 1.3 for the demonstrations in this paper.

Quantitatively, we compare the events in the real and
simulated signals by extending a linear fit from the average
signal in the two seconds before the inflation/deflation events
(at 34 and 48 seconds). The resulting fits are extrapolated
over the window of time following each event, as seen by
the black dotted lines in Fig. 4(a). When the active agent
inflates, the average signal over the time window [34, 48]
increases above this fit for the entire next 14 seconds, by
an average of 18% of R0 in the real data, and 12.7 units in
simulation. When the active agent deflates, the average signal
from hardware increases for six seconds before decreasing
below the projected pre-event signal by an average of −8%,
while in simulation the average signal decreases by 33 units.
Clearly, more sophisticated system identification may be
performed, but our goal for this work was to match the
average behavior “close enough” to test the effectiveness of
a proprioceptive algorithm.

There are three significant effects not captured in our
simulator: 1) a slow decrease in resistance, likely caused by
slow deflation and/or polymer relaxation effects; 2) transient
effects related to perturbations causing sensor resistance to
increase briefly during any type of “event”; and 3) each
sensor has a unique offset due to the manufacturing process,
while all simulated sensors are identical. To help compare
simulated and real data with respect to the last point, we
always normalize resistance data based on the average value
of the sensor before the module inflates.

(a) Sensor data from three trials of the validation experiment.
The first five seconds of this dataset were averaged to
compute R0 for each sensor, then the percent change was
computed as 100 ∗ R(t) − R0)/R0. No other filtering or
alignment was performed.

(b)

Fig. 4: Comparison of (a) hardware and (b) simulated sensors
from the center listening module during the validation pro-
cedure, shown in insets. The red signals represent the sensor
connected to the active agent. In each figure, the thick black
line is the unweighted average of all the sensor responses.

V. CONSENSUS ALGORITHM

In [18], the authors present a generalized distributed
consensus algorithm for modular robotic systems. They
emphasise that in many cases, direct observation of the
neighboring state is not possible (as is true in our system).
They demonstrate sensor feedback laws that rely only on
measurements of relative tilt or force between robotic mod-
ules, and give proofs of convergence in these cases. In this
section, we extend this approach by approximating individual
module strain and using differences between this quantity
and a reference strain as a proxy for the information required
for consensus algorithms.

A. Consensus

Consensus algorithms take the general form xi(t + 1) =
xi(t) + α

∑
aj∈Ni

g(εi, εj), where xi(t) is agent ai’s state

at time step t, α is a small constant sometimes called the
damping factor, Ni is the set of agent ai’s neighbors, εi is
the sensor reading of agent ai, and g(εi, εj) is a sensory
feedback function based on the interaction between agents
ai and aj .

In our system, let the state xi(t) be the total strain felt
by each Foambot, and we wish to design our system such
that the collective maintains strain consensus, distributing
environmental forces throughout the collective. Inflation gen-
erally increases local strain (and the apparent resistance
of the robot’s sensors), and deflation generally decreases
strain. If the agents were able to directly communicate their
measured strain value, we would define g as

g(εi, εj) = εj − εi (2)

and the state update would be proportional to the sum
of differences between a module’s felt strain and all its
neighbors’ felt strain. However, if communication is not
possible, we define g to be the sensor feedback law

g(εi, εj) = ε∗ − εi (3)

where εi is the average strain felt by agent i from all of
its sensors and ε∗ is a constant, pre-programmed reference
strain. Note that Eq. 3 is a proportional control law, and no
longer appears to be a true consensus algorithm. However,
in dense collectives εi is implicitly a function of the neigh-
boring modules’ states via the inter-module interactions. As
long as the strain signal εi is affected by the local strain, if
g decreases in magnitude, the local strain is getting closer
to ε∗. If g is negative, the local strain is larger than the
reference strain, and the resulting feedback action will cause
the robot to deflate (and vice versa if g is positive). Following
the convergence proofs from [18], as long as ε∗ admits
a valid configuration, we should still expect all modules
to eventually reach a consensus value, either the reference
strain, or the nearest feasible strain value. Of course, this
method is no longer guaranteed to reach the same equilibrium
state as under traditional consensus, but it is much easier to
implement, especially as we scale hardware down.

B. Algorithm Comparison

We test both feedback laws in our simulator using a large
collective of 209 modules arranged in a rectangular sheet
with 11 rows. The collective is initialized in a “bent” shape,
created by inflating row i to i/11 of the maximum module
radius. Fig. 5 shows a comparison of the behavior. For
the proprioceptive controller, we used a reference strain of
ε∗ = 7.8, an approximation of the final state of the full-
communication simulation. We set the damping factor α =
0.001 for both. We include visualizations of the collective be-
havior under our controllers in the supplemental video; both
approaches successfully “straighten” the sheet. Notably, the
proprioceptive control approach acts faster, since the modules
“know” the reference strain, while the communication-based
consensus has a more constant rate of change per module.
The non-monotonic behavior of the overall state change as

(a) The initial configuration of the 209-module assembly.
Colorbar shows simulated sensor responses, nondimensional.

(b) The average strain per robot during iteration of both
algorithms. The distinct groups of trajectories correspond to
the different horizontal bands in (a).

(c) The change in average strain, computed every 4 iterations
and averaged over all robots.

Fig. 5: Comparison of the consensus control laws, one that
allows communication with neighbors (Eq. 2), and one that
uses a proportional controller (Eq. 3) on proprioceptive data.
Both collectives are initialized as seen in (a).

consensus progresses (Fig.5c) shows that the modules are
being influenced by their neighbors, and the proportional
controller does not totally dominate the observed dynamics.
Further analysis of signal propagation dynamics, the effect
of α, and convergence criteria are outside the scope of this
work.

VI. CONCLUSIONS

We presented and characterized a new iteration of a soft,
pneumatic, modular robot. Our main contributions are a
low-dimensional, efficient model for estimating forces and
strain in the system, with calibration and validation against
our hardware system, as well as a demonstration of strain-
mediated consensus using communication only through the
substrate. In this case, the substrate is the robots’ own bodies,
which has exciting implications for smart materials that
can exhibit collective behaviors without requiring centralized
communication or even direct wireless communication be-

tween modules. It is also immediately apparent that the next
step in this line of work is to apply more sophisticated pro-
prioceptive algorithms to systems of coupled soft modules,
such as onboard state-estimation over the history of sensor
readings and actions, adaptive gain tuning, sensor fusion
with other proprioceptive sensors such as pressure sensors,
and programming collective behaviors through sensing of
environmental signals such as gradients or EM fields. There
are also many open questions in terms of robustness to noise
and transient effects of real-world strain sensors.

REFERENCES

[1] K. H. Petersen and R. F. Shepherd, “Fluid-driven intrinsically soft
robots,” in Robotic Systems and Autonomous Platforms. Elsevier,
2019, pp. 61–84.

[2] H. Hamann, Swarm robotics: A formal approach. Springer, 2018.
[3] C. G. Vasquez and A. C. Martin, “Force transmission in epithelial

tissues,” Developmental Dynamics, vol. 245, no. 3, pp. 361–371, 2016.
[4] S. Ceron, M. A. Kimmel, A. Nilles, and K. H. Petersen, “Soft

robotic oscillators with strain-based coordination,” IEEE Robotics and
Automation Letters, 2021.

[5] M. A. McEvoy and N. Correll, “Materials that couple sensing,
actuation, computation, and communication,” Science, vol. 347, no.
6228, 2015.

[6] N. J. Wilson, S. Ceron, L. Horowitz, and K. Petersen, “Scalable
and robust fabrication, operation, and control of compliant modular
robots,” Frontiers in Robotics and AI, vol. 7, p. 44, 2020.

[7] M. Malley, B. Haghighat, L. Houe, and R. Nagpal, “Eciton robotica:
Design and algorithms for an adaptive self-assembling soft robot
collective,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 4565–4571.

[8] R. M. McKenzie, M. E. Sayed, M. P. Nemitz, B. W. Flynn, and
A. A. Stokes, “Linbots: Soft modular robots utilizing voice coils,”
Soft robotics, vol. 6, no. 2, pp. 195–205, 2019.

[9] S. Li, R. Batra, D. Brown, H.-D. Chang, N. Ranganathan, C. Hober-
man, D. Rus, and H. Lipson, “Particle robotics based on statistical
mechanics of loosely coupled components,” Nature, vol. 567, no. 7748,
pp. 361–365, 2019.

[10] P. Chvykov, T. A. Berrueta, A. Vardhan, W. Savoie, A. Samland,
T. D. Murphey, K. Wiesenfeld, D. I. Goldman, and J. L. England,
“Low rattling: A predictive principle for self-organization in active
collectives,” Science, vol. 371, no. 6524, pp. 90–95, 2021.

[11] M. A. Karimi, V. Alizadehyazdi, B.-P. Busque, H. M. Jaeger, and
M. Spenko, “A boundary-constrained swarm robot with granular jam-
ming,” in 2020 3rd IEEE International Conference on Soft Robotics
(RoboSoft). IEEE, 2020, pp. 291–296.

[12] J. Boudet, J. Lintuvuori, C. Lacouture, T. Barois, A. Deblais, K. Xie,
S. Cassagnere, B. Tregon, D. Brückner, J. Baret, et al., “From
collections of independent, mindless robots to flexible, mobile, and
directional superstructures,” Science Robotics, vol. 6, no. 56, 2021.

[13] W. Savoie, T. A. Berrueta, Z. Jackson, A. Pervan, R. Warkentin, S. Li,
T. D. Murphey, K. Wiesenfeld, and D. I. Goldman, “A robot made
of robots: Emergent transport and control of a smarticle ensemble,”
Science Robotics, vol. 4, no. 34, 2019.

[14] C. Della Santina, C. Duriez, and D. Rus, “Model based control of soft
robots: A survey of the state of the art and open challenges,” arXiv
preprint arXiv:2110.01358, 2021.

[15] S. S. Ge, T. H. Lee, and Z. Wang, “Model-free regulation of multi-link
smart materials robots,” IEEE/ASME transactions on mechatronics,
vol. 6, no. 3, pp. 346–351, 2001.

[16] D. Ma, S. Ceron, G. Kaiser, and K. Petersen, “Simple low-cost
fabrication of soft sensors for feature reconstruction,” IEEE Robotics
and Automation Letters, vol. 5, no. 3, pp. 4049 – 4054, 2020.

[17] A. G. Fletcher, M. Osterfield, R. E. Baker, and S. Y. Shvartsman,
“Vertex models of epithelial morphogenesis,” Biophysical journal, vol.
106, no. 11, pp. 2291–2304, 2014.

[18] C.-H. Yu and R. Nagpal, “Self-adapting modular robotics: A gener-
alized distributed consensus framework,” in 2009 IEEE International
Conference on Robotics and Automation. IEEE, 2009, pp. 1881–1888.

