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Predicting the structural basis of targeted
protein degradation by integrating
molecular dynamics simulations with
structural mass spectrometry
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Targeted protein degradation (TPD) is a promising approach in drug discovery
for degrading proteins implicated in diseases. A key step in this process is the
formation of a ternary complex where a heterobifunctional molecule induces
proximity of an E3 ligase to a protein of interest (POI), thus facilitating ubi-
quitin transfer to the POI. In this work, we characterize 3 steps in the TPD
process. (1) We simulate the ternary complex formation of SMARCA2 bro-
modomain and VHL E3 ligase by combining hydrogen-deuterium exchange
mass spectrometry with weighted ensemblemolecular dynamics (MD). (2) We
characterize the conformational heterogeneity of the ternary complex using
Hamiltonian replica exchange simulations and small-angle X-ray scattering. (3)
We assess the ubiquitination of the POI in the context of the full Cullin-RING
Ligase, confirming experimental ubiquitinomics results. Differences in degra-
dation efficiency can be explained by the proximity of lysine residues on the
POI relative to ubiquitin.

Heterobifunctional degraders are a class of molecules that induce
proximity between a target protein of interest (POI) and a E3 ubiquitin
ligase, which can lead to ubiquitination of the POI and its subsequent
proteosomal degradation through a complex machinery of proteins1.
Degrader molecules provide the opportunity of a novel therapeutic
modality as compared with traditional small molecule inhibitors—sin-
glemolecules induce catalytic turnover of the POI and potentially offer
an avenue for modulation of targets traditionally labeled as undrug-
gable by classical therapeutic strategies2–4. Heterobifunctional degra-
ders consist of two separate protein binding moieties (the warhead
and theE3-ligand) joinedby a linker. Thewarheadbinds to the POI (and
we note that the degrader molecules studied here all have a non-
covalently binding warhead) and the E3-ligand binds to an E3 ubiquitin
ligase such as Cereblon (CRBN)5, cIAP6, KEAP17, von Hippel-Lindau
protein (VHL)8,9, or, potentially, to any of themore than 600 known E3
ubiquitin ligases3. The ternary complex induced by the E3-ligand-
linker-warhead degrader molecule is critical for bridging the interac-
tions between the POI and aubiquitin ligase (which canbe the native or

a non-native degradation partner of the POI). An important con-
sideration when assessing putative degrader molecules is the coop-
erativity of the ternary complex, i.e., the difference between the
binding affinity of the ternary complex and the binary components,
which can influence degradation efficiency. The cooperativity is
thought to result from interactions across the induced interface of the
POI-ligase pair10.

The formation of the POI-degrader-ligase ternary complex is
central to the targetedprotein degradation (TPD) process, but how the
formation of the ternary structure impacts protein degradation is still
poorly understood, especially given the dynamic nature of the
complex11,12. X-ray crystallography of the ternary complex13 provides a
high-resolution structure of a single conformational state, but a
growing body of evidence suggests that the dynamic nature of the
ternary structure may not be accurately represented by this lowest
energy crystallization snapshot. For instance, a study of several het-
erobifunctional degraders found that different degraders displayed
different degrees of efficiency, although the corresponding ternary
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complex structures are nearly identical, thus raising questions about
the static structural representations of the ternary complex and
degradation efficiency. Studies targeting the degradation of Burton
Tyrosine Kinase (BTK) by CRBN or cIAP found that high degradation
efficiencies can also be achieved through degrader molecules that
induce a non-cooperative ternary complex, demonstrating a dis-
connect between binding affinity and degradation efficiency14. It
appears that for degraders that bind with relatively weak affinity
(~1μM) to either the target or the ligase, cooperativity is crucial to
optimize degradation. On the other hand, for degraderswith very high
binding affinity (lownM) to the target or the ligase, cooperativity is less
crucial.

This and other findings15,16 suggest that degradation efficiency is
more complex than can be understood through the thermodynamics
of binding or the analysis of static structures. As such, determining the
dynamic ensemble of the ternary complex may reveal mechanistic
insights to facilitate the design of more effective degrader
molecules13,17,18. Previous work to computationally predict ternary
structures has primarily consisted of protein–protein docking proto-
cols with rigid protein structures, possibly followed by refinement of
the initial structures with molecular dynamics (MD) simulations to
assess the stability of the predicted models18–20. However, these
docking protocols fail to predict experimentally determined struc-
tures with high fidelity and they neglect the aforementioned dynamic
nature of the ternary structure, highlighting the challenge associated
with the generation of ternary structure models.

Recently, Eron et al., using HDX-MS, demonstrated how ternary
complex structures of BRD4 do not represent the biologically relevant
conformer of the ternary complex induced with CRBN. Molecular
modeling revealed the dynamic nature and alternative conformations,
which helped explain the dramatically increased cooperativity, ternary
complex formation, and degradation of their molecule, CFT-1297,
compared to the literature standard, dBET621. The authors use
experimental data to improve protein–protein docking predictions,
but they admit that the high flexibility of degrader-induced ternary
complexes impedes a complete description of the bound conforma-
tions using their approach.

The goal of our work here is to understand the structural and
dynamic basis of targeted protein degradation and ultimately design
molecules for synthesis. We specifically focus on three different VHL-
recruiting degraders of SMARCA2, for which crystal structures exist.
PROTAC 1 (PDB ID: 6HAY18) and PROTAC 2 (PDB ID: 6HAX18) have been
solved previously and ACBI1 (PDB ID: 7S4E) was solved and deposited
as part of this work. The cooperativities and degradation efficiencies
for each of thesemolecules are summarized in Supplementary Table 1.
We carry out MD simulations in combination with hydrogen-
deuterium exchange mass-spectrometry (HDX-MS), shedding light
on the dynamics of the ternary complexes beyondwhat is provided by
static crystal structures. Specifically, we use protection data derived
from HDX-MS as collective variables in weighted-ensemble MD simu-
lations that predict ternary complex conformations, enhancing both
the speed and accuracy of the computational predictions. We also
show the usefulness of HDX-MS data as constraints for
protein–protein docking when higher throughput and lower resolu-
tion models are sought, such as when screening many degrader
molecules. Furthermore, we introduce methods that include long-
timescaleMDsimulations augmentedwith small-angleX-ray scattering
(SAXS) data and Markov state modeling to determine the conforma-
tional free energy landscapes of the ternary complexes, which is the
foundation for quantifying the populations of different conforma-
tional states. Finally, as an example of downstream use of these
models, we assemble the entire Cullin-RING ligase (CRL) to explore
structural and dynamic factors that may be associated with ubiquiti-
nation.Mass spectrometry-basedproteomics experiments validate the
predicted ubiquitination of several lysines of SMARCA2 induced by

ACBI1, supporting the use of the CRL model as a criterion for
explaining degradation.

This work offers insights into the dynamic nature of the ternary
structure ensemble and that of the full CRLmacromolecular assembly
that could explain ubiquitination and downstream protein degrada-
tion. Our results can be used to guide the design of novel degrader
molecules that induce a productive ternary complex ensemble. In
particular, having a small set of high-population ternary complex
structures can provide an avenue for structure-based degrader dis-
covery, particularly focused on the design of linkers that improve
drug-like properties of the degrader molecule while maintaining or
improving the aspects of the ternary structure ensemble that lead to
ubiquitination.

Results
Different degraders induce similar ternary complex crystal
structures
The ternary complexes of the bromodomain of SMARCA2 isoform 2
(iso2-SMARCA2BD) and the VHL/Elongin C/Elongin B (VCB) complex
induced by different heterobifunctional degraders have been studied
extensively18. In particular, PROTAC 1, PROTAC 2, and ACBI1 are three
degrader molecules that induce a ternary SMARCA2BD:VCB complex
with quite different degradation efficiencies (see Supplementary
Table 1). Whereas crystal structures of the ternary complexes induced
byPROTAC 1 (PDB ID: 6HAY) andPROTAC2 (PDB ID: 6HAX) exist, none
has been reported to date for ACBI1, themost potent degrader among
them. Thus, we determined the structure of SMARCA2BD:VCB liganded
by ACBI1 via X-ray crystallography (see electron density map of the
ternary complex interface in Supplementary Fig. 1). The structure was
obtained by hanging drop vapor diffusion (see X-ray structure deter-
mination of iso2-SMARCA2BD:ACBI1:VCB complex in the Methods for
more details)18 and solved by molecular replacement to 2.25 Å in the
highest resolution shell (Supplementary Table 2), using the PROTAC 2
crystal structure (PDB ID: 6HAX) as the search model (Fig. 1a).

ACBI1 bridges the induced interface, forming contacts with both
proteins. Importantly, the degrader induces favorable contacts across
the non-native interface, such as VHL:R69 and SMARCA2BD:F1463
(Fig. 1b, c). SMARCA2BD:N1464 maintains critical bivalent contacts to
the aminopyridazine group of ACBI1, positioning the terminal phenol
group for pi-stacking interactions with residues F1409 and Y1421
(Fig. 1b, c). On the ligase side of the interface, the interactions between
Y98 andACBI1 are consistentwith thosebetween the same residue and
PROTAC 1 or PROTAC 2 (Fig. 1b, c)18.

Despite differences in the linker compositions, the
protein–protein interface induced by ACBI1 is structurally similar to
that induced by PROTACs 1 or 218 (Fig. 1d). A slight 1.7 Å twist of ACBI1
compared to the other two degraders, which can be ascribed to their
minor differences (e.g. the ACBI1 linker has one additional ether group
compared to the PROTAC 2 linker), results in a subtle swing of the
protein in the crystal structure (Fig. 1d). However, the major
protein–protein interface contacts are the same (Supplementary
Fig. 2) and the structural differences do not align with the markedly
different degradation efficiencies obtained18, suggesting that the cor-
responding (dynamic) ensembles of induced ternary complexes may
be fairly different and therefore responsible for the degradation dif-
ferential between PROTAC 1, PROTAC 2, and ACBI1. Consistent with
other studies14,22, this implies that crystallographic snapshots are not
suitable to provide a holistic view of the ensemble of all possible
ternary complex structures in solution, but merely represent a subset
of the relevant conformations favored by crystallization.

Hydrogen-deuterium exchange reveals extended
protein–protein interfaces
In order to assess the impact of different degrader molecules on the
dynamic nature of interactions at the SMARCA2BD:VHL interface,
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we performed hydrogen-deuterium exchange (HDX) mass spectro-
metry experiments on the respective APO (i.e., either SMARCA2BD or
VCB), binary (i.e., either protein bound to a degrader) and ternary (i.e.,
SMARCA2BD:degrader:VCB complex) species (see Supplementary
Tables 3–7) to characterize the induced protein–protein interfaces in
solution21. This approach is a promising alternative to previous
attempts at characterizing degrader ternary complexes that employed
multiple crystal structures22, NMR14, and SAXS coupled with various
forms of modeling. In addition, there exists a wealth of knowledge for
the integration of HDX-MS coupled with computational modeling23.
Importantly, changes in the rate of deuterium incorporation are
dependent on factors like pH, temperature, solvent occlusion and
molecular interactions like hydrogen bonding24. Since we control the
temperature and pH using robotics systems, that enable precise tem-
poral control over D2O exposure, we can probe the effects of (binary
and ternary) complex formation on hydrogen bonding and solvent

exposure. To ascertain the changes in solvent protection in the binary
or ternary complex, the uptake of the APO or binary species is sub-
tracted from that of the corresponding binary or ternary states
(referred to as BinaryΔAPO and TernaryΔBinary), respectively. The
results are summarized in difference plots that highlight the statisti-
cally significant (95%or98% confidence interval) changes in deuterium
uptake (see Supplementary Fig. 37a–d for the SMARCA2BD:VCB com-
plex induced by ACBI1).

Figure 2a reveals that large regions of SMARCA2BD become pro-
tected upon ternary complex formation induced by ACBI1 (see Ter-
naryΔBinary difference plot). These stretches of protected residues,
e.g., amino acids 1409–1422 and 1456–1470, overlap with the warhead
binding site based on the ternary complex structure published in this
work (7S4E) and those published previously (6HAY, 6HAX), which
confirms the similarity of the ternary complex interface among the
three degrader molecules discussed above. In addition, there are also
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Fig. 1 | Ternary complex of SMARCA2BD and VHL/Elongin C/Elongin B (VCB)
induced by ACBI1 shows structural similarities to those induced by PROTAC 1
andPROTAC2. aOverall perspective of SMARCA2BD and the VCB complex induced
by degrader molecule ACBI1 (shown as yellow stick representation). b ACBI1-
induced interface contacts between SMARCA2BD and VHL. Annotated residues are
among those that make the highest number of contacts (see panel c). c A contact
map for the interface of the crystal structure (obtained by the Arpeggio software70).

Contacts are indicated when 10 atomic contacts (i.e., distance≤ 4.5 Å) are present.
d Superposition of the crystal structures of PROTAC 1 (PDB ID: 6HAY, purple),
PROTAC 2 (6HAX, salmon), and ACBI1 (7SE4, green) by aligning VHL (orange sur-
face representation) shows varied conformations of the three degraders (up to
2.0 Å at the warhead), resulting in minor alterations of SMARCA2BD within the
ternary complex.
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Fig. 2 | HDX-MS reveals an extended interface of the ACBI1-induced SMAR-
CA2BD:VHL ternary complex compared to crystallographic data. a SMARCA2BD

HDXdifferenceplots covering residues 1408–1424. Binary as compared to theAPO,
and ternary as compared to the binary states reveal increased protection induced
by the presence of ACBI1 and VCB complex. b VHL HDX difference plots covering
residues 52–76. Binary compared to APO and ternary compared to binary states of
the VHL subunit highlighting extended exchange patterns due to the presence of

the ternary complex. c Exchange patterns induced by the binary and ternary forms
of the complex superimposed on the crystal structure (PDB ID: 7S4E). d Binary-
specific induced HD exchange near the E3-ligand andwarhead binding sites of VHL
and SMARCA2BD. e Ternary-specific induced HD exchange near the E3-ligand and
warhead binding sites of VHL and SMARCA2BD. f Proposed solution-state extended
protein interface that may take advantage of salt-bridge interactions to increase
cooperativity of the protein–protein complex.
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stretches of protected amino acids, 1394–1407, that are too distant
from the established binding interface to result from complex for-
mation (Fig. 2a, f).

Importantly, the HDX-MS experiments enable us to monitor the
impact of cooperativity on ternary complex formation. For instance,
the BinaryΔAPO plot of SMARCA2BD reveals minimal differences (left
column in Fig. 2a), suggesting a comparable amount of protection
upon ACBI1-binding to SMARCA2BD. However, it should be kept in
mind that, in our experiments, the concentrations of SMARCA2BD and
ACBI1 (both at ~15μM after dilution, see “Methods”) are close to their
dissociation constant, KD = 10μM18, which, based on standard enzyme
complex calculations, means that ~45% of the solutes form a binary
complex. This is far less than the 80% threshold required to measure
the effect of binding events on deuterium exchange (see “Methods”),
providing a rational explanation for the aforementioned highly similar
protectionpatternsof theAPOand thebinary states that, as amatter of
fact, result from the frequent binding and unbinding events in the
binary system. Central to the theme of cooperativity, adding only VCB
(~15μM, see “Methods”) to SMARCA2BD andACBI1, under the very same
experimental conditions as in the SMARCA2BD:ACBI1 binary system,
yields strong protection of distinct regions on SMARCA2BD (Fig. 2c).
Obviously, the presence of VCB alone limits the observed deuterium
exchange (indicated by the TernaryΔBinary plot in the right column of
Fig. 2a), suggesting that the ligase forms (non-native) contacts with
SMARCA2BD, which stabilize the interactions with ACBI1 in a coopera-
tive fashion, and, consequently, greatly reduce the amount of ACBI1
required to elicit a binding response on SMARCA2BD. It is important to
note that, while cooperativity induced by VHL is enhancing the ability
of SMARCA2BD to bind ACBI1, the resultant protection on SMARCA2BD

within the ternary complex is a mixture of both binary and ternary
protection effects. Nevertheless, these considerations illuminate the
crucial role of cooperativity in degrader-induced targeted protein
degradation.

Large regions of VHL are protected in the presence of the E3-ligand
too, as indicated by the corresponding BinaryΔAPO difference plot (see
left column in Fig. 2b). The most protected residues in the binary state
are centered around amino acids 87–116, which include all nine residues
in the E3-ligand binding site of VHL. In the presence of SMARCA2BD (see
TernaryΔBinary difference plot in the right column in Fig. 2b), much of
the allosteric network due to E3-ligand binding can be subtracted away
leaving only the most significantly protected residues induced by tern-
ary complex formation (Fig. 2b, d). In particular, residues 60–72, which
house the critical interaction of R69, show significant protection due to
ternary complex formation (Fig. 2b, d). Moreover, we observe protec-
tion of residues 166–176 and residues 187–201 on VHL (see Supple-
mentary Fig. 37 b, f) as well as some regions on Elongin B and C upon
ternary complex formation (see Supplementary Fig. 37c, d). Although
these sites are distal from the binding interface, they can be proximal to
each other as their mapping onto the ternary complex crystal structure
reveals (Fig. 2c). This suggests that conformational changes of the VCB
ligase in ternary complex may exist, that differ from those in its APO or
binary state, potentially giving rise to allosteric effects25 that play a role
in the ACBI1-induced arrangement of SMARCA2 in the full Cullin-RING
ligase complex.

The difference between HDX-MS binary and ternary SMARCA2BD

experiments reveals that the interactions at the protein–protein
interface help stabilize the ternary complex. Many of the charged
interface residues, that are solvent-exposed and outside the range of
traditional hydrogen bonding or salt-bridge interactions (>6.3 Å) in the
corresponding X-ray crystal structure (e.g. K1416, E1420, E1423 on
SMARCA2BD and R60, R64 on VHL) are determined to be protected
based on the HDX-MS results (Fig. 2e). In fact, the protected, charged
interface residues of SMARCA2BD lie outside the direct warhead bind-
ing pocket in the crystal structure of the ternary complex. Interest-
ingly, R60 through R64 on VHL are protected in the ternary complex

for a longer duration than in the binary complex alone. This enhanced
protection across the interface suggests that conformational rearran-
gements are responsible for protein–protein interactions. Our simu-
lations presented below (see “Results” section “The structural
determinants of degrader ternary complex formation”) support this
hypothesis, finding contacts between several of these charged inter-
face residues. These results further underscore the importance of
cooperativity driving the formation of the ternary complex for ligases
with poor binding affinity to the POI.

Interestingly, we find that iso1-SMARCA2BD:ACBI1:VCB shows a
slightly different protection pattern from iso2-SMARCA2BD:ACBI1:VCB,
mainly in that residues G104 through L116 of VHL show significant
protection in the former compared to the latter ternary complex. In
our crystal structure of the iso2-SMARCA2BD:ACBI1:VCB system, these
protected residues are close to the site where the additional 17 resi-
dues of iso1-SMARCA2BD appear, suggesting that the protected resi-
dues inVHLmaybe interactingwith these residues that arenot present
in iso2-SMARCA2BD. Consistent with this hypothesis, residues I1414-
N1417 of the iso1-SMARCA2BD extension show some protection in the
ternary complex.

Studying the solution-state dynamics of degrader ternary com-
plexes uncovers key details that are missed by crystallographic snap-
shots alone. As many of the crystallographic contacts are nearly
identical between the different degrader molecules, important inter-
actions may be underrepresented in the crystal structure, such as
those between charged interface residues or residues distal from the
binding site identified to be significantly protected upon ternary
complex formation. Therefore, utilizingHDX-MS information, or other
data derived from solution-state experiments, as restraints in model-
ing and simulation opens a pathway from a single accepted protein
structure to a vast ensemble of conformations. Production of accurate
ternary complex ensembles enables alternative routes for the design,
optimization, and mechanism-of-action studies of heterobifunctional
degraders.

HDX data enhance weighted ensemble simulations of ternary
complex formation
We simulate the formation of iso2-SMARCA2BD:VHL degrader ternary
complexes using weighted ensemble (WE) simulations, where a set of
weighted trajectories are evolved in parallel along pre-defined collec-
tive variables, providing a means to compute non-equilibrium prop-
erties and predict likely binding pathways26. This path-sampling
strategy can sample rare events by orders of magnitude more effi-
ciently than conventional MD simulations and it has been employed
before for tasks suchas protein–protein27 andprotein-ligandbinding28.
It is noteworthy, however, that our simulations are not informed by
any structural data about the ternary complex interface from X-ray
crystallography experiments.

Starting from a dissociated configuration, in which the degrader
molecule is bound to VHL, yet both are clearly apart from SMARCA2BD

(initial separation distance ~20Å), the formation of ternary aggregates
is simulated yielding complexes with interface structures well com-
parable to those obtained experimentally, which are generally
located in the low free energy basins. For these simulations, we use a
collective variable defined by the number of atomic contacts and
the warhead-RMSD (w-RMSD) with respect to the crystal structure of
the target-warhead complex (see the “Methods” section "WE-HDX
simulations”).

As HDX experiments show, and our simulations of ternary com-
plexes below confirm, the ternary complex exists as a dynamic
ensemble of multiple conformations, of which the X-ray structure is a
snapshot. Thus, we assess the quality of bound complexes by the
minimum interface-RMSD (I-RMSD)29 of each simulated aggregatewith
respect to a set of structurally diverse reference ternary structures (see
Supplementary Fig. 5). This set of distinct structures is obtained from
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long-timescale (>1μs) brute-force MD simulations, thus allowing a
comparison to a variety of possible ternary complexes and not merely
to a single experimental reference structure. We provide detailed
descriptions of the methodology and the evaluation of all simulations
performed in the Supplementary Information.

Protein–protein encounter complexes, i.e., the formation of pro-
tein contacts, are usually observed within 500 ns of aggregate simu-
lation time. An ensemble of about 500bound ternary complexeswith a
minimum I-RMSD< 2Å canusually be obtained after ~2μs, which takes
~12 days using a single A40 GPU per simulation but is highly paralle-
lizable to more GPUs.

Remarkably, when introducing as a collective variable the number
of contacts formed by the protected residues (see Supplementary
Table 8), as determined by the HDX-MS experiments described above,
the prediction accuracy of ternary complex formation is significantly
improved compared to simulations in which any protein–protein
contacts were considered (see Supplementary Figs. 3 and 4). Supple-
mentary Movie 1 (see Supplementary Table 15) shows the continuous
trajectory of one such ternary complex binding event, where the
addition of protected-residue contacts enhances the ternary complex
binding.

We note that the use of HDX-MS data in our approach is rather
qualitative, as the simulations are solely informed by the existence of
specific interaction sites and not by the degree of those interactions.
HDX rate constants are not estimated during the simulations as often
performed in quantitative approaches that combine HDX-MS experi-
ments with simulation30. Rather, our method falls in the category of
simulations guided by HDX-MS data, in which qualitative correlations
between simulation and experiment are attempted to be established23

(see Supplementary Note 1). We present a particularly interesting
example of synergy between molecular simulations and HDX-MS
experiments, in which the path-sampling algorithm is furnished with a
fairly simple parameter derived from the experimental measurements,
i.e., the contact numbers between distinct sites. We call this integrated
approach WE-HDX. Despite its simplicity, WE-HDX seems particularly
appropriate for the formation of ternary complexes that have distinct
contacts across their binding interface.

To systematically study the formation of SMARCA2BD:VHL ternary
complexes with all three degraders, we run seven independent WE-
HDX simulations with PROTAC 2 for an aggregate simulation time of
12.5 μs and three such simulations totaling ~6μs for both PROTAC 1
and ACBI1. The difference in the number of simulations is due to the
greater flexibility of the PROTAC 2 ternary complexes, compared to
the other two degraders. Ensembles of bound ternary complexes were
formedwithminimum I-RMSDs of 0.5 Å for ACBI1, 0.7 Å for PROTAC 1,
and 1.1 Å for PROTAC 2, respectively.

To highlight the sampling ability ofWE-HDX simulations, Figure 3a
compares the minimum I-RMSD of the SMARCA2BD:PROTAC 2:VHL
simulation with that from vanilla MD simulations of the same system as
a function of aggregate simulation time. While the minimum I-RMSD
converges to 2.5 Å in theWE-HDXsimulationswithin0.5μs of aggregate
simulation time, that for the vanilla MD remains as high as 10Å after 1.4
μs of simulation.

The very high prediction accuracy of the WE-HDX simulations is
illustrated for the SMARCA2BD:PROTAC 2:VHL system in Fig. 4. One
example of a predicted structure is visualized in Fig. 4a, b. The contact
maps presented in Fig. 4c compare the ternary interface of the
experimental crystal structure to that of the minimum I-RMSD struc-
ture produced by the WE-HDX simulations. Each point reflects the
degree of interaction, revealing an interaction pattern from the WE-
HDX simulations that is comparable to that from experiment. The
near-perfect alignment (minimum I-RMSD= 1.1 Å) of one sampled
conformation with the crystal structure shown in Fig. 4d further
emphasizes that the interactions of degrader ternary complexes
observed experimentally can be recaptured by WE-HDX.

Six out of seven of the SMARCA2BD:PROTAC 2:VHL simulations
produced binding events for a total of 3278 uniquely bound ternary
complexes. In order to assess the degree of heterogeneity within this
ensemble, we clustered theWE-HDX results into 500macrostates with
a k-means algorithm using the Cα-Cα distances between the ligase and
target protected residues. As expected, all states with a low minimum

Fig. 3 | Assessing ternary complex formation. a The minimum I-RMSD over time
during theWE-HDX simulations of the PROTAC 2 system. Each green line indicates
one replica (n = 7) and the black line is the average between all runs. The blue line
indicates the minimum I-RMSD for a vanilla molecular dynamics simulation. b A
scatter plot of the free energy vs the minimum I-RMSD of each of the 500 clusters
from the PROTAC 2 simulations. The circles are colored by w-RMSD. c The pre-
dicted binding rates for the PROTAC 1 system (purple) and the ACBI1 system
(green). The black line is the experimental binding rate determined via SPR. Source
data are provided as a Source Data file.
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I-RMSD have low values of w-RMSD too (Fig. 3b). States with high free
energies, i.e., above 1.5 kcal mol−1, have large minimum I-RMSDs, ran-
ging from 1.5 to 30Å. However, the minimum I-RMSD distribution
among the 20 low free energy states below 0.5 kcal mol−1 is sig-
nificantly tighter, ranging from 1.1 to 9.2 Å with an average value of
3.7 Å and 12 out of the 20 states even having a minimum I-RMSD
below 3Å.

We predict ternary complex binding rate constants for the three
different degraders directly from WE-HDX simulations using the
probability flux into a bound state (minimum I-RMSD< 2Å). While the
predicted rates for PROTAC 1 and ACBI1 are on the same order of
magnitude as in experiments (Fig. 3c), we predict a significantly slower

binding rate for PROTAC2,which is not yet determinedexperimentally
(see Supplementary Table 9). However, for all three rates there are
large uncertainties, as has previously been observed in WE rate
calculations31. Better statistics can be achieved by longer simulation
times or the use of recently proposed algorithms that converge these
rates more efficiently32,33, which is beyond the scope of this work.

In most of the analysis above, we have used the minimum I-RMSD
with respect to a set of reference structures, as described, to assess the
quality of structures obtained fromWE-HDX simulations. Alternatively,
the Cα-RMSD of the entire ternary complex has been used before as a
parameter to gauge their prediction accuracy27. Supplementary Fig-
ure 4b shows that the interface-RMSD, and, in particular, the threshold
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2:VHL produced by WE-HDX simulations and its comparison to the crystal
structure (PDB ID: 6HAX). a A simulated ternary structure with minimum I-
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(salmon) with a detailed PROTAC 2 comparison.
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at 2 Å is indeed an appropriate metric for the identification of ternary
complexes, as all such complexes formed in our WE-HDX simulations
of the system with PROTAC 2 have a minimum I-RMSD< 2Å for a Cα-
RMSD ≤ ~5 Å, which is clearly below the threshold used in other studies
(e.g. Cα-RMSD ≤ 10Å used by Drummond et al.20).

As in most design projects X-ray structures may not be readily
available, it is important to determine the usefulness of predictive
features that do not depend on ternary complex X-ray structures. To
this end, we filtered the ensemble of simulated SMARCA2BD:PROTAC
2:VHL structures for bound complexes with warhead-RMSD< 2Å and
>30 contacts between protected residues (Fig. 5a). Among these, the
bulk of the density was limited to minimum I-RMSD values between 1
and 4Å, with 90% below 3Å and 43% even below 2Å (Fig. 5b), indi-
cating that observables such as the warhead-RMSD and the number of
contacts between protected residues can be used to characterize
bound ternary complexes.

Knowledge of a large number of degrader-induced ternary com-
plexes is essential to understanding the structural and dynamic fea-
tures that lead to targeted protein degradation. As theWE-HDX results
reveal, the level of detail associated with such simulations allows an
entire ensemble of ternary complexes, including many conformations
with a pronounced protein interface, to be generated ab initio, i.e.,
even from a fairly dissociated state and with no additional information
on the protein–protein binding pose. This is a significant achievement
with regard to the design of effective degrader molecules, for which
ternary complex structures are not obtained experimentally.

HDX-MS improves prediction of ternary complexes using
docking
Several docking procedures to predict ternary complexes of degrader
molecules have been described. Most of them have stages for gen-
erating protein–protein complexes in the absence of the degrader,
linker, alignment of linker or whole degrader to the protein–protein
complexes, and some sort of scoring19,20. We used an approach com-
parable to that published by Bai et al.19

In contrast to recent work21, our docking method uses HDX-MS
data to impose additional distance restraints at the sampling stage
(instead of post-sampling scoring). Also, differently from the distance
restraints derived from chemical cross-linking experiments34, our
approach is based on the statistics of the length of the linker in a
degrader molecule. Application of the HDX-MS data for re-ranking of
the docking predictions, as described by Eron et al.21, may lead to a
morequantitative assessmentof structures.Discussionof the interplay
of HDX-MS-derived restraints and HDX-MS-based re-rankings in
docking is beyond the scope of the present work.

We show that incorporating experimentally retrieved distance
restraints into the docking protocol significantly improves its ability to
predict ternary complexes of high quality (see detailed comparisons in
Supplementary Figs. 6 and 7). In particular, it is striking how strongly
the incorporation of HDX-MS data can boost the accuracy of the
docking protocol among the highest-ranked docking poses.

Although WE-HDX simulations consistently outperform the HDX-
enhanced docking routine (Fig. 5), docking, in combination with HDX-
MS (Docking-HDX), is a useful tool for the quick filtering of a large
number of degrader designs considering the significantly less com-
putational cost of this approach (25 CPU hours for the generation of
one ensemble compared to ~12 A40 GPU days for the WE-HDX
method).

HREMD and SAXS reveal highly flexible ternary complexes
The HDX-MS measurements revealed substantial flexibility, which is
consistent with the structural diversity obtained from WE-HDX simu-
lations and from the docking protocol of the SMARCA2BD:VHL ternary
degrader-protein complexes studied here. To further enhance the
exploration of their conformational heterogeneity, we perform

atomistic Hamiltonian replica-exchange MD (HREMD) simulations
based on the X-ray structures. HREMD is a parallel tempering simula-
tion method that efficiently samples large conformational changes of
proteins in aqueous solution and, therefore, is a promising strategy to
study the protein–protein interactions and the flexibility of degraders
in ternary complexes (see “Methods” section “HREMD simulation” for
more details). In particular, we simulate ternary complexes of both
isoformsof SMARCA2BD connectedonly to theVHL subunit or, in order
to be consistent with our experiments, to the larger VCB complex by
PROTAC 1, PROTAC 2, or ACBI1 (see Supplementary Table 13 for a list
of all HREMD simulations performed). The structure of iso1-
SMARCA2BD, which is not experimentally resolved, is obtained by
homology modeling with the iso2-SMARCA2BD structure used as tem-
plate (see the “Methods” section “Isoform 1homologymodel” formore
details). HREMD simulations with iso1-SMARCA2BD were performed to
test whether they could explain the ternary complex protection dif-
ferential observed between that isoform and Isoform 2. To ensure the
HREMD-generated ensembles are accurate and reliable, we validate
the simulations by directly comparing results against those from size-
exclusion chromatography coupled to small-angle X-ray scattering
(SEC-SAXS) data (see Fig. 6a and Supplementary Tables 11, 12).

The agreement (χ2 = 1.55 and χ2 = 1.23 for iso1- and iso2-
SMARCA2BD:ACBI1:VCB respectively, where χ2 is defined in Eq. (14))
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Fig. 5 | Comparing the bound ensembles determined by docking and WE
simulations with information fromHDX-MS for the PROTAC 2-induced ternary
complex. Simulated structures with a warhead-RMSD≤ 2 Å and >30 contacts
between the SMARCA2BD and VHL interface are considered bound, whereas the
docked bound structures are determined as the top-100 from Rosetta-scoring.
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compared toDocking-HDX (green). The dashed vertical lines indicate three specific
thresholds of minimum I-RMSD (2, 2.5, and 3 Å), below which a complex can be
considered bound. Source data are provided as a Source Data file.
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between SAXS profiles obtained from experiment and such calculated
from simulations shows that the HREMD simulations capture the long
timescale conformational ensembles to experimental accuracy. Fur-
thermore, the ensemble-averaged Rg of the two complexes from
simulation are in agreement to Rg values obtained by Guinier
approximation (Eq. (2)) to experimental SAXS data (Supplementary
Fig. 16), Rg = 33.4 ± 0.4 Å and 32.3 ± 0.3 Å for iso1- and iso2-
SMARCA2BD:ACBI1:VCB, respectively. The histograms of Rg (calcu-
lated from atomic coordinates using Equation (3)) suggest that ternary
complexes are flexible in solution leading to a change in overall con-
formation compared to their corresponding simulation starting
structures, i.e., a homology model of iso1-SMARCA2BD:ACBI1:VCB and
the crystal structure of iso2-SMARCA2BD:ACBI1:VCB (Fig. 6b). These
results illustrate the need for enhanced sampling methods, such as
HREMD, to rigorously probe the conformational changes of the
inherently flexible ternary degrader complexes.

To demonstrate the value of the HREMD simulations in aiding in
the prediction of degrader efficacy, we analyze the thermodynamics of
ternary complex formationbyestimating a conformational free energy
penalty for the binding of a fully dissolved PROTAC 1, PROTAC 2, or
ACBI1 to SMARCA2BD and VHL in a ternary complex. To this end, we
simulate the individual degraders in solution (see the “Methods” sec-
tion "MD simulation of degraders” for more details), in addition to the
ternary complex simulations presented above, and compare, as an
observable proxy, the average linker end-to-end distance (normalized
by the number of backbone atoms in the linker) of eachdegraderwhen
fully dissolved to the corresponding value obtained when bound in a
ternary complex. We observe that, in both environments, PROTAC 2
and ACBI1 adopt a significantly more expanded linker conformation
compared to PROTAC 1 (Supplementary Fig. 21), which has a lower
SMARCA2-degradation efficiency than the other two degraders (Sup-
plementary Table 1). This suggests, in accord with previous empirical
findings20, that degraderswith extended linkers in solutionmore easily
induce SMARCA2BD:VHL ternary complexes (Supplementary Fig. 21). In
the next section, we further explore the ternary complex ensembles
sampled with HREMD.

The structural determinants of degrader ternary complex
formation
We quantify the free energy landscapes of several of the ternary
complexes sampled in the HREMD simulations, namely iso2-
SMARCA2BD:PROTAC 1:VHL, iso2-SMARCA2BD:PROTAC 2:VHL, iso2-
SMARCA2BD:ACBI1:VHL, and iso1-SMARCA2BD:ACBI1:VCB. We begin
this analysis by performing principal component analysis (PCA)
decomposition of the distances between interface residues to identify
high-variance collective variables (see “Methods” section “Conforma-
tional free energy landscape determination” for more details). The
probability distribution of these high-variance features allows us to
determine a more easily interpretable free energy landscape from our
simulation data. We find that the landscape of each ternary complex
contains several local minima differing by only a few kcal mol−1 (Fig. 7a
and Supplementary Fig. 22).

Using k-means clustering in the PCA feature space, we then
identify distinct clusters of conformations. Cluster centers roughly
correspond to local minima in the free energy landscape (Fig. 7a and
Supplementary Fig. 22). These clusters of simulated conformations are
consistent with our HDX-MS protection data: Figure 8 shows that
interface residues that were found to be protected in HDX-MS
experiments are observed to interact in either the most populated or
second most populated cluster. Notably, this analysis shows that in
representative structures (namely the second most populated cluster
centers) of iso1-SMARCA2BD:ACBI1:VCB, the helix formed by the 17-
residue extension of iso1-SMARCA2BD interacts with a beta sheet of the
VHL subunit (Fig. 8b) in accordance with our HDX-MS experiments
that found this beta sheet to be protected in presence of iso1-
SMARCA2BD, but not in the presence of iso2-SMARCA2BD (Fig. 8a).
Similarly, representative structures from highly populated clusters of
iso2-SMARCA2BD:ACBI1:VHL and iso2-SMARCA2BD:PROTAC 2:VHL
show contacts between residues thatwere observed to be protected in
HDX-MS experiments (see blue-colored regions in Fig. 8a, c), whereas
such from the most populated cluster of iso2-SMARCA2BD:PROTAC
1:VHL (Fig. 8e) do not show these contacts. Representative structures
from the most populated cluster of iso2-SMARCA2BD:degrader:VHL
with all three degraders are displayed in Supplementary Fig. 23.

Our analysis shows that both iso2-SMARCA2BD:ACBI1:VHL and
iso2-SMARCA2BD:PROTAC 1:VHL assumequite stable conformations: in
both cases, the majority of snapshots fall into the largest cluster of
conformations (Supplementary Fig. 23). The ground state (lowest free
energy) structures are also quite similar to the corresponding crystal
structures (Cα-RMSD of 1.7 ± 0.3Å for iso2-SMARCA2BD:PROTAC 1:VHL
and 0.8 ± 0.1 Å for iso2-SMARCA2BD:ACBI1:VHL). However, iso2-
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SMARCA2BD:PROTAC 2:VHL shows a much more dynamic landscape,
and samples conformations similar to both the ground state of iso2-
SMARCA2BD:ACBI1:VHL and iso2-SMARCA2BD:PROTAC 1:VHL. This
result, based on the enhanced sampling of ternary complexes, allows
us to rationalize the differential in degradation efficiencies observed
among the three degraders (Supplementary Table 1). We suggest that
PROTAC 1 may fail to mediate the degradation of SMARCA2 because
the (stable) conformation adopted by the ternary complex cannot be
productively ubiquitinated. ACBI1, on the other hand, induces a pro-
ductive conformation of the ternary complex, facilitating ubiquitina-
tion. Hence, PROTAC 2 would then fall between the two, as the
corresponding ternary complexes sample both the productive con-
formation induced by ACBI1 and the non-productive PROTAC 1-like
conformation (see free energy landscapes in Fig. 7a).

To characterize the free energy landscape of iso2-
SMARCA2BD:PROTAC 2:VHL more comprehensively, we select 98
representative structures from the corresponding HREMD simulation
as initial configurations for simulations on Folding@home (F@H), one
of the largest distributed computing networks. Each initial condition
was cloned 100 times and run for ~650ns, for a total of ~6ms of
simulation time. These independent MD trajectories provide the basis
for fitting a Markov state model (MSM)35, which provides a full ther-
modynamic and kinetic description of the system and allows for
the prediction of experimental observables of interest. We use time-
lagged independent component analysis (tICA) to determine the col-
lective variables with the slowest dynamics. The distance between
points in the tICA feature space corresponds roughly to a kinetic
distance36.
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PCA space defined by our analysis of HREMD simulations. The crystal structure of
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cluster is shown as a green point. Energy scale bar shown in panel b.
b Conformational free energy landscape as a function of the first two tICA features
of iso2-SMARCA2BD:PROTAC 2:VHL ternary complex inferred from a Markov state
model (MSM) determined using long-timescale Folding@home simulations. The

ensemble of bound states from WE-HDX simulations is shown as blue points; the
crystal structure (PDB ID: 6HAX) is shown as a red X. In this projection, states II and
V are not indicated but are close to state I. cNetwork diagramof the coarse-grained
MSM calculated using a lag time of 50ns, with the stationary probabilities asso-
ciated with each state indicated. d Mean first-passage times (MFPTs) to transition
between MSM states. Numbers indicate predicted MFPTs in μs. e Comparison of
the crystal structure (salmon) with the lowest free energy state (blue) and a
metastable state (red) predicted by the MSM. Arrows indicate the change of
orientation by 90°.
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The MSM uses the observed dynamics of the simulations to pre-
dict a stationary probability distribution on tICA space that is, in
general, different from the empirical distribution of our simulation
data. The result is shown in Figure 7b. This model is coarse-grained to
obtain a five-state MSM, of which the following three states are of
particular interest: the ground state I with a stationary probability of
0.63, a metastable state III with 0.10 probability, and state IV, to which
the experimental crystal structure can be assigned and which has a
stationary probability of 0.05 (Fig. 7c, d).

Importantly, the MSM predicts that the ternary complex crystal
structure with PROTAC 2 is 1.5 kcal mol−1 higher in free energy than
the global free energy minimum and that they differ by an I-RMSD
of 3.6Å (Fig. 7b, e), thus lending credence to our approachof extensive
conformational sampling to identify previously undetermined
structures. Themodel further predicts a relative free energy of 2.2 kcal
mol−1 for the metastable state with an I-RMSD of 4.4 Å relative
to the crystal structure (Fig. 7b, e). Interestingly, the SMARCA2BD:-

PROTAC 2:VHL ternary complex structures simulated by the WE-HDX
strategy described above can be well identified on this free energy

landscape too (blue points on the projection in Fig. 7b), demonstrating
how the simulation of ternary complex formation yields valid
conformations.

The classification into five macro-states can be attributed to
structural differences at the ternary complex interface. For instance,
the global minimum state is stabilized by a number of protein–protein
contacts and, furthermore, contacts between PROTAC 2 and R1403,
N1464, and I1470 of SMARCA2BD, that are missing in the metastable
state (Supplementary Fig. 24). On the other hand, contacts between
VHL and PROTAC2 are largely unchanged between themetastable and
globalminimum states, likely due to the tight interaction between VHL
and the degrader. The area of the binding interface is substantially
increased in both themetastable andglobalminimumstates relative to
the crystal structure: the global minimum state has a buried surface
area of 2962 Å2, compared to 2800Å2 for themetastable state and only
2369Å2 for the crystal structure. We note that these differences
observed at the interfaces of distinct ternary complexes further sup-
port the adequacy of the minimum I-RMSD metric we used above to
measure the prediction accuracy.

a

c

b

d

e

VHLVHL

ACBI1ACBI1
(top complex)(top complex)

PROTAC 2PROTAC 2
(2nd complex)(2nd complex)

PROTAC 2PROTAC 2
(top complex)(top complex)

iso2-SMARCA2iso2-SMARCA2BDBD:ACBI1:VHL:ACBI1:VHL
(top complex)(top complex)

iso2-SMARCA2iso2-SMARCA2BDBD:PROTAC 1:VHL:PROTAC 1:VHL
(top complex)(top complex)

iso2-SMARCA2iso2-SMARCA2BDBD:PROTAC 2:VHL:PROTAC 2:VHL
(2nd complex)(2nd complex)

iso1-SMARCA2iso1-SMARCA2BDBD:ACBI1:VCB:ACBI1:VCB
(2nd complex)(2nd complex)

f

iso2-SMARCA2iso2-SMARCA2BDBD:PROTAC 2:VHL:PROTAC 2:VHL
(top complex)(top complex)

PROTAC 1PROTAC 1
(top complex)(top complex)
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molecule relative to SMARCA2BD:VHLor SMARCA2BD:VCB complexes in the absence
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of that system. This region does show HDX-MS protection in iso1-
SMARCA2BD:ACBI1:VCB, and we find in simulations that it forms contacts with an
alpha helix that is only present in iso1-SMARCA2BD (indicated by a red oval). Note
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We alsoperformed F@H simulations of iso2-SMARCA2BD:PROTAC
1:VHL (900μs of aggregate simulation time across 1000 trajectories
from 99 initial structures coming from HREMD) and iso2-
SMARCA2BD:ACBI1:VHL (500 μs of aggregate simulation time across
2000 trajectories from 100 initial structures coming from HREMD).
These simulations were used to fit MSMs for these systems using the
sameproceduredescribed above (Supplementary Figs. 25 and 26). The
resultant MSMs predict that the crystal structure of the iso2-
SMARCA2BD:PROTAC 1:VHL system is 2.2 kcal mol−1 higher than its
global free energy minimum, while the crystal structure of the iso2-
SMARCA2BD:ACBI1:VHL system is only 0.7 kcal mol−1 higher in energy
than its ground state. Coarse-graining the PROTAC 1 model yields a
two-state MSM, while a three-state MSM is obtained for the
ACBI1 system. In both cases, the crystal structure falls into the most
probable macro-state. Interestingly, in the predicted ground state of
the ternary complexwith PROTAC 1, SMARCA2BD is oriented relative to
VHL (Supplementary Fig. 25d, e) in a similar fashion as in the predicted
ground state with PROTAC 2 (Fig. 7e), while in the ground state of the
ACBI1 system, the position of SMARCA2BD relative to VHL (Supple-
mentary Fig. 26d, e) is more similar to that in the crystal structure,
which, as described above, is comparable among all three ternary
complexes. This illustrates that notable conformational changes can
be induced by different degrader molecules.

Interestingly, the simulations of ternary complexes of iso2-
SMARCA2BD and VHL mediated by the three degraders confirm
important interactions between charged residues at the SMAR-
CA2BD:VHL interface that were suggested by the HDX-MS experiments
presented above. In particular, R60 on VHL, which is experimentally
found to be protected for a longer duration in the ternary complex,
preferentially forms contacts with E1420 on the SMARCA2BD interface
(Supplementary Fig. 34) for ACBI1 and PROTAC 2 but not for PROTAC

1. ACBI1 also induces contacts between K1416 of SMARCA2BD and N90/
D92 of VHL, which are notably reduced in the presence of PROTAC 1
and PROTAC 2. This consistent observation in both experiment and
simulation may contribute to the stronger cooperativity observed for
ACBI1 compared to PROTAC 1 and PROTAC 2.

The millisecond-long simulations presented here are, to the best
of our knowledge, the most extensive sampling of ternary degrader
complexes to date, permitting examination of their free energy land-
scapes in detail. Remarkably, these simulations capture key structural
determinants observed experimentally, such as HDX-MS residue pro-
tection and ternary complex stability and, furthermore, reveal struc-
tural differences between the energetically most favorable states of
SMARCA2BD:VHL induced by different degraders that may contribute
to cooperativity.

Large-scale simulations yield accurate ubiquitination
predictions
In addition to simulating the ternary complex formation and associated
dynamics, a more complete understanding of the ubiquitination pro-
cess should involve the full Cullin-RINGE3ubiquitin ligase (CRL). To this
end, we probe the different ternary degrader complexes in the context
of the full CRL macromolecular assembly by examining the separation
of different solvent-exposed POI lysine residues from the ubiquitination
zoneof theCRL37 (Fig. 9a), specifically focusingon theprobability of POI
lysine residue density within this zone. The hypothesis is that the ubi-
quitination rate depends on the probability of finding a lysine residue in
the ubiquitination zone. As such, this analysis can provide insight into
thedegradationpotencyofdegradermolecules. First,webuild anentire
E2-E3 complex for CRL-VHL in its activated form using a recently
obtained structure of the active form of the closely related CRL-βTrCP
as reference38 (see the “Methods” section "Cullin-RING E3 ubiquitin
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Fig. 9 | Degrader-dependent SMARCA2BD lysine densities in the CRL-VHL ubi-
quitination zone. a Active form of CRL-VHL with bound SMARCA2BD and E2-
ubiquitin in the open CRL conformation. Lysine residues on SMARCA2BD are
highlighted in blue.b Same aspanelawith a closed conformation ofCRL generated
by meta-eABF simulations. c Probability of distances of SMARCA2BD lysine residues

(side-chain nitrogen atom) to the C-terminal glycine C atom of ubiquitin derived
from ternary complex HREMD simulations with the three different degraders
PROTAC 1, PROTAC 2, and ACBI1. d Density of lysine residues in 3D space
near the ubiquitination zone of CRL-VHL. Source data are provided as a
Source Data file.
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ligase (CRL) simulations to explore activation” for more details). Sec-
ond, we use the meta-eABF simulation approach, (see the “Methods”
section "Meta-eABF simulations on full Cullin-RING E3 ubiquitin ligases
(CRL) complex” for more details), to sample CRL open-closed con-
formations in the presence of SMARCA2BD (Fig. 9b). These conforma-
tions are then used as reference states to superimpose structures from
HREMD simulations of ternary SMARCA2BD:VHL complexes on the
active state of the CRL-VHL, allowing us to obtain lysine densities from
SMARCA2BD in the ubiquitination zone of the CRL-VHL.

Comparing the lysine densities of the three degraders (Fig. 9c), we
observe that ACBI1 places the most lysine density in the ubiquitination
zone of CRL-VHL, followed by PROTAC 2 and PROTAC 1. This order of
lysine density in the ubiquitination zone agrees with the experimentally
observed degradation data between ACBI1 and PROTAC 118, and also
places PROTAC 2 between these two, thus establishing a procedure to
qualitatively predict the ubiquitination likelihood of the target protein.

Interestingly, applying the same analysis on the three SMAR-
CA2BD:degrader:VHL crystal structures (Supplementary Fig. 35), the
distribution of lysine distances from the ubiquitination zone is indis-
tinguishable among PROTAC 1, PROTAC 2, and ACBI1 up to relatively
large separations (30Å). This strong contrast between the set of dis-
tributions in Fig. 9c and in Supplementary Fig. 35 further emphasizes
the need for long-timescale simulations, as performed in the current
study, to reach reliable conclusions on degrader-induced ternary
complex structure and function.

To experimentally validate degrader-induced changes in global
protein and ubiquitination levels, we treated Hela cells with 300nM
of ACBI1 for 1 h, followed by globalmass spectrometry-based proteome
and ubiquitinomics analysis. In total, we quantified >12,500 ubiquiti-
nation sites on 5300 proteins (see Supplementary Data 2). As expected,
our results confirm ACBI1-induced degradation of the SMARCA2 pro-
tein (Fig. 10a). The loss of SMARCA2 protein abundance was rescued by
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Fig. 10 | Changes in ubiquitination levels on the proteome of Hela cells upon
treatment with ACBI1 at 300nM for 1 h. a Change in SMARCA2 protein abun-
dance upon treatment with DMSO (cyan circles), ACBI1 (green hexagons), and
ACBI1 +MG132 (gray squares). The ACBI1 treatment significantly decreases the
SMARCA2 protein abundance compared to the DMSO alone and, upon co-
treatment with the proteasomal inhibitor (MG132), the abundance is rescued to
levels almost similar to the DMSO alone. The data (n = 3; 2 for ACBI-only) are
visualized as the arithmetic mean ± one standard error (for n > 2). Source data are
provided as a Source Data file. b Distribution of changes in ubiquitination levels
plotted as Log2 fold change in ACBI1 versus DMSO control against the Benjamini-

Hochberg corrected p-value for all quantified ubiquitinated sites (n = 12,569) from
triplicate measurements. The SMARCA2 sites with significant changes in ubiquiti-
nation levels (p-value <0.05 and Log2 FC(ACBI1/DMSO) ≥ 1) are marked. The sites
unique to SMARCA2 are marked as solid orange circles and SMARCA2/4 shared
sites are shown as solid blue circles. A pairwise t-test, with Benjamini-Hochberg
mutiple comparison, was used for comparing two conditions in triplicate mea-
surements. Source data are provided as Supplementary Data 2. c Location of the
two SMARCA2BD lysine residues K1398 and K1416 (shown in blue stick representa-
tion) on the SMARCA2BD:ACBI1:VCB crystal structure.
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co-treatment with 1μM proteasomal inhibitor MG132 that impedes the
targeted degradation. In addition, global ubiquitination profiling iden-
tified several SMARCA2 lysine sites, some of which show a statistically
significant increase in ubiquitination levels after the ACBI1 treatment,
compared with the vehicle control DMSO (Fig. 10b, Supplementary
Table 14, Supplementary Data 2). Ubiquitinated lysine residues were
detectedbothon (e.g., K1398 andK1416) andoutside thebromodomain
(e.g., K1101, K1197/K1207, K1323), with the most significantly ubiquiti-
nated residue (K1416) located on the SMARCA2BD (Fig. 10c). Not all of
the lysine residues from bromodomain can be detected in this experi-
ment due to the repeated occurrence of lysine and arginine residues
within short intervals, hence the cleaved peptide is too small to be
detected by the mass spectrometer. However, among those detected,
the general trend is in agreement with the above-mentioned prediction
that ACBI1 tends to position lysine residues closer to ubiquitin (Sup-
plementary Fig. 36). Our results are in agreement with recent data from
Arvinas and Genentech showing that a potent and selective SMARCA2
degrader ismost significantly inducingubiquitinationof a lysine residue
on the bromodomain of SMARCA2, although other lysine residues are
ubiquitinated to lesser degrees39. These results further validate the
hypothesis that degraders likeACBI1 directly influenceubiquitinationof
lysine residues in the ubiquitination zone of CRL-VHL by modulating
their global proximity to ubiquitin.

Discussion
The formation of a ternary complex is a critical step in targeted protein
degradation. However, accurately predicting the structural ensemble of
the ternary complex is challenging due to the size of the multi-protein
system, the inherent conformational flexibility associated with forming
non-native protein–protein interactions, the relevant timescales for
biological motions, and the limited data associated with the solution-
phase dynamics of ternary structures. The ability to accurately predict
the formation of degrader-induced ternary complexes and the corre-
sponding structural ensembles would provide a better understanding
of TPD and enable more precise optimization of degrader molecules
(e.g. linker length, composition, and attachment points).

Here, we studied three different degrader molecules in complex
with SMARCA2BD and VHL that have similar thermodynamic binding
profiles and protein–protein interactions observed in the crystal
structures but different degradation efficiencies. The crystal structure
determined in this work of ACBI1 complexed with SMARCA2BD and VHL
(PDB ID: 7S4E) reveals a similar conformation to previously published
and close degrader analogs: PROTAC 1 (PDB ID: 6HAY) and PROTAC 2
(PDB ID: 6HAX). The similar binding thermodynamics and crystal
structure complexes, yet different degradation efficiencies, motivated
our work to explore the dynamic nature of the ternary structure, which
might be the source of the differing degradation efficiencies (although
other factors such as permeability may also play a role). The approach
we describe here combines MD simulations with solution-phase bio-
physical experiments to produce dynamic ternary structure predictions
that could be helpful in elucidating the characteristics that impact
binding cooperativity and degradation efficiency.

We apply enhanced Hamiltonian replica exchange molecular
dynamics (HREMD) simulations, validated by experimental SAXS data,
to derive heterogeneous ensembles of ternary complex conformations
that constitute the basis for millisecond-long MD simulations on Fol-
ding@home. Detailed free energy landscapes predict that the experi-
mental crystal structures are ~1–2 kcal mol−1 higher in free energy than
the lowest energy (most favorable) conformations, confirming that
they are snapshots in low free energy basins, but not the globalminima
of those basins. Simulation globalminima reveal notable differences in
the orientation between SMARCA2BD and VHL induced by the three
degraders.

To put the simulation results in a larger context, we examine the
likelihood of ubiquitination for specific SMARCA2BD:VHL degrader

ternary complexes by deploying the entire Cullin-RING E3 ubiquitin
ligase (CRL). The orientation of SMARCA2BD with respect to the CRL
changes dramatically in these global minima from simulation com-
pared to the crystal structures: in particular, we find that ACBI1 posi-
tions lysines of SMARCA2BD closer on average to ubiquitin in the E2
ligase than does PROTAC 1, with PROTAC 2 shifting between an ACBI1-
like position and a PROTAC 1-like position, suggesting that ACBI1 has
the highest propensity to facilitate ubiquitination of SMARCA2BD. We
employed proteomics and ubiquitinomics experiments to determine
ubiquitinated lysine residues for SMARCA2 in Hela cells. The results
confirm the hypothesis that ACBI1 positions several lysine residues in
closer proximity of E2-ubiquitin, enhancing ubiquitination probability,
and hence, degradation efficiency. For example, we predict that K1416
in SMARCA2BD is most likely to be ubiquitinated, which is also the case
in the ubiquitinomics experiment.

HDX-MSexperiments revealed charged interface residues that are
protected and yet are not in contact in the crystal structures. Our long-
timescale ternary complex simulations revealed that several of these
residues form contacts in the ternary complex ensembles. Some of
these are common to all three degraders, whereas some are absent
fromPROTAC 1 (e.g., VHL:R60 and SMARCA2BD:E1420). These contacts
may underlie the differences in cooperativity, placement in the ubi-
quitination zone, and ultimately degradation.

We developed a protocol that incorporates information about
protected residues as contact collective variables in weighted ensem-
ble simulations that seek to form interactions among the protected
residues and to bind the warhead portion of the degrader to SMAR-
CA2BD (WE-HDX). This method reliably produced ternary complex
structures that were in low free energy basins of the ternary complex
landscape, and thatwere similar to the conformations accessiblewhen
starting simulations from the crystal structure. This method also pro-
vides estimates of the kon for ternary complex formation. We com-
pared WE-HDX to docking using HDX-MS protected residues as
constraints. We find that HDX constraints improve the quality of
ternary complexes for docking; yet WE-HDX is more accurate than
docking using HDX constraints. Further usage of the HDX-MS data
could be done by computing HDX-MS observables from simulation,
and then reweighting the ternary complex landscape accordingly.
Even though many models are proposed in the literature, we did not
estimate that those models would give us accurate reweighting at this
point in time, although clearly thiswould be a fruitful avenue for future
research.

Our integrative approach provides a richer understanding of the
dynamics of ternary complex ensembles, which could improve the
designof degradermolecules for new systemsof interest. For the three
degraders studied here, the global minima from HREMD and F@H
simulations showed that the orientation of SMARCA2 lysines with
respect to the E2-loaded ubiquitin is a discriminating feature, parti-
cularly of ACBI1/PROTAC 2 with respect to PROTAC 1, suggesting this
to be critical for a productive ternary complex. From the conforma-
tional landscape we also find that the stability of the ternary complex
differs among these 3: PROTAC 1 and ACBI1 are more stable than
PROTAC 2; however PROTAC 1 is in a non-productive configuration.
Thus, the stability of the ternary complex induced by ACBI1 might
distinguish it from PROTAC 2. Furthermore, we consider the con-
formational free energy penalty for the degrader to go from its con-
formation in solution to ternary complex, and again we find that this
penalty is larger for PROTAC 1 than it is for PROTAC 2 and ACBI1. We
also found protected charged residues fromHDX-MS that, while not in
contact in the crystal structures, appear in simulations such as
VHL:R69 and SMARCA2BD:E1420, giving clues to potential structural
determinants of cooperativity. And we found that ACBI1 had the
highest ubiquitination probability based on our CRL modeling, fol-
lowed by PROTAC 2 and PROTAC 1, which was confirmed by ubiqui-
tinomics experiments presented here.
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The methodologies described here rely on advanced physics-
based simulations and solution-phase biophysical experiments. Since
this approach is based on physical principles without the need for
training data,we expect it to be transferable to other POI-ligase ternary
complexes with induced proximity degrader molecules, and possibly
to other induced proximity systems (e.g. phosphorylation, methyla-
tion, and acetylation). Efforts in our group are underway to expand the
application to more potential degraders in the SMARCA2BD:VHL sys-
tem and to other POI-ligase combinations. We have used the simula-
tion methods outlined here in a prospective manner as follows: we
have predicted ternary complex ensembles of potential hetero-
bifunctional degraders using WE-HDX; used HREMD and F@H simu-
lations out of HREMD to select the lowest free energy structures; then
calculated the ubiquitination probability of these structures by mod-
eling them in the full CRL. We have then optimized for short and rigid
linkers against the ternary complex structures selected for preferential
ubiquitination, also using the conformational free energy penalty for
the degrader to go from solution to the ternary complex as a design
objective. Based on that we have selected the heterobifunctional
molecules that optimize these properties. We expect to report on this
larger data set in a future publication.

Methods
Cloning, expression, and purification of SMARCA2BD and VHL/
Elongin B/C
The bromodomain of the SMARCA2 gene from Homo sapiens (UniProt
accession number P51531-1; residues 1373-1511) was custom-
synthesized at Genscript with N-terminal GST tag18 and thrombin
protease cleavage site. The synthetic gene comprising SMARCA2 was
cloned into pET28 vector to create plasmid pL-477. The second con-
struct of SMARCA2with deletion 1400-1417 (UniProt accession number
P51531-2) was created as pL-478. For biotinylated SMARCA2BD, AVI-tag
was gene-synthesized at C-terminus of pL-478 to create pL-479. The
VHL gene fromHomo sapienswas custom-synthesized with N-terminal
His6 tag18 and thrombin protease cleavage site. The synthetic gene
comprising the VHL (UniProt accession number P40337; residues
54–213) was cloned into pET28 vector to create plasmid pL-476. EloB
and EloC genes fromHomo sapienswere custom-synthesized with AVI-
tag at the C-terminus of Elongin B17. The synthetic genes comprising
the EloB (UniProt accession number Q15370; residues 1–104) and EloC
(UniProt accession number Q15369; residues 17–112) were cloned into
pCDFDuet vector to create plasmid pL-474. For protein structural
study, AVI-tag was deleted in pL-474 to create pL-524.

For SMARCA2BD protein expression, the plasmid was transformed
into BL21(DE3; One Shot™, catalog number: C600003) chemically
competent E. coli cells and plated on Luria-Bertani (LB) medium con-
taining 50μg/ml kanamycin at 37 °C overnight. A single colony of
BL21(DE3)/pL-477 or BL21(DE3)/pL-478 was inoculated into a 100-ml
culture of LB containing 50μg/ml kanamycin and grownovernight at 37
°C. The overnight culture was diluted to OD600=0.1 in 2 × 1-liter of
Terrific Broth medium containing 50μg/ml kanamycin and grown at
37 °C with aeration to mid-logarithmic phase (OD600= 1). The culture
was incubated on ice for 30min and transferred to 16 °C. IPTGwas then
added to a final concentration in each culture of 0.3mM. After over-
night induction at 16 °C, the cells were harvested by centrifugation at
5000× g for 15min at 4 °C. The frozen cell paste from 2 L of cell culture
was suspended in 50ml of Buffer A consisting of 50mMHEPES (pH7.5),
0.5M NaCl, 5mMDTT, 5% (v/v) glycerol, supplemented with 1 protease
inhibitor cocktail tablet (Roche Molecular Biochemical) per 50ml buf-
fer. Cells were disrupted by Avestin C3 at 20,000 psi twice at 4 °C, and
the crude extract was centrifuged at 39,000× g (JA-17 rotor, Beckman-
Coulter) for 30min at 4 °C. Two ml Glutathione Sepharose 4 B (Cytiva)
was added into the supernatant and mixed at 4 °C for 1 h, washed with
Buffer A and eluted with 20mM reduced glutathione (Sigma). The
protein concentration was measured by Bradford assay, and GST-tag

was cleaved by thrombin (1:100) at 4 °C overnight during dialysis
against 1 L of Buffer B (20mMHEPES, pH 7.5, 150mMNaCl, 1mMDTT).
The sample was concentrated to 3ml and applied at a flow rate of
1.0ml/min to a 120-ml Superdex 75 (HR 16/60) (Cytiva) pre-equilibrated
with Buffer B. The fractions containing SMARCA2BD were pooled and
concentrated by Amicon®Ultracel-3K (Millipore). The protein con-
centration was determined by OD280 and characterized by SDS-PAGE
analysis and analytical LC-MS. The protein was stored at −80 °C.

For VHL/Elongin B/C protein expression, the plasmids were co-
transformed into BL21(DE3) and plated on Luria-Bertani (LB) medium
containing 50μg/ml kanamycin and 50μg/ml streptomycin at 37 °C
overnight. A single colony of BL21(DE3)/pL-476/474 or BL21(DE3)/pL-
476/524 was inoculated into a 100-ml culture of LB containing 50μg/
ml kanamycin and 50μg/ml streptomycin and grown overnight at
37 °C. The overnight culture was diluted to OD600=0.1 in 6 × 1-liter of
Terrific Broth medium containing 50μg/ml kanamycin and 50μg/ml
streptomycin and grown at 37 °C with aeration to mid-logarithmic
phase (OD600 = 1). The culture was incubated on ice for 30min and
transferred to 18 °C. IPTG was then added to a final concentration of
0.3mM in each culture. After overnight induction at 18 °C, the cells
were harvested by centrifugation at 5000× g for 15min at 4 °C. The
frozen cell paste from 6 L of cell culture was suspended in 150ml of
Buffer C consisting of 50mM HEPES (pH 7.5), 0.5M NaCl, 10mM imi-
dazole, 1mM TCEP, 5% (v/v) glycerol, supplemented with 1 protease
inhibitor cocktail tablet (Roche Molecular Biochemical) per 50ml
buffer. Cells were disrupted by Avestin C3 at 20,000psi twice at 4 °C,
and the crude extract was centrifuged at 17,000 × g (JA-17 rotor,
Beckman-Coulter) for 30min at 4 °C. Ten ml Ni Sepharose 6 FastFlow
(Cytiva) was added into the supernatant and mixed at 4 °C for 1 h,
washedwith Buffer C containing 25mM imidazole and elutedwith 300
mM imidazole. The protein concentration was measured by Bradford
assay. For protein crystallization, His-tag was cleaved by thrombin
(1:100) at 4 °C overnight during dialysis against 1 L of Buffer D (20mM
HEPES, pH7.5, 150mMNaCl, 1mMDTT). The samplewas concentrated
to 3ml and applied at a flow rate of 1.0ml/min to a 120-ml Superdex 75
(HR 16/60) (Cytiva) pre-equilibrated with Buffer D. The fractions con-
taining VHL/Elongin B/C were pooled and concentrated by Amico-
n®Ultracel-10K (Millipore). The protein concentration was determined
by OD280 and characterized by SDS-PAGE analysis and analytical LC-
MS. The protein was stored at −80 °C. For SPR assay, 10 mg VHL/
Elongin B/Cprotein complexwas incubatedwith BirA (1:20), 1mMATP
and 0.5mM Biotin and 10mM MgCl2 at 4 °C overnight, removed free
ATP and Biotin by 120-ml Superdex 75 (HR 16/60) with the same pro-
cedure as above, and confirmed the biotinylation by LC/MS.

X-ray structure determination of iso2-SMARCA2BD:ACBI1:VCB
complex
Purified SMARCA2 and VCB in 50mM HEPES, pH 7.5, 150mM NaCl,
1mM DTT were incubated in a 1:1:1 molar ratio with ACBI1 for 1 h at
room temperature. Incubated complex was subsequently injected on
to a Superdex 10/300 GL increase (Cytiva) pre-incubated with 50mM
HEPES, pH 7.5, 150mMNaCl, 1mM DTT, 2% DMSO at a rate of 0.5mL/
min to separate any noncomplexedpartners from theproperly formed
ternary complex. Eluted fractions corresponding to the full ternary
complexwere gathered and spun concentrated to 14.5mg/mLusing an
Amicon Ul- trafree 10K NMWL Membrane Concentrator (Millipore).
Crystals were grown 1–3μL hanging drops by varying the ratio of
protein to mother liquor from 0.5–2:0.5–2 respectively. Crystals were
obtained in buffer consisting of 0.1M HEPES, pH 7.85, 13% PEG 3350,
0.2M sodium formate incubated at 4 °C. Crystals grew within the first
24 h but remained at 4 °C for 5 days until they were harvested, cryo
protected in an equivalent buffer containing 20% glycerol and snap
frozen in LN2. Diffraction data were collected at NSLS2 beamline FMX
(λ =0.97932 Å) using an Eiger X 9Mdetector. Crystalswere found to be
in the P 21 21 21 space group with unit cell dimensions of a = 80.14 Å,
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b = 116.57 Å, c = 122.23 Å, where α = β = γ = 90°. Crystal contained two
copies of the SMARCA2:ACBI1:VCB (VHL, EloC, EloB) complex within
the asymmetric unit cell. The structure was solved by performing
molecular replacement with CCP4i243 PHASER using PDB ID 6HAX as
the replacement model. MR was followed by iterative rounds of
modeling (COOT44) and refinement (REFMAC545-53) by standard
methods alsowithin theCCP4i2 suite. Structureswere refined to Rwork/
Rfree of 23.7%/27.5%.

Hydrogen-deuterium exchange mass spectrometry
HDX experiments were performed using a protein stock at the initial
concentration of 200μM of SMARCA2BD, VCB in the APO, binary
(200μMACBI1), and ternary (200μMPROTAC ACBI1) states in 50mM
HEPES, pH 7.4, 150mM NaCl, 1mM TCEP, 2% DMSO in H2O. With the
knowledge of binding constants for each of the three degraders, the
assays were designed to optimize the complex formation of 80% or
greater in the D2O labeling solution after the 1:13 dilution (94% ACBI1,
93% PROTAC 2, 89% PROTAC 1) to obtain maximal exchange of the
ternary complexes.Maximizing complex formation in solution ensures
that the ratio of liganded to free protein in solution does not compli-
cate the downstream analysis40. The protein samples were injected
into the nanoACQUITY system equipped with HDX technology for
UPLC separation (Waters Corp.41) to generate mapping experiments
used to assess sequence coverage. Generated maps were used for all
subsequent exchange experiments. HDX was performed by diluting
the initial 200μMprotein stock 13-foldwithD2O (Cambridge Isotopes)
containing buffer (10mM phosphate, pD 7.4, 150mM NaCl) and
incubated at 10 °C for various time points (0.5, 5, 30min). At the
designated timepoint, an aliquot from the exchanging experimentwas
sampled and diluted 1:1 into D2O quenching buffer containing
(100mM phosphate, pH 2.1, 50mM NaCl, 3M GuHCl) at 1 °C. The
process was repeated at all time points, including for non-deuterated
samples in H2O-containing buffers. Quenched samples were injected
into a 5-μm BEH 2.1 × 30-mm Enzymate-immobilized pepsin column
(Waters Corp.) at 100μl/min in 0.1% formic acid at 10 °C and then
incubated for 4.5min for on-column digestion. Peptides were col-
lected at 0 °C on a C18 VanGuard trap column (1.7μm×30mm)
(Waters Corp.) for desalting with 0.1% formic acid in H2O and then
subsequently separated with an in-line 1.8μMHss T3 C18 2.1 × 30-mm
nanoACQUITY UPLC column (Waters Corp.) for a 10-min gradient
ranging from 0.1% formic acid to acetonitrile (7min, 5–35%; 1min,
35–85%; 2min hold 85% acetonitrile) at 40μl/min at 0 °C. Fragments
were mass-analyzed using the Synapt G2Si ESL-Q-ToF mass spectro-
meter (Waters Corp.). Between injections, a pepsin-wash step was
performed to minimize peptide carryover. Mass and collision-induced
dissociation in data-independent acquisition mode (MSE) and Pro-
teinLynx Global Server (PLGS) version 3.0 software (Waters Corp.)
were used to identify the peptides in the non-deuterated mapping
experiments and analyzed in the same fashion as HDX experiments.
Mapping experiments generated from PLGS were imported into the
DynamX version 3.0 (Waters Corp.) with quality thresholds of
MS1 signal intensity of 5000, maximum sequence length of 25 amino
acids, minimum products 2.0, minimum products per amino acid of
0.3, minimum PLGS score of 6.0. Automated results were inspected
manually to ensure the corresponding m/z and isotopic distributions
at various charge states were assigned to the corresponding peptides
in all proteins (SMARCA2BD, VHL, Elongin C, Elongin B). All raw relative
uptake plots of the deuterium exchange for each state and experiment
can be found in Supplementary Data 1. DynamX was utilized to gen-
erate the relative deuterium incorporation plots andHDXheatmap for
each peptide (Supplementary Fig. 39) of each protein within the
complex and stable deuteriumexchange (Supplementary Figs. 40–43).
The relative deuterium uptake of common peptides was determined
by subtracting the weighted-average mass of the centroid of the non-
deuterated control samples from the deuterated samples at each time

point. Time points in the middle of the initial incorporation rate were
chosen to avoid fully exchanged states and thus increase the sig-
nificance of the measurements and protected residue determination.
All experiments were made under the same experimental conditions
negating the need for back-exchange calculations but therefore are
reported as relative24. All HDX experiments were performed twice, on
2 separate days, and a 98 and 95% confidence limit of uncertainty was
applied to calculate the mean relative deuterium uptake of each data
set. Differences in deuterium uptake that exceeded the error of the
datasets were considered significant42.

SEC-SAXS experiments
SAXS data were collected with an AKTAmicro (GE Healthcare) FPLC
coupled to a BioXolver L SAXS system (Xenocs) that utilized an Excil-
lumMetalJet D2 + X-ray source operating at a wavelength of 1.34 Å.We
measured two protein complex samples,

(i) iso1-SMARCA2BD:ACBI1:VCB, and
(ii) iso2-SMARCA2BD:ACBI1:VCB.

The scattering data was detected on PILATUS3 300 K (Dectris)
detector with a resulting q range of 0.0134–0.5793Å−1. To ensure the
resulting scattering profile is solely due to complexes with all four
protein chains and a degrader, and devoid of contributions from bin-
ary or uncomplexed proteins, size exclusion chromatography is cou-
pled to SAXS (SEC-SAXS). The elution peak 1 of the SEC profile is
assigned to the ternary complexes, whereas peak 2 is attributed to
binary or uncomplexed proteins, respectively (Supplementary Fig. 15).
The SEC-SAXS data for each samplewas collected by loading 500μL of
the ternary complex formed by the addition of equimolar concentra-
tions (275μM) of SMARCA2BD, VCB and ACBI1, onto a Superdex 200
Increase 10/30 equilibrated with 20 mM HEPES pH 7.5, 150mM NaCl
and 1mMDTT at 20 °C. The solution scattering data was collected as a
continuous 60 s data-framemeasurements with a flow rate of 0.05mL/
min. The average scattering profile of all frameswithin the elutionpeak
1 was calculated and subtracted from the average buffer scattering to
yield the scattering data of the protein complex. The final SAXS profile
of each ternary complex (Fig. 6a) was determined from the average
scattering signal from the sample in the elution peak 1, where the
relatively large variability in the calculated radius of gyration, Rg (red
solid/open circles in Supplementary Fig. 15) indicates that complexes
are dynamic or flexible. Data reduction was performed using the
BioXTAS RAW 2.0.3 software43. The uncertainty in the experimental
scattering intensity is described by the standard deviation of the
detection signal at a given q

σðqÞ= 1
NðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNðqÞ
i= 1

½ni � IðqÞ2�

vuut , ð1Þ

where I(q) is the measured SAXS intensity for a given q, the magnitude
of scattering vector given by q=4π sinθ=λwith 2θ being the scattering
angle and λ the wavelength of the incident beam. ni is the count of
detected signalsper pixel i in the rawSAXS image andN(q) areall pixels
belonging to the same q bin.

Rg was estimated from an experimental SAXS curve using the
Guinier approximation,

IðqÞ ≈ Ið0Þe
�q2R2g

3 , for q ! 0 ð2Þ

where I(0) is the forward scattering intensity at q =0. The linear region
in ln(I(q)) vs. q2 was fitted at low-q values such that qmax * Rg≤ 1.3 to
estimate Rg, where qmax is the maximum q-value in the Guinier fit
(Supplementary Fig. 16). On the other hand, Rg of the protein complex
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in simulation was directly calculated from atomic coordinates using
following relation,

Rg =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
imi∣∣ri∣∣

2P
imi

s
ð3Þ

where mi is the mass of ith atom and ri is the position of ith atom with
respect to the center of mass of the molecule.

Molecular dynamics simulations
The initial coordinates of the systemswere obtained fromX-ray crystal
structures with PDB IDs 6HAX, 6HAY, and 7S4E, respectively. The
missing atoms were added using the LEaP module in AMBER20. The
AMBER ff14SB force field44 was employed for the protein and the
degrader force field parameters were generated using in-house pro-
grams for all MD simulations in this study. The explicit solvent was
modeled using TIP3P water encapsulating the solute in a rectangular
box. Counter ions were added to the system to enforce neutrality.
Langevin dynamics were used to maintain the temperature at 300K
and the collision frequency was set to 2.0ps−1. The SHAKE algorithm
was utilized so that a 2 fs time step could be achieved.

A step-wise equilibration protocol was used prior to running the
production phase of the MD simulations. First, a minimization was
performed with a positional restraint of 5 kcalmol−1 Å−2 applied to all
solute heavy atoms followed by a fully unrestrained minimization.
Each minimization was composed of 500 steps of the steepest decent
followed by 2000 steps of conjugate gradient. Using 5 kcalmol−1 Å−2

positional restraint on the heavy atoms of the solute, the system was
linearly heated from 50 to 300 K for a duration of 500 ps (NVT
ensemble) followed by a density equilibration of 750 ps (NPT ensem-
ble). Over the course of five 250 ps simulations, the restraints on the
heavy atoms of the systems were reduced from 5 to 0.1 kcalmol−1 Å−2.
Then, a 500 ps simulation was run with a positional restraint of
0.1 kcalmol−1 Å−2 on the backbone atoms followed by a fully unrest-
rained 5 ns simulation.

Three independent regular MD simulations were performed for
each of the three bound degrader complexes for up 1μs. Structures
obtained from these simulations were clustered into 25 groups based
on interface residue distances.One representative structure fromeach
cluster (alongwith the experimentally obtained crystal structure) were
used as the set of reference ternary complexes for the evaluation of
bound complex predictions by WE simulations or docking.

All simulation data were analyzed by in-house analysis scripts and
visualized/analyzed by the VMD (https://www.ks.uiuc.edu/Research/
vmd/vmd-1.9.3/) and PyMol (https://pymol.org/2/) software packages.

Isoform 1 homology model
Since no suitable X-ray structure for iso1-SMARCA2BD is available in the
PDB, we have used the YASARA (“Yet Another Scientific Artificial
Reality Application”) homology modeling module (YASARA Bios-
ciences GmbH) to build a high-resolution model of iso1-SMARCA2BD

based on its amino acid sequence. The sequence that was used is
Uniprot P51531-1 (residues 1373–1493), which has an additional 17 aa
loop compared to P51531-2 (missing loop at 1400–1417). As a template
for homologymodeling, we used the structure from the PDB ID 6HAY.
Once the model was completed, an AMBER minimization, which
restrained all heavy atoms except the loop residues, was run. This
ensured that the residues in the loop do not overlap and assume a
stable secondary structure conformation. Minimization did not show
major side-chain movements in the final minimized output which
further suggested that the structure was stable.

WE-HDX simulations
WE-HDX simulations of the formation of ternary complexes were run
with both bin-less and binnedWE variants (see SupplementaryNote 1).

These binding simulations were run with iso2-SMARCA2BD and the
degrader-bound VHL subunit. The Elongin C and Elongin B subunits
were omitted in these path-sampling simulations as the process of
ternary complex formation ismainly determined by interactions at the
SMARCA2BD:degrader:VHL interface.

Initially, the ternary complexes were unbound manually by
separating the corresponding VHL-degrader complex from SMAR-
CA2BD by 20–40Å (depending on the system). The (rectangular)
simulation boxes of these unbound systems were then solvated with
explicit water molecules and counter ions were added to neutralize
their net charge. The PROTAC 1 systemhad 21,191 watermolecules and
10 chlorine ions. The PROTAC 2 simulations had 31,567 water atoms
and 9 chlorine ions. The ACBI1 system had 24,093 water molecules, 9
chlorine ions. The dimensions of the simulation systems were
131 Å × 84Å × 84Å for the PROTAC 1 system, 144 Å × 89Å × 91 Å for the
PROTAC 2 system, and 123Å × 76 Å × 98Å for the ACBI1 system.

REVO-epsilon weighted ensemble method. As a bin-less WE variant,
we applied the REVO algorithm.Wewill describe the application of the
REVO algorithm as it pertains to this study, but a more detailed
explanation can be found in previous works. The goal of the REVO
resampling algorithm is to maximize the variation function defined as:

V =
X
i

V i =
X
i

X
j

dij

d0

� �α

ϕiϕj ð4Þ

where Vi is the trajectory (or walker) variation, dij is the distance
betweenwalkers i and j determined using a specific distancemetric, d0
is the characteristic distance used to make the distance term dimen-
sionless, set to 0.148 for all simulations, the α is used to determine how
influential the distances are to the walker variation andwas set to 6 for
all the simulations. The novelty terms ϕi and ϕj are defined as:
ϕi = logðwiÞ � log pmin

100

� �
. Theminimumweight, pmin, allowed during the

simulation was 10−50. Cloning was attempted for the walker with the
highest variance, Vi when the weights of the resultant clones would
be larger than pmin, provided it is within distance ϵ of the walker with
the maximal progress towards binding of the ternary complex. The
two walkers selected for merging were within a distance of 2 Å and
have a combined weight larger than themaximal weight allowed, pmax,
which was set to 0.1 for all REVO simulations. The merge pair also
needed to minimize:

Vjwi � Viwj

wi +wj
ð5Þ

If the proposed merging and cloning operations increase the total
variance of the simulation, the operations are performed and we
repeat this process until the variation can no longer be increased.

Three different distance metrics were used while simulating the
PROTAC 2 system: Using the warhead RMSD to the crystal structure,
maximizing the contact strength (defined below) between protected
residues identified by HDX data, and a linear combination of the war-
head RMSD, contact strength between HDX-protected residues, and
the contact strength between SMARCA2BD and the degrader. The
simulations for the other systems used the last distance metric
exclusively. To compute the warhead RMSD distance metric, we
aligned to the binding site atomson SMARCA2BD, defined as atoms that
were within 8 Å of thewarhead in the crystal structure. Then the RMSD
was calculated between the warhead in each frame and the crystal
structure. The distance between a set of walkers i and j is defined as:

dwarhead rmsd =
1

RMSDi
� 1

RMSDj

�����
����� ð6Þ
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The contact strength is defined by determining the distances between
residues. We calculate the minimum distance between the residues
and use the following to determine the contact strength:

contact strength =
1

1 + e�kðr�r0Þ
ð7Þ

where k is the steepness of the curve, r is the minimum distance
between any two residues and r0 is the distance we want a contact
strength of 0.5. We used 10 for k and 5Å for r0. The total contact
strength was the sum of all residue-residue contact strengths. The
distance between walkers i and j was calculated by:

dcontacts = ∣contact strengthi � contact strengthj ∣ ð8Þ

where contact strengthi is the contact strength of walker i.
All REVO simulations were run using OpenMM v.7.5.0. Simulation

details are as described above. The degrader-VHL interface was
restrained to maintain the complex during the simulation by using a
OpenMM custom centroid force defined as:

CentroidForce = k � ðdist� edistÞ2 ð9Þ

where the dist is the distance between the center of mass of the
degrader and the center of mass of VHL and the edist is the distance
between the center of mass of the degrader and center of mass of VHL
of the crystal structure, and k is a constant set to 2 kcalmol−1 * Å2.

Binned weighted ensemblemethod. We also applied a variant of the
WE simulation, in which the pre-defined collective variable is divided
intobins, using theWESTPA software45. Eachbinmaycontain a number
(M) of walkers, i, that carry a certain weight (wi). The simulations were
run for a relatively short time (τ = 50ps), after which walkers are either
replicated, if their number per bin is <M, or they are merged, if there
are >Mwalkersper bin. Similar toREVO, the sumof allwi equals 1 in any
iteration, i.e., the trajectory replication and merging operations cor-
respond to an unbiased statistical resampling of the underlying
distribution46.

The unbound systems described above were taken as the starting
configuration for each binding simulation with the GPU-accelerated
version of the AMBER molecular dynamics package47. To ensure the
degrader remains bound to the VHL protein during these simulations,
a modest (1 kcalmol−1Å−2) flat-bottom position restraint was enforced
between the center of masses of the E3-ligand and protein binding site
heavy atoms. All other MD simulation parameters were as
described above.

M was set to 5 and two collective variables (CV1 and CV2) were
defined to assess progress during the simulations or ternary com-
plexes with each of the three degraders. CV1 was defined as the war-
head-RMSD, or w-RMSD, of the degrader warhead with respect to the
corresponding crystal structure of the bound complex. CV2 was a
combination of two observables; it was either defined to be the num-
ber of native atom contacts between the warhead and the SMARCA2BD

binding interface or, if the binding sites were so distant that no con-
tacts were formed, it was defined as the distance of the binding part-
ners, i.e., SMARCA2BD and the VHL-degrader binary complex. Contacts
were counted between non-hydrogen atoms within a radius of 4.5 Å
and, to ensure that CV2 is defined along one linear dimension, the
contact countswere scaled by−1. This selection ofCV1 andCV2with an
appropriate binning allowed the separated binding partners to
assemble, during the WE simulations, into ternary complexes that are
similar to the corresponding crystal structures, which were used for
w-RMSD and native contact calculations.

When augmenting the WE simulations with HDX-MS data, i.e., in
the WE-HDX simulations, only the protected residues of the two

proteins, as informed by the corresponding experiments, were taken
into consideration for the contact counts of CV2.

The ensemble of predicted bound structures was evaluated by
comparing the distributions of minimum interface-RMSDs (I-RMSDs)
with respect to the aforementioned set of reference ternary com-
plexes, where the interface is defined by SMARCA2BD and VHL residues
within 10 Å. Furthermore, to obtain a subset of reliable predictions,
these I-RMSD distributions only contain structures with w-RMSD< 2Å
and >30 contacts between any residues of the two proteins or, in the
case of WE-HDX simulations, between the protected residues of the
two proteins.

Ternary complex docking protocol
Following the previously reported applications of molecular docking
to predictions of ternary complexes (i.e., Methods 4 and 4b from
Drummond et al.20 as well as the approach fromBai et al.19), we assume
that high fidelity structures of SMARCA2BD:warhead and VHL:E3-ligand
are known and available to be used in protein–protein docking. This
docking of two proteins with bound degradermoieties is performed in
the absence of the linker. The conformations of the linker are sampled
independently with an in-house developed protocol that uses imple-
mentation of fast quantum mechanical methods, CREST48. Differently
from the docking protocols described in refs. [19,20], we make use of
distance restraints derived either from the end-to-end distances of the
sampled conformations of linker, or from the HDX-MS data. Thus,
before running the protein–protein docking, we generate an ensemble
of conformers for linkers and calculate the mean (x0) and standard
deviation (sd) for the end-to-end distance. This information is then
used to set the distance restraints in the RosettaDock software49:

f 1ðxÞ=
x � x0

sd

� 	2
, ð10Þ

where x is the distance between a pair of atoms in a candidate docking
pose (the pair of atoms is specified as the attachment points of the
linker to warhead and E3-ligand).

When information about the protected residues is available from
HDX-MS experiments, we used them to set up a set of additional dis-
tance restraints:

f 2,iðxÞ=
1

1 + expð�m � ðx � x0ÞÞ � 0:5, ð11Þ

where i is the index of a protected residue, x0 is the center of the
sigmoid function andm is its slope. As above, x0valuewas set to be the
mean end-to-end distance calculated over the ensemble of linker
conformers. The value of m was set to be 2.0 in all the performed
docking experiments. The type of RosettaDock-restraint is SiteCon-
straint, with specification of Cα atom for each protected residue and
the chain-IDof partnering protein (i.e., x in Eq. (11)) is the distanceofCα

atom from the partnering protein). Thus, the total restraint-term used
in docking takes the form:

f restr:ðxÞ=w � f 1ðxÞ+
X
i

f 2,iðxÞ
 !

, ð12Þ

where w = 10 is the weight of this additional score function term.
RosettaDock implements a Monte Carlo-based multi-scale dock-

ing algorithm that samples both rigid-body orientation and side-chain
conformations. The distance-based scoring terms, Eq. (12), bias sam-
pling towards those docking poses that are compatible with specified
restraints. This limits the number of output docking structures, as only
those ones that pass the Metropolis criterion with the additional term
of Eq. (12) will be considered.
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Once the docking poses are generated with RosettaDock, all the
pre-generated conformations of the linker are structurally aligned
onto each of the docking predictions19. Only those structures that
satisfy the RMS-threshold value of ≤0.3 Å are saved as PDB files. All the
docking predictions are re-ranked by the values of Rosetta Interface
score (Isc). The produced ternary structures are examined for clashes,
minimized and submitted for further investigations with Molecular
Dynamics methods. Details about running the described docking
protocol can be found in the Supplementary Note 2.

HREMD simulation
The simulation box of a ternary complex was solvated with explicit
water and counter ions were added to neutralize the net charge of the
system. We chose the Amber ff14SB force field44 for protein and TIP3P
water model50. For the degrader molecules, force field parameters
were generated using in-house force field generator. The LINCS
algorithm51 was used to constrain all bonds including hydrogen atoms.
Theequationofmotionswasnumerically integratedwith a timestepof
2 fs using the Verlet leapfrog algorithm52. The particle-mesh Ewald
summation53 with a fourth-order interpolation and a grid spacing of
1.6 Å was employed to calculate the long-range electrostatic interac-
tions. A cutoff of 12 Å was imposed for the short-range electrostatic
and Lennard-Jones interactions. The solute and solvent were coupled
separately to a temperature bath of 300K using the Velocity-rescale
thermostat54 with a relaxation time of 0.1 ps. The Parrinello-Rahman
algorithm55 with a relaxation time of 2 ps and isothermal compressi-
bility of 4.5 × 10−5 bar−1 was utilized for a pressure coupling fixed at 1
bar. We started with minimizing the energy of a system using the
steepest descent algorithm. Then, the system was equilibrated at the
NVT and NPT ensembles for 1 ns each. Finally, we ran the production
runs in the NPT ensemble.

The details of Hamiltonian replica-exchange MD (HREMD) can be
found in Supplementary Note 3, Supplementary Figs. 17 and 18 and
Supplementary Table 13). For all HREMD simulations, we chose the
effective temperatures, T0 = 300K and Tmax = 425 K such that the
Hamiltonian scaling parameter, λ0 = 1.00 and λmin = 0.71 for the lowest
and the highest rank replicas, respectively. We estimated the number
of replicas (n) in such away that the average exchange probabilities (p)
between neighboring replicas were in the range of 0.3 to 0.4. We used
n = 20 and n = 24 for SMARCA2BD:degrader:VHL and SMARCA2BD:de-
grader:VCB respectively. Each simulation was run for 0.5 μs/replica,
and a snapshot of a complex was saved every 5 ps (total 100,001
frames per replica). Finally, we performed all the analyses on only the
lowest rank replica that ran with original/unscaled Hamiltonian.

We assessed the efficiency of sampling by observing (i) the values
of p, (ii) a good overlap of histograms of potential energy between
adjacent replicas (Supplementary Fig. 17), and (iii) amixing of exchange
of coordinates across all the replicas (Supplementary Fig. 18). Further-
more, to show the convergence of HREMD simulation, we computed
three metrics, radius of gyration of a ternary complex, center of mass
(COM) distance between SMARCA2BD and VHL, and heavy atom con-
tacts within 5 Å between SMARCA2BD and VHL. The distributions of
these metrics are plotted with cumulative length of HREMD simulation
(Supplementary Figs. 19 and 20). We noted that the distributions are
similar for the last 0.3μs (0–0.3μs, 0–0.4μs and0–0.5μs) of the lowest
rank replica implying the convergence of the simulation.

MD simulation of degraders
PROTAC 1, PROTAC 2, and ACBI1 were solvated in a simulation box
with 1002, 1207, and 3169 TIP3P water50 molecules respectively, along
with counter ions to neutralize the system. All other simulation para-
meters were same as described in the “Methods” section "HREMD
simulation”. The production MD simulation of each degrader was run
in the NPT ensemble for 1 μs.

Conformational free energy landscape determination
In order to quantify the conformational free energy landscape, we
performed dimension reduction of our simulation trajectories using
principle component analysis (PCA). First, the simulation trajectories
were featurized by calculating interfacial residue contact distances.
Pairs of residues were identified as part of the interface if they passed
within 7 Å of each other during the simulation trajectory, where the
distance between two residues was defined as the distance between
their Cα atoms. PCA was then used to identify the features that con-
tributedmost to the variancebydiagonalizing the covariancematrix of
the iso2-SMARCA2:PROTAC 2:VHL system; four PCA features were
used in our analysis, chosen because thesemany features were needed
to explain >95% of the variance.

After projecting the simulation data onto the resultant feature
space, snapshots were clustered using the k-means algorithm. The
number of clusters k was chosen using the elbow-method, i.e., by
visually identifying the point at which the marginal effect of an addi-
tional cluster was significantly reduced. In cases where no elbow could
be unambiguously identified, k was chosen to be the number of local
maxima of the probability distribution in the PCA feature space. The
centroids determined by k-means approximately coincided with such
local maxima, consistent with the interpretation of the centroids as
local minima in the free energy landscape, see Supplementary Fig. 23.

To prepare the Folding@home simulations, HREMD data were
featurizedwith interfacedistances and its dimensionality reducedwith
PCA as described above. The trajectory was then clustered into 98 k-
means states for PROTAC 2, and 100 states for both PROTAC 1 and
ACBI1, whose cluster centers were selected as seeds for Foldin-
g@home massively parallel simulations. The simulation systems and
parameters were kept the same as for HREMD and loaded into
OpenMMwhere they were energy-minimized and equilibrated for 5 ns
in the NPT ensemble (T = 310K, p = 1 atm) using the openmmtools
Langevin BAOAB integrator with 2 fs timestep. 100 trajectories with
random starting velocities were then initialized on Folding@home for
eachof the seeds. Thefinaldataset consists of 9800 trajectories, 5.7ms
of aggregate simulation time, and 650 ns median trajectory length.
This dataset ismade publicly available at:https://console.cloud.google.
com/storage/browser/paperdata.

For computational efficiency, the data was strided to 5 ns/frame,
featurized with closest heavy atom interface distances, and projected
into tICA space at lag time 5 ns using commute mapping. The dimen-
sionality of thedatasetwas chosen to keep thenumberof tICsnecessary
to explain 95% of kinetic variance: 219 for PROTAC 1, 339 for PROTAC 2,
and 197 for ACBI1. The resulting tICA space was discretized into
microstates using k-means: we used 30microstates for PROTAC 1, 1000
microstates for PROTAC 2, and 40 microstates for ACBI1. The Markov
statemodels (MSM) were then estimated from the resulting discretized
trajectories at lag time 50 ns. For the PROTAC 2 MSM, we used a
minimum number of counts for ergodic trimming (i.e., the ’min-
count_connectivity’ argument in PyEMMA) of 4, as the default setting
resulted in a trapped state whose connectivity between simulation sub-
ensembles starting from two different seeds was observed only due to
clustering noise. The validity of theMSMwas confirmed by plotting the
populations from raw MD counts vs. equilibrium populations from the
MSM,which is a useful test, especiallywhenmultiple seeds are used and
the issue of connectivity is paramount. A hiddenMarkovmodel (HMM)
was then computed to coarse-grain the transition matrix using 2 mac-
rostates for PROTAC 1, 5 macrostates for PROTAC 2, and 3macrostates
for ACBI1. Chapman-Kolmogorov tests using the transition matrices
from these HMMs are shown in Supplementary Figs. 30–32. A better
alternative to build macrostate models might be to construct memory
kernels56 rather than fuzzy assignments of states as in HMMs. This may
also reduce the computational resources needed to estimate free
energies and transition kinetics of macrostates.
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During analysis of our PROTAC 1 simulations, we found thatoneof
our initial 100 seeded structures was kinetically separated from the
others, such that reversible transitions to this state were not observed
in our F@H trajectories. Transitions between this state and the ground
state were therefore identified as the slowest mode by tICA. Since
transitions to this state were never observed in our F@H simulations,
we simply removed all trajectories seeded from this initial structure
and omitted the first tIC from our analysis.

Comparison of HREMD to SAXS experiment
We validated the HREMD-generated ensembles of iso1/iso2-SMAR-
CA2:ACBI1:VCB complexes by directly comparing to the experimental
SAXS data. The theoretical SAXS profile was computed from each
snapshot from the HREMD simulation trajectory using CRYSOL57

available in a software package ATSAS58. The following CRYSOL com-
mand was used: crysol < filename. pdb > − lm 20 − sm 0.5− ns 201 − un
1 − eh − dro 0.03. To expedite the writing of PDBs from HREMD tra-
jectory and calculation of SAXS profiles, we used the multiprocessing
functionality implemented in a Python package idpflex59. The
ensemble-averaged theoretical SAXS profile was determined as below,

<IðqÞ>= 1
n

Xn
i= 1

IiðqÞ ð13Þ

where n = 100,001 is the total number of frames in HREMD trajectory
of each complex. The ensemble-averaged theoretical SAXS profile was
compared to the experiment (Fig. 6c) by minimizing chi-square (χ2)
given by,

χ2 =
1

ðm� 1Þ
Xm
i= 1

< IexptðqiÞ> � ðc< IcalcðqiÞ> + bÞ
h i

σexptðqiÞ

8<
:

9=
;

2

ð14Þ

where<Iexpt(q)> and<Icalc(q)> are the ensemble-averagedexperimental
and theoretical SAXS intensities respectively, m is the number of
experimental q points, c is a scaling factor, b is a constant background,
and σexpt is the error in Iexpt(q).

Cullin-RING E3 ubiquitin ligase (CRL) simulations to explore
activation
To study the impact of different degraders on ubiquitination, first we
constructed an active form of the Cullin-RING E3 ubiquitin ligase (CRL)
with VHL and grafted it onto the ternary structures from the SMAR-
CA2BD:degraded:VHL simulations described above. We used targeted
MD simulations (TMD)60 to drive the activation of the CLR based on the
active structureof ahomologous E3 ligase,CRL-βTrCP (PDB ID: 6TTU)38.
The full CRL-VHL system was built using PDB IDs 1LQB9 and 5N4W61

including VHL, ElonginB, ElonginC, Cullin2, and RBX1. NEDD8 was
placed near residue Lys689 of the CRL where neddylation occurs.

As the collective variable for TMD, we used the residue-based
RMSD of the last ~70 Cα atoms of the Cullin C-terminus (where ned-
dylation and subsequent activation occur) of Cullin1 from the 6TTU
structure38 as the reference state and modeled Cullin2 from its
inactive form in the 5N4W structure to this reference state. In addi-
tion, the Cα atoms of the entire NEDD8 protein from the 6TTU
structure was also used as a reference structure during TMD. Resi-
dues 135–425 from Cullin2 and corresponding residues from Cullin1
were used for alignment during TMD. The force constant for TMD
was set to 30 kJmol−1nm−2. The system in a rectangular simulation
box with a total number of ~500,000 atoms and an ionic con-
centration of 0.120M using KCl. Hydrogen mass repartitioning
(HMR) was used to enable 4 fs timestep simulations using the the
AMBER ff14SB force field parameters. The TMD structure was then
used to build the entire complex for CRL:VHL:degrader:SMARCA2BD.
The system also included E2 and ubiquitin from the 6TTU structure.

This system was solvated in a truncated octahedral box to avoid
protein rotation during simulation and it was equilibrated for about
30 ns before subsequent meta-eABF simulations for identifying the
ubiquitination zone.

Meta-eABF simulations on full Cullin-RING E3 ubiquitin ligases
(CRL) complex
Weemploy an advanced path-based simulationmethod that combines
metadynamics with extended adaptive biasing force (meta-eABF) to
study the dynamic nature of the full CRL:VHL:degrader:SMARCA2BD

complex and generate a diverse set of putative closed conformations
that place the E2-loaded ubiquitin close to lysine residues on SMAR-
CA2BD. The results from the meta-eABF simulation are used to seed
additional simulations for unbiased ensemble-scale sampling.

Similar to adaptive biasing force (ABF) methods, meta-eABF
simulations also utilize adaptive free energy biasing forces to enhance
sampling along one or more collective variables (CVs), but the prac-
tical implementation is different62,63. Meta-eABF evokes the extended
Lagrangian formalism of ABF whereby an auxiliary simulation is
introduced with a small number of degrees of freedom equal to the
number of CVs, and each real CV is associated with its so-called ficti-
tious counterpart in the low-dimensional auxiliary simulation. The real
CV is tethered to its fictitious CV via a stiff spring with a large force
constant and the adaptive biasing force is equal to the running average
of the negative of the spring force. The biasing force is only applied to
the fictitious CV, which in turn "drags” the real simulation along the
realCV via the springbyperiodically injecting the instantaneous spring
force back into the real simulation. Moreover, the main tenet of the
meta-eABF method is employing metadynamics (MtD) or well-
tempered metadynamics (WTM) to enhance sampling of the ficti-
tious CV itself. The combined approach provides advantages from
both MtD/WTM and eABF.

For CRL-VHL closure we chose a single CV, the center-of-mass
(COM) distance between SMARCA2BD and E2 ligase-ubiquitin (E2-Ub)
complex. The initial COM distance after relaxation was ~65 Å, and we
ran 40 ns of meta-eABF simulation biasing the COM distance between
25 and 75 Å. During this simulation we saw multiple ring closing-
opening events with the last frame representing a slightly open con-
formationwith COMdistance ~36Å.We then continued themeta-eABF
simulation for another 80 ns but narrowing the bias range on the COM
distance to 25–40Å in order to focus the sampling on closed or nearly
closed conformations. The simulations were run using OpenMM 7.564

interfaced with PLUMED 2.765.

Mass spectrometry-based proteomics and ubiquitin analysis
Hela cells (ATCC) were cultured at a seeding density of 6E6 cells per
150 cmdish the day before in IMDM+ 10%FCS. Next day, the cellswere
treated for 1 hwith either (i) 300nMofACBI1, (ii) 300nMofACBI1 + 10
μM MG132 or, (iii) vehicle (DMSO) alone. Three plates of cells were
treated for triplicate measurement in each condition. The cell pellets
were collected after 1 h and lysed in 50mM TEAB (pH 7.5) buffer
containing 5% (w/v) SDS. Protein amounts were quantified using a BCA
assay (Thermo Fisher Scientific) according to manufacturers’ instruc-
tions. A total of 5mg of each sample was processed and digested
overnight using the S-trap-based approach66 with S-trap midi-columns
(ProtiFI) according to a manufacturers’ protocol. Enrichment of ubi-
quitinated peptides (GG-remnants) was performed67 using an anti-
diGly remnant antibody (CST, PTMScan®Ubiquitin Remnant Motif (K-
ϵ-GG) Kit) following manufacturers’ instructions. We used 10μL of
slurry beads (corresponding to 62.5μg antibody) for each ubiquitin
pull-down. Each sample was desalted and dried down before separat-
ing into four fractions using basic reversed-phase tip columns as pre-
viously reported68. For separation, dried peptides were reconstituted
in 200μL of buffer A (25mM NH4FA, pH 10 in ddH2O) and loaded on
self-packed 200μL C-18 Stage Tips (Empore Octadecyl C18 47 mm

Article https://doi.org/10.1038/s41467-022-33575-4

Nature Communications |         (2022) 13:5884 20



Solid Phase Extraction Disks #2215, 3 M Purification, Eagan, MN, USA).
After loading, the peptides were washed with 200μL of buffer A and
eluted sequentially with buffer A containing 2.5%, 7.5%, 12.5%ACN, and
50% ACN. The sample flow-through fraction was combined with the
50% ACN fraction for a total of four fractions. Fractions were dried
down and stored at −20 °C until further analysis.

LC-MS/MS analysis. Peptides were dissolved in 0.1% formic acid (FA)
and analyzed on a Q-Exactive Plus mass spectrometer (Thermo Scien-
tific) coupled to an Ultimate 3000 RSLCnano ultra HPLC system
(Thermo Scientific). The samples were separated in a 120min gradient
(from4% solvent B to 32% solvent B over 100min; Solvent A 0.1% FA, 5%
DMSO inwater; solvent B 0.1% FA, 5%DMSO in acetonitrile. The loading
buffer was 0.1% formic acid in water. The mass spectrometer was
operated in a data-dependent acquisition (DDA)modewith anMS1 scan
from360 to 1300m/z, acquired at 70,000 resolution. TheMS1 scanwas
followed by 20m/z dependent MS2 scans. The precursor ions were
fragmented by higher energy collision dissociation (HCD) and acquired
at a resolution of 17,500. The automatic gain control (AGC) targets for
MS1 and MS2 were set at 3 × 10E6 ions and 1 × 10E5 ions, respectively.
The maximum ion injection time for MS1 was set to 25ms for MS1 and
50ms for MS2 acquisition, with a dynamic exclusion of 35 s. The nor-
malized collision energy was set at 28%. Peptide and protein identifi-
cation. MaxQuant software v.2.0.1.0 was used for protein identification
and label-free quantification (LFQ). The raw mass spectrometry data
fileswere searchedagainst theHumanUniProt databaseusing trypsin as
the digestion enzyme with up to two missed cleavages allowed. Car-
bamidomethylated cysteine was set as a static modification. Oxidation
of methionine, protein N-terminal acetylation, and GlyGly on lysine
were set as variable modifications. The match-between-run option in
MaxQuant was switched on. To control for false positives, a 1% false
discovery rate was used on the PSM and the protein level.

Data analysis. For the ubiquitination profiling data, the distribution of
ubiquitination sites/protein intensity ratios between each sample and
the vehicle samples were computed. A constant scaling factor per
samplewas determined so that themedian of this distribution becomes
1, assuming the intensities of most ubi-site proteins do not change. All
intensities in the samples were multiplied with this scaling factor for
normalization. Statistical testing was performed using the limma R
package69 on normalized log2-transformed intensities. Missing values
were imputed as long as no replicate of the same treatment had an
intensity larger than the median intensity of the treatment. Proteome-
corrected ubiquitination values were calculated using imputed inten-
sities. Statistical significance was determined using pairwise t-test with
Benjamini-Hochberg correction for multiple testing.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data presented in this study asmain text or Supplementary Figures
and Tables are provided in the Source Data file.

The crystal structure of the ternary complex SMARCA2BD:AC-
BI1:VHL resolved in this study has been deposited in the Protein Data
Bank under accession code 7S4E.

The proteomics data obtained in this study as part of the HDX-
MS experiments have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository under accession code
PXD033849.

The proteomics data obtained in this study as part of the ubi-
quitinomics experiments have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository under
accession code PXD033763.

The small-angleX-ray scatteringdata obtained in this study for the
ternary complex iso1-SMARCA2BD: ACBI1:VCB has been deposited in
the Small Angle Scattering Biological Data Bank under accession code
SASDPE8.

The small-angleX-ray scatteringdata obtained in this study for the
ternary complex iso2-SMARCA2BD: ACBI1:VCB has been deposited in
the Small Angle Scattering Biological Data Bank under accession code
SASDPF8.

The crystal structure of the ternary complex SMARCA2BD:PROTAC
1:VHL, used in this study for comparison and for simulation, is available
in the Protein Data Bank under accession code 6HAY.

The crystal structure of the ternary complex SMARCA2BD:PROTAC
2:VHL, used in this study for comparison and for simulation, is avail-
able in the Protein Data Bank under accession code 6HAX.

The crystal structure of the NEDD8 protein, used in this study for
simulation, is available in the Protein Data Bank under accession
code 6TTU.

The crystal structures of the Cullin2 and RBX1 proteins, used in
this study for simulation, are available in the Protein Data Bank under
accession code 5N4W.

The crystal structures of the VHL, Elongin C, and Elongin B pro-
teins, used in this study for simulation, are available in the ProteinData
Bank under accession code 1LQB.

The gene sequence of the bromodomain of SMARCA2 (isoform 1),
used in this study for cloning and protein expression as well as for
homology modeling, is available in the Uniprot database under
accession code P51531-1.

The gene sequence of the bromodomain of SMARCA2 (isoform 2),
used in this study for cloning and protein expression, is available in the
Uniprot database under accession code P51531-2.

The gene sequence of VHL, used in this study for cloning and
protein expression, is available in the Uniprot database under acces-
sion code P40337.

The gene sequence of EloC, used in this study for cloning and
protein expression, is available in the Uniprot database under acces-
sion code Q15369.

The gene sequence of EloB, used in this study for cloning and
protein expression, is available in the Uniprot database under acces-
sion code Q15370.

The initial and final configurations of all Molecular Dynamics
simulation trajectories performed in this study can be accessed at
https://doi.org/10.5281/zenodo.7017262.

Full-length simulation trajectories can be accessed at http://
console.cloud.google.com/storage/browser/paperdataand require a
Google account. Source data are provided with this paper.

Code availability
All simulation codes applied andmovies prepared in this study can be
accessed at https://doi.org/10.5281/zenodo.7017262.
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