
Non-parametric Models for Long-term Autonomy

by

Acshi K. Haggenmiller

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in the University of Michigan
2022

Doctoral Committee:

Professor Edwin Olson, Chair
Professor Ella M. Atkins
Associate Professor Dmitry Berenson
Professor Odest Chadwicke Jenkins

Acshi K. Haggenmiller

acshikh@umich.edu

ORCID iD: 0000-0002-4854-5793

© Acshi K. Haggenmiller 2022

ACKNOWLEDGMENTS

Thank you to my advisor Ed Olson for giving me ideas, inspiration, support,
and focused attention as I have learned what it means to be a researcher. Thank
you to my other committee members (Ella Atkins, Dmitry Berenson, and Chad
Jenkins) for their valuable feedback on and investment in this material. Thank
you to my labmates who helped introduce me to robotics research. In partic-
ular, thank you to my labmate and collaborator Max Krogius, who provided
timely and apt feedback to so many of my ideas and helped me avoid getting
caught up on minor misunderstandings.

Most importantly, thank you to my wife Enid Law for the love, confidence, and
support she has given to me in this journey.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vi

List of Tables . viii

Abstract . ix

Chapter

1 Introduction . 1

1.1 Non-parametric Error Modeling for Ultra-wideband Localization Networks . . . 2
1.2 The Masked Mapper: Masked Metric Mapping 3
1.3 Monte-Carlo Policy-Tree Decision Making (MCPTDM) 5
1.4 Learned Similarity Monte Carlo Planning (LSMCP) 7

2 Non-parametric Error Modeling for Ultra-wideband Localization Networks 8

2.1 Introduction . 8
2.2 Related Work . 9
2.3 Approach . 12

2.3.1 Problem statement . 12
2.3.2 Estimating probability density functions 15
2.3.3 Robust quadrilateral trilateration . 15
2.3.4 Minimization of the non-parametric objective function 17

2.4 Evaluation . 19
2.5 Discussion . 20
2.6 Conclusion . 21

3 The Masked Mapper: Masked Metric Mapping . 25

3.1 Introduction . 25
3.2 Related Work . 27
3.3 Approach . 28

3.3.1 Problem statement . 28
3.3.2 Method overview . 29
3.3.3 Dijkstra projection . 29
3.3.4 Masking functions (masks) . 32
3.3.5 Dijkstra Projection Loop Validation . 33

3.4 Evaluation . 35

iii

3.5 Discussion . 36
3.6 Conclusion . 38

3.6.1 Acknowledgements . 38

4 Monte-Carlo Policy-Tree Decision Making (MCPTDM) 39

4.1 Introduction . 39
4.2 Background . 41

4.2.1 Markov process . 41
4.2.2 Hidden Markov model . 42
4.2.3 Markov decision process . 43
4.2.4 The Partially Observable Markov Decision Process (POMDP) 43
4.2.5 QMDPs and the QMDP solution to a POMDP 44
4.2.6 Monte Carlo tree search (MCTS) . 44

4.3 Related Work . 47
4.3.1 Directly solving the POMDP . 48
4.3.2 Simplification through macro-actions 48
4.3.3 Analytical uncertainty propagation with Gaussians 49
4.3.4 Sampling-based approaches . 49
4.3.5 Neural-network learning . 50
4.3.6 Multi-policy approaches . 51

4.4 Synthetic abstract scenario . 51
4.4.1 Problem statement . 52
4.4.2 Expected-cost estimation with marginal action costs (MAC) 53
4.4.3 Fairness and particle repetition . 56
4.4.4 Experiments . 57

4.5 Autonomous Driving Scenario . 60
4.5.1 Belief estimation . 63
4.5.2 Methods . 63
4.5.3 Experiments . 67

4.6 Conclusion . 69
4.6.1 Acknowledgements . 70

5 Conclusion . 71

5.1 Contributions . 73
5.2 Future directions . 73

Appendix A. Learned Similarity Monte Carlo Planning (LSMCP) 75

A.1 Introduction . 75
A.2 Background . 76

A.2.1 POMCPOW . 77
A.3 Other Related Work . 81
A.4 Problem Statement . 83
A.5 Learning similarity . 84

A.5.1 Loss function . 85
A.5.2 Training data . 86

iv

A.5.3 Batches . 87
A.5.4 Training . 87

A.6 Using similarity . 88
A.7 Evaluation . 89

A.7.1 Buffet . 89
A.7.2 Van der Pol tag . 92

A.8 Challenges and alternatives . 94
A.8.1 Acknowledgements . 95

Bibliography . 96

v

LIST OF FIGURES

FIGURE

1.1 Performance comparison of our method and its variations with three baseline methods. 3
1.2 Comparison between our optimized map and the odometry-only map. 5
1.3 Final comparison of computational time against planning cost for MCPTDM and our

baseline methods. 6

2.1 Robustness of our method to increasingly non-line-of-sight (NLOS) datasets. 10
2.2 Estimated probability distributions (bottom) from 1024 UWB node-to-node measure-

ments (top) with varying line-of-sight conditions. 16
2.3 Layout of our 7 fixed-location UWB radios, in line-of-sight conditions dataset 1 (top),

and non-line-of-sight dataset 3 (bottom). 18
2.4 Graceful degradation of our method’s accuracy when supplied with an incorrect an-

tenna delay prior mean µdelay. 21
2.5 Robustness of our method’s ability to solve for antenna delays with an incorrect prior

mean (aggregated over all UWB nodes and datasets). 22
2.6 Sensitivity analysis of our method to the antenna delay standard deviation prior σdelay. . 23
2.7 Convergence rate of our method on varying line-of-sight conditions. 24

3.1 Top-down (top) and perspective (bottom) views of a masked metric map, spanning
several buildings on the University of Michigan North Campus. 26

3.2 Our map both before (top) and after loop closures and optimization (bottom). 34
3.3 Dependence of each masking function on the minimum matching score. 36
3.4 Effects of the threshold that determines which nodes are close enough to scan match

against for potential loop closures. 37
3.5 Scan matching attempts by Mahalanobis threshold. 37

4.1 Venn diagram showing the generalizations that compose partially-observable Markov
decision processes (POMDPs). 42

4.2 Illustration and comparison of four different rules for estimating the expected-cost of
an MCTS-style node. 54

4.3 Parameter sweep of UCB constant for each expected-cost rule. 59
4.4 Parameter sweep of UCB constant for each UCB expected-cost rule, while using MAC

for final action selection. 60
4.5 Parameter sweep of Monte Carlo trials for each UCB expected-cost rule, while using

MAC for final action selection. 61
4.6 Parameter sweep of Monte Carlo trials for each UCB variation, using MAC for expected-

cost and final action selection. 62

vi

4.7 Plot of relative regret (normalized by the no-repetition case), the particle-repetition
constant, and the number of trials. 63

4.8 Ablation study of our method on the synthetic abstract scenario. 64
4.9 MCPTDM passing a vehicle and keeping distance from others in our simulated road

environment. 65
4.10 MCPTDM experiencing a crash in our simulated road environment (compare to Figure

4.9). 66
4.11 Ablation study of MCPTDM on the autonomous driving scenario. 67
4.12 Final comparison of MCPTDM with EUDM (both with and without the CFB heuris-

tic) and MPDM. 68
4.13 Comparison of just the final safety cost (lower is better) between each method. 69
4.14 Comparison of just the final efficiency cost (lower is better) between each method. . . 70

A.1 Reward structure of an example Buffet POMDP instance with N = 10 “foods” avail-
able. 90

A.2 Illustration of the Van der Pol vector field and barriers. 93

vii

LIST OF TABLES

TABLE

2.1 Symbols and definitions used in this chapter . 13

3.1 The number of scan matches that each masking function ends up making over the
course of map creation, the number that pass the minimum score threshold, the num-
ber that are validated as loop closures, and the total time used for map creation. 35

A.1 Expected mean rollout value error by number of rollouts for the Buffet POMDP. . . . 91
A.2 Parameters and results for data collection and network training. 92
A.3 Mean reward on the Buffet POMDP by method. 92
A.4 Expected mean rollout value error by number of rollouts for the Van der Pol Tag

POMDP. 94
A.5 Mean reward on the Van der Pol Tag POMDP by method. 94

viii

ABSTRACT

In this thesis we propose novel estimation techniques for localization and planning problems,
which are key challenges in long-term autonomy. We take inspiration in our methods from non-
parametric estimation and use tools such as kernel density estimation, non-linear least-squares
optimization, binary masking, and random sampling. We show that these methods, by avoiding
explicit parametric models, outperform existing methods that use them. Despite the seeming dif-
ferences between localization and planning, we demonstrate in this thesis that the problems share
core structural similarities. When real or simulation-sampled measurements are expensive, noisy,
or high variance, non-parametric estimation techniques give higher-quality results in less time.

We first address two localization problems. In order to permit localization with a set of ad
hoc-placed radios, we propose an ultra-wideband (UWB) graph realization system to localize the
radios. Our system achieves high accuracy and robustness by using kernel density estimation for
measurement probability densities, by explicitly modeling antenna delays, and by optimizing this
combination with a non-linear least squares formulation. Next, in order to then support robotic
navigation, we present a flexible system for simultaneous localization and mapping (SLAM) that
combines elements from both traditional dense metric SLAM and topological SLAM, using a bi-
nary “masking function” to focus attention. This masking function controls which lidar scans are
available for loop closures. We provide several masking functions based on approximate topolog-
ical class detectors.

We then examine planning problems in the final chapter and in the appendix. In order to plan
with uncertainty around multiple dynamic agents, we describe Monte-Carlo Policy-Tree Deci-
sion Making (MCPTDM), a framework for efficiently computing policies in partially-observable,
stochastic, continuous problems. MCPTDM composes a sequence of simpler closed-loop policies
and uses marginal action costs and particle repetition to improve cost estimates and sample effi-
ciency by reducing variance. Finally, in the appendix we explore Learned Similarity Monte-Carlo
Planning (LSMCP), where we seek to enhance the sample efficiency of partially observable Monte
Carlo tree search-based planning by taking advantage of similarities in the final outcomes of simi-
lar states and actions. We train a multilayer perceptron to learn a similarity function which we then
use to enhance value estimates in the planning.

Collectively, we show in this thesis that non-parametric methods promote long-term autonomy
by reducing error and increasing robustness across multiple domains.

ix

CHAPTER 1

Introduction

The central idea of this thesis is that non-parametric models can help provide the robustness nec-
essary for long-term autonomy. The central challenge in long-term autonomy is that errors can ac-
cumulate over time, eventually leading to failures. In this thesis, we will show that non-parametric
models can help to reduce the magnitude of errors across a variety of domains, including localiza-
tion and planning.

In some cases, error can be modeled and reasoned about parametrically, such as with a Gaus-
sian [1][2] or Gaussian mixture [3] model. While methods such as the extended Kalman filter
(EKF) perform linearization to handle non-linear models in a Gaussian framework, linearization
error in the EKF may cause the solution to diverge. To address this issue, alternative methods have
been proposed, such as the unscented Kalman filter [4] and the extended finite impulse response fil-
ter [5][6]. In cases where a parametric model is more complex with interacting variables and their
distributions, variational Bayesian inference can be used to estimate the latent model variables [7].
A primary benefit of parametric models is that they often afford closed-form solutions. And some
problems with local minima can even be relaxed into a convex form to help with finding the global
minimum. However, when their assumptions about the underlying data and error distributions are
incorrect, they provide no guarantees about their solution accuracy. Closed-form solutions can be
very attractive because they often have very predictable and low computational requirements, but
many real world problems are very difficult or impossible to reduce into a form suitable for these
solvers. Furthermore, the longer a robot is operating in the real world at a time, the more likely it
is that the assumptions behind these parametric models will be violated.

By comparison, non-parametric methods can handle arbitrary distributions and do not rely on
the same assumptions for their performance. For example, by extending from a fixed number to a
potentially infinite number of Gaussians, the infinite Gaussian mixture model can approximate any
distribution arbitrarily well [8][9]. Gaussian process regression is another non-parametric method
based on distributions of functions [10], and similar to other non-parametric methods, can be used
in a maximum likelihood formulation with Gauss-Newton non-linear optimization [11]. Non-
parametric methods are also important when the unknown distribution is complex, highly variable,

1

and where we want to avoid approximation error. A key challenge with non-parametric methods
is controlling their computational efficiency. Gaussian process regression has computational com-
plexity cubic in the number of input points and non-linear optimization, needing an iterative solver,
is generally much slower than linear optimization. Non-parametric methods also tend to have more
local minima, which may require additional complexity to ensure they find good solutions. Despite
these difficulties, by avoiding model assumptions we help address the increased uncertainty and
complexity of real-world long-term autonomy.

Throughout this thesis, we show how these ideas can be applied to key problems in perception
and planning. Our guiding principle is to avoid all model assumptions that are not strictly required.

1.1 Non-parametric Error Modeling for Ultra-wideband Lo-
calization Networks

We apply non-parametric estimation techniques to localization in chapter 2 [12], showing that be-
cause real-world ultra-wideband (UWB) radios can produce high-variance non-Gaussian measure-
ments, these techniques are needed to enable accurate network localization in highly adversarial
environments. Our non-parametric method solves the network localization problem for a set of
stationary UWB radios by preserving the direct measurements between each pair and then using
each set of measurements as a particle representation of the true measurement probability distri-
butions using kernel density estimation. Our non-parametric model allowed us to use a non-linear
measurement model with explicit coupling of each radio’s position and antenna delay, an internal
radio parameter.

We performed experiments with four real-world datasets and released both these datasets as
well as our source code for reproducibility and comparison. Figure 1.1 shows that even under
nearly-Gaussian conditions, this coupled non-parametric method outperformed baseline methods
that make assumptions about Gaussian or Gaussian-mixture distributions. Under noisier conditions
with non-Gaussian distributions, this method far outperforms the baselines.

A standard commercial practice when using UWB radios for localization is to rigidly affix
each radio to a location and then precisely measure that position. By using our method to avoid
this manual calibration, an autonomous system can continuously recalibrate UWB radio positions.
With this sort of proprioception/self-awareness, when localization radios are moved either inten-
tionally or accidentally, the system should be able to automatically recover, enabling longer periods
of autonomy.

The contributions of chapter 2:

1. Explicit coupled modeling of node antenna delays and locations in a maximum a posteriori

2

1 2 3 4
Data set

0.0

0.1

0.2

0.3

0.4
RM

SE
 (m

)

Our method
First peak
Max peak
Triangulation
Fixed delays
Manual delays

Figure 1.1: Performance comparison of our method and its variations with three baseline methods.
Our non-parametric method and its fixed and manual delay variations far outperform the three
baselines across increasingly non-line-of-sight datasets. High uncertainty in datasets 3 and 4 cause
the full method to perform worse than the fixed and manual delay methods because the system is
under-constrained.

formulation.

2. A framework for optimizing with non-parametric kernel density estimate error models for
each pairwise radio link.

3. Four open-access datasets for comparisons with our method, along with the complete source
code for running our method and generating figures.

1.2 The Masked Mapper: Masked Metric Mapping

We use ideas from topological mapping to solve the simultaneous localization and mapping (SLAM)
problem in chapter 3 [13], without imposing the full constraints of accurate topological labels. Our
flexible mapping scheme uses a masking function as an abstraction to focus the attention of a pose
graph SLAM system. The masking function takes the robot’s observations and returns true if the
robot is in an important location. This enables us to plug-in approximate/simplified topological

3

class detectors (e.g. for hallway junctions, or for where the class changes) as the masking function,
and focus on these areas for finding loop closures. State-of-the-art methods in SLAM generate
dense metric lidar maps, creating precise maps at a high computational cost by storing lidar scans
for each pose node and continually attempting to close loops. In many cases, trying to always make
loop closures is unnecessary for localization and even risky because of perceptual aliasing and false
positives. By masking out these less useful positions, our method can create more accurate maps
despite performing far fewer scan matches.

We evaluate our system with three simple mask functions on a 2.5 km trajectory with significant
angular drift. We compare the number of scan matches performed under each mask as well as the
accuracy of the loop closures. Figure 1.2 shows that with very large loops, large straight hallways
subject to perceptual aliasing, and large odometry drift, our method is effective at recovering an
accurate map.

When a mobile robot loses its localization or “gets lost” and is unable to relocalize on its own,
a human operator will need to intervene. Human environments are subject to constant change and
this poses a particular challenge to a robot’s ability to recognize previous locations. Taking ad-
vantage of masked mapping, a robot designer can design masking functions that prioritize features
that are both distinctive and unlikely to change or that will still be recognizable even with expected
changes. By masking away less reliable lidar scans, a robot will be able to operate for longer
in a changing environment without losing localization or needing human intervention. In addi-
tion, computationally-efficient masked mapping leaves extra computing power for more effective
autonomy in the robot’s other subsystems.

The contributions of chapter 3:

1. A flexible approach to masking a high performance SLAM system to lower computational
cost and minimize the chance of errors due to perceptual aliasing.

2. Two effective masking functions based on detecting openings and intersections that improve
map quality while performing five times fewer scan matches than an “always true” mask
function.

3. Demonstration of our system on a 2.5 km dataset.

4

Figure 1.2: Comparison between our optimized map and the odometry-only map. We get more
effective loop closures by using ideas from topological mapping. Before loop closures and opti-
mization, given the large size of some of these loops, we had as much as 30 degrees of rotation
error (top). After loop closures found with our masking function and optimization, we recover an
accurate map (bottom).

1.3 Monte-Carlo Policy-Tree Decision Making (MCPTDM)

In chapter 4 [14], we apply non-parametric estimation to planning in domains such as autonomous
driving, where rollouts are expensive and the costs/rewards for each action are high-variance. We
present Monte-Carlo policy-tree decision making (MCPTDM), a framework for planning with
uncertainty that uses Monte-Carlo tree search (MCTS) to solve the QMDP [15] simplification of
a partially observable Markov decision process (POMDP). Due to the high computational cost of
rollouts, we focus on sample efficiency by using KL-UCB [16] over the standard upper-confidence
bound (UCB). We also introduce two innovations to MCTS, marginal action costs and fairness-
based particle repetition, that also increase sample efficiency.

We perform experiments on both a simplified abstract scenario and also on a self-driving car
scenario, and show that both of these innovations significantly improve performance. Figure 1.3
shows that MCPTDM outperforms a number of comparable methods on the self-driving task. We
again release all of my source code for replication and comparison.

From a planning perspective, increasing the efficiency of robot planning allows for planning
further into the future and for considering more possible plans and situations. Planning is in general
very hard because of the curse of dimensionality in plans and belief. However much we can
improve planning efficiency, more effective plans will mean that a robot is more likely to achieve

5

its goals without needing an intervention or human help.
The contributions of chapter 4:

1. Monte-Carlo Policy-Tree Decision Making (MCPTDM), which allows an agent to efficiently
compute policies in partially-observable and stochastic problems having either discrete or
continuous action and state spaces. It does this by composing its policy from a sequence of
simpler policies.

2. The enhancements of marginal action cost (MAC) estimation, which improves UCB-based
tree exploration and final action selection, and “particle repetition”, which improves fairness
in cost estimation by reducing the effect of unlucky or unusual initial conditions.

3. Validation of our MAC estimation and particle repetition improvements on an abstract task
and evaluation and comparison with MPDM [17] and EUDM [18] on an autonomous self-
driving task.

4. Openly-released source code capable of reproducing all the figures and evaluation results
from this chapter for full replication of our results and further extensions.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
95% Computation time (s)

240

260

280

300

320

340

360

Co
st

Final comparison: cost by 95% computation time (s)
MPDM
EUDM, w/o CFB
EUDM, CFB
MCPTDM (proposed)

Figure 1.3: Final comparison of computational time against planning cost for MCPTDM and our
baseline methods. MCPTDM achieves either significantly lower final cost or significantly lower
computational time than either EUDM [18] or MPDM [17].

6

1.4 Learned Similarity Monte Carlo Planning (LSMCP)

In the appendix, we start a line of research on learning a similarity function with a multilayer
perceptron to enhance the sample-efficiency of partially-observable Monte Carlo tree search-based
planning. Planning for black-box partially observable Markov decision process models is difficult
because we do not have access to domain-specific simplifications to help reduce the exponential
complexity of uncertainty, state size, and planning horizons. Improvements to general POMDP
planning would be broadly applicable to many robotics problem domains.

Learned similarity Monte Carlo planning (LSMCP) starts by gathering training data contain-
ing the ground-truth rollout values for many different action choices for the same states. LSMCP
then learns a mapping from action-state tuples to a Euclidean space for easy distance calculations.
Action-state tuples that are closer have higher similarity, and by combining many known values of
action-state tuples together we can estimate the value of another unknown, but similar, action-state
tuple. LSMCP uses these similarity estimates to inform the value of beliefs containing multiple
possible states, leading to better value estimates for the same total number of Monte Carlo tri-
als/iterations. So far, however, we have had only mixed results with LSMCP and further work is
needed.

7

CHAPTER 2

Non-parametric Error Modeling for Ultra-wideband
Localization Networks1

2.1 Introduction

In this chapter, we propose an ultra-wideband-based (UWB) localization system that achieves
high accuracy through non-parametric estimation of measurement probability densities and ex-
plicit modeling of antenna delays. By using kernel density estimation and non-linear least-squares
optimization, we take full advantage of the noisy non-Gaussian UWB measurements that might
otherwise need to be identified and discarded to fit a parametric model. While we attempt to cap-
ture the physics of UWB measurements in an accurate mathematical model, we keep with our
overall guiding theme and avoid any assumptions placed on the error model of these measure-
ments. Differences in environment, configuration, and hardware can all impact the error landscape
and we do not want to unnecessarily restrict the applicability of our system by placing parametric
restrictions on the measurement error.

Wireless sensor networks show promise for rapid, accurate, and inexpensive deployment of lo-
calization in new environments, especially compared to sensors such as LIDAR or motion capture.
We use ultra-wideband radios because of their low cost and potential for high accuracy measure-
ments; specifically, we use the DecaWave DWM1000. There are several key problems to overcome
for high localization accuracy. First, non-line-of-sight (NLOS) conditions result in high-variance
non-Gaussian measurement error. Second, each radio has a unique and potentially unknown in-
ternal UWB parameter called antenna delay, which is the combined time it takes a signal to leave
the generating hardware and be radiated by the antenna and the similar delays on the receiver. For
the DWM1000, single-measurement error improves from roughly 30 cm to 4 cm after the process
of manual antenna delay calibration [19]. Third, localization accuracy of a robot or other moving
UWB node depends on knowing the positions of the fixed nodes, but manually measuring these
for a large network can be time consuming.

1Adapted from Haggenmiller, Krogius, and Olson [12]

8

In order to achieve high accuracy and support rapid deployment, we consider the joint problem
of solving for both antenna delays and node positions, using only the direct time of propagation

measurements (sum of the respective antenna delays and time-of-flight) between nodes in the net-
work.

This approach is difficult for several reasons. First, the addition of antenna delays and lack of a
priori known anchors makes the problem less constrained. Second, in non-line-of-sight conditions
the signal strength for the direct path is weakened and the timed signal will more likely correspond
to a non-direct reflected route, or multipath route, that will overestimate the true distance. Third,
to compensate for the weaker signal strength of the true path signal, the UWB radio can be made
more sensitive, but this increases the likelihood of mistaking noise for the path signal and under-
estimating the true distance [20]. The combination of the previous effects leads to a measurement
error model dependent on unknown environment conditions with an unknown number of modes
and possibly non-Gaussian noise. Finally, the optimization problem is non-convex, has many local
minima, and can suffer from geometric flip ambiguities [21].

To solve for unknown antenna delays, we explicitly model these delays and their prior prob-
abilities. To account for unknown error conditions, we directly approximate the measurement
probability density function (PDF) in a non-parametric fashion. As the problem is non-convex,
we use gradientless non-linear optimization initialized with trilateration through robust quadrilat-
erals [22].

By choosing to use a non-parametric model for the measurement PDFs, we avoid approxi-
mating the PDF as some other model (e.g. Gaussian or Gaussian mixture) and we also avoid
classifying and discarding measurements (perhaps incorrectly) as multipath outliers. In this way,
out model attempts to get as much information out of each measurement sample as possible.

The main contributions of this chapter include:

1. Explicit coupled modeling of node antenna delays and locations in a maximum a posteriori
formulation.

2. A framework for incorporating non-parametric error models, where the error models are
built dynamically based on empirical data for each pairwise radio link.

3. Four open-access datasets which correspond to varying levels of LOS and NLOS links, for
comparisons with our method.

2.2 Related Work

The use of sensor networks for localization is well studied in literature. A variety of sensor types
may be used, including those based on WiFi access points [23], Bluetooth Low Energy (BLE)

9

1 2 3 4
Data set

0.0

0.1

0.2

0.3

0.4

RM
SE

 (m
)

Our method
First peak
Max peak
Triangulation
Fixed delays
Manual delays

Figure 2.1: Robustness of our method to increasingly non-line-of-sight (NLOS) datasets. We
show the distribution of RMSE of 7 UWB node locations evaluated on 50 bootstrap samples from
each dataset. First peak and max peak methods, as predicted, are not robust to NLOS condi-
tions (datasets 2, 3, 4). Triangulation, which does not perform non-linear optimization, has higher
RMSE. Fixed nominal and manual delay methods cannot achieve as high accuracies on the low-
NLOS datasets 1 and 2 as the full method, and the manual values might be over-fit to calibration
conditions. High uncertainty in datasets 3 and 4 cause the full method to perform worse than the
constant delay methods because the system is less constrained.

10

devices [24], chirp spread spectrum (CSS) radios [25], and ultra-wideband (UWB) radios [26].
While WiFi and BLE-based methods often work opportunistically with existing hardware, their
dependence on received signal strength (RSS) and fingerprinting metrics leads to relatively coarse
location estimates (on the order of meters). Furthermore, because these techniques do not directly
use range estimates, they require a prior map of the localization environment.

When the node sensors are capable of taking range measurements, the main problem is network

localization, or the localization of unknown node positions given the positions of a priori known
anchors.

Three existing methods for network localization are: simulated annealing, semidefinite pro-
gramming, and multidimensional scaling. When using simulated annealing localization [27], the
node position estimates are randomly perturbed by progressively decreasing amounts which cor-
respond to a temperature parameter. Changes that lower the error function are more likely to
remain. At each temperature, all the nodes are perturbed sufficiently for the system to enter a ther-
mal equilibrium before the temperature is lowered. When using semidefinite programming [28], a
suboptimal relaxation of the weighted maximum likelihood estimate is used. This SDP formula-
tion is convex and provides a good initial estimate for further refinement through a gradient search
method. When using multidimensional scaling [29], the objective function is the least squares error
between measured and expected ranges. A gradient estimate is found that is exact when the error
is zero, which is then used with gradient descent. Unlike our method, each of these uses known
anchors and was evaluated only in simulation, not taking into account hardware complexities like
antenna delay.

Graph realization is a subproblem of network localization where all node positions are solved
for with only range measurements. Known anchors are not used. This subproblem is less common
in the literature. Di Franco et al. [30] propose an MDS-based method with Gaussian mixtures
and expectation-maximization to solve the graph realization. They evaluate their method with the
SurePoint [31] UWB hardware, which is also based on the DecaWave DW1000 UWB chip. They
do not consider antenna delay characterization of their hardware.

Even with the use of UWB radios, there are multiple ways to estimate range between devices.
In one case, by using time difference of arrival and wired synchronized clocks, a UWB system
achieved sub-millimeter accuracy [26]; however, this need for wired time synchronization could
make the system infeasible in certain scenarios. In a more typical example of synchronization-free
time-of-flight (TOF) ranging, a UWB system also based on the DWM1000 module achieved single
measurement error in the range of about 12 cm to 36 cm [32].

Once the graph realization is complete, the fixed UWB nodes can be used for real-time tracking
of dynamic objects. Prior works in this area generally perform sensor fusion to mitigate multipath
effects and achieve higher update rates. Hol et al. fuse inertial measurement unit (IMU) readings

11

with UWB time-of-arrival measurements from six synchronized nodes [33]. Zwirello et al. assume
a pedestrian model and also fuse step length estimates in addition to IMU [34].

The area of graph realization for UWB networks has not yet been extensively explored. Our
key differences compared to prior work include modeling of antenna delays and optimization on
an empirical error model.

2.3 Approach

This chapter discusses use of UWB-based nodes using standard double-sided two-way ranging
(DS-TWR) time-of-flight (TOF) measurements with the inexpensive DecaWave DWM1000 UWB
module. We also constrain the problem to two dimensions because of a large dependence we found
on measurement error due to the varying angle of incidence between antennas (Fig. 6 of [32]) and
antenna radiation patterns (Fig. 7 of [35]). By restricting to two dimensions, we can orient the
radios such that the antenna radiation patterns have equal energy over angle of incidence.

2.3.1 Problem statement

We start with a set of UWB nodes that are scattered through an environment. The size of this
environment and what kinds of LOS or NLOS conditions to expect are unknown. We can attempt
to take as many range measurements between any two nodes as we like, but depending on the dis-
tance between nodes and environmental conditions, it might not be possible to take measurements
between every pair. Our goal is to find the coordinates and antenna delays of all the nodes given
the set of measurements that we are able to make.

We pose this as a maximum a posteriori problem, expanding the prior on the parameters to
include the probability of being able to measure a certain distance as well as that of encountering
a certain antenna delay time:

θopt = arg max
θ

p(θ|M) (2.1)

= arg max
θ

p(M |θ)p(θ) (2.2)

= arg max
θ

∏
ij∈E

p(Mij|θ)×∏
ij∈E

p(||Xi −Xj||)×
∏
i

p(delayi) (2.3)

Optimization parameter θ includes both coordinates X and antenna delays; M includes all

12

Table 2.1: Symbols and definitions used in this chapter

c speed of light, in m/µs
M set of all measurements t for all edges ij
E set of all measured edges ij in the network
X set of all estimated coordinates (2 or 3-D) Xi

f Gaussian probability density function
delay set of all antenna delays delayi
µdelay nominal antenna delay value
σdelay nominal antenna delay standard deviation
θ optimization parameters {X, delay}
tofij time of flight for edge ij
propij propagation time estimate for edge ij
dij distance estimate for edge ij
G(Mij) convolution-estimated PDF for edge ij
pdfij table of estimated PDF for edge ij

measurements taken on each edge in E (see symbol key in Table 2.1).
We face a variety of problems making this formulation tractable. First, the individual measure-

ments of any edge are not independent because they are conditioned on an unknown environment.
For example, while LOS conditions generally result in a unimodal Gaussian distribution, NLOS
conditions may lead to an arbitrary number of arbitrarily spaced Gaussians that may not even
include one centered on the true distance, depending on the environment.

Second, the need to perform computations on individual measurements may pose computa-
tional problems when there are many measurements. Third, finding the correct prior probabilities
for distances that can be measured (since the hardware devices have limits to their range) and for
the antenna delays also increases the complexity of the problem.

Without further constraints on the coordinates and network, the maximal solution will not be
unique. At the very least, the coordinate system requires a fixed origin and coordinate axes. This
leaves a solution that should differ from the ground truth by at most one translation, rotation, and
mirroring operation. However, especially in NLOS conditions, node connectivity might be low
enough and uncertainty high enough that it is possible for a network topology to emerge with flip
ambiguities that result in multiple optimal solutions [22] [21]. A flip ambiguity is when a network
has multiple unique exact solutions. The simplest example occurs when a node has connectivity of
only two and its position could be on either side of the two connected nodes. Even if the solution
is unique, conditions close to a flip ambiguity may contribute to various local minima, so a good
initial estimate will be necessary to find the best solution.

One of the key ideas in this chapter is to build a probabilistic model of range measurements in
terms of a density estimation problem, viewing each of these individual measurements as data that

13

informs the model. Our approach is to essentially convolve each measurement with a Gaussian
corresponding to the intra-modal error (which we characterize under controlled testing conditions
before the fact) and then compute the sum over the Gaussians. For simplicity, we also disregard
the prior probability for distances on measured edges, p(||Xi −Xj||), as it is likely uniform in the
basin of convergence of the optimal solution.

We take p(Mij|θ) to be the sum of the measurement probabilities, with f the Gaussian PDF,
M t

ij the measurement t of edge ij, propij(θ) the propagation time estimated from parameters θ in-
cluding coordinates X and antenna delays, and σ2 the nominal intra-modal measurement variance:

p(Mij|θ) ≈
∑
t

f(M t
ij; propij(θ), σ

2)

:= G(Mij, propij(θ)) (2.4)

We recognize that this is essentially a convolution between Mij and a Gaussian with propij(θ)
specifying the location of the result in that convolution. This means we only need to calculate
that convolution once in the method’s initialization. We treat G as an estimate of the probability
density function (PDF) of Mij . This operation is effectively the same as calculating the kernel
density estimate with a Gaussian kernel.

This leaves us with our final form of the optimization problem:

θopt = arg max
θ

F (θ) (2.5)

F (θ) =
∏
ij∈E

G(Mij, propij(θ))
∏
i

p(delayi) (2.6)

To solve the problem of the arbitrary origin, rotation, and mirroring, we make use of the fact
that our intended application is robot localization. Our algorithm can first assign these arbitrarily
during triangulation. Later, we can have the robot drive in a small loop, redefining the origin as the
robot’s initial location and the x-axis as the direction of its first motion. We can then resolve the
mirroring ambiguity by coercing the winding order of the robot’s estimated trajectory to match the
known winding order of the path.

To solve both the problem of flip ambiguities and of a good initial estimate, we make use
of trilateration with robust triangles [22]. This method will also identify whether the network is
such that flip ambiguities cannot be distinguished. We run the robust trilateration with a series of
different initial measurement values drawn from the distribution G of each edge. This gives us a
variety of initial conditions across different possible modes of the data. We choose the trilateration
with the lowest residual to further optimize.

We also repeat the entire process of choosing an initial estimate and further optimizing it several

14

times to choose the best solution (see Algorithm 1).

Algorithm 1: Our non-parametric graph realization method

Input: number of total attempts A
number of random initializations L
measurements M
edges E

Output: best solution θopt

for ij ∈ E do
pdfij ← EstimatePDF(Mij)

end
delay0 ← {µdelay, µdelay, . . .}
for a← 1 to A do

for l ← 1 to L do
prop← DrawFromPDFs(pdf)
d← EstimateDistances(prop, delay0)
X0l ← RobustTrilateration(d)

end
X0 ← arg minl Residual(X0l, delay0)
θa ← arg minθ F (θ)

θ0 = {X0, delay0}
end
θopt = arg mina Residual(θa)

2.3.2 Estimating probability density functions

We approximate the PDF of each link in the network by convolving the measurements with a
Gaussian of nominal standard deviation σ = 1.3× 10−4 µs (see Figure 2.2). The convolution is
stored in a table over a range from minj pj − 6σ to maxj pj + 6σ with a spacing of 2.5× 10−6 µs,
or approximately 0.075 cm.

We estimate this nominal standard deviation empirically as the standard deviation of measure-
ments between a pair of our nodes under ideal unimodal LOS conditions.

We use quadratic interpolation to read out probabilities from each table. For queries beyond
the 6σ range, we approximate the result with a Gaussian centered at the mean of the distribution
with a standard deviation of σ = 1.3× 10−4 µs again.

2.3.3 Robust quadrilateral trilateration

We find our initial localization estimate by assuming a fixed antenna delay value (µdelay) for every
node and fixed propagation times drawn from the measurement PDFs.

15

0.533 0.534 0.535
0

10

20

30

40

Co
un

ts

0.533 0.534 0.535
tprop (μs)

0

200

400

600

PD
F

0.521 0.523
0

50

100

150

0.521 0.523
tprop (μs)

0

200

400

600

0.536 0.540 0.544
0

10

20

30

40

0.536 0.540 0.544
tprop (μs)

0

25

50

75

100

Figure 2.2: Estimated probability distributions (bottom) from 1024 UWB node-to-node measure-
ments (top) with varying line-of-sight conditions. A unimodal line-of-sight link (left) could be
easily approximated by a single Gaussian and the multimodal measurements (center) could be
fairly well represented by 3 or 4 Gaussians, but the heavily non-line-of-sight measurements (right)
are not Gaussian. Our non-parametric error modal preserves the distribution in all three cases.

16

With these assumptions, we have a single distance measurement for each link to use in the
trilateration:

tofij = propij − 0.5(delayi + delayj) (2.7)

= propij − µdelay (2.8)

dij = c× tofij − bias(c× tofij) (2.9)

The bias function is a range bias characterized by the manufacturer that we have smoothed with
quadratic interpolation [36]. From this point, the method is performed as described by Moore et.
al. [22].

2.3.4 Minimization of the non-parametric objective function

In order to capture the full complexity of our measurements, we are building non-parametric error
models of each link at run time. As this precludes use of analytic gradients, we optimize logF (θ)

with the generalized Gauss-Newton method and calculate both the gradient and Hessian numeri-
cally.

We use optimization parameter θ = {X, delay}, where X includes both x and y coordinates.
Extension to higher dimensions is trivial at this point.

logF (θ) =
∑
ij∈E

−logG(Mij, propij(θ))+ (2.10)∑
i

−log p(delayi)

propij(θ) = tofij(θ) + 0.5(delayi + delayj) (2.11)

tofij(θ) =
(
dij + bias(dij)

)
/c (2.12)

dij = ||Xi −Xj|| (2.13)

p(delayi) = f(delayi;µdelay, σ
2
delay) (2.14)

We use σdelay = 3.3× 10−4 µs, which is derived from the manufacturer’s antenna delay calibra-
tion note citing a 3-sigma variation of 30 cm[19]. Unfortunately, the manufacturer did not include
a mean antenna delay, so we performed the manual calibration described in that document for 8 of
our UWB nodes, and took µdelay = 0.516 µs as the mean.

17

Figure 2.3: Layout of our 7 fixed-location UWB radios, in line-of-sight conditions dataset 1 (top),
and non-line-of-sight dataset 3 (bottom). Nodes are circled, but are only approximate in the bottom
image. We made our datasets progressively non-line-of-sight by surrounding the nodes with boxes
and other clutter.

18

2.4 Evaluation

In all of our experiments, we configured our DWM1000 module to transmit on channel 1 at
850kbps with a 64MHz pulse repetition frequency (PRF), 512 symbol preamble, the DecaWave-
optimized start-of-frame delimiter (SFD), and with smart transmit power control, according to
the DW1000 user manual [37]. We used NLOS-optimized threshold settings, LDE CFG1: 0x67,
LDE CFG2: 0x0004 [20].

For each dataset, we placed eight UWB nodes in our lab space as in Figure 2.3, with the
antennas oriented vertically. As we intended to later localize the robot by use of the seven fixed
nodes, we did not collect a ground truth location for the robot. However, measurements between
the robot and the other seven nodes were still included in the graph realization. Dataset 1 was
taken as shown in Figure 2.3 (Top), so that LOS would exist between all nodes. Dataset 3 was
taken as shown in 2.3 (Bottom). Datasets 2 and 4 had fewer and greater obstructions than dataset
3, respectively.

While we perform these experiments with known Z coordinates (mostly zero), the method
should in principle extend to higher dimensions. However, a full 3D solution is inherently more
sensitive to the geometry of the network and the number of measurements.

To take data for evaluation of our method, we attempted to collect 1024 measurements for each
of the 28 possible links. As some NLOS links might be completely blocked, we would give up
if we could not collect that many measurements in under 10 seconds. Links with LOS conditions
typically collected 1024 measurements in about 7 seconds. For all of our evaluations, we first
process the data slightly to remove any measurements of less than 0.5 µs as obviously representing
invalid negative ranges, and any measurements more than 4 standard deviations from the mean.
This prevents the PDF tables from becoming needlessly large in an attempt to include outlier noise.
In most of our evaluations, we do not use the full number of measurements taken, and so we take
a random bootstrap sample of the desired number of measurements. We evaluate each condition
with the same 50 distinct random seeds, so that each configuration is compared against the same 50
random subsets of measurements. We report the root mean square error between solved positions
of the 7 fixed non-robot nodes and ground truth after finding the translation, rotation, and mirroring
that minimizes this error. Ground truth was determined by placing nodes only at the corners of 1ft-
by-1ft floor tiles.

Unless otherwise specified, we performed all of our evaluations with total method attempts
A = 20, random trilateration initializations L = 250, µdelay = 0.516 µs, σdelay = 3.3× 10−4 µs,
and a maximum of 256 measurements per link.

We did not further investigateA or L because we found those values to be relatively insensitive,
and performance did not seem to increase for larger values. We performed parameter sweeps over

19

the variables describing the prior on antenna delay due to their significance to the method, and over
the number of measurements because taking measurements is the dominant factor in the total time
taken for graph realization. The results are in Figures 2.4, 2.6, and 2.7.

Finally, we evaluate the performance of our method by ablation analysis. In the first peak

version of the algorithm, we construct the PDF with a single Gaussian of mean µ centered on the
lowest peak (local maxima) of the full PDF G, with standard deviation fit to minimize the least-
squares error. This method follows the intuition that because incorrect multipath measurements
are too long by definition, the first peak most likely represents the direct path. The max peak

version is similar, but uses the highest amplitude peak of the full PDF, following the intuition that
multipath or noise-based peaks will be lower in strength. The rest of the algorithm in both methods
is unchanged. In the triangulation version, the algorithm skips the non-linear minimization of F
(antenna delays remain at nominal values). In the fixed delays version, the non-linear minimization
is only over the coordinates, leaving the antenna delay times constant at the prior mean value. The
manual delays version is similar, but we manually calibrate the values in LOS conditions with
LOS optimized thresholds [20]. We place the nodes three at a time in an equilateral triangle with
10-foot long sides and take 1000 measurements between each pair. We use the mean values and
compute the least squares solution for the antenna delays [19]. The results of the total ablation
analysis are in Figure 2.1.

2.5 Discussion

We use the ablation analysis in Figure 2.1 to examine the performance of our method under the
increasing NLOS conditions from datasets 1 through 4. We find that under the most LOS condi-
tions, the more naive first/max peaks methods have equivalent performance, but the disparity grows
rapidly as the conditions become increasingly NLOS. We also find that the benefit of modeling an-
tenna delays seems to fall off under NLOS conditions. We recognize that with only 8 nodes, our
complete problem is only barely fully constrained, having 8× 7/2 = 28 equations and 8× 3 = 24

unknowns. As the uncertainty in the NLOS links increases, the overall system would need to be
more over-determined to accurately solve for all the unknowns. As a result, in high NLOS cases
we cannot solve for the antenna delays to a higher accuracy than the 0.516 µs prior. However, on
the most well constrained LOS case, modeling of the antenna delays cuts RMSE from 6.2 cm to
3.0 cm.

Examining the sensitivity of our method to the prior on the antenna delays, we find from Figure
2.4 that the prior mean µdelay is significant to the performance of our method, but looking at Figure
2.5 we see that our method is able to return antenna delay values that are many standard deviations
more accurate than the values provided by the incorrect priors. Looking at the prior on standard

20

0.510 0.512 0.514 0.516 0.518 0.520 0.522
μdelay (μs)

0.0

0.2

0.4

0.6

0.8

1.0
RM

SE
 (m

)

Dataset 1
Dataset 2
Dataset 3
Dataset 4

Figure 2.4: Graceful degradation of our method’s accuracy when supplied with an incorrect an-
tenna delay prior mean µdelay. Each additional nanosecond difference from the empirical mean of
0.516 µs (vertical line) is a 30 cm biased error on each measurement. The DWM1000 manufacturer
specifies an antenna delay standard deviation of 3.3× 10−4 µs (dashed lines) [19].

deviation σdelay, we find the method to be far less sensitive. In the most NLOS case where the
antenna delays are least constrained, we find that the too-large standard deviations are particularly
harmful. Values in the range of about 1× 10−4 µs to 5× 10−4 µs seem to work best. Smaller
values effectively prevent the antenna delays from moving away from the mean, reducing the
algorithm to the fixed delay simplification, while larger values leave the choice of antenna delay
too unconstrained.

The total time necessary for the graph realization and calibration in a new environment is
dominated by the time needed to take measurements across all possible edges. With our evaluation
setup, taking 128 measurements per link would take a maximum of 35 seconds for the 8 nodes.
Execution of the complete algorithm took half a second on the author’s laptop in the worst case,
leading to less than one minute for the complete localization process.

2.6 Conclusion

In this chapter, we proposed a non-parametric error model that makes UWB network localization
robust to NLOS conditions. We found that our modeling and simultaneous calibration of antenna

21

0.510 0.512 0.514 0.516 0.518 0.520 0.522
Prior μdelay (μs)

0.5075

0.5100

0.5125

0.5150

0.5175

0.5200

0.5225

0.5250

Po
st

er
io

r d
el

ay
s (

μs
)

Figure 2.5: Robustness of our method’s ability to solve for antenna delays with an incorrect prior
mean (aggregated over all UWB nodes and datasets). If our method did nothing to improve on the
given prior, each violin plot would have its posterior mean centered on the given prior (dotted red
line). If our method were perfect, each plot would have the posterior centered on the known true
mean (solid horizontal line). Because the prior standard deviation is small (dashed red lines), the
optimization faces a high cost to move the posteriors away from the given prior. We see that under
all conditions, our method produces posterior antenna delays significantly better than the supplied
prior.

delays lead to very high accuracy is LOS conditions. We found that only 16 to 128 measurements
were necessary per link and that a network of 8 UWB nodes required less than a minute for both
the collection of measurements and execution of the algorithm. On this network we achieved
accuracies of 3 cm RMSE in the LOS dataset 1, and 30 cm in the NLOS dataset 4. Our datasets
and source code files can be found at https://osf.io/pkbq4/.

In the next chapter, we propose a non-parametric planning framework for domains such as
autonomous driving, where rollouts are expensive and the costs/rewards for each action are high-
variance, similar to how UWB measurements are high-variance under NLOS conditions.

22

10−4 10−3 10−2

σdelay (μs)

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

 (m
)

Dataset 1
Dataset 2
Dataset 3
Dataset 4

Figure 2.6: Sensitivity analysis of our method to the antenna delay standard deviation prior σdelay.
Dataset 1 has low uncertainty and so is well constrained, making it insensitive to choice of σdelay.
Datasets 2, 3, and 4 have increasing uncertainty from non-line-of-sight conditions, making them
more sensitive. Values below the nominal of 3.3× 10−4 µs (dashed vertical line) essentially make
the method perform as if the antenna delays are fixed. Datasets 3 and 4 are not quite constrained
enough to solve for antenna delays well, so their RMSE grows the most for larger σdelay (compare
the full method with the fixed antenna delay version in Figure 2.1).

23

100 101 102 103

Number of measurements per edge

0.1

0.2

0.3

0.4

0.5

RM
SE

 (m
)

Dataset 1
Dataset 2
Dataset 3
Dataset 4

Figure 2.7: Convergence rate of our method on varying line-of-sight conditions. The fewer the
measurements needed, the less time required to localize and characterize the network. In datasets
3 and 4, accuracy continues to improve until about 128 measurements per edge. In datasets 1 and
2, however, low measurement uncertainty allows even just one measurement per link to suffice.

24

CHAPTER 3

The Masked Mapper: Masked Metric Mapping1

3.1 Introduction

In this chapter, we present a flexible system for simultaneous localization and mapping (SLAM)
that combines elements from traditional dense metric SLAM and from topological SLAM, using
a masking function (mask) to focus attention by controlling which robot poses are available for
loop closures. Under our guiding principal of avoiding explicit parametric models where possible,
we take advantage of key ideas from topological mapping without imposing the full constraint
of accurate topological labelling. Noticing that certain topological classes are useful for effective
loop closing, we can use approximate/simplified detectors for these classes to aid in loop closing,
but without needing to worry about false positives or other accuracy concerns in the detectors. In
this way, we get advantages without the constraints of a strict model.

Typical robot navigation systems use dense metric map representations that are based around
information-dense lidar maps for localization and route planning. In pose SLAM, a factor graph is
constructed with nodes representing the pose of the robot at different points in time and edges rep-
resenting odometry measurements and lidar-scan loop closures. There are efficient techniques to
optimize these factor graphs as non-linear least squares problems [38]. By continually integrating
odometry and lidar scans, the precise location of the robot and a detailed map of its environment
can be maintained at all times. As the size of the map increases it becomes more and more diffi-
cult to maintain global consistency, as odometry drift will continue to accumulate until the robot
returns to an area it has seen before. This accumulated error can be eliminated by matching the
robot’s current location to places it has seen before to form loop closures, but this process is com-
putationally expensive and has the risk of incorrectly matching similar-looking regions (perceptual
aliasing). The continuous loop-closing work of dense metric SLAM produces highly precise maps
at a high computational cost and potential risk of false-positive loop closures.

1Adapted from Haggenmiller, Kabacinski, Krogius, and Olson [13]

25

Figure 3.1: Top-down (top) and perspective (bottom) views of a masked metric map, spanning
several buildings on the University of Michigan North Campus. The floors are color-coded, using
a lighter color for each floor from the first to the fourth. The robot drove 2.5 km and the total
optimized path length over all floors is 1.9 km. Imagery from Google and Maxar Technologies.

Topological mapping methods address these problems by focusing on interpreting the seman-
tics of the environment and using these to build models that more closely resemble the human
cognitive map [39] with intersections, paths, places, regions, and so forth. These representations
can be very simple and the robot will only need to close loops when it makes sense based on the
topology and semantic labels. As a result, topological maps can generally define an environment
with fewer nodes and loop closures, although the process of determining the correct semantic labels
for the robot’s location and of segmenting the environment can be complex.

The key advantage in topological mapping is that high-precision localization in hallways and
similar environments is often unnecessary. A simple control law such as go-straight or wall-follow
will reliably navigate these scenarios without centimeter-level localization. In addition, these hall-
ways are the places where scan matching systems are most likely to fail from perceptual aliasing.

Our system takes advantage of the fact that some places need precise localization more than
others by abstracting this distinction into a configurable masking function. A well-designed mask-
ing system can achieve both lower probability of failure and lower computational complexity,
sacrificing precision in hallways and similar locations that is often unneeded.

The main contributions of this paper include:

1. A flexible approach to masking a high performance SLAM system to lower computational
cost and minimize the chance of errors due to perceptual aliasing.

2. Two effective masking functions based on detecting openings and intersections that improve

26

map quality while performing five times fewer scan matches than an “always true” mask
function.

3. Demonstration of our system on a 2.5 km dataset.

3.2 Related Work

In building a consistent map, mapping methods must choose when and how to represent locations,
how to detect loop closures and validate them, and how to optimize the resulting map/graph. We
generally refer to any specifically remembered location as a node.

In metric pose SLAM, nodes are generally placed at a regular spacing, with each node main-
taining its measurements and object frame. Matches between nodes are used to close loops, and in
an early paper, matches are searched for between all pairs of nodes with a matching score thresh-
old for acceptance [40]. Thrun et. al. filter the node pairs to check with a series of geometric
constraints before matching them, and repeat this in an iterative approach [41]. Google’s Cartog-
rapher builds locally consistent submaps, and then later connects them. Whenever the system gets
a new lidar scan, it attempts to match it with nearby completed submaps. Loop closures that have
a high enough match score are added to the optimization with a Hilbert loss for robustness against
false positives [42]. Our method follows from dense pose SLAM, focusing on how sparse node
placement may make the matching and loop closure problems easier.

Just as our method is based around a selective masking function, topological methods often
focus on node selection in their maps. The nodes can represent entire partitioned areas, as with
how Thrun partitions an occupancy-grid map by finding the critical points and lines of the Voronoi
skeleton where clearance is locally minimized [43]. The nodes can also be points in the robot’s
trajectory, with the trajectory segmented into straight lines and nodes placed at the “corners”, fitting
the segments to the original trajectory [44]. Although simple, this representation can be used for
absolute self-localization and building consistent maps [45].

The Spatial Semantic Hierarchy (SSH) topological mapping framework also starts with abstract
definitions and lends itself to extension. Nodes are abstractly defined as the end-state of a hill-
climbing control law that should be unique for localization and consistent mapping, while the
edges between nodes are also abstractly specified by a transition control law and a termination
criterion [39]. The nodes are often defined to be decision points at gateways or openings in the
map. They can be found in ways of varying complexity: by computing the medial axis of the
free space in a local occupancy grid constructed around each node [46]; by computing the pruned
Voronoi skeleton of an occupancy grid and selecting the portions of the skeleton that leave the
“core” [47]; and by calculating the Voronoi skeleton, finding the isovist at each point, computing

27

the isovist eccentricity, and finally selecting the locations of openings with a learned classifier [48].
These methods generally take advantage of semantic place-type labels and gateway locations to
filter loop closure candidates and get initial guesses for the match transformations. Another hybrid
approach grounds the nodes as areas of high sensory overlap and then optimizes the robot’s path,
the local metric maps, and the transformations between areas as a unified Bayesian problem [49].

Feature-based SLAM methods demonstrate more ways to close loops. An expectation-maximization
approach based on Markov localization simultaneously optimizes both robot poses and the map but
does not achieve real-time performance [50]. A covariance-entropy ratio test can be used to both
place nodes (“keyframes”) and to validate loop closures, using the entropy of a reference loop clo-
sure to set dynamic thresholds [51]. Loop closure hypotheses can be made with a RANSAC-based
algorithm using geometric and locality constraints and verified with a joint compatibility branch-
and-bound algorithm [52]. To make this loop closure validation more robust, it can be postponed
as long as there is considerable overlap between different local maps [53]. Alternatively, a learned
classifier can be used to generate candidate loop closures with validation provided by RANSAC
and geometric constraints [54].

3.3 Approach

3.3.1 Problem statement

We consider the process of observing odometry and lidar scans in order to map an environment for
localization.

As a pose SLAM problem seeking to build a consistent map, we have to choose which robot
positions to represent in our map (the nodes), how to detect loop closures and validate them, and
how to optimize the resulting map/graph.

We consider the use of an arbitrary masking function to determine when a robot position should
be explicitly represented in the map as a node with its corresponding lidar scan. To maintain global
consistency, the system will also need to detect and validate loop closures in a way that does not
depend on the choice of mask. In order to find all valid loop closures, the mask must consistently
fire at least once in the area around each ground-truth junction in the map.

We define the masking function as a function that maps to a Boolean from all of the robot’s
observations Z until the current time T :

MaskF : {Zt}Tt=0 → {0, 1} (3.1)

Any arbitrary masking function can be used with our system, and like any binary function, masks

28

can be combined together with Boolean operators. For long-term applications, it may be helpful
to design a masking function to select for static environmental features. In this chapter, however,
we aim to principally show the advantage of choosing a mask that selects for distinctiveness.

3.3.2 Method overview

The first step in creating the metric map is deciding when to add nodes. We defer this choice to
the specified masking function with a few exceptions: we choose a minimum edge length (1.5 m)
to prevent duplicate scan-matching nodes and a maximum edge length (9 m) after which we add
odometry-only nodes. We also add one of these odometry-only nodes when a floor change is
detected. These odometry-only nodes are necessary because a rigid-body transformation can only
approximate the actual motion of the robot on an edge, and does not fully couple the rotational
and translational components. Limiting the maximum edge length gives the map optimizer a more
accurate representation to work with.

After adding a scan-matching node to the graph, we determine if it might close any loops in the
map. We start by computing the Dijkstra Projection [55] from this new node to all other nodes in
the trajectory graph. This provides us with the expected rigid-body transformation and associated
covariance of the minimum error path from the new node to each existing node. We then compute
the Mahalanobis distance of the displacement between each of those pairs. If this falls below some
threshold, then the two nodes have a high likelihood of being in the same area.

Depending on the masking function, there may be either a high or low number of potential
nodes to check, so we sort them by the Mahalanobis distance and only proceed with a limited
number (MaxMatches; 5 in our evaluation) of the most likely nodes for further testing. We use
the method described in Many-to-Many Multi-Resolution Scan Matching [56], and only keep the
matches that pass a minimum scan-match similarity score.

We then use our loop validator to confirm these potential loop closures before adding them to
the map for optimization. Whenever we validate a loop closure, we optimize our map factor graph
by performing a batch update of the nonlinear least-squares problem.

We describe these steps more precisely in Algorithm 2.

3.3.3 Dijkstra projection

The Dijkstra Projection [55] predicts the rigid transformation and covariance of the minimum error
path between a source node and all other nodes in the graph, using Dijkstra’s algorithm. We could

29

use any scalar uncertainty metric over covariance, but choose the trace for simplicity:

pathijopt = arg min
pathij

tr(Σpathij) (3.2)

As the shortest path is computed, we keep track of the cumulative predicted transformation and
covariance, composing each successive transformation zb onto the current total path transformation
za.

Rigid transformations za and zb can be composed like so:

zab = za ◦ zb

≡

zax + cos(zaθ)zbx − sin(zaθ)zby

zay + sin(zaθ)zbx + cos(zaθ)zby

zaθ + zbθ

 (3.3)

And their combined covariance can be estimated with the Jacobians J1 and J2 of Eq. 3.3 (see
Appendix B of Bosse et. al. for details [55]):

Σzab = J1(za, zb)ΣaJ1(za, zb)
T +

J2(za, zb)ΣbJ2(za, zb)
T (3.4)

We compute the Mahalanobis distance of a translation with an additional parameter R (2 m) of
translation that we want to allow between xi and xj . Although the Dijkstra projection also provides
a transformation, we use the transformation from our current optimized map, zij = x−1i ◦ xj:

Mahaij =
√
zij(Σijopt + diag(R2, R2))−1zij (3.5)

We allow this extra translation R because two nodes do not need to coincide exactly to form a
good closure, they only need to be close enough for their scan match transformation to complete
the loop. The R we use then represents the distance apart at which we can reliably match two lidar
scans.

30

Algorithm 2: Masked Mapper SLAM

N ← {}, E ← {}
N0 ← CreateNode(Pose(), LidarScan())
tlast full ← 0, t← 1
Loop

repeat
d← ||x−1t−1 ◦ Pose()||
if d > MaxEdgeLen ∨ FloorChanged() then

n← CreateNode(Pose(), ∅)
e← CreateEdge(Nt−1, n, x−1t−1 ◦ Pose())
Nt ← n, E ← E ∪ e, t← t+ 1

end
dfull← ||x−1tlast full

◦ Pose()||
until dfull > MinEdgeLen ∧MaskF(Observations);
n← CreateNode(Pose(), LidarScan())
e← CreateEdge(Nt−1, n, x−1t−1 ◦ Pose())
Nt ← n, E ← E ∪ e
tlast full ← t, t← t+ 1
dijk← DijkstraProjection(N,E, n)
mahasm←Mahanm∀(m, znm,Σnm) ∈ dijk
mahas← lowest MaxMatches entries in mahas
for m ∈ mahas | mahasm < MaxMaha do

if LidarSimilarity(n,m) > MinScore then
matchesm← LidarSimilarity(n,m)

end
end
for match ∈ matches do

AddToLoopValidator(match)
end
for m ∈ NewlyValidatedLoopClosures() do

e← CreateEdge(n,m, MatchXform(n, m)))
E ← E ∪ e
OptimizeFactorGraph(N,E)

end
EndLoop

31

3.3.4 Masking functions (masks)

In this section, we describe several masks conforming to Eq. 3.1 that we use to evaluate our system.

3.3.4.1 Never

By always returning false, this masking function results in the worst-case baseline of dead-reckoning.

3.3.4.2 Always

Similar to a fully metric SLAM system, this mask creates scan-matching nodes at the highest
allowable density, and attempts to continually scan match between these nodes. Because we are
not combining scans into a global occupancy grid, this setup will be more similar to metric SLAM
systems that also perform scan matching across individual lidar scans. This function serves mainly
as a worse-case baseline for computational complexity in the number of scan matches.

3.3.4.3 Isovist Eccentricity

Inspired by a previous use of isovist eccentricity in a decision point detector [48], this mask cal-
culates the eccentricity of the robot’s 2D lidar scan, and applies a threshold to it. The eccentricity
essentially works as a measure of the narrowness or “hallwayness” of the lidar scan. The lidar
scan naturally forms an isovist by considering each scan point as a vertex connected to its two
neighbors. We compute the image moments, Mij , of this isovist by triangulating the polygon and
calculating the moments analytically. Then we calculate the covariance matrix and eccentricity as:

C =

M20

M00

−
(
M10

M00

)2
M11

M00

− M10M01

M2
00

M11

M00

− M10M01

M2
00

M02

M00

−
(
M01

M00

)2

 (3.6)

e =

√
1− λ2

λ1
(3.7)

where λ1 and λ2 are the eigenvalues of the covariance matrix. We apply a threshold with
hysteresis to this eccentricity value to decide when a node should be added to the graph. Unlike
the previous work, we can be much simpler because we do not need to avoid false positives.

In order to also record nodes at dead-ends in the graph, we compute a measure of “drift” to
determine if the robot is at an extreme edge of the isovist. This is computed as the Mahalanobis
distance from the robot to the centroid of the isovist using the covariance matrix above. We apply

32

a simple threshold to this drift measure. The mask returns true if either the drift threshold or the
eccentricity threshold passes.

3.3.4.4 Openings

This mask is also based on the idea of placing nodes at likely intersections or decision points. We
first determine which directions are currently viable for the robot to take and filter these data over
a small time horizon to help reject noise. Finally, the mask returns true if one of these directions
has an angular difference from the robot’s current trajectory between 40 and 90 degrees, indicating
that the robot has approached a newly possible direction.

We determine these directions by first splitting a 2D lidar scan such that each continuous seg-
ment only has ranges greater than 5 meters from the robot, indicating a potential opening for the
robot to travel through. We then refine the end-points because we want to find the narrowest part
of each segment and determine if the robot will be able to fit. Finally we apply a minimum width
threshold of 0.75 m, the approximate width of the robot, and a minimum angle threshold of 9 de-
grees, to help with false positives.

To refine the end-point choices, we start by defining a center line from the robot that passes
through the mean of the original end-points. Then we choose the point that minimizes the sum of
the opening width and the square root of the perpendicular distance to the center line, considering
only points whose projection onto that line is between 0 and 5 meters and are on the same side of
that line as the original end-point. We do this separately for each end-point.

To filter and select from these openings, we sort them by opening direction and only choose
openings that have enough measurements over time with a low enough standard deviation in their
direction measurement.

In addition, because this function will not natively mark dead-ends as useful nodes, we add the
condition that if the robot turns in excess of 150 degrees away from the vector of travel since the
last node, it should also return true.

3.3.5 Dijkstra Projection Loop Validation

Because the masking function is a replaceable component of our system, we need a method for val-
idating loop closures that does not make strong assumptions about the structure of nodes available
for scan matching.

Our loop validation system maintains a set of loop closure hypotheses. When it finds a valid
loop involving a hypothesis, it rewards that hypothesis a vote. After a threshold of votes (we use
6), that loop closure is validated.

33

Figure 3.2: Our map both before (top) and after loop closures and optimization (bottom). Our
gyroscope had an uncorrected bias that increases the angular error over time unless corrected.
Given the large size of some of these loops, the loop closures may have to correct as much as 30
degrees of rotation in our map at a time. The optimized map used a Mahalanobis threshold of 5.0,
minimum scan-matching score of 42.5%, and the openings mask.

The process of finding loops is based on the Dijkstra Projection [55], applied to finding the
lowest error paths between the two nodes proposed for loop closure. In finding a path, we allow
the search to use both validated and unvalidated loop closures in addition to odometry, always
choosing validated over unvalidated loop closures when possible. From this minimum-error path,
we form a complete loop by adding our loop closure edge. The resultant transformation should be
unity. We judge the quality/error of the loop closure by the Mahalanobis distance between that final
transformation and unity. If the final error is low enough (below 2), we give our new provisional
loop closure and any other unvalidated loop closures on this path a single vote towards validation.
Regardless of whether we accepted that prior loop, we repeat the process, first removing whichever
edge in that last path was most redundant, or reachable from the greatest set of nodes in the search,
indicating the potential presence of an alternative path. We continue this process until we either
have enough votes to validate our new loop closure, or until a path can no longer be found to make
another loop. In that case, the loop closure still has a chance to be validated later the next time we
attempt to validate a new loop closure.

34

Table 3.1: The number of scan matches that each masking function ends up making over the
course of map creation, the number that pass the minimum score threshold, the number that are
validated as loop closures, and the total time used for map creation. The always mask uses five
times as many scan matches. The openings mask is more economical than eccentricity, getting
more matches validated even with fewer attempts. These numbers used a minimum scan-match
score of 42.5% and maximum Mahalanobis threshold of 5.0.

Masking func. Total Matched Validated Time (s)
Always 5353 4437 3833 195
Eccentricity 1172 860 627 50
Openings 974 760 637 46

3.4 Evaluation

To evaluate our system, we drove our robot through three buildings and four floors on the Univer-
sity of Michigan North Campus. The robot navigated a total of about 2.5 km to collect the data
over 2.5 hours. The resultant map has a total path length of about 1.9 km and a total bounding area
across four floors of about 34 000 m2. The third floor has the largest individual bounding area of
about 264 by 82 meters.

Our robot’s fiber-optic gyro has an angular bias which we did not correct, so that the perfor-
mance would be more similar to a less expensive sensor. This angular bias can be seen in the
unoptimized dead-reckoned map in Figure 3.2.

From these data, we construct and evaluate our masked metric maps to examine the trade-offs
between the number of scan matches used, the accuracy of the final maps, and the sensitivity of
our method to key parameters.

We evaluate the performance of our system by counting the number of scan-matching attempts,
the number of successful matches, the number of matches that are validated as loop closures, and
the computation time, shown in Table 3.1. The ideal mask function would have low computational
requirements, using only the minimum number of scan-matching attempts in order to form its
loop closures. It would also only choose scan matching locations that are not prone to perceptual
aliasing.

We evaluate the accuracy of the final maps by checking for important loop closures. With all
the correct loops closed, every path we find in the map’s graph should be as short as physically
possible. If loop closures are missing, some paths will be longer. If incorrect loop closures are
present, some paths will be shorter. To measure this, we calculate the lengths of paths in a randomly
selected set of 999 starting and ending position pairs. We use the same set for all cases, and define
the positions by their timestamp in the log file. This lets our comparison be fair because while
each map may choose to place nodes in different places, the timestamps can still uniquely define

35

30% 35% 40% 45% 50% 55% 60% 65%
Minimum scan-match score (%)

0

10

20

30

40

50

60

M
ea

n
ra

nd
om

 p
at

h
le

ng
th

 e
rro

r (
m

) Mean path length error by minimum matching score
Always
Eccentricity
Openings

Figure 3.3: Dependence of each masking function on the minimum matching score. A score of
100% would mean that the scans perfectly overlap. An error of close to 0 m indicates that all the
loop closures are valid. Starting with more attempts, the always mask benefits from stricter thresh-
olds to help manage false-positives, whereas the openings and eccentricity masks benefit from low
match scores because the nodes are already less prone to perceptual aliasing. The Mahalanobis
threshold is 5.0 for these runs.

locations. For each generated map, we interpolate the positions of the timestamps based on the
two nodes in the map that precede and follow chronologically, and we calculate the shortest paths
between these interpolated positions. We manually verify several maps to have no false-positive
loop closures, although they may be missing loop closures, and take the minimum length of each
path across them to use as ground truth. From these ground-truth lengths, we can calculate the
mean path error of any map.

3.5 Discussion

By manual inspection we were able to find that both the openings and eccentricity masks were able
to generate maps without apparently missing or incorrect loop closures. An example of this is the
map shown on the first page in Figure 3.1. On a standard laptop with an i7-6820HQ processor, this
map took 46 seconds to generate from a 2.5 hour log file using the openings mask function, far
exceeding real-time.

Based on the path errors shown in Figures 3.3 and 3.4, we see that the always mask often
performs worse than the others. It was generally the case that the always mask would create false-
positive loop closures due to perceptual aliasing between parts of the same hallway, and if the
parameters were tuned to be more restrictive, it would fail to close a final loop at the end of the

36

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Maximum squared Mahalanobis threshold

0

10

20

30

40

50

60

M
ea

n
ra

nd
om

 p
at

h
le

ng
th

 e
rro

r (
m

) Mean path length error by Mahalanobis threshold
Always
Eccentricity
Openings

Figure 3.4: Effects of the threshold that determines which nodes are close enough to scan match
against for potential loop closures. An error of close to 0 m indicates that all the loop closures
are valid. While the openings mask benefits from lenient thresholds allowing more matching with
farther-away nodes, the always mask needs a smaller threshold to help limit perceptual aliasing.
The minimum scan-matching score is 42.5% for these runs.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Maximum squared Mahalanobis threshold

1000

2000

3000

4000

5000

6000

To
ta

l s
ca

n
m

at
ch

in
g

at
te

m
pt

s

Scan matching attempts by Mahalanobis threshold

Always
Eccentricity
Openings

Figure 3.5: Scan matching attempts by Mahalanobis threshold. As the threshold increases/loosens,
more scan matching candidates are identified and attempted. In our system, scan matching uses
more computational processing than anything else, making it a proxy for the total computational
resources needed. Furthermore, every attempt poses a risk for aliased nodes to incorrectly form
a loop closure. Regardless of loop closing system characteristics, additional attempts can only
increase the probability of false-positives. Our masks reduce the number of scan matches by five
times.

37

trajectory when the odometry’s angular error is high. These conflicting situations made the always
mask hard to tune.

Increasing the scan-matching score threshold reduces the availability of loop closure candidates
to all the masks. In Figure 3.3, we see that because masking reduces this availability even more,
only the always mask benefits from this reduction, whereas the other masks benefit from using
these lower-score matches. In Figure 3.4, we see that good performance can be reached as long as
the Mahalanobis threshold permits attempting the right loop closures. Because the system always
prefers to match against nodes with lower Mahalanobis distances, it is relatively unaffected by
larger thresholds, although they lead to an increase in the number of total scan matches, as we see
in Figure 3.5. For reference against these figures, the never/dead-reckoned map has an average
path length error of 625 m, because with no loops closed the map is treated as a one-dimensional
chain.

Overall, we find that for our difficult map the always mask has the worst loop-closing perfor-
mance while also being five times as computationally expensive. The openings and eccentricity
masks both generate maps with low loop closure error, and that we can not visually distinguish
from the the map presented in Figure 3.1.

3.6 Conclusion

Continually scan matching comes at a cost, requiring more computational resources and increasing
the likelihood of failure through perceptual aliasing. In this paper we presented a flexible mapping
scheme for creating sparse metric maps with a variable masking function that selects locations of
interest for closing loops. Precise localization is rarely needed when driving down a hallway. This
system is computationally efficient because it minimizes scan matching and optimizes a sparser
map. We showed that our system can create high quality maps even in large environments with
long loops and poor odometry. We compared two simple masking functions based on openings and
isovist eccentricity with an “always” function that emulates a traditional dense SLAM system, and
found that our masking functions produced maps with more true-positive and fewer false-positive
loop closures, using only one-fifth as many scan matches.

3.6.1 Acknowledgements

This work was supported by grants from the NSF (1830615) and ARC (W56HZV-19-2-0001).
Distribution A. Approved for public release; distribution unlimited. (OPSEC 3923).

Disclosure: Advisor Edwin Olson has a financial interest in a company that may have rights to
foreground or background technology described in this paper.

38

CHAPTER 4

Monte-Carlo Policy-Tree Decision Making
(MCPTDM)1

4.1 Introduction

In this chapter, we describe Monte-Carlo Policy-Tree Decision Making (MCPTDM), an uncertainty-
aware framework for high-variance planning problems with multiple dynamic agents, such as
autonomous-driving. We start by taking the existing Multi-Policy Decision Making (MPDM)
framework and incorporating non-parametric advantages through random sampling and Monte
Carlo tree search. Random sampling is an effective technique for exploring large possibility spaces
that do not conform to simple models. This fits with our overall theme of using flexible and ex-
pressive techniques that avoid strict parametric models.

Planning with uncertainty is difficult because uncertainty compounds and marginalizing over
each source of uncertainty is exponential in the number of dimensions. First, the space of possible
action sequences increases exponentially with the length of the planning horizon and the number of
dynamic agents. Second, uncertainty about the future world necessarily increases the further into
the future we plan. The first difficulty poses computational challenges, while the second means
that continuous re-planning is necessary to take advantage of new information.

Planning under uncertainty is often modeled as a partially observable Markov decision pro-
cess (POMDP) [57][58], with a discrete set of states, actions, and observations, and with proba-
bilistic state transition, observation, and reward functions. Exactly solving a real-world POMDP
is intractable because of the exponential nature of the probabilistic belief space. Tools that ap-
proximately solve the exact POMDP are still only tractable for small discrete problems. More
realistically, this computational cost can be made tractable through use of heuristics [59], sam-
pling approaches [60][61], or domain-specific modeling simplifications [62]. Even so, the number
of future scenarios to consider is still an exponential function of the number of possible actions

1Adapted from Haggenmiller and Olson [14]

39

(branching factor) and the length of the horizon (search depth). A brute-force tree search over all
possible plans will only be possible when the action space is both discrete and small, the horizon
is short, and the time discretization is coarse.

The Multi-Policy Decision-Making [17] (MPDM) framework is helpful for planning problems
like these because computation time is linear in both the number of policies and the length of
the planning horizon. Instead of planning in action space and directly considering each possible
control input, MPDM plans in policy space and only considers selecting from high-level closed-
loop policies that encode domain-specific behaviors. MPDM handles uncertainty in other dynamic
agents by sampling their states and assuming that they are also following policies, again limiting
the computational complexity. By having policies that encode the breadth of reasonable behaviors
for both the ego (the agent that we are planning for) and other agents, MPDM takes advantage
of prior domain knowledge to avoid searching extremely unlikely and unrealistic portions of the
complete search tree. Policies can also be used for both discrete and continuous action spaces.

On the other hand, MPDM imposes some severe constraints to get these advantages. For
each Monte Carlo sample of the belief, the ego and other agents must be modeled by a single
closed-loop policy for the duration of the planning horizon, precluding the possibility of switching
policies within that horizon. This makes certain larger-scale behaviors, such as an autonomous
vehicle passing another vehicle and then returning to its original lane, much more awkward to
handle. Each variation on such a behavior would need to be modeled by a separate closed-loop
policy. If the number of variations starts to become exponential, then we no longer have linearity
in computation time for the number of closed-loop policy primitives. This is the core compromise
of MPDM, that policies are static within the planning horizon.

Efficient Uncertainty-aware Decision-Making (EUDM) [18] extends MPDM to help get around
this limitation by using a tree search to allow up to one policy change at some future point in the
planning horizon and also by using heuristics to identify situations with the obstacle agents that
may lead to dangerous situations. This helps EUDM more effectively marginalize over uncertainty
in the initial states and plans of the other agents. Even with policies, however, the number of
possible initial belief states is still exponential in the number of obstacle vehicles to plan around.

Our goal in this chapter is to allow flexible policy switching for the ego agent in the planning
horizon, where MPDM cannot switch policies at all and EUDM allows a single change. We accom-
plish this by combining insights from both MPDM and Monte Carlo Tree Search (MCTS) along
with additional novel modifications that take advantage of the unique cost-structure and focus on
safety in autonomous driving and other similarly structured tasks.

These novel modifications allow us to extract more information from a computationally-limited
number of samples. The set of samples that visit a tree node form a non-parametric representa-
tion of the corresponding expected marginal cost, or immediate reward over the represented time

40

interval, for that node. The goal of MCPTDM is to use as few samples as possible to get the most
accurate view of the expected cost probability density function and thereby choose the best path
through the tree.

The principle contributions of this chapter include:

1. Monte-Carlo Policy-Tree Decision Making (MCPTDM), which allows an agent to efficiently
compute policies in partially-observable and stochastic problems having either discrete or
continuous action and state spaces. It does this by composing its policy from a sequence of
simpler policies.

2. Two techniques: marginal action cost (MAC) estimation, which improves UCB-based tree
exploration and final action selection; and “particle repetition”, which reduces variance in
cost estimation by reducing the effect of unlucky or unusual initial conditions.

3. Validation of our MAC estimation and particle repetition improvements on an abstract task
and evaluation and comparison with MPDM [17] and EUDM [18] on an autonomous self-
driving task.

4. Openly-released source code capable of reproducing all the figures and evaluation results
from this chapter for full replication of our results and further extensions.

4.2 Background

In this section, we show how increasing generalization builds from all the way from the discrete
Markov process to the continuous partially observable Markov decision process. See the Venn
diagram in Figure 4.1 for how the generalizations build on each other. We also review Monte
Carlo tree search.

4.2.1 Markov process

A Markov process, or Markov chain, is a stochastic model for describing states and how they
change over time. For example, a Markov process could be used to model changes in weather with
states for sunny, cloudy, and rainy days and with transition probabilities between each of the states.
The goal of a Markov process is to predict the probability of future states given a current state, such
as the probability of a sunny day on Saturday given that Monday is rainy. More formally, a Markov
chain is a tuple (S, T) where S is the set of possible states and T (s′|s) is the transition probability
from state s to the next state s′. Because the transition probability to any new state only takes into
consideration the single previous state, the Markov process is described as “memoryless”; this is
called the Markov property.

41

Partially-Observable

Markov Decision Process

Markov

Process

Hidden

Markov

Model

Markov

Decision

Process

Q-value

Markov Decision

Process

Figure 4.1: Venn diagram showing the generalizations that compose partially-observable Markov
decision processes (POMDPs). The most basic abstraction is the Markov process. The hidden
Markov model (HMM) and Markov decision process (MDP) are both extensions to this. The
POMDP abstraction includes both of these extensions, and the Q-value MDP (QMDP) is a specific
form of POMDPs.

4.2.2 Hidden Markov model

One extension to the Markov process is the hidden Markov model (HMM). In this model, states can
not be directly observed, but there are stochastic observations that provide some information about
the true states. The goal of an HMM is to infer the true latent states from only the observations.
For example, an HMM could be used to predict the weather based only on spending trends, since
certain purchases are more or less likely depending on the weather, such as ice cream on sunny
days and umbrellas on rainy days. More formally, an HMM is a tuple (S, T,O, Z), where O is the
set of possible observations and Z(o|s) is the probability of observing o when the true state is s. S

42

and T are defined the same as in a Markov process.

4.2.3 Markov decision process

A different extension to the Markov process is the Markov decision process (MDP). In this model,
there are action choices to be made in order to maximize expected rewards. For example, control-
ling a robot arm to move from one pose to another could be modeled as an MDP with a reward
for achieving the final pose, with costs (negative rewards) for each action/time taken, and with a
transition function that takes into account uncertainty in the robot’s actuation. An MDP is also
parameterized by a discount factor that balances immediate and future rewards. More formally, an
MDP is a tuple (S,A, T,R, γ) where A is the set of actions, T (s′|s, a) is the transition probability
from state s with action a to the next state s′, R : S × A × S → R is the reward function, which
may be a function of the state, action, and resulting new state, and γ is the discount factor. Set of
states S is defined the same as in a Markov process.

The objective of an MDP is to find an optimal policy π∗ : S → A that maximizes the expected
discounted reward: E[

∑∞
t=0 γ

tR(st, at, st+1)].

4.2.4 The Partially Observable Markov Decision Process (POMDP)

When we include both the extensions of the hidden Markov model and the Markov decision
process, we get the partially observable Markov decision process (POMDP) [57][58]. In this
model, action choices are made in order to maximize expected rewards, but the true latent state
can only be inferred through the stochastic observations. More formally, a POMDP is a tuple
(S,A, T,R,O, Z, γ) with: set of states S; set of actions A; transition probability T (s′|s, a); re-
ward function R : S × A × S → R of state s, action a, and next state s′; set of observations O;
observation probability Z(o|s, a, s′); and discount factor γ.

As an example, a self-driving vehicle scenario could be modeled as a POMDP. While direct
observation of close-by vehicles can be used to determine their current poses, their intentions
(latent state) can only be inferred from their behavior. As all the vehicles execute their actions, there
may be noise attributable to the environment (road surface, wind, etc.) or the vehicles themselves
(limited precision engine control and steering). The ego-vehicle has a goal to achieve for a positive
reward and desires to achieve that goal safely and efficiently with negative rewards for time and
unsafe conditions.

In the classic formal definitions, the POMDP and the other models above are all defined with
discrete state, action, and observation spaces. In practice, while continuous action spaces can be
discretized, better performance can be achieved by considering continuous versions. In this thesis,
we will generally refer to the continuous POMDP model as simply the POMDP.

43

Sampling-based POMDP solvers often do not require explicit probability distributions for the
transition and observation functions. A generative model of a POMDP implicitly defines the tran-
sition and observation distributions, only providing samples s′ ∼ T (s′|s, a) and o ∼ Z(o|s, a, s′).

Littman’s POMDP tutorial [63] is a friendly in-depth introduction to POMDPs for the curious
reader wishing to know more.

4.2.5 QMDPs and the QMDP solution to a POMDP

The QMDP [15] is a simplified/approximate version of a POMDP where state uncertainty is as-
sumed to only exist at the beginning of the problem in the root belief. If all the uncertainty in a
POMDP can be factored out to the root belief, then that problem is a QMDP. Navigating a world
with moving obstacles is a QMDP if those obstacles have predetermined but unknown trajectories,
because that unknown information is all determined at the beginning of the problem. Even if the
trajectories are not predetermined but have continuous random changes, as long as the ego-agent
has no way to incur a cost for information to better predict their trajectories, we can still factor out
the uncertainty and consider it to all have been predetermined. If the choice for more information
is free, we just reformulate the problem to always get this information, and then it can also be
considered to have been predetermined. Only when we have to decide to pay a cost for informa-
tion do we leave the QMDP abstraction and our problem is a full POMDP, because planning with
different amounts of information in the future is incompatible with the assumption of uncertainty
only existing in the root belief.

The notation QMDP (s, a) denotes the expected value of a state and action in an MDP, and if
we are solving a POMDP and then suddenly have full knowledge/observability of the state, the
POMDP is effectively reduced to just the MDP part that it contains. The notation QMDP (b, a)

denotes the expected value of a belief and action in a POMDP if after taking action a, the belief
becomes fully observable and the remainder of the problem can be solved as an MDP.

Any POMDP where it actually holds that all the state uncertainty can be factored out to the
root belief is therefor a QMDP because the true value of Q(b, a) = QMDP (b, a). And if a POMDP
is close enough to a QMDP it may also be much easier and more efficient to solve as a QMDP,
because a QMDP solver does not need to maintain uncertainty anywhere except for the root of
the search tree. Whether this approximation is worthwhile depends on the degree to which taking
costly actions for additional information needs to be prioritized in the planning.

4.2.6 Monte Carlo tree search (MCTS)

Monte Carlo tree search is a planning/search algorithm that enables efficient and approximate
solutions to problems that would otherwise be intractable. As with any tree search algorithm, we

44

start with an initial state from which the algorithm needs to choose one action to take. The tree
represents actions as edges and states as nodes. A node can also be understood as corresponding
to the single action/edge that leads to it. The full tree itself can be arbitrarily deep depending on
the state (like reaching check-mate in chess), or have a fixed depth (like driving with a 10-second
horizon). Non-random tree search algorithms work by either exhaustively exploring all possible
chains of actions and outcomes, or by eliminating branches and subtrees as provably suboptimal.
Domain-specific properties can also improve computational feasibility, for example by restricting
the possible actions or by guiding how the tree is explored.

The general principal of Monte Carlo tree search, considering only the dominant form based
on or inspired by Upper-Confidence bound applied to Trees (UCT) [64], is to randomly explore the
most promising areas of the full search tree and to progressively refine the quality of the estimated
solution. Because we do not exhaustively explore the whole tree, we have the flexibility to stop at
any point and take our current approximate solution. In addition, because the full search tree may
be arbitrarily large, we do not ever represent this full tree in memory. MCTS starts with just the
root node as a leaf node and continues from there representing as little of the full tree as possible.

A general abstract model of MCTS [65] is shown in Algorithm 3. First, the tree policy takes
a path from the root node n of the tree to a potentially-new leaf node n′. This path is generally
made by taking the child with the highest upper confidence bound at each node [64], using random
selection to break ties, but other policies are possible. The tree policy is generally allowed to add
new leaf-node children to a single existing leaf node each time it runs, so paths that it chooses
repeatedly will gradually get deeper and deeper. Next, the default policy estimates the value of
node n′, for example by simulating random actions until a terminal state is reached, or just using
a heuristic. Finally, this value is propagated back up the tree and the estimated values for each
node along the path taken are updated. These three steps are repeated until the computational
budget is met and finally the action corresponding to the “best” child of the root node is returned.
This is generally either the highest-value child or the most visited child (e.g. the child that most
consistently had the highest upper confidence bound on its value and so was chosen the most).

Algorithm 3: General abstract MCTS

function CHOOSEACTION(s0)
1 n← CREATENODE(s0)
2 while time remains do
3 n′ ← TREEPOLICY(n)
4 v ← DEFAULTPOLICY(n′)
5 BACKUP(n′, v)

end
6 return action of best child of n

45

While this general model gets across the basic form of MCTS, it also leaves a lot of important
implementation details unspecified. In Algorithm 4 we give a fuller picture of a practical MCTS
implementation. Instead of having the tree policy, default policy, and backup operations proceeding
sequentially, they are embedded in a single recursive function. In this recurse function, our tree
policy runs expand to make sure that node n has a child for each possible action. Then, it calculates
the upper-confidence bound (UCB) metric for each child and chooses the child n′ with the best
UCB score, using randomness to break ties, according to the upper-confidence bound for trees
(UCT) algorithm [64]. If child n′ is new, meaning it has never been chosen before, then we forward
simulate the state of n with the action of n′ to compute an immediate reward for n′ and the state
of n′, and the tree policy portion of the search is complete. Here we are making the assumption
that the immediate reward and next state are both deterministic. The default policy then performs a
random action rollout to estimate the value of node n′. If n′ has already been explored before, then
we simply recurse and continue with the tree policy one level deeper in the search tree. Finally, for
the backup operation, we run the update statistics method. Here we keep track of both count N
and sum V to conveniently compute the mean of all values that have been found for the children
of n during the search. The full value of node n is then computed as the deterministic immediate
reward earned by n plus the discounted mean of values of the children of n. By default we take
the mean over all these values from the children and not simply the maximum child value because
when the number of visits to some of the children is small, this would result in choosing not the
best child, but the luckiest child [66].

As given, Algorithm 4 makes the assumption that the transition and reward functions are deter-
ministic and only computes them once as needed on line 10, which is appropriate for applications
such as Chess or other board games important to the history of MCTS. Alternatively, we could sup-
port stochastic transition and reward functions by having UCB on line 8 select an action instead of
a child node, unconditionally computing forward-simulate, and using states to directly represent
nodes in the tree, instead of assuming that an action node with a given parent state defines a unique
reward and child state. As a second alternative, we could eliminate the direct correspondence be-
tween tree nodes and states and instead have each node represent a history of actions. This is an
approximation because different states with the same history may require different action choices,
which this history model would not support. However, this history model may be necessary to
support a continuous state space where exact states will never be revisited.

Many other variations are also possible: the expand function can be altered to support pro-
gressive widening; UCB can be replaced by an alternative; update-statistics can compute the value
differently. In many domains, intermediate rewards are not possible, and so the reward and dis-
counting are omitted.

46

Algorithm 4: A fully expanded MCTS algorithm
For node n, N(n) is the visit count, V (n) is the value sum, and Q(n) is the expected value. n′ is a
child node of n.

function CHOOSEACTION(s0)
1 n← CREATENODE(s0)
2 while time remains do
3 RECURSE(n)

end
4 return action of best/highest-Q child of n

function RECURSE(n)
5 if state of n terminal then
6 return UPDATESTATISTICS(n, 0)

end
7 EXPAND(n) // Add child for each action
8 n′ ← UCB(n) // Choose a child
9 if child n′ is new then

10 FORWARDSIMULATE(n′) // Compute n’ state and reward
11 v′ ← ROLLOUT(n′)
12 v ← UPDATESTATISTICS(n′, v′)

else
13 v ← RECURSE(n′)

end
14 return UPDATESTATISTICS(n, v)

function UCB(n)
15 if n has any unexplored children then
16 return a random unexplored child of n

end
// UCB constant C controls exploration vs. exploitation

17 return arg max
n′

Q(n′) + C
√

lnN(n)
N(n′)

function UPDATESTATISTICS(n, v)
18 N(n)← N(n) + 1
19 V(n)← V(n) + v
20 Q(n)← REWARD(n) + γ V(n)/ N(n) // discount factor γ
21 return Q(n)

4.3 Related Work

In this section, we categorize previous work into several families of methods: direct, simplifying,
Gaussian, sampling, and neural network, and multi-policy (MPDM-like) methods.

Along with many other real-world problems, planning for self-driving vehicles can be modeled
as a POMDP. Even when a POMDP model is not used explicitly, it can be a helpful framework for

47

comparing and discussing methods.

4.3.1 Directly solving the POMDP

Early work, like the seminal paper from Åström [57], focused on solving for the optimal belief-
space regions and the actions they map to, as well as extending from these finite horizon problems
to infinite horizon problems, which sometimes required finding approximate or ε-optimal solu-
tions [67]. Even with small problems, these approaches were not very efficient, with one algorithm
solving a machine replacement problem with two states and two actions in 110 seconds [68].

A more recent work on directly solving a POMDP, “Grasping POMDPs” [62] from Hsiao et
al., constructs reduced-size abstract state spaces for simple robot manipulation tasks by taking
advantage of constrained “compliant” motions (such as sliding along a surface), and the “guarded”
motions that make or break such contact. For a two-dimensional grasping task, the authors formed
a 408-state POMDP and solved it in less than 10 minutes with a general solver.

Where possible, direct solutions to a POMDP are theoretically robust, but few practical prob-
lems are simple enough to be solved like this.

4.3.2 Simplification through macro-actions

A macro-action is a closed-loop policy with a termination condition that can be selected by an
agent as an option in addition to its primitive actions, and were initially introduced as a tool to
speed up reinforcement learning [69].

Theocharous and Kaelbling [70] employ macro-actions to approximately solve a POMDP.
They discretize the belief space into a sparse dynamic multi-resolution grid and use hand-crafted
macro-actions, like go-to-end-of-corridor, to avoid producing and evaluating non-productive inter-
mediate states. Macro-actions have also been generated online, such as in PUMA (Planning under
Uncertainty with Macro-Actions) [71], which generates macro-actions based on sub-goals of re-
ward and information gain and uses anytime refinement to progressively increase the resolution of
their macro-actions.

Macro-actions share many similarities with the policies used in MPDM in that both are larger
closed-loop abstractions over primitive actions, reducing the effective size of the search space in
planning algorithms. The primary difference is that macro-actions have termination conditions
and must still be composed, sometimes even with primitive actions. In MPDM, policies do not
necessarily have a termination condition nor need to be composed together during planning. In this
sense, these policies are less flexible than macro-actions, but allow for faster planning in exchange
for this lower flexibility.

48

4.3.3 Analytical uncertainty propagation with Gaussians

In some cases, a POMDP can be linearized in such a way that uncertainty can be represented
and propagated as simple Gaussian distributions. In these cases, planning decisions can be made
directly with respect to the analytical likelihood of acceptable outcomes.

For example, in Linear-Quadratic Gaussian Motion Planning (LQG-MP) [2], the authors lin-
earize and jointly model motion planning, control, and state estimation with Gaussian uncertainty.
This enables the planner to precompute the robot’s covariance and potential deviation from its
nominal path and choose the path most likely to succeed from some set of candidates. Similarly,
FIRM (Feedback controller-based Information-state Road Map) [72] precomputes a probabilistic
roadmap “FIRM graph”, where each directed edge is a linear quadratic Gaussian (LQG) feed-
back controller designed to drive the belief into the neighborhood of the next node. So too the
Rapidly-exploring Random Belief Tree (RRBT) [73], which iteratively builds and refines a tree
of possible trajectories with local LQG feedback control to propagate state covariance, maintain
chance-constraints, and avoid collisions.

By taking advantage of the composability of Gaussians with LQG control, these methods sig-
nificantly factor out uncertainty by handling it analytically without an exponential increase in com-
putation. While this is a big advantage, modeling all uncertainty as Gaussian is not suitable for
highly non-linear problems like autonomous driving.

4.3.4 Sampling-based approaches

In contrast to the computational gains possible when propagating Gaussians, sampling-based ap-
proaches recognize that arbitrary probability distributions can be approximated with enough ran-
dom samples. The true value of some uncertain process can be determined by using sampling to
marginalize over each source of uncertainty involved.

An early reinforcement learning approach extended the use of Monte Carlo sampling from
MDPs to POMDPs [60], alternating between estimating Q-values for the current policy and then
improving the policy accordingly.

Because even representing the whole state space to store probabilities or Q-values can be in-
tractable in larger problems, most approaches only represent parts of the space that they have ex-
plicitly explored. The Infinite POMDP (iPOMDP) algorithm [74] assumes that the target POMDP
has an unbounded discrete state space and then extends an infinite hidden Markov model (iHMM) [75]
to also handle actions and rewards, estimates belief with an approach based on beam-sampling [76],
and uses a stochastic forward search for action selection. Partially Observable Monte Carlo Plan-
ning (POMCP) [61] approximately solves a POMDP given only a black-box simulator with Monte
Carlo sampling, an unweighted particle filter to approximately represent the belief state, and MCTS

49

to explore the action space.
For multi-agent scenarios, factored-value POMCP [77] extends POMCP to multi-agent prob-

lems by keeping separate trees for each factor (which may contain 1 or more agents) and applying
the variable elimination algorithm [78] with their “mixture of experts optimization” to choose
actions. Alternatively, decentralized Monte Carlo tree search (Dec-MCTS) [79] performs multi-
robot planning by having each robot alternate between stages of growing/deepening a Monte Carlo
search tree and updating the probability distributions of other robots.

Sampling is an effective way to explore high-dimensional spaces and to marginalize over un-
certainty. Effective planning often only needs a representative sample of situations. In MCPTDM,
we also use sampling to marginalize over uncertainty in our belief.

4.3.5 Neural-network learning

To solve a POMDP, a neural network may be trained with inputs corresponding to the ego agent’s
state and beliefs and with a loss function based on the cost or reward. By training a neural network
to solve a POMDP, the network can hopefully encode expert rules and heuristics without the algo-
rithm itself needing to specify this domain knowledge. This allows the algorithm to maintain more
generality by only needing domain-specific knowledge for high-level objectives through a reward
or cost function.

Deep Mind’s Alpha Zero [80] plays Go at an expert-level by combining MCTS with deep
learning networks for evaluating board positions and selecting moves. As a fully-observable game
with a discrete action space, Go is not a perfect analog for robotics applications, but its large
search space and difficulty evaluating moves and states make it very interesting. A0C [81] extends
Alpha Zero to work in continuous action spaces by using progressive widening, by sampling and
selecting promising new with the policy network, and by training the policy network to produce
a valid probability distribution from the relative MCTS results by using the loss to enforce that it
integrates to 1.

When actually applied to partially observable scenarios, most methods use deep learning for
only part of the method. Ding et al. [82] use a recurrent neural network to examine multi-agent
interactions and predict behaviors before they can be directly observed. Paxton et al. [83] use
reinforcement learning to learn both low-level control policies as well as high-level goal-directed
“option” policies to search through with MCTS; they use extracted feature inputs and a single
hidden layer. Mukadam et al. [84] use deep Q-learning to find a high-level tactical lane-changing
strategy that determines when to elect lane changing or acceleration actions to be performed by a
low-level controller.

Because many neural network approaches focus on learning policies, they could be integrated

50

into an MPDM-like framework. In this chapter, however, we focus more how to use MCTS to
compose simple policies, rather than how to come up with these policies ourselves. A neural
network approach could be an alternative to hand-written closed-loop policies.

4.3.6 Multi-policy approaches

In Multi-Policy Decision-Making (MPDM) [17], the ego agent elects one policy from a small set of
high-level closed-loop policies and also models the other dynamic agents with these same policies.
Monte Carlo sampling is used to marginalize over uncertainty in the state and future policies of
the obstacle agents. In each Monte Carlo sample, all the agents are forward simulated together to
capture closed-loop interactions [85] and the best ego agent policy is elected from the cumulative
results. Further work in the MPDM framework focuses on discovering risky configurations through
stochastic gradient descent of a heuristic cost function [86] and back-propagation techniques [87].

Other approaches incorporation multi-policy ideas into a larger framework. Zhou et al. [88] use
a POMDP solver to determine optimal acceleration/deceleration actions for each obstacle agent
policy and a particle filter to estimate the probability of each policy-agent pair and then combine
this with model predictive control for the ego agent. In Efficient Uncertainty-aware Decision Mak-
ing (EUDM) [18], MPDM is extended with a limited tree search and critical-scenario heuristics,
as mentioned in the introduction.

Our proposed method is similar to EUDM because we also extend MPDM by modifying the
policy search process and permitting policy changes in the planning horizon. However, we go
farther in searching over arbitrary sequences of policies, rather than allowing only a single change
in policies. To make the larger search space tractable requires reformulating the search into an
MCTS-like tree search, where instead of evaluating actions at each decision point, we evaluate
closed-loop policies for a certain interval of time. This means that each node in the tree will no
longer correspond to a single state, but to the belief of states that exist for this history.

4.4 Synthetic abstract scenario

We first examine Monte-Carlo Policy-Tree Decision Making (MCPTDM) with a synthetic sce-
nario and experiments that model an abstract form of the self-driving scenario we will examine
later in this chapter. After describing this scenario in detail, we examine the effects of changing
the expected-cost rule used by UCB for balancing the exploration-exploitation tradeoff and for se-
lecting the final best action. We also examine the effects of various improvements to UCB. Finally,
we explore the idea of fairness with particle repetition, helping to mitigate the effects of “unlucky”
initial conditions, where poor outcomes are more attributable to the initial conditions than the spe-

51

cific plan being evaluated. In a self-driving situation, for example, an “unlucky” particle might
include nearby vehicles having intentions that box the ego vehicle in while another vehicle per-
forms a dangerous lane-change; boxed in like this, it doesn’t matter which policy the ego vehicle
chooses, even though this random coordination is very unlikely. Of course, the important property
here is not so much whether a particle is “lucky” or “unlucky” so much as that we reduce the
variance error between our value estimates by using the same sampled initial condition particles.

4.4.1 Problem statement

We consider an abstract version of an autonomous driving task with five policy (or action) choices,
a time horizon split into four segments, and costs related to avoiding crashes and close calls and
making forward progress.

While costs associated with making forward progress are likely to be relatively smooth, costs
around safety and potentially crashing are more discontinuous: while a near-crash may have a high
cost, an actual crash will have essentially infinite cost because crashing is a binary phenomenon.
To model a more complex cost distribution, we use a mixture of two Gaussians. This allows for
samples to sometimes come from the lower-cost Gaussian and sometimes from the higher-cost
Gaussian, without any samples necessarily being between the two. Gaussian mixtures have prior
use in compactly approximating real-world events [89][90].

In addition, in a self-driving scenario, a lot of the uncertainty is in the initial belief about
the behavior and intentions of other vehicles. Specific initial conditions that might be dangerous
for one ego-agent policy are likely to be dangerous for the other policies as well. To model this
“risky situation” correlation, we store the initial conditions in what we call belief particles. If the
same belief particles are propagated through different paths in the tree, we should see correlated
responses.

In order to determine the empirical performance of our method, we perform a synthetic exper-
iment. We construct a tree (of depth 4 and branching factor 5) and assign each node a random
cost probability distribution that is a mixture of two Gaussian distributions with random mean µi,
standard deviation σi, and mixture weight wi, where the mixture weights sum to one. Because our
model includes only positive costs, we saturate these Gaussian costs to be in the range [0, 2µi] so
that the mean is not changed by the saturation.

When running a trial, we first sample a “belief particle” from the “initial conditions” so that
all costs using this belief particle will be correlated. We need this property, where every use of
the same particle results in correlated costs, in order to simulate the idea of initial conditions. We
do this by sampling z-scores from the standard Gaussian distribution (a z-score is a normalized
Gaussian sample, where z = (x− µ)/σ). We also sample a weight threshold t from 0 to 1 that we

52

will use to select between the Gaussian mixture components. With these z-scores and threshold
z1, z2, t from the belief particle known, the cost c for all node distributions would be both correlated
and deterministic:

c =

clamp(µ1 + z1σ1, 0, 2µ1) t ≤ w1

clamp(µ2 + z2σ2, 0, 2µ2) t > w1

(4.1)

clamp(x, l, h) =

l x < l

h x > h

x otherwise

(4.2)

For each trial, after sampling a situation, we use UCB (or one of its variants) with the selected
expected-cost rule to run that situation through the tree. After running all trials in our computa-
tional budget, we choose the lowest expected-cost top-level action as our result. We calculate the
true expected costs of both the best path through the tree and also the best path starting from our
chosen action. Our regret for this choice is then the chosen-action best-path expected cost minus
the overall best-path expected cost.

When sampling node distributions, Gaussian means and standard deviations are all sampled
uniformly and independently from 0 to 100.

The true marginal expected cost of any node i, which we will use later to evaluate regret, is
then:

E(c̄i) = wi,1µi,1 + (1− wi,1)µi,2 (4.3)

4.4.2 Expected-cost estimation with marginal action costs (MAC)

In this section, we motivate and describe a focus on marginal action costs (MACs), which allow us
to make a more informed exploration of the search tree by better estimating node value as compared
to just using terminal rollout costs. We will also describe several more in-between formulations
for estimating node value and then in the later evaluation section we will compare them all to each
other.

To put this idea in context, a common application of MCTS is for board games such as Go [80]
which involve many turns, a large branching factor, determinism, and a reward/cost assigned only
when a terminating condition is reached (e.g. win/loss). By comparison, in a non-deterministic
self-driving car scenario, while there may be a long-term goal (e.g. a destination to reach), the
most important goal of the planner is to maintain safety at all times. To this end, MACs allow the
search to distinguish, for example, between a collision at depth 1 and depth 4, and due to the high

53

A
True marginal and intermediate costs

M = 0
I = 0

M = 20
I = 20

M = 2
I = 22

M = 4
I = 24

M = 4
I = 4

M = 21
I = 25

M = 3
I = 7

B
Sampled intermediate costs

0, 40,
0, 0

x = 10

2, 42
x = 22

0, 4
x = 2

3, 5,
2, 2

x = 3

22, 28
x = 25

5, 5
x = 5

C
Classic expected-cost

13.5

12

22 2

15

25 5

D
Expectimax expected-cost

2

2

22 2

5

25 5

E
Lower-bound expected-cost

5

10

22 2

5

25 5

F
Marginal expected-cost

6

12

2 2

6

21 3

Figure 4.2: Illustration and comparison of four different rules for estimating the expected-cost of
an MCTS-style node. Each rule’s selected best path is in bold. For this example, only the “lower-
bound” and “marginal action cost” (MAC) rules choose the optimal path. A: Each action choice
and node has some cost distribution. We label the mean of each node’s distribution as the “true
marginal cost” M of that node. We also label the “true intermediate cost” I of that node, which is
the sum of marginal costs leading to that node. The optimal choice in this example would be to
choose actions right-right, resulting in a total expected cost of only 7. B: We run 2 trials for each
leaf node, recording the intermediate costs of each trial after each action. In a more classical MCTS
formulation, costs (or rewards) would only be known at the leaf nodes. We also label the mean
intermediate cost at each node. C: Under the “classic” expected-cost rule, we use the mean value
of every trial under a node, ignoring the intermediate costs of non-leaf nodes. D: An optimistic
alternative “expectimax” is to set the expected-cost of a node to be equal to the best expected-cost
of its children. This makes many actions appear much better than before. E: The “expectimax”
rule is overly optimistic when a trial gets lucky and avoids a large intermediate cost in a parent
node. We can use the mean parent intermediate cost as a “lower bound” on the expected-cost.
F: Alternatively, we can also attempt to directly estimate the original “marginal action cost” of
reaching each node from the intermediate costs. Then we set the estimated-cost to the marginal
cost plus the best estimated-cost of a child.

cost of collisions, the entire sub-tree below a collision can be effectively pruned away. This is only
possible when the collision can be attributed to a specific node.

The expected cost of MCTS nodes may be used at two different points in MCTS. In the first
case, they are inputs to the UCB selection algorithm for guiding the exploration-exploitation trade-
off in search. In the second case, after the computational budget for MCTS trials is met, they may
be used for final action selection, to select the final top-level action to execute. Besides using the
expected-cost, a common alternative is to choose the most-visited action as the final choice [66].
A slight improvement may be found by continuing to search until both these measures agree [91]
and so we use that combined “max-robust child” variation in this chapter, putting a limit of 20%
on the number of additional trials we might run. This explicit limit is only necessary because some
of the parameter sweeps we perform include degenerate cases that do not converge.

54

4.4.2.1 Traditional MCTS expected cost estimation

The expected cost of an MCTS node is normally the mean of each trial that has passed through
it [65]:

c̄i =
1

Ni

Ni∑
k=1

ci,k (4.4)

where c̄i is the expected cost of node i, Ni is the total number of trials that have passed through
node i, and ci,k is the kth final trial cost that passed through node i. We call this rule “classic”.
(See Figure 4.2 C.)

Instead of just taking the mean of all terminal costs from all child nodes, we can optimisti-
cally take the best (lowest) child cost at each controlled choice, only averaging over the multiple
stochastic costs at leaf nodes. The expected costs then bubble up from the bottom of the tree:

c̄i =

minj∈Children(i) c̄j i is a branch
1
Ni

∑Ni
k=1 ci,k i is a leaf

(4.5)

This rule is called “expectimax” [92] (although we are minimizing costs here instead of maximiz-
ing rewards) and was originally devised in the context of game tree search where the opponent
plays stochastically. It is considered a generalization of minimax search, where the opponent is
assumed to play optimally [65]. (See Figure 4.2 D.)

4.4.2.2 Taking advantage of known intermediate costs

We observe that the above rule can be optimistic in some cases. For example, imagine a node
following a risky action that has a 50% chance of observing a high cost, and that has two child
nodes, neither of which impose any costs. If we run a trial for each of these children and get a
high cost for one and zero for the other, we would optimistically choose the best option and assign
an expected cost of zero to the parent node, even though the true expected cost is high. However,
when we have intermediate costs for each node, we know that the high cost is attributable to the
parent node and not to either of the children. We should not be deceived into believing that a low
cost path exists for one of the children since the parent cost applies to both. We devise a new rule
that takes the cost of the best child and applies a lower bound of the mean partial/intermediate cost
of the parent node:

c̄i = max

p̄i,
minj∈Children(i) c̄j i is a branch

0 i is a leaf

 (4.6)

55

where p̄i is the mean partial/intermediate cost of node i. We call this rule “lower bound”. (See
Figure 4.2 E.)

4.4.2.3 Marginal action costs (MAC)

Taking this idea of using additional information from intermediate costs even further, we can also
directly calculate and assign marginal costs to each node and use the sum of mean marginal costs
along the best path through the tree as the total expected cost:

c̄i = m̄i +

minj∈Children(i) c̄j i is a branch

0 i is a leaf
(4.7)

where m̄i is the mean marginal cost of node i, equal to the mean intermediate cost of node i
minus the mean intermediate cost of the parent, if any. We notice a similarity to Q-learning in
that the total expected value combines an immediate value with the best child node/successor state
expected value. We call this rule “marginal” or MAC. (See Figure 4.2 F.)

4.4.3 Fairness and particle repetition

At the start of each Monte Carlo trial we sample a set of initial conditions. This particle then takes
some path through the tree, influencing the final cost of the trial. Some of these particles may be
either lucky or unlucky, making the actions and path they take look unfairly better or worse than
they actually are. For example, if all the obstacle vehicles either simultaneously avoid or crowd
the ego vehicle, such that no matter the ego vehicle’s policy choice, there is either no possible
crash or an inevitable crash. The idea is that with enough trials and particles, these effects will
average out to be fair in the end, resulting in a good outcome. However, when the number of trials
is computationally limited, it may help if we intentionally repeat particles along different paths
through the tree to reduce any bias resulting from this good or bad luck.

We do this by recording all particles, the paths they take, and their terminal costs (because our
initial conditions are compact, this does not add up to a significant amount of information). Then,
after a top-level action has been elected for the next trial, we first check if there is a particle that
has not gone down this path before. If so, we repeat this particle instead of sampling a new one. If
there are multiple particles, we chose the one with the highest cost. We note that although it would
be possible to perform particle repetition at any depth of the tree, we only found it worthwhile
at the top level. This makes some intuitive sense because only at the top level of the tree do we
actually make a decision between which action/policy to immediately take. Deeper in the tree,
we do not care as much about a bias between individual branches so much as the overall bias that

56

bubbles up to the different top-level nodes.
Once the computational budget is large enough, repeating particles for fairness will no longer

be necessary. Instead, it may be more effective to only draw new particles to better marginalize
uncertainty. While for smaller numbers of Monte Carlo trials it is helpful to repeat particles as
much as possible, for large numbers it may be best to not repeat at all. We find that the best number
of particles to repeat appears to be inversely proportional to the total number of trials in our budget.
This means that for an any-time implementation, it would be best to have an estimated budget
before starting. We use a repetition constant to set the maximum number of particle repetitions to
perform as the repetition constant divided by the number of trials in our budget.

4.4.4 Experiments

To evaluate and compare the different expected-cost rules, UCB variations, and particle repetition,
we perform a variety of parameter sweeps. When not sweeping over Monte Carlo trials, we instead
marginalize the number of trials with ten powers of two from 8 to 4,096. We perform enough
complete runs of the algorithm to show significant results in the figures, where error bars indicate
plus or minus one standard deviation of the mean (standard error).

4.4.4.1 On expected-cost rules

We start by sweeping the UCB constant (a free parameter) for each expected-cost rule. Figure 4.3
shows that the classic and MAC rules consistently outperform the expectimax and lower-bound
rules, and that these differences persist even for large UCB constants which may encourage almost
pure exploration. We reason that these differences reflect the effect of the expected-cost rules not
on exploration, but on final action selection.

To tease apart how the expected-cost rules influences UCB and final action selection, we re-
peat the experiment, this time always using MAC for final action selection, but still varying the
expected-cost rule for UCB. In Figure 4.4 we see this hypothesis confirmed, that the MAC rule is
most important for final action selection and that most of the expected cost rules work just as well
with UCB. We also include a uniform (pure exploration) rule for comparison.

We also compare expected-cost rules by computational budget (number of Monte Carlo trials)
in Figure 4.5. Each rule uses the best UCB constant for it as found in Figure 4.4 and all use MAC
for final action selection. We notice that MAC converges close to zero mean regret much faster
than the other rules.

57

Algorithm 5: The MCPTDM algorithm. Inputs include initial state s0, uncertainty belief b,
and policy set P . We use p for policy, s for belief sample/initial conditions particle, n′ for a
child node of n, m for a marginal action cost, mn for the set of marginal action costs observed
by node n, and c̄n for the expected cost of node n. In practice, an implementation may want
to limit the number of repeated particles. A system may also want to specify a preference,
in addition to UCB, to determine expansion order when multiple children are completely
unexplored; we prefer to first explore the child with the same policy as the parent.

function CHOOSEPOLICY(s0, b, P)
n← CREATENODE(s0)
k ← 0
for k < trial budget ∨ continue for max-robust child do

RECURSE(n, DRAWBELIEFSAMPLE(b), P)
k ← k + 1

end
return arg min

p
c̄n′ for child n′ with policy p

function RECURSE(n, s, P)
if depth of n ≥ max depth then

return
end
if n not expanded then

// Add child nodes at depth+1 for each policy in P
EXPAND(n, P)

end
n′ ← KL-UCB(n)
if depth of n = 0 then

// Save/retrieve particles before forward simulation
if n′ has unplayed particles then

s←WORSTUNPLAYEDPARTICLE(n′)
else

SAVEPARTICLE(n, s)
end

end
m← FORWARDSIMULATE(n′, s)
mn′ ← mn′ ∪ {m} // Track marginal costs
RECURSE(n′, s, P)
c̄n ← MACEXPECTEDCOST(n, s)

4.4.4.2 On UCB variations

Acknowledging that there are many enhancements and alternatives to UCB, we also wanted to see
if one of these would be able to improve performance. For this purpose we also implemented UCB-
V [93], UCB(δ) [94], and KL-UCB and variation KL-UCB+ [16]. We performed parameter sweeps
for each UCB variation to choose the parameters that produced the lowest regret for each, and

58

0 -6.8 -10 -15 -22 -33 -47 -68 -100 -150 -220 -330 -470 -680 -1000
UCB constant factor * 0.1

15

20

25

30

35

40
Re

gr
et

Regret by UCB constant factor and expected-cost rule
UCB expected-cost rule

Expectimax
Lower bound
Classic
MAC (proposed)

Figure 4.3: Parameter sweep of UCB constant for each expected-cost rule. Marginal action cost
(MAC) and “classic” rules perform best. Lower regret is better.

then compared them. In Figure 4.6 we see that each improved variation performs fairly similarly
and significantly better than UCB, although the relative differences start to widen with the highest
numbers of trials. We use KL-UCB rule for the remainder of this chapter because of this advantage.

4.4.4.3 On particle repetition

In Figure 4.7 we sweep the repetition constant and show the relative regret, normalizing by the
regret of the w/o-repetition case. For most of the cases, we see that improvements saturate when
particles are being repeated as much as possible. Intuitively, we would expect that particle repeti-
tion would become less important as the number of particles increases, since the effects of individ-
ual “unlucky” particles would be mitigated by the large number of particles. We see exactly this
behavior for 1,024 Monte Carlo trials in our experiment. Because we are plotting relative regret,
the smaller the absolute regret, the larger the error bars. See the absolute regret trends in Figure
4.8 where we use a repetition constant of 216.

59

0 -6.8 -10 -15 -22 -33 -47 -68 -100 -150 -220 -330 -470 -680 -1000
UCB constant factor * 0.1

10

15

20

25

30

35

40
Re

gr
et

Regret by UCB constant factor and UCB expected-cost rule
UCB expected-cost rule

Uniform
Classic
Expectimax
Lower bound
MAC (proposed)

Figure 4.4: Parameter sweep of UCB constant for each UCB expected-cost rule, while using MAC
for final action selection. Lower regret is better. We see that as UCB values increase, each rule’s
performance approaches that of uniform/pure exploration. For building up the search tree before
final action selection, we find little difference in performance between expected-cost rules.

4.4.4.4 Cumulative improvement

Finally we perform an ablation study in Figure 4.8 to compare a traditional MCTS search with
UCB and “max-robust child” final action selection to our enhanced method that adds in KL-UCB,
MAC expected-cost estimation, and finally particle repetition. Each addition significantly reduces
regret, although at different points along the curve.

Overall, our total combined method with MAC and particle repetition does significantly better
than traditional MCTS. Our complete method is shown in Algorithm 5.

4.5 Autonomous Driving Scenario

We adopt an autonomous driving scenario very similar to that proposed by Zhang et al. for eval-
uating EUDM [18], but with only two-lanes going in a single direction (see Figure 4.9 and 4.10).
The scenario uses a bicycle model, the intelligent driver model [95], and pure pursuit lateral con-
trol [96] for all vehicles, along with five policies: left-lane-maintain, left-lane-accelerate, right-

60

3 4 5 6 7 8 9 10 11 12
log2(# of trials)

0

10

20

30

40
Re

gr
et

Regret by # monte carlo trials and UCB expected-cost rule

UCB expected-cost rule
Uniform
Classic
Expectimax
Lower bound
MAC (proposed)

Figure 4.5: Parameter sweep of Monte Carlo trials for each UCB expected-cost rule, while using
MAC for final action selection. Lower regret is better. MAC achieves a low regret faster than the
other rules. Thanks to also using the “max-robust child” rule to make a final decision at a good
time, uniform exploration also does surprisingly well.

lane-maintain, right-lane-accelerate, or decelerate. Electing a policy for a different lane than the
current one causes a vehicle to perform a lane-change maneuver.

Besides the ego vehicle, we simulate 13 obstacle vehicles, and obstacle vehicles are removed
and respawned so that we can maintain 13 vehicles within a certain distance of the ego vehicle.
This number of vehicles ensures that there may be complex interactions between multiple other
vehicles both in front of and behind the ego vehicle, but also keeps the environment from being too
congested. Each obstacle vehicle is parameterized by a random (within some range) preferred ve-
locity, acceleration, and follow-time, to provide some variation and uncertainty in their behaviors.
Every 0.2 seconds, each obstacle vehicle has a small chance of randomly choosing a new policy
(5% probability each second). Because obstacle vehicle changes occur randomly, the policies used
by the obstacle vehicles will first check that the next lane is clear at least a half-vehicle’s length
ahead and behind before making a lane-change maneuver. The policies used by the ego vehicle do
not make this check so they can be more flexible.

The ego car tries to safely and smoothly maintain a target velocity by minimizing a cost func-

61

3 4 5 6 7 8 9 10 11 12
log2(# of trials)

0

10

20

30

40
Re

gr
et

Regret by # monte carlo trials and UCB variation

UCB variation
Uniform
UCB
UCB-delta
UCB-V
KL-UCB+
KL-UCB

Figure 4.6: Parameter sweep of Monte Carlo trials for each UCB variation, using MAC for
expected-cost and final action selection. Lower regret is better. All the improved rules outperform
UCB in most cases by a significant margin. KL-UCB consistently performs best, with KL-UCB+
performing very similarly.

tion that incorporates velocity, safety, and control inputs:

Cvel = |v − vtarget| (4.8)

Cacc = Waccv̇
2 (4.9)

Csteer = Wsteerθ̇
2 (4.10)

Csafety = Wsafety(1 + e−ksafety(dmin−dsafety))−1 (4.11)

C =

∫
(Cvel + Cacc + Csteer + Csafety)αt dt (4.12)

where v and θ are the ego vehicle’s forward velocity and angle, vtarget = 11.2 m/s is the ego
vehicle’s target velocity (25 MPH), W are the cost weights, dmin is the minimum distance between
the ego vehicle and any other vehicle, ksafety and dsafety define the shape of a logistic sigmoid used
for safety penalties, and α = 0.8 is a discount factor.

62

w/o 10 11 12 13 14 15 16 17 18 19
log2(repetition constant)

0.9

1.0

1.1

1.2

1.3

Re
la

tiv
e

re
gr

et
, r

el
at

iv
e

to
 w

/o
 re

pe
tit

io
n

Relative regret by repetition constant and # monte carlo trials
Monte Carlo trials

8
16
32
64
128
256
512
1024

Figure 4.7: Plot of relative regret (normalized by the no-repetition case), the particle-repetition
constant, and the number of trials. Particle repetition is strictly beneficial at least up to 256 trials,
with up to about a 10% reduction in regret. Note that the cases with 1,024+ trials all have low
absolute regret (see Figure 4.8). Lower regret is better.

4.5.1 Belief estimation

Each obstacle vehicle may or may not be intending to perform a lane-change maneuver. From
the perspective of the ego agent, this is hidden state and must be estimated in order to perform a
forward rollout.

For simplicity, we implement a stateless heuristic for belief estimation based on thresholds for
the direction a vehicle is pointing, its position in its lane, and its velocity relative to the vehicle
ahead of it. While this belief estimation leaves room for improvement, it should not affect the
fairness of our method comparisons because we apply the same belief estimation for each method.

4.5.2 Methods

4.5.2.1 Multi-policy decision making (MPDM)

Our classic MPDM comparison takes samples (according to the computational budget) from the
belief state and closed-loop forward simulates them through each of our five policy choices for 8

63

3 4 5 6 7 8 9 10 11 12
log2(# of trials)

0

10

20

30

40
Re

gr
et

Regret by # monte carlo trials
Improvements

Classic
also w/ KL-UCB
also w/ MAC (proposed)
also w/ repetition (proposed)

Figure 4.8: Ablation study of our method on the synthetic abstract scenario. We see the advantages
of starting from traditional MCTS using UCB and “max-robust child”, then adding KL-UCB,
marginal action costs (MAC), and finally also particle repetition. Lower regret is better. Our full
enhanced method performs better than all the ablative cases.

seconds. Finally, we elect the policy with the lowest mean cost.

4.5.2.2 Efficient uncertainty-aware decision making (EUDM)

Recall that EUDM is an extension to MPDM that includes both a specific tree search through the
policies as well as a heuristic for selecting belief samples that represent the most important/risky
cases.

The tree search used by EUDM, the “domain-specific closed-loop policy tree”, allows for only
one policy change in the planning horizon, and this change must happen below the root node of the
tree. Just as in the original paper, we use a tree depth of 4 with each layer taking 2 seconds so that
we have a total horizon of 8 seconds. As policy changes must happen after the root node, EUDM
has a built-in hysteresis and will only actually change policies if it still wants to 2 seconds after first
making that decision. The original authors use the current EUDM-selected policy as an input to
a separate “spatio-temporal semantic corridor” trajectory generation module [97] which produces
the actual behavior for the ego vehicle. This extra module allows their ego vehicle to react to
changing circumstances in a risk-aware fashion even with the 2 seconds of policy hysteresis.

64

Figure 4.9: MCPTDM passing a vehicle and keeping distance from others in our simulated road
environment. Vehicle 4 comes to a stop ahead of vehicle 7, causing it to stop in ahead of the ego
vehicle (number 0). The ego vehicle moves into the left lane, passes vehicle 7, and then keeps a
slight distance behind vehicle 4. We see how MCPTDM both performs tactical passing to make
forward progress and also prefers to keep distance from vehicle 4, just in case other vehicles behave
erratically. The ego vehicle is colored green, and obstacle vehicles are either blue while moving
or gray while stationary. Monte Carlo trials are shown by their forward-simulated traces, which
are dark red for traces leading to a crash, pink for traces that are somewhat unsafe, and green for
safe traces. Frames are left-to-right in one-second increments. A video version of this sequence is
provided at https://youtu.be/HYYTT3EYY1Q.

We modified EUDM to consider switching policies at any time, including immediately. This
deviates from the original EUDM method, but we found it improves its performance in our com-
parison.

The heuristic used by EUDM, “conditional focused branching” (CFB), selects nearby obstacle
vehicles, filters to just the vehicles whose policies we are uncertain about, then performs open-loop
forward simulations of each belief policy, and finally makes a set of the most likely belief samples
formed by the Cartesian product of vehicles and policies for each obstacle vehicle deemed risky

65

Figure 4.10: MCPTDM experiencing a crash in our simulated road environment (compare to
Figure 4.9). As vehicle 11 comes to a stop in front of the ego vehicle, vehicle 9 from be-
hind starts to make an unsafe lane-change into the right lane which the ego vehicle is unable
to avoid. It is possible that the ego vehicle could avoid this crash if it were using a replan-
ning rate of faster than 4 Hz. From the forward-simulated traces in the second-to-last frame, it
appears that only scenarios with vehicle 11 accelerating first manage to avoid this crash, since
the ego vehicle’s intelligent driver model requires it to maintain a certain following distance.
Frames are left-to-right in half-second increments. A video version of this sequence is provided at
https://youtu.be/6vK-RxXwBGw.

by the open-loop simulations. All non-risky vehicles are assigned their most-likely policy.
In our implementation of EUDM, we perform open-loop forward simulations by giving only

the ego and obstacle vehicle under examination dynamic policies, and simulate all the other ve-
hicles with just a constant velocity. We use the same horizon of 8 seconds. We order obstacle
vehicles according to their “risk”, the difference between the minimum and maximum costs from
each of the policy choices, and then we choose the 4 most risky vehicles. We form the Cartesian
product of these risky obstacle vehicles and their policies and then finally select the most probable
scenarios according to our belief, and weight them according to their probabilities. We take as
many scenarios as allowed by our computational budget.

66

4.5.2.3 Monte Carlo Policy Tree Decision Making (MCPTDM)

Our final method for application to the automated driving scenario uses the improvements from
the synthetic experiments described above: marginal action cost (MAC) expected-cost estimation
and particle repetition. We use KL-UCB and “max-robust child” selection just as in the earlier
experiments. In addition, when expanding a node in the search tree, we first explore the child with
the same policy as the parent, since most of the time the ego vehicle will be maintaining its current
policy.

4.5.3 Experiments

0.00 0.02 0.04 0.06 0.08 0.10
95% Computation time (s)

260

280

300

320

Co
st

MCPTDM ablation: cost by 95% computation time (s)
MCPTDM (-repeat, -MAC)
MCPTDM (-repeat)
MCPTDM (proposed)

Figure 4.11: Ablation study of MCPTDM on the autonomous driving scenario. We evaluate it
without particle repetition and then also with “classic” expected-cost estimation instead of marginal
action costs. We see that both improvements are significant.

We perform 16,384 runs for each method in order to get significant results. To complete all
these runs in a reasonable time frame, we limit each run to 30 simulated seconds and replan at
4 Hz. Runs are performed on a 2.5 GHz Intel Xeon E5-2640 with a single thread for each run so
that multiple runs can be performed in parallel.

To make fair comparisons, we plot the final cost observed in each run (with no discount) against
the 95% computational latency. That is, 95% of the replanning periods of a 30 second run will have

67

0.00 0.02 0.04 0.06 0.08 0.10 0.12
95% Computation time (s)

240

260

280

300

320

340

360
Co

st

Final comparison: cost by 95% computation time (s)
MPDM
EUDM, w/o CFB
EUDM, CFB
MCPTDM (proposed)

Figure 4.12: Final comparison of MCPTDM with EUDM (both with and without the CFB heuris-
tic) and MPDM. MCPTDM achieves either significantly lower final cost or significantly lower
computational time than either EUDM or MPDM.

a latency less than this. The closer a method is to the bottom left corner (closer to zero cost and
zero time), the better.

Over a total of 589,824 30-second long runs to make all of these figures, there were a total of
2,573 crashes (0.44%). Because crashes are both relatively rare and also lead to much higher final
costs, the error bars are relatively large in some of the figures.

First we perform an ablation to see the separate contributions of MACs and particle repetition.
We performed a parameter sweep to determine reasonable constants for KL-UCB (for the full
method) and for particle repetition, and found that it did best when repeating as much as possible.
We find (see Figure 4.11) that both MACs and particle repetition result in significant improvements.

Finally we perform a comparison of our MCPTDM method to our baseline methods of MPDM
and EUDM in Figure 4.12. MCPTDM achieves significantly lower cost for similar computational
time. Our cost function is composed of a safety cost (for avoiding crashes and being too close),
an efficiency cost (for being close to a target velocity), and steering and acceleration costs (for
minimizing control inputs), where the safety and efficiency are the most significant. We compare
just the safety and efficiency costs in figures 4.13 and 4.14, and note that the majority of the
lower cost improvements of MCPTDM against MPDM and EUDM come from keeping efficiency

68

0.00 0.02 0.04 0.06 0.08 0.10 0.12
95% Computation time (s)

80

100

120

140

160

180

200
Sa

fe
ty

 c
os

t

Final comparison: safety cost by 95% computation time (s)
MPDM
EUDM, w/o CFB
EUDM, CFB
MCPTDM (proposed)

Figure 4.13: Comparison of just the final safety cost (lower is better) between each method. At all
computation times, MPDM is only slightly less safe that MCPTDM. For larger computation times,
EUDM is also very similar. Compare with Figure 4.14 and the plot of just the efficiency cost.

without sacrificing safety. Intuitively it makes sense that in most cases increased safety (lower
safety cost) comes with worse efficiency (lower average velocity and a higher efficiency cost).

We notice that the EUDM’s CFB heuristic is only an improvement in our self-driving scenario
at the point of highest computational cost, even though it shares significant similarities with the
scenarios used in the EUDM paper. This may be a consequence of omitting the separate trajectory
optimizer from their paper, of implementing CFB in a slightly different way, or of another factor.
In addition, we are surprised that vanilla MPDM is so competitive with EUDM because MPDM is
not able to forward simulate policy changes like EUDM or MCPTDM.

4.6 Conclusion

In this chapter we have presented Monte-Carlo Policy-Tree Decision Making (MCPTDM), an
MCTS-based search framework for problems where the marginal costs of each action or policy
election are both available and important, such as autonomous vehicle planning. We have pre-
sented several novel ideas including the use of marginal action costs and fairness-based particle
repetition. We have validated these improvements on both a simplified abstract task and also an

69

0.00 0.02 0.04 0.06 0.08 0.10 0.12
95% Computation time (s)

120

130

140

150

160
Ef

fic
ie

nc
y

co
st

Final comparison: efficiency cost by 95% computation time (s)

MPDM
EUDM, w/o CFB
EUDM, CFB
MCPTDM (proposed)

Figure 4.14: Comparison of just the final efficiency cost (lower is better) between each method.
MCPTDM is quick to worsen efficiency (for better safety) and also keeps the efficiency cost rel-
atively low as the computational budget increases. Compare with Figure 4.13 and the plot of just
the safety cost.

autonomous vehicle planning task. We have demonstrated that MCPTDM has better performance
than both MPDM and EUDM. The code used to generate all the results in this paper can be found
at either https://osf.io/pguhz/ or https://github.com/acshi/MCPTDM to aid
in replicating and extending this work.

4.6.1 Acknowledgements

This work was supported by grants from the NSF (1830615).
Disclosure: Advisor Edwin Olson has a financial interest in a company that may have rights to

foreground or background technology described in this chapter.

70

CHAPTER 5

Conclusion

In this thesis we have proposed novel estimation techniques for two key problems in long-term
autonomy: how to localize and plan as uncertainty and error accumulate over time. Uncertainty is
a fundamental difficulty in designing real-world robotic systems. As robotic systems need to run
longer and longer, or in new and varied environments or conditions, uncertainty becomes an even
bigger challenge.

While we do not claim in this thesis to have completely solved the problems of uncertainty
in long-term autonomy, we hope to have shown that model assumptions have real costs in terms
of how they handle more complex error distributions, and that non-parametric methods, both as a
class of methods and a solution philosophy, have a significant advantage for handling real-world
measurements and situations.

A model is most clearly appropriate when it is directly derived from the physical situation and
is not making any limiting assumptions. In chapter 2, we model antenna delays, propagation time,
time of flight, and distance together. As far as we are aware, we did not make any significant
assumptions in doing this, other than fully-controllable assumptions, for example that we are in
fact measuring propagation time. One issue that arose in that research is that the UWB radios we
used have antennas with a preferred plane. Instead of ignoring how the error bias changes with
the angle of incidence between antennas, we restricted the problem to 2D so that the antennas are
always parallel. In order to leave this 2D context, however, without incorrectly assuming that angle
of incidence has no effect on bias error, we would need to engage with a more complex physical
model.

Sometimes models are available but do not need to be adopted fully to be useful. In chapter
3, we found that topological detectors for hallways and intersections could be used as masking
functions to determine points of interest for a SLAM loop closing system. Importantly, since
marking too many points of interest only results in a mild slowdown in performance, we do not
need these topological class detectors to be at all perfect, greatly simplifying their design. After
all, the benchmark comparison of dense metric SLAM considers all previous poses as loop closure
candidates, so false positives are not a large concern.

71

In the cases of planning with uncertainty in chapters 4 and the appendix, general QMDP/POMDP
planning prevents any obvious parametric model that can be used to simplify the handling of un-
certainty and error, such as could be done with linear quadratic Gaussian (LQG) control. Instead,
uncertainty is often represented by a collection of samples. Planners such as DESPOT [98] sam-
ple a set of determinized scenarios to consider and then work to find an optimal policy given
those scenarios. We might consider this the most structured “model-like” approach, such that
each possible policy always considers the exact same set of determinized scenarios. Monte Carlo
tree search, goes even further from full guaranteed optimality and “model-like-ness” by discard-
ing this constraint on equally considering every possible policy. In a real world problem with a
huge action/policy space, it is not feasible in general to equally consider every possible policy.
In MCPTDM, we also do not equally consider each scenario even for those policies that we do
explore. In order to explore the most important parts of the belief and policy space, we have to
give up the structure of equal and optimal exploration that would put us closer to DESPOT and
LQG control. In the appendix too, with Learned Similarity Monte Carlo Planning (LSMCP), we
propose that in order to infer a similarity relationship between state-action pairs, we need to use
a non-parametric tool as flexible as a multilayer perceptron. Any parametric model for similarity
would necessarily be too constrained to handle POMDPs of either different or greater complexity.

We have also shown specific contributions that make progress towards longer-term autonomy,
enabling robotic systems to be more independent from human oversight and intervention. In chap-
ter 2, we proposed a system for automatically finding the locations of a network of radios so they
can then be used for localization. By having this as an automatic process instead of a manual
calibration, a long-running autonomous system will be able to automatically recover from either
intentional or accidental changes in the specific radio locations over time. In chapter 3, we pro-
posed masked mapping for finding higher-quality loop closures with less computation. By masking
off and ignoring lidar scans that are generic, non-distinctive, or more likely to change over time,
a robot is more likely to maintain its localization both in the short and long terms. In chapter
4, we presented a planning framework based around combining and optimizing Multi-Policy De-
cision Making and Monte Carlo Tree Search. By joining both domain-specific policies and the
more general foundation of efficient search, a robot can achieve more efficient planning, plan with
longer time horizons, and make better decisions. All of these contributions work towards robots
and autonomous systems that are more capable and less likely to need human intervention.

In total, we argue that non-parametric models and tools that make fewer assumptions are neces-
sary to handle the accumulating error and uncertainty of real-world long-term autonomous systems.
As robotic systems run for longer periods of time with less human supervision and around more
dynamic agents, this is only going to be more and more important in the future.

72

5.1 Contributions

This dissertation included the following contributions:

• In chapter 2, we proposed an ultra-wideband-based (UWB) graph realization system to lo-
calize a set of UWB radios that achieves high accuracy through non-parametric estimation
of measurement probability densities and explicit modeling of antenna delays. By using ker-
nel density estimation and non-linear least-squares optimization, we took full advantage of
the noisy non-Gaussian UWB measurements that might otherwise need to be identified and
discarded to fit a parametric model. We also made four open-access datasets available for
comparisons with our method, along with the complete source code for running our method
and generating our figures.

• In chapter 3, we presented a flexible system for simultaneous localization and mapping
(SLAM) that combines elements from traditional dense metric SLAM and from topological
SLAM, using a masking function to focus attention. The abstraction of a masking function
allowed us to take advantage of approximate/simplified topological class detectors to aid in
finding loop closures without needing to worry about false positives or other accuracy con-
cerns in the detectors. We presented two effective masking functions based on detecting
openings and intersections that improve map quality while performing five times fewer scan
matches than an “always true” mask would in dense metric SLAM. We demonstrated our
system on a 2.5 kilometer dataset.

• In chapter 4, we described Monte-Carlo Policy-Tree Decision Making (MCPTDM), a frame-
work for efficiently computing policies in partially-observable, stochastic, continuous prob-
lems. MCPTDM composes policies from a sequence of simpler policies and uses marginal
action costs and particle repetition to improve cost estimates in a non-parametric error rep-
resentation. We validated our improvements first on a simpler abstract problem and then
compared our method to MPDM [17] and EUDM [18] on an autonomous self-driving task.
We also provided openly-released source code capable of reproducing all the figures and
evaluation results for full replication of our results and to enable further extensions to our
work.

5.2 Future directions

For chapter 2, we would like to generalize our non-parametric network localization of UWB radios
to 3D, expanding the non-parametric model in such a way as to include and account for the biasing
effects of off-plane or non-parallel radio transmission angles. The biggest challenge to this is

73

that with introducing additional degrees of freedom into the optimization problem, it may be even
harder to find a good solution with only a limited number of stationary radios. We will likely need
to include dynamic movement of at least one radio in the data-gathering process in order to build
the full non-parametric model of radio positions and parameters to optimize.

For chapter 3, we would like to examine the effectiveness of other masking functions that are
more directly based on topological classifiers. The two masking functions we proposed and exam-
ined where both much more loosely inspired by topological mapping. By taking masking functions
as directly as possible from the topological mapping literature, we can then also directly compare
SLAM performance between our system and a topological mapping system, and this should make
the trade-offs between these options more clear. We expect that our system, because it does not ac-
tually apply topological classes to regions of the map, would have better localization performance
for the same computational cost, even when using the exact same classifiers. We would also expect
that there may be straightforward ways to simplify those classifiers and reduce their computational
cost without reducing the effectiveness of our system, where these same simplifications would
impair the performance of the topological SLAM systems.

For chapter 4, we have already explored one future direction in the appendix, where we moved
from a self-driving scenario to any general continuous-space POMDP. Alternatively, we would
also like to continue examining the more specific space of QMDPs like the self-driving scenario.
First, we would like to find a different QMDP problem domain to examine. Second, we would like
to make the self-driving problem scenario and simulation environment more complex and realistic,
potentially using industry-standard simulation tools, in order to see how MCPTDM scales with
that problem complexity. We expect that MCPTDM will still have the same relative performance
advantages, but this will also enable us to make direct comparisons with other self-driving planners
that take entirely different approaches.

74

APPENDIX A

Learned Similarity Monte Carlo Planning (LSMCP)

A.1 Introduction

In this appendix, we describe Learned Similarity Monte Carlo Planning (LSMCP), a line of re-
search that has had only mixed results so far, but that seeks to enhance the sample efficiency of
partially observable Monte Carlo tree search-based planning by learning about and taking advan-
tage of similarities (correlations) in the final outcomes of similar states and actions. In line with
our principal of flexible non-parametric modeling, we train a multilayer perceptron to learn a sim-
ilarity function for each problem domain and we apply these learned similarity enhancements to a
planning method already based on random sampling.

An important limitation of our earlier work on MCPTDM is that it has no motivation to select
actions whose primary purpose is to gather information. Some problems, including the self-driving
scenario described in the last chapter, are well-suited to this subclass of POMDPs (partially observ-
able Markov-decision processes) known as QMPDs (Q-value Markov decision processes) [15]. We
are interested here in finding algorithmic improvements to the more general domain of continuous-
space POMDP planning, which has the additional challenges of both continuous action and obser-
vation spaces that we managed to avoid in our work on MCPTDM.

The more demanding the planning problem, the more important it is for a Monte Carlo-based
planning method to emphasize sample-efficiency. We did this in MCPTDM with 1) carefully-
guided particle repeating to reduce the variance between separate action/policy choices and with
2) final selection using marginal-action costs to appropriately take into account the cost structure
of the target problem domains. Considering our new goal of general continuous-space POMDP
planning, point 1 is less relevant when we have a continuous action space and point 2 is highly
dependent on choice of problem domain.

While researching MCPTDM we noticed that different action choices sometimes led to the
same result. For example, environmental constraints such as walls, vehicles, or other obstacles can
effectively reduce the total number of distinct action or policy choices. Even if the outcomes are not

75

identical, environmental situations around a decision point, can similarly lead to a smaller effective
action space. For example, the actions of a robot facing a bifurcating path can be effectively
grouped into two sets: the actions that result in taking the left path, and those that take the right
path. While heuristics can be written to reduce the action space when situations like these are
detected, our goal is to take advantage of this pattern, wherever it exists, for POMDPs in general.
We also want to take advantage of correlations between actions even when that correlation is only
partial. For example, we might have a compound action consisting of a motion part (subject to the
bifurcating path-style simplifications), a manipulation part (picking up or placing target objects),
and a sensing part (detecting target objects). While we would expect similarities between the
same parts of the compound action, we do not expect similarity across the different parts of the
compound action.

As we perform our Monte Carlo-based search, our goal is to use some generalized understand-
ing of correlation/similarity to share and combine high-variance rollout outcomes from different
parts of the search tree into lower-variance estimates that converge faster. For example, if rollout
outcomes can be sorted into either “took the left path” and “took the right path”, we can calculate
the expected values for each outcome, getting a lower-variance estimate because we have pooled
more samples together, and then assign these estimates back to the individual nodes of the tree
they came from. Because we want to target general black-box POMDPs of arbitrary complexity,
we will attempt to learn a representation of this similarity automatically from training data acquired
by running instances of a given POMDP through non-augmented planning.

We start by building on top of a POMCPOW (partially observable Monte Carlo planning with
observation widening), a planning framework that is capable of continuous-space POMDP plan-
ning [15]. In order to solve fully continuous POMDPs, POMCPOW uses progressive widen-
ing [91][99], extending the idea of double progressive widening [100] from MDPs to POMDPs.
POMCPOW uses progressive widening for both the action and the observation spaces, using an ex-
plicit observation function to handle the fact that each observation may have a different probability.
We give a more detailed overview of POMCPOW in the background section below.

A.2 Background

In this section, we review partially observable Monte Carlo planning with observation widening
(POMCPOW), following on the description of Monte Carlo tree search given in the background
section of chapter 4.

76

A.2.1 POMCPOW

Many state-of-the-art partially observable Markov decision process (POMDP) solvers use sam-
pling techniques in order to make handling uncertainty tractable. We first review some of these
works, and then we give greater detail on POMCPOW itself.

With the goal of finding an optimal policy, the determinized sparse partially observable tree
(DESPOT) [98] algorithm considers K uniformly-sampled “determinized scenarios” that factor
out all the possible uncertainty in the problem. DESPOT constructs a tree by examining every pos-
sible action sequence for each of those K samples and computes an optimal policy given that sam-
ple/scenario set. While DESPOT is primarily an offline method, it can also be run in an online fash-
ion with branch-and-bound techniques. Overall, DESPOT is capable of handling continuous state
spaces but only discrete action and observation spaces. Extensions to DESPOT include the incor-
poration of importance sampling [101] and using alpha vectors to share information [102]. Alpha
vectors are also used by the approximately-optimal offline fully-discrete SARSOP method [103].

Setting aside optimality for an online-first approach, partially observable Monte Carlo planning
(POMCP) [61] uses Monte Carlo tree search to approximately solve a POMDP given a black-box
simulator and an unweighted particle filter. Similar to DESPOT, POMCP can only handle discrete
POMDPs or at most continuous state spaces.

The key innovation of POMCPOW (partially observable Monte Carlo planning with observa-
tion widening) is the requirement to specify an explicit observation function Z(o|s, a, s′) instead of
just an implicit observation function for sampling o ∼ Z(o|s, a, s′). This enables POMCPOW to
use progressive widening for observations, reusing observations when going down the search tree
according to their likelihood. This is important because in a truly continuous POMDP, observation
samples will always be unique.

In progressive widening [100], the number of choices (child nodes in the tree) is artificially
limited to kNα, where k sets the initial number of choices, N is the number of visits to this de-
cision point in the tree search, and exponent α ∈ [0, 1] controls the rate of progressive widening.
While for action progressive widening the action space is merely limited, next-state (in stochastic-
transition MDPs) or observation (in POMDPs) progressive widening requires an approximation to
be made because when the child nodes are at capacity, the unbiased next-state or observation sam-
pled from the black-box simulator must be discarded and replaced with a next-state or observation
from one of the existing limited child nodes.

Specifically, when observation progressive widening comes into play in POMCPOW, we will
have already run our previous state s and selected action a through the black-box POMDP and
generated the resulting next state s′, observation o, and reward r. When progressive widening
dictates that we repeat a previous observation instead of the just-sampled o, we have to choose an
already-existing observation node. We make a random choice weighted by Z(o|s, a, s′), for each

77

already-existing observation o. This helps limit the bias introduced by not being able to use the
original unbiased observation sample.

POMCPOW maintains a “root belief” about the unknown state of the POMDP. While this is
typically a particle filter, the only requirement for the root belief is that it affords sampling. For
each Monte Carlo trial, this root belief is sampled, and that specific state is then used for the trial.
The tree itself is composed of histories, where each node represents some sequence of actions and
observations from the root. Each Monte Carlo trial may add at most one new observation node
to the tree, after which a rollout policy (e.g. random actions) is run as a black box procedure.
The belief at any non-root node is implicitly represented by the collection of samples/trajectories
that have passed through that node. POMCPOW uses progressive widening for both actions and
observations. There is an initial limit to the number of action and observation children for any node
to have, and this limit is filled up by the actions and observations that happen to occur first. As the
visit count of a parent node increases, there is a schedule to progressively increase the limits on
action and observation children.

Each action node maintains an estimate of its value (expected discounted reward if that node
where the root). This value is the mean discounted reward calculated from the sample trajectories
that pass through the node. Our goal in this work is to aggregate similar samples and states from
across the search tree in order to refine these values, improving on the performance of POMCPOW.

In Algorithm 6, we show POMCPOW and encourage comparison with the description of
MCTS in Algorithm 4 given in the background section of chapter 4. As MCTS is formulated
to solve MDPs, each node directly represents a state. In POMCPOW, each node presents a history
of actions and observations from the root node, and so specific states are more transient, sampled
from the belief at the beginning of each trial and passed through the tree alongside the specific
nodes. In MCTS we branch on actions, while in POMCPOW we branch on both actions and ob-
servations, but still only maintain statistics for the action nodes that we need to choose between.
In addition, POMCPOW uses progressive widening because it specifically targets problems with
continuous action and observation spaces, while this is generally just an option in MCTS since it
is often used for discrete deterministic problems.

78

Algorithm 6: POMCPOW
For node n, N(n) is the visit count, V (n) is the value sum, and Q(n) is the expected value. Node n′′ is
child of n′ which is child of n. In function recurse, n and n′′ are observation nodes and n′ is an action
node. Subroutines are specified in Algorithm 7.

function CHOOSEACTION(b)
1 n← CREATENODE()
2 while time remains do

// b could be a particle filter, for example
3 s← DRAWBELIEFSAMPLE(b)
4 RECURSE(n, s)

end
5 return action of best/highest-Q child of n

function RECURSE(n, s)
6 if state of n terminal then
7 return 0

end
8 EXPAND(n)
9 n′ ← UCB(n); a← action of n′

// ko and exponent αo control observation progressive widening
10 if n′ has ≤ koN(n′)αo children then

// add new observation child node and rollout
11 s′, o, r ← FORWARDSIMULATE(n′)
12 n′′ ← add new child of n′ with observation o
13 add belief sample (s′, r) to n′′ with weight Z(o|s, a, s′)
14 v′ ← ROLLOUT(s′)

else
// reuse existing observation child node and recurse deeper

15 s′, r ← FORWARDSIMULATE(n′) // Ignoring o
16 n′′ ← random child of n′

17 o← observation of n′′

18 add belief sample (s′, r) to n′′ with weight Z(o|s, a, s′)
19 s′, r ← weighted sample from belief of n′′

20 v′ ← RECURSE(n′′, s′)

end
21 v ← r + γv′ // discount factor γ
22 UPDATESTATISTICS(n′, v)
23 return v

79

Algorithm 7: POMCPOW subroutines

function EXPAND(n)
// ka and exponent αa control action progressive widening

1 if n has ≤ kaN(n)αa children then
2 add new child of n with action NEXTACTION(n)

end
function UCB(n)

3 if n has any unexplored children then
4 return a random unexplored child of n

end
// UCB constant C controls exploration vs. exploitation

5 return arg max
n′

Q(n′) + C
√

lnN(n)
N(n′)

function UPDATESTATISTICS(n, v)
6 N(n)← N(n) + 1
7 V(n)← V(n) + v
8 Q(n)← V(n)/ N(n)

80

A.3 Other Related Work

The goal of this work is to increase sample efficiency in POMCPOW or similar MCTS-based
search algorithms by reusing information across “similar” parts of the search tree, based on differ-
ent actions and/or states being similar to each other. In this related work, we examine both other
forms of information sharing as well as approaches that seek to more intelligently select the actions
to explore in the first place.

One of the earliest techniques is the Move-Average Sampling Technique (MAST) [104][105],
which keeps track of statistics for each action independent of the state, and was first used with
Gibbs sampling to make action choices in the rollout (default-policy) phase. Later work showed
improved performance with ε-greedy selection instead of Gibbs sampling [106]. MAST keeps
track of these statistics across an entire game, and not just a single planning episode, and so strate-
gies for decaying older MAST statistics have also been explored with significant improvements in
the majority of cases [107].

Variations on MAST also include those that store statistics based on predicate-action pairs (in
games whose state is a collection of predicates) and feature-action pairs (with designed features),
or that only store statistics for actions encountered in the tree portion of the search, excluding
values from actions selected in the rollout phase[105]. MAST has also been extended to sequences
of actions with the N-gram selection technique (NST) [106]. One limitation of these MAST-
based techniques is that they are not directly applicable to problem domains with continuous action
spaces.

Rapid Action Value Estimation (RAVE) [108] is a complementary technique that operates in
the selection (e.g. UCB) phase instead of the rollout phase. In RAVE, an “all moves as first”
heuristic operates on the assumption that if a move will be useful later, it is also likely useful now,
and so the statistics of all actions below the current search node are used to inform the selection of
actions at that node. In this way, each trial/rollout provides some information about many actions
instead of just one. RAVE does this by replacing Q with QRAV E , where Q̃(s, a) is the mean value
of all nodes with action a that are at or below the state s and where k is an equivalence parameter,
setting the number of trials at which Q and QAMAF should be given equal weight:

QRAV E(s, a) = βQ̃(s, a) + (1− β)Q(s, a) (A.1)

β =

√
k

3N(s, a) + k
(A.2)

RAVE has also been generalized to GRAVE [109] to consider not just any actions below the
current node, but potentially all the actions below some parent node. When the statistics for the
current node have high variance, GRAVE tries considering the RAVE statistics of the parent node,

81

and will continue considering further parent nodes as long as the variance is too high. A study
comparing RAVE, GRAVE, and an extreme version of GRAVE that always uses the root-level
statistics, called History RAVE (HRAVE), showed only small differences overall with significantly
more variance on a per-game basis [110]. This study also showed the MAST and RAVE compose
together well.

RAVE has been generalized to continuous spaces in cRAVE [111], where instead of only se-
lecting values from nodes that exactly match the action, each candidate node/action is weighted
according to an exponential that decays with a domain-specific distance function. In addition to
incorporating this exponential decay for distance between actions, that decay can also incorporate
distance between states. This work on cRAVE is very similar to the work we are trying to accom-
plish. The main difference is that we want to learn this distance metric instead of requiring the
user to supply it. We also want to relax the “all moves as first” requirement and explore the entire
tree for similar states and actions. Finally, we want to evaluate against POMDP problem domains,
while the cRAVE work was evaluated against treasure hunt and energy management MDPs.

Voronoi Progressive Widening (VPW) [112] provides a specific problem-independent strategy
for choosing new actions. In addition to sampling random actions, VPW only requires a distance
metric on the action space. With some probability, new actions are sampled from either the total
action space or from the Voronoi cell with the best value. As a specific implementation of action
progressive widening, VPW in POMCPOW is called VOMCPOW, and demonstrated significantly
greater performance on all of the POMDP problem domains they examined. They also showed
that a specific form of VPW has global convergence guarantees for continuous POMDPs.

Bayesian Optimized Monte Carlo Planning (BOMCP) [113] also provides a problem-independent
progressive widening strategy for actions. Instead of using Voronoi cells and a distance metric to
decide on new actions, BOMCP uses a Gaussian process to model the action-value landscape and
select the action that will maximize the expected improvement in that Gaussian process model.
Unlike VPW, this requires some additional smoothness properties in the action space in order to
properly construct the Gaussian process models.

These methods based on action progressive widening are essentially incorporating similarity
information into the selection of which actions should be explored next. Since this information
is used only at the point of the decision to add a new action node, we aim for our work to be
complementary to these methods. It is also possible that if may learn a similarity function that can
double as a distance function that could be used with Voronoi progressive widening as well.

82

A.4 Problem Statement

We consider a continuous POMDP with a generative model for the transition function and an ex-
plicit distribution for the observation function. This is the same problem class as considered by
POMCPOW. In particular, we focus on problems with relatively more expensive transition func-
tions, where the cost of the transition function is expected to be much greater than any overhead in
our LSMCP planning framework.

We consider the Monte Carlo search tree that is formed in the planning process of an MCTS-
based POMDP solver such as POMCPOW. The search tree branches on both continuous actions
and continuous observations, and so a large number of Monte Carlo trials are necessary in order to
have sufficient confidence in the value of the deeper nodes required for future planning. However,
in many problems, it is extremely likely for natural similarities to arise between different parts of
the search tree. If we can exploit the information present in these similarities, we can arrive at
more accurate belief-action Q-values and more closely approximate the optimal policy with fewer
Monte Carlo trials.

POMCPOW represents belief with a collection of state samples. We want to find a “similarity”
or “equivalence weight” function that tells us how much the rollout (default policy) value of a
sample state-action pair from the belief in one part of the tree can inform the value of the belief
in another part of the tree. We want to find a function that maps from the state-action-rollout
value tuple of a “reference” belief sample and the state-action tuple of a “query” sample to give an
equivalence weight between 0 and 1:

Sml : S × A× S × A→ {x ∈ R | 0 ≤ x ≤ 1}

At the extremes, a weight of 1 indicates the reference-sample rollout value is just as informative as
a true query-sample rollout value and a weight of 0 indicates that the reference value is completely
uninformative.

In POMCPOW, the value of an action node is the mean of r + γv′ (see line 22 of Algorithm
6) from each time the node is visited during a Monte Carlo trial/iteration. The first time the node
is visited, v′ comes from a random rollout procedure. Each subsequent time the node is visited,
v′ comes from a call to RECURSE using a reward and next state that have been sampled from a
randomly chosen observation node because of the limitations of observation progressive widen-
ing. Because of this additional complexity involved in observation widening, we focus on using
similarity to better estimate the true expected value of pure rollouts.

When a rollout occurs, it runs from a single specific state. However, each action node in
the tree is best represented by an action and a belief. That belief will eventually be composed
of multiple states, and this collection of states will better represent the true belief of the action

83

node and its history as the action node is visited more and more times and the number of states
increases. POMCPOW does not need to keep track of all these states, so we will need to track
that ourselves to support similarity calculations. Using our similarity function Sml, we should be
able to estimate the expected rollout value of a state-action pair. For an action node with a belief
containing multiple states, we should then be able to combine individual state-action pair estimates
into an overall estimate Q̃ for the whole belief of the action node.

We estimate the expected rollout value of a query action node with action a and belief b using a
set of reference state-action-rollout value tuples ref, with ith reference having action aref

i , state sref
i ,

and rollout value vref
i . We make a separate estimate for each query state and then take the mean for

the overall estimate Q̃ for the belief:

Ṽ (s, a) =
∑
i∈ref

vref
i Sml(s, a, sref

i , a
ref
i) (A.3)

Ñ(s, a) =
∑
i∈ref

Sml(s, a, sref
i , a

ref
i) (A.4)

Q̃(s, a) = Ṽ (s, a)/Ñ(s, a) (A.5)

Q̃(b, a) = mean value of Q̃(s, a) ∀s ∈ b (A.6)

Once we have these action node rollout value estimates Q̃, we will have to figure out how to
use them most effectively along-side the “real” values Q obtained through regular POMCPOW to
form augmented values Q′. How much weight do we give these similarity-based values? Since we
are estimating rollout value, should we only use these estimates for leaf nodes? If the estimates are
biased, how do we keep the bias from degrading performance?

Finally, to be useful in practice, the similarity function should have low-enough computational
cost such that computing estimated values is more effective than using the same time to just run
additional Monte Carlo trials.

A.5 Learning similarity

In order to support arbitrary POMDPs, LSMCP first needs to learn a multilayer perceptron (MLP)
we can use to compute similarity.

However, in order to calculate Q̃ for every node in the search tree, we have to compute the
similarity between almost every state-action sample in the search tree. The number of similarity
computations would be of order O(NM) where N is the number of state-action sample queries
anywhere in the tree and M is the number of state-action-rollout reference samples. We note that
N is strictly greater than the number of Monte Carlo trials, because each Monte Carlo trial will
create a number of additional state-action samples equal to the number actions taken before the

84

rollout portion of the trial, while M is the total number of Monte Carlo trials, since each trial
iteration ends in a rollout.

We address this potential complexity by learning the similarity function indirectly. For indi-
vidual state-action samples, we learn a transformation Xform : S × A→ RD into a dimension D
Euclidean space “position”. We then map distance into similarity:

d = ||Xform(s1, a1)− Xform(s2, a2)||2 (A.7)

Sml(s1, a1, s2, a2) = e−d (A.8)

Computing similarity in this way reduces the number of MLP inferences down to just O(N)

and reduces the O(NM) part to just computing an L2 norm and exponential. During inference
time, we further reduce the number of O(NM) operations by using a linear lower bound on the
exponential which is much faster to compute:

Sml(s1, a1, s2, a2) = max(0, 1− d) ≤ e−d (A.9)

Using distance to compute similarity also opens up the possibility of using an approximate
nearest neighbors (ANN) algorithm to entirely eliminate the O(NM) bottleneck for problem in-
stances with larger N .

A.5.1 Loss function

The optimal behavior for our system would have the estimates Q̃ directly lead to the best action
being chosen by our method, LSMCP. If the best action is not chosen, then we want to minimize
the regret (true value of the best action - true value of the action taken). Unfortunately, regret itself
is not differentiable, since it is based on the true values of actions, and not on the estimated values.
Even then, we have no way to access the absolute true values for an arbitrary POMDP. However,
we can approximate the true rollout values of actions by simply running as many rollouts as needed
for the mean value to converge (see training data section below). We can then use the regret as a
weight on other differentiable losses that are based on the estimated values of each action choice
being compared. Using regret as a weight like this encourages the learning to minimize regret even
though it is not differentiable.

Since we are trying to learn a similarity function that is a function of states and not directly of
beliefs, we also only consider rollout values and regret in the context of a single state. So our losses
are a function of the “true” values for a state and each of its actions and the similarity-estimated
values of those same actions.

Our loss function encourages learning the correct values, the correct advantages (value - mean

85

value of all actions), and a bias of zero, where Na is the number of action choices:

loss = regret ∗
[
w1

1

Na

∑
a

(ṽa − va)2+

w2
1

Na

∑
a

((ṽa − ¯̃v)− (va − v̄))2+

w3(
1

Na

∑
a

ṽa − va)2
]

(A.10)

We chose these quantities because they are simple functions of the available parameters. While
either the direct value loss or the advantage loss could alone lead to zero regret, the advantage loss
more directly captures the comparative nature of how the best action is chosen and the direct value
loss provides a specific target to reach. The bias loss is intended to make it easier for LSMCP to
actually incorporate the estimated Q̃ values.

We also note that while we cannot directly train on the regret, it is a useful signal to monitor
training effectiveness and progress.

A.5.2 Training data

In order to support the loss function detailed above, we need to some way of finding “ground truth”
expected rollout values for state-action pairs for arbitrary POMDPs. We do this by continuously
running rollouts from each state-action until their mean value effectively converges. To make the
computational time predictable, we first determine a fixed number of rollouts to use by running
examining a small set of state-action pairs and examining the proportion of those that converge to
a certain degree. For example, we found that for one POMDP, 512 rollouts lead to 91% of state-
action pairs converging to within 2.5% of the value for twice as many rollouts, and 64% converging
to within 1.25%.

We then collect training data by running the POMDP with settings that will produce the form
of data we need for our loss function. We take only a single sample from the root belief and use this
specific state for all actions and rollouts. We do not perform tree search, and instead only perform
rollouts for each action. We also use a constant and high number of actions, disabling progressive
widening. After running all these rollouts, we extract and save the training data, execute the
chosen action, update the root particle belief, and then repeat until the POMDP has terminated.
We continue this whole process until enough training data has been acquired. The training data
extracted includes states and sets of actions for each state, and corresponding expected rollout
values for each of those actions.

After training data is collected, we follow standard data preprocessing practice and normalize
the data so that each value has a standard deviation of 1 and a mean of 0.

86

A.5.3 Batches

So far we have training data consisting of states each with a set of action-value tuples. In order
to evaluate our loss function, we need to form similarity-based estimates for those rollout values
and decide on the set of reference state-action-rollout value tuples that will be used to form the
estimates as described in Eqs. A.3-A.6.

For each training sample, we randomly chose a query state from the training data with its
accompanying set of actions and “ground truth” values. We then also chose a random set of
reference state-action-rollout value tuples. The number of reference tuples we use is a parameter
we call references per sample. For more training flexibility, we can also only use a subset of the
available query state actions by setting a lower actions per sample. Finally, the batch size is then
the total number of training samples constructed this way for each optimization step.

Because each training sample is constructed from a different random combination of query
and reference samples, there is an exponentially large number of possible unique batches we can
create. In practice, we have found that there is little benefit to creating more batches than there are
unique query states.

A.5.4 Training

We trained all networks using Pytorch 1.10.2 using the AdamW optimizer, a reduce-learning-rate-
on-plateau scheduler, gradient clipping, and early stopping. The input to the network is a state-
action pair and the output is a D-dimensional vector in a Euclidean space. We use an architecture
with fully connected linear layers (no bias) each followed by batch normalization and a leaky
ReLU. The final output layer also does not have bias, normalization, or an activation function.
These configuration options were chosen to conform with our best understanding of the current best
practices, except for our use of a learning rate scheduler. AdamW (and the original Adam variation)
is generally considered to not need a scheduler because it maintains a separate adaptive learning
rate for each parameter. However in our training we found the scheduler critical to lowering the
overall loss. Without it, loss would plateau at far higher values. We suspect this behavior may be
related to the relatively high noise and variance in our training data.

87

A.6 Using similarity

Ideally, if the similarity function truly learns to provide a rollout value equivalence, then construct-
ing augmented values Q′ could be done directly with:

V ′=V + Ṽ (A.11)

N ′=N + Ñ (A.12)

Q′= V ′/N ′ (A.13)

However, if there is any bias in Q̃ then this bias will have an unequal effect across the tree,
with more bias injected wherever Ñ is larger because a state-action tuple had more total similarity.
Unequal bias will lead to bad Q′ values even if the Q̃ on their own correctly identify the best action
for every state.

There are several ways that we can try to control this bias. One option is to borrow the weight-
ing scheme from RAVE, which ensures that as trials go to infinity, the weight on the biased estimate
goes to zero:

Q′(n) = βQ̃(n) + (1− β)Q(n) (A.14)

β =

√
k

3N(n) + k
(A.15)

A limitation of this approach is that it directly uses the similarity-estimated Q̃ and therefor does
not take into account the weight Ñ , which we expect should be smaller for less confident estimates
and greater for more confident ones.

Another idea that tries to draw meaning from the Ñ quantities, is to artificially limit the weight
values in Eqs. A.3 and A.4 such that the total weight for each query state between action choices
is equal and then to add the separate value and weight sums to get totals for the belief. We also

88

divide the total weight by the number of states in the belief ||b||:

Ṽ (s, a) =
∑
i∈ref

vref
i Sml(s, a, sref

i , a
ref
i) (A.16)

Ñ(s, a) =
∑
i∈ref

Sml(s, a, sref
i , a

ref
i) (A.17)

Q̃(s, a) = Ṽ (s, a)/Ñ(s, a) (A.18)

LimitN(s) = min
a∈node

Ñ(s, a) (A.19)

Ṽ (b, a) = ||b||−1
∑
s∈b

LimitN(s)Q̃(s, a) (A.20)

Ñ(b, a) = ||b||−1
∑
s∈b

LimitN(s) (A.21)

Making a comparison between these two approaches is left for future work.

A.7 Evaluation

In this section we describe two simple POMDP problem domains that we use for evaluating our
method and our preliminary results against them. We designed the first problem domain to be as
advantageous as possible to the idea of learned similarity and LSMCP. The second problem domain
comes from the original description if our comparison method POMCPOW [15].

One important baseline we used was training the same size multilayer perceptron to directly
estimate Q(s, a) values, using the same loss function. In order for learned similarity to pose a
value-gain over something like deep Q-learning function approximation, then we need to find that
LSMCP is more expressive and generalizable for the same size learned network. We will refer
to this baseline as the value network, as opposed to the full LSMCP where the network maps
state-action tuples into a space where distance determines similarity.

In our evaluations below, we incorporate similarity values as described in Eqs. A.11-A.13
and A.16-A.21 for all action nodes in the entire tree as needed for computing UCB values and
choosing the final best action. We do not report execution time in the analysis below because it
was generally not competitive with POMCPOW. Both the baseline value network and LSMCP
were between approximately 2 and 100 times slower, depending on the parameters.

A.7.1 Buffet

For the initial development of our approach, we designed a continuous POMDP that would be
maximally exploitable by information aggregation. In the buffet POMDP, a “diner” tries to explore

89

their way to the best “food” available. The diner always knows their position, but the only way
to find the best food is to move around and try the different foods. The diner has to make an
exploration-exploitation tradeoff to maximize reward.

0.0 0.2 0.4 0.6 0.8 1.0
Position x

4

2

0

2

4

6

Ex
pe

ct
ed

 re
wa

rd

Buffet problem reward structure

Figure A.1: Reward structure of an example Buffet POMDP instance with N = 10 “foods” avail-
able. After each action that the diner makes to change their position, they receive a stochastic
reward (error bars show the standard deviation of 1) based on their current position relative to the
available foods. Because the actions are limited to only a change in position of at most 0.075, a
greedy policy may never discover high reward foods (positions) far from the diner.

The position of the diner is known and deterministic and ranges from 0 to 1, modulo 1, always
starting at 0. The diner’s action space consists of a change in position, limited to the range -0.075
to 0.075, and wrapping around at 0 and 1. There are N “foods” evenly spaced over the range of
positions and they each have a stochastic reward. The total reward is linearly interpolated between
the nearest rewards. For example, if N = 2, the foods will be located at 0 and 0.5. If the expected
rewards are 10 and -10, respectively, and the diner is at position 0.1, then the expected reward
will be 10 ∗ 0.4/0.5 − 10 ∗ 0.1/0.5 = 6. For our evaluation, we use N = 10, and draw each
food’s reward from a normal distribution with standard deviation 1, where the mean value is itself
drawn from a normal distribution with a standard deviation of 10. We normalize the distributions
so the mean expected value across distributions is 0. The reward structure for an example problem
instance with N = 10 is shown in Figure A.1.

90

Table A.1: Expected mean rollout value error by number of rollouts for the Buffet POMDP. For
2048 random state-action pairs, we examined how quickly the mean rollout values converged as
we ran more and more rollouts. We then determined the percentage of those 2048 state-action pairs
that where within some error margin (10, 5, 2.5, and 1.25 percent) of the later converged values.

rollouts < 10% < 5% < 2.5% < 1.25%
2048 87.9 77.2 57.5 34.5
4096 92.1 83.5 66.9 45.4
8192 94.6 88.6 77.2 57.0
16384 96.2 91.9 83.1 69.0

This problem intentionally provides a lot of correlated information. For a given belief, expected
rewards are related when positions are less than 1

N
apart. Even across multiple beliefs, expected

rewards are related when positions are close and the beliefs are similar in the vicinity of those
positions as well.

We limit the number of particles in the root particle filter to the number of Monte Carlo trials
being used. The root particle filter is the same “observation adaptive particle filter” as used by the
authors of POMCPOW [15] in their evaluation code, which is available online [114].

Parameters for data collection and training, including the final training regret, are given in
Table A.2. We see that the value network achieves a lower regret, even though it is the comparison
baseline for using a neural network. The number of rollouts to perform for each state-action tuple
during data collection was chosen by looking at Table A.1 and choosing the lowest option that
achieved less than 1.25% error for more than 50% of the tuples. Mean reward running the Buffet
problem for POMCPOW, the value network, and for LSMCP are in Table A.3. POMCPOW alone
achieves the worst performance and we see that the baseline value network generally does better
than LSMCP, while also being faster than LSMCP.

Even though the modified forms of POMCPOW do earn higher rewards here, please note that
the network evaluations result in a significant slow down, such that POMCPOW is still faster for
the same reward level. While further optimizations are possible, including approximate nearest
neighbors, we have not evaluated that option yet here. Finally we also note that the buffet POMDP
was entirely designed for LSMCP to do well, so we need to try another POMDP for a more fair
evaluation.

91

Table A.2: Parameters and results for data collection and network training. Mean regret (see above
on the loss function) is given in standard deviations.

Parameter/result Buffet Van der Pol tag
Actions per state 32 32
Rollouts per state-action tuple 8192 512
References per query 1024 1024
Batch size (value network) 2048 4096
Batch size (LSMCP) 256 512
Dimension D (LSMCP) 6 4
Mean regret (value network) 0.066 0.27
Mean regret (LSMCP) 0.097 0.35

Table A.3: Mean reward on the Buffet POMDP by method. Both the baseline value network and
LSMCP achieve about the same reward as POMCPOW but with only half as many trials, achieving
2x sample efficiency for this problem. However, POMCPOW with 128 trials is still faster than
LSMCP with 64 trials.

Number of trials POMCPOW Value network LSMCP
32 126.8 (±1.5) 171.1 (±1.6) 152.6 (±1.5)
64 156.5 (±1.5) 192.4 (±1.6) 189.1 (±1.6)
128 190.5 (±1.5)

A.7.2 Van der Pol tag

In the Van der Pol tag problem [15], the agent attempts to “tag” a target that moves according to the
Van der Pol differential equation in an oscillatory pattern. There are barriers that block the agent,
but not the target, and the agent must pay a cost to take accurate measurements of the target’s
position. This is a fully continuous POMDP across state, action, and observations spaces.

The agent starts at the origin and the target starts at a random initial position from [−4, 4] ×
[−4, 4]. If the agent gets within 0.1 of the target, it receives a reward of 100 and the problem
terminates. The target moves according to the RK4-integrated Van der Pol differential equations:
ẋ = µ(x − x3

3
− y) and ẏ = x

µ
, where µ = 2. The target’s position is also randomly perturbed

each step with σ = 0.05 for both x and y. The agent moves at a constant velocity of 1 and
chooses any angle for its motion. Barriers block the agent from crossing the x = 0 axis for
y ∈ [−2.8,−0.2] ∪ [0.2, 2.8] and vice versa for the y = 0 axis. The agent receives a measurement
of the target’s position each step and chooses whether to pay a cost of -5 to receive a measurement
with σ = 0.1 instead of σ = 5 (not useful). There is a cost of -1 for each step before termination.
Observations consist of 8 beams with mean of either distance to the target (for the beam that
includes the target) or a constant distance of 1 for the other beams. The Van der Pol differential

92

equations are illustrated as a vector field alongside the barriers in Figure A.2.

3 2 1 0 1 2 3
Position x

3

2

1

0

1

2

3

Po
sit

io
n

y
Van der Pol Tag target flow and barriers

Figure A.2: Illustration of the Van der Pol vector field and barriers. The vector field determines
the motion of the target from its random initial position. The barriers block the motion of the agent
only.

This problem is interesting because it is simple, fully continuous, and has no obvious heuristic
policy due to the barriers and difference in dynamics between the agent and target.

We make one change in how Van der Pol tag is configured as compared to the original authors.
Because we do testing with far fewer Monte Carlo trials, we limit the number of particles in the
root particle filter to the number of Monte Carlo trials being used, instead of having it fixed at
10,000 particles.

Parameters for data collection and training, including the final training regret, are given in Table
A.2. These mean regrets are about four times worse than we had achieved in the buffet POMDP.
The number of rollouts to perform for each state-action tuple during data collection was chosen by

93

Table A.4: Expected mean rollout value error by number of rollouts for the Van der Pol Tag
POMDP. For 2048 random state-action pairs, we examined how quickly the mean rollout values
converged as we ran more and more rollouts. We then determined the percentage of those 2048
state-action pairs that where within some error margin (10, 5, 2.5, and 1.25 percent) of the later
converged values.

rollouts < 10% < 5% < 2.5% < 1.25%
128 99.1 90.3 63.4 36.0
256 99.9 97.3 77.9 48.7
512 99.9 99.6 91.1 64.5
1024 99.9 99.9 97.7 79.3

Table A.5: Mean reward on the Van der Pol Tag POMDP by method. The baseline value net-
work generally outperforms POMCPOW, but with a low confidence and significantly worse time.
LSMCP is the worst performing in both mean final reward and computational time.

Number of trials POMCPOW Value network LSMCP
256 3.1 (±1.0) 5.3 (±0.9) -4.3 (±2.7)
512 8.9 (±0.9) 8.5 (±2.6) -3.5 (±2.6)
1024 10.8 (±0.9) 15.4 (±2.9) -1.7 (±4.6)

looking at Table A.4, using the same criteria as for Buffet. Comparing tables, we see that Van der
Pol Tag has much lower rollout value variance than the Buffet problem. Mean reward running the
Buffet problem for POMCPOW, the value network, and for LSMCP are in Table A.5.

LSMCP does much worse than POMCPOW even as it is much slower. The baseline value
network generally does better than POMCPOW, but without a very high confidence, and it is still
significantly slower overall. LSMCP overall exhibits significantly worse performance. At lower
numbers of trials not shown here, LSMCP actually appears to beat POMCPOW, but this is simply
because it learns to not pay for costly observations, not because it completes the task successfully
more than POMCPOW.

A.8 Challenges and alternatives

The performance advantage when using the direct value network against POMCPOW validates that
the training data and loss function are sufficient to learn values that improve overall performance of
the search. However, as we see by the worse mean regret during training of the LSMCP distance-
based network as compared to the direct value network, we are somehow not expressive enough to
capture the information we need. This might be because of constraints based around our choice of
Euclidean distance and another distance metric might do better. This might be because not enough

94

similarities can even be drawn from the 1024 references per query. This might be because the Van
der Pol tag problem simply is not exploitable from a similarity perspective.

One alternative would be to find a way to learn just how much similarity can be exploited,
so that at worst LSMCP does not degrade performance. Then it might be useful to search other
POMDPs to see if they might be more exploitable. If none are, then perhaps there is a more
fundamental issue in how we are trying to learn and express similarity. One observation is that
in the buffet POMDP, we only manage to achieve a 2x sample efficiency with LSMCP (see Table
A.3). The degree of exploitability should be greater than that. There are likely also issues in
LSMCP as it currently stands with incorporating similarity-derived expected rollout values into
POMCPOW.

Another angle that might be useful is to try to derive properties and bounds on how exploitable
a simple POMDP like buffet should be from a mathematical perspective. If we can find rigorous
bounds and the conditions that they hold under, this may help reformulate similarity, Euclidean
dimension size, and a distance metric so that they are more effective together.

A.8.1 Acknowledgements

This work was supported by grants from the NSF (1830615).

95

BIBLIOGRAPHY

[1] R. J. Meinhold and N. D. Singpurwalla, “Understanding the Kalman filter,” The American
Statistician, vol. 37, no. 2, pp. 123–127, 1983.

[2] J. Van Den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized path planning for
robots with motion uncertainty and imperfect state information,” The International Journal
of Robotics Research, vol. 30, no. 7, pp. 895–913, 2011.

[3] P. Müller, H. Wymeersch, and R. Piché, “UWB positioning with generalized Gaussian mix-
ture filters,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, pp. 2406–2414, 2014.

[4] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,”
in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications,
and Control Symposium (Cat. No. 00EX373). Ieee, 2000, pp. 153–158.

[5] Y. S. Shmaliy, “Suboptimal FIR filtering of nonlinear models in additive white Gaussian
noise,” IEEE Transactions on Signal Processing, vol. 60, no. 10, pp. 5519–5527, 2012.

[6] Y. Xu, Y. S. Shmaliy, Y. Li, and X. Chen, “UWB-based indoor human localization with
time-delayed data using EFIR filtering,” IEEE Access, vol. 5, pp. 16 676–16 683, 2017.

[7] H. Nurminen, T. Ardeshiri, R. Piché, and F. Gustafsson, “A NLOS-robust TOA positioning
filter based on a skew-t measurement noise model,” in 2015 International Conference on
Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2015, pp. 1–7.

[8] C. E. Rasmussen et al., “The infinite Gaussian mixture model.” in NIPS, vol. 12. Citeseer,
1999, pp. 554–560.

[9] J. E. Griffin and M. F. Steel, “Bayesian nonparametric modelling with the Dirichlet process
regression smoother,” Statistica Sinica, pp. 1507–1527, 2010.

[10] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on Gaussian process regression:
Modelling, exploring, and exploiting functions,” Journal of Mathematical Psychology,
vol. 85, pp. 1–16, 2018.

[11] C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process Gauss–Newton for non-
parametric simultaneous localization and mapping,” The International Journal of Robotics
Research, vol. 32, no. 5, pp. 507–525, 2013.

96

[12] A. Haggenmiller, M. Krogius, and E. Olson, “Non-parametric error modeling for ultra-
wideband localization networks,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), May 2019, © 2019 IEEE. Reprinted, with permission.

[13] A. Haggenmiller, C. Kabacinski, M. Krogius, and E. Olson, “The masked mapper: Masked
metric mapping,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2020, © 2020 IEEE. Reprinted, with permission.

[14] A. Haggenmiller and E. Olson, “Monte-Carlo policy-tree decision making,” University of
Michigan APRIL Laboratory, Tech. Rep., March 2022.

[15] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for POMDPs with continuous
state, action, and observation spaces,” in Twenty-Eighth International Conference on Auto-
mated Planning and Scheduling, 2018.

[16] A. Garivier and O. Cappé, “The KL-UCB algorithm for bounded stochastic bandits and be-
yond,” in Proceedings of the 24th annual conference on learning theory. JMLR Workshop
and Conference Proceedings, 2011, pp. 359–376.

[17] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson, “MPDM: Multipolicy
decision-making in dynamic, uncertain environments for autonomous driving,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA), June 2015.

[18] L. Zhang, W. Ding, J. Chen, and S. Shen, “Efficient uncertainty-aware decision-making
for automated driving using guided branching,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 3291–3297.

[19] APS014: DW1000 Antenna Delay Calibration, decaWave, 2014, ver-
sion 1.01. [Online]. Available: https://decawave.com/sites/default/files/aps014-
antennadelaycalibrationofdw1000-basedproductsandsystems v1.01.pdf

[20] APS006 Part 2 Application Node: Non Line of Sight Operation and Optimizations
to Improve Performance in DWM1000 Based Systems, decaWave, 2014, version 1.4.
[Online]. Available: https://decawave.com/sites/default/files/aps006 part2 nlos operation
and optimizations.pdf

[21] A. A. Kannan, B. Fidan, G. Mao, and B. D. Anderson, “Analysis of flip ambiguities in dis-
tributed network localization,” in Information, Decision and Control, 2007. IDC’07. IEEE,
2007, pp. 193–198.

[22] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed network localization with
noisy range measurements,” in Proceedings of the 2nd international conference on Embed-
ded networked sensor systems. ACM, 2004, pp. 50–61.

[23] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “Indoor localization with-
out the pain,” in Proceedings of the sixteenth annual international conference on Mobile
computing and networking. ACM, 2010, pp. 173–184.

97

[24] R. Faragher and R. Harle, “Location fingerprinting with bluetooth low energy beacons,”
IEEE journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2418–2428, 2015.

[25] J. Wang, Q. Gao, Y. Yu, H. Wang, and M. Jin, “Toward robust indoor localization based
on Bayesian filter using chirp-spread-spectrum ranging,” IEEE Transactions on Industrial
Electronics, vol. 59, no. 3, pp. 1622–1629, 2012.

[26] C. Zhang, M. Kuhn, B. Merkl, M. Mahfouz, and A. E. Fathy, “Development of an UWB
indoor 3d positioning radar with millimeter accuracy,” in Microwave Symposium Digest,
2006. IEEE MTT-S International. IEEE, 2006, pp. 106–109.

[27] A. A. Kannan, G. Mao, and B. Vucetic, “Simulated annealing based localization in wireless
sensor network,” in Local Computer Networks, 2005. 30th Anniversary. The IEEE Confer-
ence on. IEEE, 2005, pp. 2–pp.

[28] T.-C. Liang, T.-C. Wang, and Y. Ye, “A gradient search method to round the semidefinite
programming relaxation solution for ad hoc wireless sensor network localization,” Sanford
University, formal report, vol. 5, 2004.

[29] X. Ji and H. Zha, “Sensor positioning in wireless ad-hoc sensor networks using multidi-
mensional scaling,” in INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 4. IEEE, 2004, pp. 2652–2661.

[30] C. Di Franco, A. Prorok, N. Atanasov, B. Kempke, P. Dutta, V. Kumar, and G. J.
Pappas, “Calibration-free network localization using non-line-of-sight ultra-wideband
measurements,” in Proceedings of the 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks, ser. IPSN ’17. New York, NY, USA: ACM,
2017, pp. 235–246. [Online]. Available: http://doi.acm.org/10.1145/3055031.3055091

[31] B. Kempke, P. Pannuto, B. Campbell, and P. Dutta, “Surepoint: Exploiting ultra wideband
flooding and diversity to provide robust, scalable, high-fidelity indoor localization,” in Pro-
ceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM.
ACM, 2016, pp. 137–149.

[32] F. Despaux, K. Jaffres-Runser, A. Van den Bossche, and T. Val, “Accurate and platform-
agnostic time-of-flight estimation in ultra-wide band,” in Personal, Indoor, and Mobile
Radio Communications (PIMRC), 2016 IEEE 27th Annual International Symposium on.
IEEE, 2016, pp. 1–7.

[33] J. D. Hol, F. Dijkstra, H. Luinge, and T. B. Schon, “Tightly coupled UWB/IMU pose es-
timation,” in 2009 IEEE International Conference on Ultra-Wideband. IEEE, 2009, pp.
688–692.

[34] L. Zwirello, X. Li, T. Zwick, C. Ascher, S. Werling, and G. F. Trommer, “Sensor data
fusion in UWB-supported inertial navigation systems for indoor navigation,” in 2013 IEEE
International Conference on Robotics and Automation. IEEE, 2013, pp. 3154–3159.

[35] DWM1000 Datasheet, decaWave, 2016, version 1.6. [Online]. Available: https:
//www.decawave.com/sites/default/files/resources/DWM1000-Datasheet-V1.6.pdf

98

[36] APS014 Application Node: Sources of Error in DW1000 Based Two-Way Ranging (TWR)
Schemes, decaWave, 2014, version 1.0. [Online]. Available: https://decawave.com/sites/
default/files/aps011 sources of error in twr.pdf

[37] DW1000 User Manual, decaWave, 2017, version 2.15. [Online]. Available: https:
//www.decawave.com/sites/default/files/dw100020user20manual 0.pdf

[38] X. Wang, R. Marcotte, G. Ferrer, and E. Olson, “AprilSAM: real-time smoothing and map-
ping,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2486–2493.

[39] B. Kuipers, R. Browning, B. Gribble, M. Hewett, and E. Remolina, “The spatial semantic
hierarchy,” Artificial intelligence, 2000.

[40] F. Lu and E. Milios, “Globally consistent range scan alignment for environment mapping,”
Autonomous robots, vol. 4, no. 4, pp. 333–349, 1997.

[41] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard, C. Baker,
Z. Omohundro, S. Thayer, and W. Whittaker, “A system for volumetric robotic mapping
of abandoned mines,” in 2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), vol. 3. IEEE, 2003, pp. 4270–4275.

[42] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,”
in 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016,
pp. 1271–1278.

[43] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,” Artificial
Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[44] T. Röfer, “Route navigation using motion analysis,” in International Conference on Spatial
Information Theory. Springer, 1999, pp. 21–36.

[45] A. Lankenau, T. Röfer, and B. Krieg-Brückner, “Self-localization in large-scale environ-
ments for the bremen autonomous wheelchair,” in International Conference on Spatial Cog-
nition. Springer, 2002, pp. 34–61.

[46] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli, “Local metrical and global
topological maps in the hybrid spatial semantic hierarchy,” in IEEE International Confer-
ence on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5. IEEE, 2004,
pp. 4845–4851.

[47] P. Beeson, J. Modayil, and B. Kuipers, “Factoring the mapping problem: Mobile robot map-
building in the hybrid spatial semantic hierarchy,” The International Journal of Robotics
Research, vol. 29, no. 4, pp. 428–459, 2010.

[48] C. Johnson, “Topological mapping and navigation in real-world environments,” Ph.D. dis-
sertation, University of Michigan, 2018.

99

[49] J.-L. Blanco, J.-A. Fernández-Madrigal, and J. Gonzalez, “Toward a unified bayesian ap-
proach to hybrid metric–topological SLAM,” IEEE Transactions on Robotics, vol. 24, no. 2,
pp. 259–270, 2008.

[50] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to concurrent mapping and
localization for mobile robots,” Autonomous Robots, vol. 5, no. 3-4, pp. 253–271, 1998.

[51] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D cameras,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013, pp.
2100–2106.

[52] J. Neira, J. D. Tardós, and J. A. Castellanos, “Linear time vehicle relocation in SLAM,” in
ICRA. Citeseer, 2003, pp. 427–433.

[53] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: Real-time accurate mapping of
large environments,” IEEE transactions on Robotics, vol. 21, no. 4, pp. 588–596, 2005.

[54] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “Segmatch: Segment
based place recognition in 3d point clouds,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 5266–5272.

[55] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous localization and map build-
ing in large-scale cyclic environments using the Atlas framework,” The International Jour-
nal of Robotics Research, vol. 23, no. 12, pp. 1113–1139, 2004.

[56] E. Olson, “M3RSM: Many-to-many multi-resolution scan matching,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), June 2015.

[57] K. J. Astrom, “Optimal control of Markov decision processes with incomplete state estima-
tion,” J. Math. Anal. Applic., vol. 10, pp. 174–205, 1965.

[58] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable Markov
processes over a finite horizon,” Operations research, vol. 21, no. 5, pp. 1071–1088, 1973.

[59] G. A. Hollinger, “Long-horizon robotic search and classification using sampling-based mo-
tion planning.” in Robotics: Science and Systems, vol. 3, 2015.

[60] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement learning algorithm for partially
observable Markov decision problems,” Advances in neural information processing systems,
pp. 345–352, 1995.

[61] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in Advances in neural
information processing systems, 2010, pp. 2164–2172.

[62] K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez, “Grasping POMDPs,” in Proceedings 2007
IEEE International Conference on Robotics and Automation. IEEE, 2007, pp. 4685–4692.

[63] M. L. Littman, “A tutorial on partially observable Markov decision processes,” Journal of
Mathematical Psychology, vol. 53, no. 3, pp. 119–125, 2009.

100

[64] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in European conference
on machine learning. Springer, 2006, pp. 282–293.

[65] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of Monte Carlo tree search
methods,” IEEE Transactions on Computational Intelligence and AI in games, vol. 4, no. 1,
pp. 1–43, 2012.

[66] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo tree search,” in In-
ternational conference on computers and games. Springer, 2006, pp. 72–83.

[67] G. E. Monahan, “State of the art—a survey of partially observable Markov decision pro-
cesses: theory, models, and algorithms,” Management science, vol. 28, no. 1, pp. 1–16,
1982.

[68] J. Satia and R. Lave, “Markovian decision processes with probabilistic observation of
states,” Management Science, vol. 20, no. 1, pp. 1–13, 1973.

[69] A. McGovern, R. S. Sutton, and A. H. Fagg, “Roles of macro-actions in accelerating rein-
forcement learning,” in Grace Hopper celebration of women in computing, vol. 1317, 1997,
p. 15.

[70] G. Theocharous and L. P. Kaelbling, “Approximate planning in POMDPs with macro-
actions,” in Advances in Neural Information Processing Systems, 2004, pp. 775–782.

[71] R. He, E. Brunskill, and N. Roy, “PUMA: Planning under uncertainty with macro-actions.”
in AAAI, 2010, p. 7.

[72] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “FIRM: Feedback controller-
based information-state roadmap–a framework for motion planning under uncertainty,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011,
pp. 4284–4291.

[73] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion planning under un-
certainty,” in 2011 IEEE international conference on robotics and automation. IEEE, 2011,
pp. 723–730.

[74] F. Doshi-Velez, “The infinite partially observable Markov decision process,” Advances in
neural information processing systems, vol. 22, pp. 477–485, 2009.

[75] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, “The infinite hidden Markov model,”
Advances in neural information processing systems, vol. 1, pp. 577–584, 2002.

[76] J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani, “Beam sampling for the infinite
hidden Markov model,” in Proceedings of the 25th international conference on Machine
learning, 2008, pp. 1088–1095.

[77] C. Amato and F. Oliehoek, “Scalable planning and learning for multiagent POMDPs,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

101

[78] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored MDPs,” in NIPS,
vol. 1, 2001, pp. 1523–1530.

[79] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Decentralised Monte Carlo tree
search for active perception,” in WAFR, 2016.

[80] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of Go
with deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[81] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “A0c: Alpha zero in continuous
action space,” arXiv preprint arXiv:1805.09613, 2018.

[82] W. Ding, J. Chen, and S. Shen, “Predicting vehicle behaviors over an extended horizon using
behavior interaction network,” in 2019 International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2019, pp. 8634–8640.

[83] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining neural networks and
tree search for task and motion planning in challenging environments,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
6059–6066.

[84] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical decision making for lane
changing with deep reinforcement learning,” in NIPS 2017 Workshop on Machine Learning
for Intelligent Transportation Systems, 12 2017.

[85] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multipolicy decision-
making for autonomous driving via changepoint-based behavior prediction,” in Proceedings
of Robotics: Science and Systems (RSS), Rome, Italy, July 2015.

[86] D. Mehta, G. Ferrer, and E. Olson, “Fast discovery of influential outcomes for risk-aware
MPDM,” in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), May 2017.

[87] ——, “Backprop-MPDM: Faster risk-aware policy evaluation through efficient gradient op-
timization,” in Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), May 2018.

[88] B. Zhou, W. Schwarting, D. Rus, and J. Alonso-Mora, “Joint multi-policy behavior estima-
tion and receding-horizon trajectory planning for automated urban driving,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 2388–
2394.

[89] R. Morton and E. Olson, “Robust sensor characterization via max-mixture models: GPS
sensors,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), November 2013.

102

[90] R. W. Wolcott and R. M. Eustice, “Robust LIDAR localization using multiresolution Gaus-
sian mixture maps for autonomous driving,” The International Journal of Robotics Re-
search, vol. 36, no. 3, pp. 292–319, 2017.

[91] G. Chaslot, M. Winands, H. Herik, J. Uiterwijk, and B. Bouzy, “Progressive strategies for
Monte-Carlo tree search,” New Mathematics and Natural Computation, vol. 04, pp. 343–
357, 11 2008.

[92] D. Michie and R. A. Chambers, “BOXES: An experiment in adaptive control,” Machine
intelligence, vol. 2, no. 2, pp. 137–152, 1968.

[93] J.-Y. Audibert, R. Munos, and C. Szepesvári, “Exploration–exploitation tradeoff using vari-
ance estimates in multi-armed bandits,” Theoretical Computer Science, vol. 410, no. 19, pp.
1876–1902, 2009.

[94] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for linear stochastic
bandits,” Advances in neural information processing systems, vol. 24, pp. 2312–2320, 2011.

[95] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observa-
tions and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.

[96] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST, Tech. Rep., 1992.

[97] W. Ding, L. Zhang, J. Chen, and S. Shen, “Safe trajectory generation for complex urban en-
vironments using spatio-temporal semantic corridor,” IEEE Robotics and Automation Let-
ters, vol. 4, no. 3, pp. 2997–3004, 2019.

[98] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP planning with reg-
ularization,” Advances in neural information processing systems, vol. 26, pp. 1772–1780,
2013.

[99] R. Coulom, “Computing “elo ratings” of move patterns in the game of go,” ICGA journal,
vol. 30, no. 4, pp. 198–208, 2007.

[100] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard, “Continuous up-
per confidence trees,” in International conference on learning and intelligent optimization.
Springer, 2011, pp. 433–445.

[101] Y. Luo, H. Bai, D. Hsu, and W. S. Lee, “Importance sampling for online planning under
uncertainty,” The International Journal of Robotics Research, vol. 38, no. 2-3, pp. 162–181,
2019.

[102] N. P. Garg, D. Hsu, and W. S. Lee, “DESPOT-alpha: Online POMDP planning with large
state and observation spaces.” in Robotics: Science and Systems, 2019.

[103] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-based POMDP planning
by approximating optimally reachable belief spaces.” in Robotics: Science and systems, vol.
2008. Citeseer, 2008.

103

[104] H. Finnsson and Y. Björnsson, “Simulation-based approach to general game playing.” in
Aaai, vol. 8, 2008, pp. 259–264.

[105] H. Finnsson et al., “Simulation-based general game playing,” Ph.D. dissertation, Háskólinn
ı́ Reykjavı́k, June 2012.

[106] M. J. Tak, M. H. Winands, and Y. Bjornsson, “N-grams and the last-good-reply policy
applied in general game playing,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 4, no. 2, pp. 73–83, 2012.

[107] M. J. Tak, M. H. Winands, and Y. Björnsson, “Decaying simulation strategies,” IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 6, no. 4, pp. 395–406, 2014.

[108] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action value estimation in com-
puter go,” Artificial Intelligence, vol. 175, no. 11, pp. 1856–1875, 2011.

[109] T. Cazenave, “Generalized rapid action value estimation,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[110] C. F. Sironi and M. H. Winands, “Comparison of rapid action value estimation variants for
general game playing,” in 2016 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 2016, pp. 1–8.

[111] A. Couëtoux, M. Milone, M. Brendel, H. Doghmen, M. Sebag, and O. Teytaud, “Continuous
rapid action value estimates,” in Asian conference on machine learning. PMLR, 2011, pp.
19–31.

[112] M. H. Lim, C. J. Tomlin, and Z. N. Sunberg, “Voronoi progressive widening: Efficient
online solvers for continuous state, action, and observation POMDPs,” in 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, 2021, pp. 4493–4500.

[113] J. Mern, A. Yildiz, Z. Sunberg, T. Mukerji, and M. J. Kochenderfer, “Bayesian optimized
Monte Carlo planning,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 13, 2021, pp. 11 880–11 887.

[114] Z. N. Sunberg. ContinuousPOMDPTreeSearchExperiments: Experiments for designing
tree search algorithms for continuous POMDPs. [Online]. Available: https://github.com/
zsunberg/ContinuousPOMDPTreeSearchExperiments.jl

104

