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Abstract: The state of Iowa is known for its high-yield agriculture, supporting rising demands for
food and fuel production. But this productivity is also a significant contributor of nitrogen loading
to the Mississippi river basin causing the hypoxic zone in the Gulf of Mexico. The delivery of nutri-
ents, especially nitrogen, from the upper Mississippi River basin, is a function, not only of agricul-
tural activity, but also of hydrology. Thus, it is important to consider extreme weather conditions,
such as drought and flooding, and understand the effects of weather variability on Iowa’s food-
energy-water (IFEW) system and the nitrogen loading to the Mississippi river from Iowa. In this
work, the simulation decomposition approach is implemented using the extended IFEW model with
a crop-weather model to better understand the cause-and-effect relationships of weather parameters
on the nitrogen export from the state of Iowa. July temperature and precipitation are used as varying
input weather parameters with normal and log normal distributions, respectively, and subdivided
to generate regular and dry weather conditions. It is observed that the most variation in the soil
nitrogen surplus lies in the regular condition, while the dry condition produces the highest soil
nitrogen surplus for the state of Iowa.

Keywords: Iowa food-energy-water nexus; nitrogen export; system modeling; weather modeling;
simulation decomposition.

1. Introduction

Nutrients, such as nitrogen (N), are necessary in farming for raising crop and forage
productivity, but they can also bring potential harm to the socioeconomic system. Hy-
poxic zone is a phenomenon where low dissolved oxygen (hypoxia) occurs in aquatic en-
vironments that is primarily caused by excess nutrients running off or leaching from the
contributing watershed. Over 400 hypoxic zones have been found in the world, and the
problem of hypoxia is growing worse [1]. In the US, the environment and socioeconomic
system of Gulf of Mexico are impacted by hypoxia and has one of the largest hypoxic
zones in the world [2]. Nitrogen (N) is one of the major contributors creating the hypoxic
zone of the Gulf of Mexico through the nitrates (NO3) lost from watersheds within the
Mississippi River Basin that moves downstream to the Gulf of Mexico [3]. Studies show
that the state of lowa, one of the major producers of corn, soybean, ethanol, and animal
products, contributes a considerable amount of nitrogen loads to the Mississippi river ba-
sin [4,5]. As the first rank producing corn in the US, almost 57% of produced corn in Iowa
is used for ethanol production [6]. The manure produced by animal agriculture is also
rich in nitrogen [7]. The current research aims at creating strategies and policies to miti-
gate the excess nitrogen originating from the lowa food-energy-water (IFEW) system.

Climate variability has major effects on FEW systems. For example, extreme events,
such as floods or droughts, can reduce water availability and quality. In southern East
Africa, infrastructure design is challenging due to multi-year drought [8]. Furthermore,
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changes in the weather impact the energy usage and demands of human activities. More- 46
over, in the food system, the needs for livestock watering and crop fertilizer can be se- 47
verely impacted due to climates changes. Though Iowa uses primarily rain-fed agricul- 48
tural production, in other areas irrigation water for crops is also significantly impacted 49
(both in supply and in requirements) by weather and climate. The state of Arizona asa 50
predominantly irrigated agriculture state and supplies the food chain of at least six major 51
cities is especially vulnerable to such strains [9]. Therefore, it is important to investigate 52
the effects of weather variability on the sustainable management of the FEW systems. 53

It is important to capture the complex interactions of the different domains to deter- 54
mine the exported nitrogen of the system. In this work, weather, water, agriculture, ani- 55
mal agriculture, and energy are considered in modeling the IFEW system. The macro- 56
level simulation-based IFEW model introduced in [10] to determine the surplus nitrogen 57
in the state of Iowa is extended to include a crop-weather model using linear regression 58
of historical weather parameters which is based on a prior study [11]. Simulation decom- 59
position (SD) [12,13] is used to visualize the effects of weather variability on the IFEW 60
nitrogen export. Furthermore, the SD analysis is used to distinguish the influences of dif- 61
ferent weather scenarios affecting the surplus nitrogen. 62

The next section gives the details of the IFEW system model and the SD analysis 63
technique. The following section presents the numerical results of SD applied to the pro- 64
posed IFEW simulation model for several weather scenarios. The last section summarizes 65
the work and discusses potential future work. 66

2. Methods 67

This section gives a high-level description of the IFEW system model interdependen- 68
cies. The macro-level simulation-based model of the IFEW system and the SD technique 69
are described. 70

2.1. IFEW system model interdependencies 71

The IFEW system model has five distinct macro-level domains, namely, weather, wa- 72
ter, agriculture, animal agriculture, and energy (Fig. 1). The weather discipline provides 73
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Figure 1. A model of the interdependencies of the Iowa food-energy-water (IFEW) system. 75
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the environmental factors, such as vapor pressure, temperature, rainfall, and solar radia- 76
tion. Rainfall and snowfall supply surface water and groundwater components for the 77
water discipline. The amount of crop production in the agriculture discipline is strongly 78
related to precipitation and temperature [11]. The water discipline supplies water for 79
drinking and service usage for the animal agriculture discipline, and the production and 80
ethanol and fertilizer for the energy system. Dry distillers” grain soluble (DDGS) that is 81
produced during the ethanol production process and commercial fertilizers provide pro- 82
tein to animals and fertility to soil in the animal agriculture and agricultural domains, 83
respectively. Demand for food protein by society is satisfied by the animal agriculture 84
discipline. Corn yield in the agricultural discipline is used for the ethanol production in 85
the energy discipline and satisfying socioeconomic demand. Other socioeconomic de- 86
mands are satisfied by the corresponding domains except the weather discipline. The ex- 87
cess nitrogen from animal lands and crop fields is carried by water flow in the form of 88
nitrates draining into the Mississippi river basin and further into the Gulf of Mexico. 89

2.2. IFEW macro-level simulation model 90

In this work, an extended simulation-based model of the IFEW system introduced in 91
[10] is proposed to calculate the surplus nitrogen (Ns) considering only the weather, agri- 92
culture, and animal agriculture domains in Fig. 1. Figure 2 shows the flow of components 93
and the process of calculation via an extended design structure matrix (XDSM) diagram 94
[14]. The input parameters are the weather model parameters (wis), May crop planting 95
progress (cw1), rate of commercial nitrogen for corn (xs), rate of commercial nitrogen for 96
soybean (x4), the total hog/pig population (xs), number of beef cows (xs), number of milk 97
cows (x7), and number of other cattle (xs) including the population of steers, heifers, and 98
slaughter cattle. Other intermediate response parameters are corn yield (x1), soybean yield 99
(x2), the application of commercial nitrogen (CN), nitrogen generated from manure (MN), 100
nitrogen fixed by soybean crop (FN), and the nitrogen present in harvested grain (GN). 101
The model estimates the nitrogen surplus (Ns) based on output quantities yielded by each 102
discipline. 103

This simulation model is an extension from the authors” previous work with the ad- 104
dition of the crop-weather model [10]. Westcott and Jewison [11] discovered that the 105
amount of corn yield is linear to mid-May planting progress, July temperature, and June 106
precipitation short fall, but is nonlinear to July precipitation. Meanwhile, the productivity = 107
of soybean is linear to the average value of July and August temperatures, and June pre- 108
cipitation short fall, but is nonlinear to the average value of July and August precipita- 109
tions. The crop-weather model of the work is developed based on [11] given a set of tem- 110
perature 111
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Figure 2. An extended design structure matrix diagram of the proposed Iowa nitrogen export 113
model. 114

and precipitation data of certain months over 10-year period (2009-2019) from [15]: July 115
temperature (w1), July precipitation (w2), June precipitation (ws), July-August average tem- 116
perature (w4), and July-August average precipitation (ws). The corn yield (x1) is estimated 117
by regression model with May planting progress (cw1), July temperature (w1), July precip- 118
itation (w2), and June precipitation (ws). Similar to the corn model, the model for soybean 119
yield (x2) is created using June precipitation (ws), July-August average temperature (ws), 120
and July-August average precipitation (ws). For simplicity, July and August average val- 121

ues are represented by July values in this work. 122

The nitrogen present in harvested grain (GN) is calculated using two input parame- 123

ters, namely, the corn yield (x1) and soybean yield (x2) as 124
1.18 6.4

GN = (x1 (m) Ao + % (m) Asoy) /A, 1) 125

where Awmand Asy represent the Iowa corn and the soybean acreage, whereas A repre- 126
sents the total area under corn and soybean crop. It is assumed that 6.4% and 1.18% of 127
nitrogen in the soybean seed and the corn seed while harvesting, respectively [16]. The 128

biological nitrogen fixation from the soybean crop (FN) is estimated as [17]. 129
FN = (81.1x, — 98.5)A,0,/A. () 130

The commercial nitrogen (CN) is estimated using the rate of commercial nitrogen for 131
corn (x3) and the rate of commercial nitrogen for soybean (x4) as 132
CN = (ahcorn + Xahsoy)/A. (B 133

The values of the corn and soybean acreages are obtained from USDA [18]. The an- 134
nual manure nitrogen contribution of each animal type is estimated [19] 135

MNanimal = PAMN LF' (4) 136

where P, Amn, and LF are the livestock group population, nitrogen in animal manure and 137
life cycle of animal, respectively. P is substituted by the corresponding parameters with 138
respect to different animal alternatives: the total hog/pig population (xs), number of beef 139
cows (xs), number of milk cows (x7), and number of other cattle (xs). The total nitrogen 140
generated from manure (MN) can be determined by the normalized sum of MN for each 141
livestock group with total area A as 142

MN = (MNHog/pigs +MNBeef—cattle +MNMilk—cow +MNother—Cattle)/A' (5) 143

Table 1 gives the nitrogen content in manure and life cycle for livestock groups used = 144
in (5). Lastly, the rough agronomic annual nitrogen budget of lowa [16,20] provides the 145

function calculated the nitrogen surplus (Ns) given as 146
N, = CN + MN + FN - GN. (6) 147
2.3. Simulation decomposition 148

The simulation decomposition (SD) [12] approach is an extension to the Monte Carlo 149
simulation [21] that enhances the explanatory capability of the simulation results by ex- 150
ploiting the inherent cause and effect relationship between the input and output parame- 151
ters [13]. 152
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SD has recently been developed and successfully used on problems involved in dif-

ferent domains such as geology, business, and environmental science [22]. It has been
shown to provide a deeper understanding of the interaction between different sources of
uncertainties and its impact on output uncertainty and its distribution to stakeholders.
The current section provides a brief description of SD from an application point of view.
A detailed description of SD can be found in [12].

In this section, the fundamental steps of implementing SD are described using an

analytical model problem. Consider a simple analytical function given as

Table 1. Nitrogen content in manure and life cycle for livestock groups used in manure N calcula-

tion [19].

Livestock group Nitrogen in'manure (Amn) Life cycle (LF)
(kg per animal per day) (days per year)

Hog/pigs 0.027 365

Beef cattle 0.15 365

Milk cows 0.204 365

Heifer/steers (0.5 x other cattle) 0.1455 365

Slaughter cattle (0.5 x other cattle) 0.104 170

y =v; +VE, (7)

where viand v, are the real numbered input parameters and y the real number output
parameter. The SD process has the following steps [12]:

1.

Identify the input parameters (v, v,) and their corresponding distribution ranges in
which these parameters are expected to vary. Table 2 provide input parameters and
their corresponding distributions. For this example, a uniform distribution is assumed
for each parameter.

Next, for each parameter the states are identified. The states of each input parameter
represent a category of outcomes (e.g., low, or high). Based on the state for each pa-
rameter a value range is determined as seen in Table 2 for the example problem.

Generate every possible combination of the parameter states. Each combination of
states represents a unique scenario (Sc;) of the to-be-decomposed simulation of the
output. The number of scenarios depends on the number of states of each parameter.
For the example problem, the number of scenarios is four, as shown in Table 3.

Run the Monte Carlo simulations by randomly sampling the parameters, identifying
parameter states, and evaluating output. Register output of each simulated iteration
for producing full output distribution and simultaneously group the output based on
the scenarios for producing decomposed sub-distribution for each scenario.

Finally, construct appropriate output graphs or tables to better understand the
cause-and-effect relationship between input and output parameters. In particular,
the stacked histogram is an informative graph that displays the full output distribu-
tion and the decomposed output superimposed on full distribution. Figure 3 shows
the full and decomposed distribution of the simulated output.
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Table 2. Input parameter details. 187
Parameter Distribution/range State Boundary
Low [0-5)
v, U[0,10] .
High (5-10]
Low [0-5)
v, U[0,10] .
High (5-10]
188
Table 3. Generating scenarios from parameter states. 189
Scenario Combination of states
Sci v;: Low, v,: Low
Sc2 vy: Low, v,: High
Scs vy: High, v,: Low
Sca vy: High, v,: Low
190

0.020 0.020
0.015 0.015
=y z
3 s
B 3
£o.010 & 0010
0.005 0.005
0.000 0.000
0 5 0 15 20 25 30
191
(a) (b) 192
Figure 3. Probability distribution of simulation output for example problem: (a) output full distri- 193
bution, and (b) decomposed distribution based on scenarios. 194
3. Results 195

This section presents the results of applying SD to the proposed extended nitrogen 19
export model which includes a weather model. In particular, the current work focuses on 197
understanding the effects of weather parameters on the nitrogen surplus in different sce- 198
narios. 199

For this study, the weather parameters temperature (T) and precipitation (PPT) for 200
July are taken as input parameters, whereas soil nitrogen surplus is considered as an out- 201
put parameter computed from the IFEW simulation model. Furthermore, the July temper- 202
ature is assumed to be normally distributed with a mean of 74 °F and a standard deviation 203
of 2 °F, whereas the July precipitation is assumed to have a lognormal distribution witha 204
standard deviation of 0.4 in., shape parameter of 0, and median at 4 as shown in Table 4. 205
All other parameters considered in the IFEW simulation model are kept constant. 206

In the crop-weather model, May plantation progress and June precipitation is as- 207
sumed to be 80% and 5.5 in., respectively. The parameters used in the animal agriculture 208
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model (xs-8) are based on the 2012 Iowa animal population data [19]. The commercial ni- 209
trogen application rate for corn (x3) and soybean (x4) agriculture are considered to be con- 210
stant and set as 185 kg/ha and 17 kg/ha based on the Iowa State University extension 211
guidelines for the nitrogen application rate for corn [23] and on the fertilizer use and price 212
data [24]. 213

After setting up the IFEW model, Monte Carlo simulations are performed using Latin =~ 214
hypercube sampling (LHS) [25]. The LHS sampling method ensure that the input param- 215
eter ranges are represented appropriately. The input parameter states and boundary de- 216
tails are presented in Table 4. For July temperature, any temperature above 76 °F is con- 217
sidered to be under state high where all other temperature values are considered to be 218
under state regular. Similarly, for July precipitation, any precipitation value below 2.5in. 219
is labeled under state low precipitation and all other values are under state regular. Table 220
5 presents the scenarios based on combination of states. The parameter states are selected 221
to produce some of the extreme condition scenarios (e.g., Table 5 dry condition). 222

A total 105 samples of input weather parameters (w: and w») are generated using LHS 223
and SD approach is implemented using IFEW simulation model. Figure 4 shows the dis- 224
tribution of sampled weather parameters in two states and four scenarios as mentioned 225
in Tables 4 and 5. Most of the generated samples are observed under regular condition 226
(Sc2) whereas the least number of samples are observed in dry condition (Scs). 227

Table 4. Input parameter details for performing simulation decomposition with IFEW simulation 228

model. 229
Parameter Distribution/range State Boundary
Regular <76 °F
July temperature (w1) N[74,2] i
High >76 °F
L Regular >2.51in
July precipitation (w2) LogN[0.4,0,4] .
Low <25in
230
Table 5. Scenarios for simulation decomposition approach with IFEW model. 231
Scenario Combination of states Description
Sci wi: Regular, w2: Low Regular-T Low-PPT
Sc2 wi: Regular, w2: Regular Regular condition
Scs wi: High, w2: Low Dry condition
Sca w1: High, w2: Regular High-T Regular-PPT
232

233
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0.020 = 5cs
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20015 >
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234
(a) (b) 235
Figure 4. Decomposed distribution of input parameters from simulation decomposition: (a) July 236
temperature (w1), and (b) July precipitation (wz). 237
3.1. Discussion 238

The input weather parameters are supplied to crop-weather module which computes 239
corn yield (x1) and soybean yield (x2). The computed crop yield values are then passed to 240
agriculture module where CN, FN, and GN values are computed as mentioned in Section 241
2.2. Here, the contribution of CN will be constant for every IFEW model evaluation due to 242
the assumption of constant commercial nitrogen application rate for corn (x3) and soybean 243
(x4). 244

Figure 5 shows the decomposed distribution of corn and soybean yield along with 245
the variation in FN and GN values. The effect of different scenarios due to combinations 246
of weather parameters can be clearly seen in crop yield distribution. It is interesting to 247
note that in dry condition (Scs) corn yield drops compared to the yield in regular condition 248
whereas, higher soybean yield is observed in dry condition compared to the regular con- 249
dition. The computation of GN is influenced by both corn and soybean yield values (Fig- 250
ure 5c). The computation of FN is only influenced by soybean yield values (Section 2.2); 251

thus, the FN distribution is observed to be similar to soybean yield distribution. 252
s Scy 1
Hl
mm Scs E
0.020 L sc, 0.020
'H = S,
20.015 q 20.015
2 f o
@ (1]
3 3
£ 0.010 & 0.010
0.005 //' 0.005
180 200 220 240 40 45 50 55 60
Corn yield [bu/acre] Soybean yield [bu/acre]
253

(a) (b) 254
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255
(o) (d) 256
Figure 5. Decomposed distribution of intermittent IFEW model parameters from simulation de- 257
composition: (a) corn yield (x1), (b) soybean yield (x2), (c) GN, and (d) FN. 258

Figure 6 shows the decomposed distribution of nitrogen surplus (N;), the final output 259
of the IFEW simulation model. The soil nitrogen surplus is usually affected 260
by CN, MN, GN, and FN magnitudes. However, in this study, only GN and FN influence 261
the variation in nitrogen surplus. This is mainly because the parameters affect- 262
ing CN and MN are kept constant. The variation in nitrogen surplus shown in this work 263
is purely due to uncertainty in weather parameters. From Figure 6, it is observed that most 264
of the variation in nitrogen surplus lies in regular condition (Sc2), varying approximately 265
between 0 to 20 kg/ha. The scenarios with high July temperatures (Scs and Scs) are ob- 266
served to produce mid to high nitrogen surplus values. Similarly, scenario Sci: with very 267
low July precipitation and regular July temperature tends to produce higher nitrogen sur- 268
plus than in regular conditions. The dry condition with high July temperature and low 269
July precipitation produces the highest soil nitrogen surplus varying between 20 to 30 270
kg/ha. The accumulated nitrogen in the soil is highly water-soluble and could get exported 271
at a high rate to the Mississippi river through melting snow or rainfall before the next 272
growing season. Thus, the Figure 6 provides the expected magnitude of nitrogen load 273
from state of Iowa to the Mississippi river in different weather scenarios. 274

B Scy: High-T Regular-PPT
W Scs: High-T Low-PPT (Dry)
0.020 y Sc,: Regular-T Regular-PPT (Regular)
i B Sci: Low-PPT Regular-T
20.015
E
©
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<]
o 0.010
0.005 \v
0.000 =
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N surplus (Ns) [kg/ha]
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References

Figure 6. Distribution of IFEW simulation model output: nitrogen surplus (Ns).

The SD in this work uses the Monte Carlo sampling approach which could be used
to provide approximate probability of scenario occurring in any given year considering
the assumption made earlier are true. Based on the data available in current study proba-
bility of scenarios Sc1 Sc2 Scs, and Scs occurring are 0.1, 0.74, 0.02, and 0.12, respectively.
Probability of dry condition (Scs) occurring is lowest whereas regular condition (Sc2) has
highest probability of occurring (Figure 6).

The SD approach implemented in the current study provides valuable results to
gauge the impact of weather parameters on soil nitrogen surplus along with crop yields
and nitrogen transfer in agriculture system. However, the distributions used for the
weather parameters are assumptions and two input weather parameters are assumed to
be independent of each during the Monte Carlo sampling process. In reality, temperature
and precipitation are correlated. Thus, there is a possibility that some combination of sce-
narios may not entirely occur. For example, high precipitation and high temperature may
not occur together as typically in lowa, with high precipitation the average temperature
drops. Further the probability distribution of weather parameters is hard to estimate as
they typically do not have a continuous distribution. Thus, it is advisable to use weather
generator which have been trained on historical datasets to predict weather parameters
than using continuous probability distributions. In future studies, weather generators will
be included in IFEW simulation model to predict weather data for more realistic predic-
tions of soil nitrogen surplus.

4. Conclusions

In this work, simulation decomposition (SD) approach is implemented with the Iowa
food-energy-water (IFEW) system simulation model to better understand the impact of
weather behavior on the nitrogen export from Iowa. In particular, the previously devel-
oped nitrogen export model, which computes the soil nitrogen surplus, is extended with
a crop weather model to include the dependence of weather in the IFEW system. The up-
dated IFEW simulation model with SD is used to provide decomposed soil nitrogen sur-
plus distribution in different weather scenarios.

It is observed that July temperature and precipitation directly impact corn and soy-
bean yields. Interestingly, it is observed that in the dry condition, corn yield reduces,
whereas soybean yield increases compared to the yield values in regular conditions. The
variation in crop yields affects nitrogen transfer in the agriculture system through fixation
nitrogen (FN) and grain nitrogen (GN), affecting the soil nitrogen surplus. The SD ap-
proach provides the distribution of nitrogen surplus in various scenarios. It is observed
that the regular condition covers most variation in the full distribution. Scenarios with
high July temperature and low precipitation tend to produce mid to high range of nitro-
gen surplus values. The dry condition scenario produces the highest nitrogen surplus.
Overall, the SD approach provides a deeper understanding of the cause-and-effect rela-
tionship between weather parameters and soil nitrogen surplus.

Furthermore, the current study identified that continuous distribution on weather
parameters could generate unrealistic scenarios. Thus, in future studies, highly validated
weather generators will be used for estimating weather parameters providing a more re-
alistic distribution of soil nitrogen surplus based on weather. Additionally, the IFEW sim-
ulation model will be extended to report nitrogen loads for lowa’s nine crop reporting
districts providing spatially resolved information from the state of Iowa.
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