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Abstract: The state of Iowa is known for its high-yield agriculture, supporting rising demands for 9 
food and fuel production. But this productivity is also a significant contributor of nitrogen loading 10 
to the Mississippi river basin causing the hypoxic zone in the Gulf of Mexico. The delivery of nutri- 11 
ents, especially nitrogen, from the upper Mississippi River basin, is a function, not only of agricul- 12 
tural activity, but also of hydrology. Thus, it is important to consider extreme weather conditions, 13 
such as drought and flooding, and understand the effects of weather variability on Iowa’s food- 14 
energy-water (IFEW) system and the nitrogen loading to the Mississippi river from Iowa. In this 15 
work, the simulation decomposition approach is implemented using the extended IFEW model with 16 
a crop-weather model to better understand the cause-and-effect relationships of weather parameters 17 
on the nitrogen export from the state of Iowa. July temperature and precipitation are used as varying 18 
input weather parameters with normal and log normal distributions, respectively, and subdivided 19 
to generate regular and dry weather conditions. It is observed that the most variation in the soil 20 
nitrogen surplus lies in the regular condition, while the dry condition produces the highest soil 21 
nitrogen surplus for the state of Iowa. 22 

Keywords: Iowa food-energy-water nexus; nitrogen export; system modeling; weather modeling; 23 
simulation decomposition. 24 
 25 

1. Introduction 26 
Nutrients, such as nitrogen (N), are necessary in farming for raising crop and forage 27 

productivity, but they can also bring potential harm to the socioeconomic system. Hy- 28 
poxic zone is a phenomenon where low dissolved oxygen (hypoxia) occurs in aquatic en- 29 
vironments that is primarily caused by excess nutrients running off or leaching from the 30 
contributing watershed. Over 400 hypoxic zones have been found in the world, and the 31 
problem of hypoxia is growing worse [1]. In the US, the environment and socioeconomic 32 
system of Gulf of Mexico are impacted by hypoxia and has one of the largest hypoxic 33 
zones in the world [2]. Nitrogen (N) is one of the major contributors creating the hypoxic 34 
zone of the Gulf of Mexico through the nitrates (NO3) lost from watersheds within the 35 
Mississippi River Basin that moves downstream to the Gulf of Mexico [3]. Studies show 36 
that the state of Iowa, one of the major producers of corn, soybean, ethanol, and animal 37 
products, contributes a considerable amount of nitrogen loads to the Mississippi river ba- 38 
sin [4,5]. As the first rank producing corn in the US, almost 57% of produced corn in Iowa 39 
is used for ethanol production [6]. The manure produced by animal agriculture is also 40 
rich in nitrogen [7]. The current research aims at creating strategies and policies to miti- 41 
gate the excess nitrogen originating from the Iowa food-energy-water (IFEW) system. 42 

Climate variability has major effects on FEW systems. For example, extreme events, 43 
such as floods or droughts, can reduce water availability and quality. In southern East 44 
Africa, infrastructure design is challenging due to multi-year drought [8]. Furthermore, 45 
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changes in the weather impact the energy usage and demands of human activities. More- 46 
over, in the food system, the needs for livestock watering and crop fertilizer can be se- 47 
verely impacted due to climates changes. Though Iowa uses primarily rain-fed agricul- 48 
tural production, in other areas irrigation water for crops is also significantly impacted 49 
(both in supply and in requirements) by weather and climate. The state of Arizona as a 50 
predominantly irrigated agriculture state and supplies the food chain of at least six major 51 
cities is especially vulnerable to such strains [9]. Therefore, it is important to investigate 52 
the effects of weather variability on the sustainable management of the FEW systems. 53 

It is important to capture the complex interactions of the different domains to deter- 54 
mine the exported nitrogen of the system. In this work, weather, water, agriculture, ani- 55 
mal agriculture, and energy are considered in modeling the IFEW system. The macro- 56 
level simulation-based IFEW model introduced in [10] to determine the surplus nitrogen 57 
in the state of Iowa is extended to include a crop-weather model using linear regression 58 
of historical weather parameters which is based on a prior study [11]. Simulation decom- 59 
position (SD) [12,13] is used to visualize the effects of weather variability on the IFEW 60 
nitrogen export. Furthermore, the SD analysis is used to distinguish the influences of dif- 61 
ferent weather scenarios affecting the surplus nitrogen. 62 

The next section gives the details of the IFEW system model and the SD analysis 63 
technique. The following section presents the numerical results of SD applied to the pro- 64 
posed IFEW simulation model for several weather scenarios. The last section summarizes 65 
the work and discusses potential future work. 66 

2. Methods 67 
This section gives a high-level description of the IFEW system model interdependen- 68 

cies. The macro-level simulation-based model of the IFEW system and the SD technique 69 
are described. 70 

2.1. IFEW system model interdependencies 71 
The IFEW system model has five distinct macro-level domains, namely, weather, wa- 72 

ter, agriculture, animal agriculture, and energy (Fig. 1). The weather discipline provides  73 

 74 
Figure 1. A model of the interdependencies of the Iowa food-energy-water (IFEW) system. 75 
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the environmental factors, such as vapor pressure, temperature, rainfall, and solar radia- 76 
tion. Rainfall and snowfall supply surface water and groundwater components for the 77 
water discipline. The amount of crop production in the agriculture discipline is strongly 78 
related to precipitation and temperature [11]. The water discipline supplies water for 79 
drinking and service usage for the animal agriculture discipline, and the production and 80 
ethanol and fertilizer for the energy system. Dry distillers’ grain soluble (DDGS) that is 81 
produced during the ethanol production process and commercial fertilizers provide pro- 82 
tein to animals and fertility to soil in the animal agriculture and agricultural domains, 83 
respectively. Demand for food protein by society is satisfied by the animal agriculture 84 
discipline. Corn yield in the agricultural discipline is used for the ethanol production in 85 
the energy discipline and satisfying socioeconomic demand. Other socioeconomic de- 86 
mands are satisfied by the corresponding domains except the weather discipline. The ex- 87 
cess nitrogen from animal lands and crop fields is carried by water flow in the form of 88 
nitrates draining into the Mississippi river basin and further into the Gulf of Mexico. 89 

2.2. IFEW macro-level simulation model 90 
In this work, an extended simulation-based model of the IFEW system introduced in 91 

[10] is proposed to calculate the surplus nitrogen (Ns) considering only the weather, agri- 92 
culture, and animal agriculture domains in Fig. 1. Figure 2 shows the flow of components 93 
and the process of calculation via an extended design structure matrix (XDSM) diagram 94 
[14]. The input parameters are the weather model parameters (w1-5), May crop planting 95 
progress (cw1), rate of commercial nitrogen for corn (x3), rate of commercial nitrogen for 96 
soybean (x4), the total hog/pig population (x5), number of beef cows (x6), number of milk 97 
cows (x7), and number of other cattle (x8) including the population of steers, heifers, and 98 
slaughter cattle. Other intermediate response parameters are corn yield (x1), soybean yield 99 
(x2), the application of commercial nitrogen (CN), nitrogen generated from manure (MN), 100 
nitrogen fixed by soybean crop (FN), and the nitrogen present in harvested grain (GN). 101 
The model estimates the nitrogen surplus (Ns) based on output quantities yielded by each 102 
discipline. 103 

This simulation model is an extension from the authors’ previous work with the ad- 104 
dition of the crop-weather model [10]. Westcott and Jewison [11] discovered that the 105 
amount of corn yield is linear to mid-May planting progress, July temperature, and June 106 
precipitation short fall, but is nonlinear to July precipitation. Meanwhile, the productivity 107 
of soybean is linear to the average value of July and August temperatures, and June pre- 108 
cipitation short fall, but is nonlinear to the average value of July and August precipita- 109 
tions. The crop-weather model of the work is developed based on [11] given a set of tem- 110 
perature  111 

 112 
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Figure 2. An extended design structure matrix diagram of the proposed Iowa nitrogen export 113 
model. 114 

and precipitation data of certain months over 10-year period (2009-2019) from [15]: July 115 
temperature (w1), July precipitation (w2), June precipitation (w3), July-August average tem- 116 
perature (w4), and July-August average precipitation (w5). The corn yield (x1) is estimated 117 
by regression model with May planting progress (cw1), July temperature (w1), July precip- 118 
itation (w2), and June precipitation (w3). Similar to the corn model, the model for soybean 119 
yield (x2) is created using June precipitation (w3), July-August average temperature (w4), 120 
and July-August average precipitation (w5). For simplicity, July and August average val- 121 
ues are represented by July values in this work.  122 

The nitrogen present in harvested grain (GN) is calculated using two input parame- 123 
ters, namely, the corn yield (x1) and soybean yield (x2) as 124 

 !" = $%! $!.!#!$$& '%&'( + %) $
*.+
!$$&',&-& /', (1) 125 

where Acorn and Asoy represent the Iowa corn and the soybean acreage, whereas A repre- 126 
sents the total area under corn and soybean crop. It is assumed that 6.4% and 1.18% of 127 
nitrogen in the soybean seed and the corn seed while harvesting, respectively [16]. The 128 
biological nitrogen fixation from the soybean crop (FN) is estimated as [17].  129 

 *" =	 (81.1%) − 98.5)',&-/'. (2) 130 

The commercial nitrogen (CN) is estimated using the rate of commercial nitrogen for 131 
corn (x3) and the rate of commercial nitrogen for soybean (x4) as 132 

 4"	 = 	 (%.'%&'( 	+	%+',&-)/'. (3) 133 

The values of the corn and soybean acreages are obtained from USDA [18]. The an- 134 
nual manure nitrogen contribution of each animal type is estimated [19]  135 

 5"/(01/2 	= 	6	'34	7*, (4) 136 

where P, AMN, and LF are the livestock group population, nitrogen in animal manure and 137 
life cycle of animal, respectively. P is substituted by the corresponding parameters with 138 
respect to different animal alternatives: the total hog/pig population (x5), number of beef 139 
cows (x6), number of milk cows (x7), and number of other cattle (x8). The total nitrogen 140 
generated from manure (MN) can be determined by the normalized sum of MN for each 141 
livestock group with total area A as  142 

 5" =	95"5&6/806, 	+ 5"9::;<%/==2: 	+ 5"302><%&?  + 5"&=@:'<%/==2:;/'. (5) 143 

Table 1 gives the nitrogen content in manure and life cycle for livestock groups used 144 
in (5). Lastly, the rough agronomic annual nitrogen budget of Iowa [16,20] provides the 145 
function calculated the nitrogen surplus (Ns) given as 146 

 ", 	= 	4"	 + 	5"	 + 	*"	– 	!". (6) 147 

2.3. Simulation decomposition 148 
The simulation decomposition (SD) [12] approach is an extension to the Monte Carlo 149 

simulation [21] that enhances the explanatory capability of the simulation results by ex- 150 
ploiting the inherent cause and effect relationship between the input and output parame- 151 
ters [13]. 152 



Sustainability 2021, 13, x FOR PEER REVIEW 5 of 11 
 

SD has recently been developed and successfully used on problems involved in dif- 153 
ferent domains such as geology, business, and environmental science [22]. It has been 154 
shown to provide a deeper understanding of the interaction between different sources of 155 
uncertainties and its impact on output uncertainty and its distribution to stakeholders. 156 
The current section provides a brief description of SD from an application point of view. 157 
A detailed description of SD can be found in [12].  158 

In this section, the fundamental steps of implementing SD are described using an 159 
analytical model problem. Consider a simple analytical function given as 160 

Table 1. Nitrogen content in manure and life cycle for livestock groups used in manure N calcula- 161 
tion [19]. 162 

Livestock group 
Nitrogen in manure (AMN) 

(kg per animal per day) 
Life cycle (LF) 
(days per year) 

Hog/pigs 0.027 365 

Beef cattle 0.15 365 

Milk cows 0.204 365 

Heifer/steers (0.5 × other cattle) 0.1455 365 

Slaughter cattle (0.5 × other cattle) 0.104 170 

 163 

 = = >! + >)), (7) 164 

where >!and >) are the real numbered input parameters and = the real number output 165 
parameter. The SD process has the following steps [12]: 166 

1. Identify the input parameters (>!, >)) and their corresponding distribution ranges in 167 
which these parameters are expected to vary. Table 2 provide input parameters and 168 
their corresponding distributions. For this example, a uniform distribution is assumed 169 
for each parameter. 170 

2. Next, for each parameter the states are identified. The states of each input parameter 171 
represent a category of outcomes (e.g., low, or high). Based on the state for each pa- 172 
rameter a value range is determined as seen in Table 2 for the example problem. 173 

3. Generate every possible combination of the parameter states. Each combination of 174 
states represents a unique scenario (?@0) of the to-be-decomposed simulation of the 175 
output. The number of scenarios depends on the number of states of each parameter. 176 
For the example problem, the number of scenarios is four, as shown in Table 3. 177 

4. Run the Monte Carlo simulations by randomly sampling the parameters, identifying 178 
parameter states, and evaluating output. Register output of each simulated iteration 179 
for producing full output distribution and simultaneously group the output based on 180 
the scenarios for producing decomposed sub-distribution for each scenario. 181 

5. Finally, construct appropriate output graphs or tables to better understand the 182 
cause-and-effect relationship between input and output parameters. In particular, 183 
the stacked histogram is an informative graph that displays the full output distribu- 184 
tion and the decomposed output superimposed on full distribution. Figure 3 shows 185 
the full and decomposed distribution of the simulated output.  186 
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Table 2. Input parameter details. 187 

Parameter Distribution/range State Boundary 

>! U[0,10] 
Low [0-5) 
High (5-10] 

>) U[0,10] 
Low [0-5) 
High (5-10] 

 188 

Table 3. Generating scenarios from parameter states. 189 

Scenario Combination of states 
Sc1 >!: Low, >): Low  
Sc2 >!: Low, >): High  
Sc3 >!: High, >): Low  
Sc4 >!: High, >): Low  

 190 

 191 
 (a) (b) 192 

Figure 3. Probability distribution of simulation output for example problem: (a) output full distri- 193 
bution, and (b) decomposed distribution based on scenarios. 194 

3. Results 195 
This section presents the results of applying SD to the proposed extended nitrogen 196 

export model which includes a weather model. In particular, the current work focuses on 197 
understanding the effects of weather parameters on the nitrogen surplus in different sce- 198 
narios. 199 

For this study, the weather parameters temperature (T) and precipitation (PPT) for 200 
July are taken as input parameters, whereas soil nitrogen surplus is considered as an out- 201 
put parameter computed from the IFEW simulation model. Furthermore, the July temper- 202 
ature is assumed to be normally distributed with a mean of 74 °F and a standard deviation 203 
of 2 °F, whereas the July precipitation is assumed to have a lognormal distribution with a 204 
standard deviation of 0.4 in., shape parameter of 0, and median at 4 as shown in Table 4. 205 
All other parameters considered in the IFEW simulation model are kept constant. 206 

In the crop-weather model, May plantation progress and June precipitation is as- 207 
sumed to be 80% and 5.5 in., respectively. The parameters used in the animal agriculture 208 
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model (x5-8) are based on the 2012 Iowa animal population data [19]. The commercial ni- 209 
trogen application rate for corn (x3) and soybean (x4) agriculture are considered to be con- 210 
stant and set as 185 kg/ha and 17 kg/ha based on the Iowa State University extension 211 
guidelines for the nitrogen application rate for corn [23] and on the fertilizer use and price 212 
data [24]. 213 

After setting up the IFEW model, Monte Carlo simulations are performed using Latin 214 
hypercube sampling (LHS) [25]. The LHS sampling method ensure that the input param- 215 
eter ranges are represented appropriately. The input parameter states and boundary de- 216 
tails are presented in Table 4. For July temperature, any temperature above 76 °F is con- 217 
sidered to be under state high where all other temperature values are considered to be 218 
under state regular. Similarly, for July precipitation, any precipitation value below 2.5 in. 219 
is labeled under state low precipitation and all other values are under state regular. Table 220 
5 presents the scenarios based on combination of states. The parameter states are selected 221 
to produce some of the extreme condition scenarios (e.g., Table 5 dry condition). 222 

A total 105 samples of input weather parameters (w1 and w2) are generated using LHS 223 
and SD approach is implemented using IFEW simulation model. Figure 4 shows the dis- 224 
tribution of sampled weather parameters in two states and four scenarios as mentioned 225 
in Tables 4 and 5. Most of the generated samples are observed under regular condition 226 
(Sc2) whereas the least number of samples are observed in dry condition (Sc3). 227 

Table 4. Input parameter details for performing simulation decomposition with IFEW simulation 228 
model. 229 

Parameter Distribution/range State Boundary 

July temperature (w1) N[74,2] 
Regular ≤ 76 °F 

High > 76 °F  

July precipitation (w2) LogN[0.4,0,4] 
Regular ≥ 2.5 in 

Low < 2.5 in 
 230 

Table 5. Scenarios for simulation decomposition approach with IFEW model. 231 

Scenario Combination of states Description 
Sc1 w1: Regular, w2: Low  Regular-T Low-PPT 
Sc2 w1: Regular, w2: Regular Regular condition 
Sc3 w1: High, w2: Low Dry condition 
Sc4 w1: High, w2: Regular High-T Regular-PPT 

 232 
 233 
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 234 
 (a)  (b) 235 

Figure 4. Decomposed distribution of input parameters from simulation decomposition: (a) July 236 
temperature (w1), and (b) July precipitation (w2). 237 

3.1. Discussion 238 
The input weather parameters are supplied to crop-weather module which computes 239 

corn yield (x1) and soybean yield (x2). The computed crop yield values are then passed to 240 
agriculture module where CN, FN, and GN values are computed as mentioned in Section 241 
2.2. Here, the contribution of CN will be constant for every IFEW model evaluation due to 242 
the assumption of constant commercial nitrogen application rate for corn (x3) and soybean 243 
(x4). 244 

Figure 5 shows the decomposed distribution of corn and soybean yield along with 245 
the variation in FN and GN values. The effect of different scenarios due to combinations 246 
of weather parameters can be clearly seen in crop yield distribution. It is interesting to 247 
note that in dry condition (Sc3) corn yield drops compared to the yield in regular condition 248 
whereas, higher soybean yield is observed in dry condition compared to the regular con- 249 
dition. The computation of GN is influenced by both corn and soybean yield values (Fig- 250 
ure 5c). The computation of FN is only influenced by soybean yield values (Section 2.2); 251 
thus, the FN distribution is observed to be similar to soybean yield distribution. 252 

 253 
 (a) (b) 254 
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 255 
 (c)  (d) 256 

Figure 5. Decomposed distribution of intermittent IFEW model parameters from simulation de- 257 
composition: (a) corn yield (x1), (b) soybean yield (x2), (c) GN, and (d) FN. 258 

Figure 6 shows the decomposed distribution of nitrogen surplus (Ns), the final output 259 
of the IFEW simulation model. The soil nitrogen surplus is usually affected 260 
by CN, MN, GN, and FN magnitudes. However, in this study, only GN and FN influence 261 
the variation in nitrogen surplus. This is mainly because the parameters affect- 262 
ing CN and MN are kept constant. The variation in nitrogen surplus shown in this work 263 
is purely due to uncertainty in weather parameters. From Figure 6, it is observed that most 264 
of the variation in nitrogen surplus lies in regular condition (Sc2), varying approximately 265 
between 0 to 20 kg/ha. The scenarios with high July temperatures (Sc3 and Sc4) are ob- 266 
served to produce mid to high nitrogen surplus values. Similarly, scenario Sc1 with very 267 
low July precipitation and regular July temperature tends to produce higher nitrogen sur- 268 
plus than in regular conditions. The dry condition with high July temperature and low 269 
July precipitation produces the highest soil nitrogen surplus varying between 20 to 30 270 
kg/ha. The accumulated nitrogen in the soil is highly water-soluble and could get exported 271 
at a high rate to the Mississippi river through melting snow or rainfall before the next 272 
growing season. Thus, the Figure 6 provides the expected magnitude of nitrogen load 273 
from state of Iowa to the Mississippi river in different weather scenarios. 274 

 275 



Sustainability 2021, 13, x FOR PEER REVIEW 10 of 11 
 

Figure 6. Distribution of IFEW simulation model output: nitrogen surplus (Ns). 276 

The SD in this work uses the Monte Carlo sampling approach which could be used 277 
to provide approximate probability of scenario occurring in any given year considering 278 
the assumption made earlier are true. Based on the data available in current study proba- 279 
bility of scenarios Sc1 Sc2 Sc3, and Sc4 occurring are 0.1, 0.74, 0.02, and 0.12, respectively. 280 
Probability of dry condition (Sc3) occurring is lowest whereas regular condition (Sc2) has 281 
highest probability of occurring (Figure 6).   282 

The SD approach implemented in the current study provides valuable results to 283 
gauge the impact of weather parameters on soil nitrogen surplus along with crop yields 284 
and nitrogen transfer in agriculture system. However, the distributions used for the 285 
weather parameters are assumptions and two input weather parameters are assumed to 286 
be independent of each during the Monte Carlo sampling process. In reality, temperature 287 
and precipitation are correlated. Thus, there is a possibility that some combination of sce- 288 
narios may not entirely occur. For example, high precipitation and high temperature may 289 
not occur together as typically in Iowa, with high precipitation the average temperature 290 
drops. Further the probability distribution of weather parameters is hard to estimate as 291 
they typically do not have a continuous distribution. Thus, it is advisable to use weather 292 
generator which have been trained on historical datasets to predict weather parameters 293 
than using continuous probability distributions. In future studies, weather generators will 294 
be included in IFEW simulation model to predict weather data for more realistic predic- 295 
tions of soil nitrogen surplus. 296 

4. Conclusions 297 
In this work, simulation decomposition (SD) approach is implemented with the Iowa 298 

food-energy-water (IFEW) system simulation model to better understand the impact of 299 
weather behavior on the nitrogen export from Iowa. In particular, the previously devel- 300 
oped nitrogen export model, which computes the soil nitrogen surplus, is extended with 301 
a crop weather model to include the dependence of weather in the IFEW system. The up- 302 
dated IFEW simulation model with SD is used to provide decomposed soil nitrogen sur- 303 
plus distribution in different weather scenarios. 304 

It is observed that July temperature and precipitation directly impact corn and soy- 305 
bean yields. Interestingly, it is observed that in the dry condition, corn yield reduces, 306 
whereas soybean yield increases compared to the yield values in regular conditions. The 307 
variation in crop yields affects nitrogen transfer in the agriculture system through fixation 308 
nitrogen (FN) and grain nitrogen (GN), affecting the soil nitrogen surplus. The SD ap- 309 
proach provides the distribution of nitrogen surplus in various scenarios. It is observed 310 
that the regular condition covers most variation in the full distribution. Scenarios with 311 
high July temperature and low precipitation tend to produce mid to high range of nitro- 312 
gen surplus values. The dry condition scenario produces the highest nitrogen surplus. 313 
Overall, the SD approach provides a deeper understanding of the cause-and-effect rela- 314 
tionship between weather parameters and soil nitrogen surplus. 315 

Furthermore, the current study identified that continuous distribution on weather 316 
parameters could generate unrealistic scenarios. Thus, in future studies, highly validated 317 
weather generators will be used for estimating weather parameters providing a more re- 318 
alistic distribution of soil nitrogen surplus based on weather. Additionally, the IFEW sim- 319 
ulation model will be extended to report nitrogen loads for Iowa’s nine crop reporting 320 
districts providing spatially resolved information from the state of Iowa. 321 
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