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Abstract. Performing global sensitivity analysis (GSA) can be chal-
lenging due to the combined e↵ect of the high computational cost, but
it is also essential for engineering decision making. To reduce this cost,
surrogate modeling such as neural networks (NNs) are used to replace
the expensive simulation model in the GSA process, which introduces
the additional challenge of finding the minimum number of training data
samples required to train the NNs accurately. In this work, a recently
proposed NN-based GSA algorithm to accurately quantify the sensitiv-
ities is improved. The algorithm iterates over the number of samples
required to train the NNs and terminates using an outer-loop sensitivity
convergence criteria. The iterative surrogate-based GSA yields converged
values for the Sobol’ indices and, at the same time, alleviates the spec-
ification of arbitrary accuracy metrics for the NN-based approximation
model. In this paper, the algorithm is improved by enhanced NN mod-
eling, which lead to an overall acceleration of the GSA process. The
improved algorithm is tested numerically on problems involving an an-
alytical function with three input parameters, and a simulation-based
nondestructive evaluation problem with three input parameters.

Keywords: Global sensitivity analysis · surrogate modeling · neural net-
works · Sobol’ indices · termination criteria.

1 Introduction

The study of sensitivity analysis (SA) [1, 2] is important in many engineering and

science applications. Individual e↵ects and interactions of the input parameters
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on the output model response can be quantified by SA [3, 4]. Engineers and sci-

entists can use SA to understand the importance of parameters in experimental

or computational investigations. There are two types of SA, local [5] and global

[6] SA. Local SA usually refers to using the the local output model response

to quantify the e↵ect of small local perturbations in the inputs. In global SA,

it utilizes the variance of output model response to quantify the e↵ect due to

the input variability in the entire parameter space. This work focuses on the

use of global variance-based SA with Sobol’ indices [3, 4] for simulation-based

problems.

In this paper, a recently developed algorithm for surrogate-based GSA [7] is

improved and applied to new testing problems. In the NN-based sequential algo-

rithm, the number of samples is iteratively increased with the goals of obtaining

the converged Sobol’ indices with the training cost as minimum as possible. This

approach not only alleviates the needs to specify arbitrary surrogate modeling

accuracy metrics, but also reliefs from the fact that accuracy metrics for surro-

gate models do not guarantee that converged Sobol’ indices are obtained. In this

work, the implementation of the NN training has been improved significantly,

which leads to improved convergence of the GSA algorithm. The algorithm is

tested numerically on two problems; an analytical function with three parame-

ters and a simulation-based problem with five parameters.

The next section describes the problem statement and gives the details of the

GSA algorithm. The following section presents results of numerical experiments.

Finally, conclusions are presented and remarks on future steps are given.

2 Methods

This work proposes a sequential algorithm to quantify the global sensitivities of

each input variability parameter to the simulation-based model outputs. Figure

1 shows the flowchart of the proposed algorithm. The algorithm starts from an

initial sample plan, x, which takes a small number of samples from the input

parameters with their variability. Latin hypercube sampling (LHS) [8] is used

in this work to randomly select sample data points from each probability dis-

tribution of the inputs. The corresponding outputs or observations, y, are then

generated from the simulation model. A surrogate model, ŷ(x), is constructed

using these inputs and outputs as training data. The input-output behavior

of the simulation model is imitated by the surrogate. Next, GSA is performed

with this surrogate model using Sobol’ sensitivity indices. The calculation of the

Sobol’ indices is a Monte Carlo process, therefore the convergence of these in-

dices are checked within an inner-loop. In the inner-loop, the Sobol’ indices are

computed by sampling the current surrogate model, and the number of samples

is increased during each iteration (e.g., one order of magnitude for this work)

until it achieves the convergence of the inner-loop. Then, the converged inner-

loop indices are checked by the outer-loop. The above process is resampled with

an increasing number of sample plan from the simulation model until the outer-

loop convergence criteria are met. The number of sample plan a↵ects training an
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accurate surrogate model, and the outputs of the surrogate a↵ect the precision

of the GSA. The outcome of the proposed algorithm yields the corresponding

surrogate model and the converged Sobol’ indices of GSA.

Fig. 1: A flowchart of the sequential global sensitivity analysis algorithm with neural
network-based prediction.

Neural networks (NNs) are used in a variety of applications in the world.

In this work, NN is used to be the surrogate and mimic the behavior of the

simulation model. The general structure of NN is a hierarchy of features [9] with

three parts: input layer, output layer, and hidden layers [10, 11]. All the layers

are composed by ”neurons” which are the fundamental units of computation

[9]. The number of neurons in the input and output layers are the same as the

number of input and output variables of the simulation model. Hidden layers are

the layers in-between the input and output layers. There could be zero or more

hidden layers in a neural network. The number of hidden layers and the number

of neurons in each hidden layer usually varies from case to case.

This work uses Sobol’ indices [3, 4] for the global sensitivity analysis. It is

a variance-based method that quantifies the single e↵ects of individual inputs

and the interactions of combination of inputs on the simulation model output.

The first-order Sobol’ indices [4] that quantify the e↵ect of individual inputs are

given by

Si =
Vi

Var(y)
=

Varxi(Ex⇠i(y|xi))

Var(y)
, (1)

where Si is the contribution of individual xi on the output variance of the simu-

lation model. The total-order or total-e↵ect Sobol’ indices [4] that quantify the
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interactions of combined inputs are given by

ST,i = 1� Varx⇠i(Exi(y|x⇠i))

Var(y)
, (2)

where ST,i measures the contribution of both individual xi and the interactions

between xi and other input parameters on the output variance of the simulation

model.

The proposed sequential algorithm includes an outer-loop that samples the

simulation model to generate the NN-based surrogate models and an inner-loop

that samples the trained NN-based surrogate model to computes the Sobol’ sen-

sitivity indices. The converged NN-based surrogate model and Sobol’ indices are

obtained by the termination of the outer- and inner-loop based on two measure-

ments of the Sobol’ indices between successive iterations. The first measurement

is computed by the absolute relative change of Sobol’ indices defined as

dr[si] =

�����
s(n)i � s(n�1)

i

s(1)i

����� , (3)

where s is the value of the Sobol’ indices and is calculated separately for first-

and total-order indices, i is the index of input parameter, and n is the current

iteration index. The loop is terminated when dr[si]  ✏r for all si. In this work,

✏r is set to 0.1. The second measurement is computed by the absolute change of

Sobol’ indices, given by

da[si] =
���s(n)i � s(n�1)

i

��� , (4)

where s is the value of the Sobol’ indices and is calculated separately for first-

and total-order indices, i is the index of input parameter, and n is the current

iteration index. The loop is terminated when da[si]  ✏a for all si. In this work, ✏a
is set to 0.01. Both outer- and inner-loop can be terminated by either dr[si]  ✏r
or da[si]  ✏a being true.

3 Numerical Experiments

3.1 Case 1: Analytical function

An analytical function with three input variables and one single output function

is used to demonstrate the algorithm. The function is written as

f(x) = x1 + x2x
2
3, (5)

where x1 2 U(0, 1000), x2 2 U(0, 100), and x3 2 U(0, 10) are the input parame-

ters and their associated PDFs, and y is the function output.

Figure 2 shows the convergence of the direct GSA of the true model. Direct

GSA converged at 1000 sampling points. Figure 3 shows the inner-loop GSA
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convergence using the NN-based algorithm and Fig. 4 shows the outer-loop con-

vergence. The algorithm terminates at 200 samples. The NN models are trained

using two hidden layers, with twenty neurons, and the tangent hyperbolic acti-

vation function. The learning rate is set to 0.001 and the batch size is set to 16.

The maximum number of epochs and �1 are set to 2,000 and 0.9, respectively.

L2 regularization is used with �=0.1 while training the models.

Table 1 shows a comparison of the global sensitivities obtained from direct

and NN-based numerical experiments. It can be seen that the NN-based yields

global sensitivities within 1.7% of the true values while using only a fraction of

the cost of the direct approach.
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Fig. 2: Case 1 convergence of GSA directly on the true model: (a) first-order indices,
and (b) total-order indices.
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Fig. 3: Case 1 inner-loop convergence of si for the NN trained with 100 LHS samples:
(a) first-order indices, and (b) total-order indices.
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Fig. 4: Case 1 outer-loop convergence of si terminated on da  ✏a criteria: (a) first-
order indices, and (b) total-order indices.

Table 1: Case 1 comparison of Sobol’ index values between the true model and the
converged NN model.

x
Si ST,i

True function Seq. GSA % error True function Seq. GSA % error

x1 0.0199 0.0201 1% 0.0204 0.0201 1.5%

x2 0.2793 0.2745 1.7% 0.4497 0.4453 1%

x3 0.5456 0.5347 2% 0.7065 0.7053 0.2%

3.2 Case 2: Ultrasonic testing (UT) of a pillbox-defect

In this numerical experiment the pillbox-inclusion-defect under planar trans-

ducer ultrasonic (UT) nondestructive testing (NDT) benchmark case is used [12,

13]. Figure 5 shows the setup of the problem. The planar transducer is placed

in water and the probe angle (✓) and the probe coordinates (x and y) are var-

ied. A fused quartz block with a pillbox-like void is inspected by the transducer

where the distance between the transducer and the surface of the block (z1)
and the distance between the surface of the block and the defect (z2) can vary

based on the setup. The variability parameters with their associated PDFs are

✓ 2 N(0, 0.52) deg, x 2 U(0, 1)mm, y 2 U(0, 1)mm, z1 2 U(24.9, 25.9)mm, and

z2 2 U(12.5, 13.5) mm. The output response is the reflected pulse (v) received

by the transducer.

The simulation model for this case uses the Kirchho↵ approximation (KA)

to simulate the voltage wave receives by the transducer. The center frequency

of the planar transducer is set to 10 MHz. The longitudinal wave speed is set

to 6,200 m/s, and the shear wave speed is set to 3,180 m/s. The density of the

fused quartz block is set to 4,420 kg/m3
. The NN models in this case are trained

using two hidden layers, with thirty neurons. Similar to the previous case, the

tangent hyperbolic activation function is used. The learning rate and �1 of the
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Fig. 5: A schematic of setup for the ultrasonic testing case.

ADAM optimizer are set to 0.001 and 0.9, respectively. The batch size is set to

16 and the maximum number of epochs is set to 2,000. L2 regularization is used

with �=0.1 while training the models.

Figure 6 shows the direct GSA converged at 3000 sampling points. The con-

vergence criteria of sequential GSA in this case were the same as in the previous

case. The outer-loop sequentially iterated from 100 to 400 LHS samples. Fig-

ures 7(a) and 7(b) show the inner-loop GSA convergence using the NN-based

algorithm for the first- and total-order indices require 10
6
and 10

3
samples, re-

spectively. Figure 8 shows the outer-loop convergence plots for the first- and

total-order indices both terminated at 400 samples. Figure 9 shows that the

distance from the transducer to the defect has a negligible e↵ect on the output

response, while the probe angle has the highest e↵ect follows by y coordinate

then x coordinate. Table 2 compares the Sobol’ indices values from the proposed

method to those from the true function. It shows a good match of the the Sobol’

indices values while the cost of sequential GSA is an order of magnitude less

than the direct GSA.

Table 2: Case 2 comparison of Sobol’ index values between the true model and the
converged NN model.

x
Si ST,i

true model Seq. GSA % error true model Seq. GSA % error

✓ 0.5599 0.56 0.02% 0.7424 0.7456 0.4%

x 0.0623 0.0571 8.3% 0.2086 0.2082 0.2%

y 0.1841 0.1919 4.2% 0.2449 0.2467 0.7%

z1 5.2⇥10
�5

6.5⇥10
�5

- 5.3⇥10
�5

1.0⇥10
�4

-

z2 6.6⇥10
�4

5.2⇥10
�4

- 8.4⇥10
�4

7.6⇥10
�4

-
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Fig. 6: Case 2 convergence of GSA directly on the physics model: (a) first-order indices,
and (b) total-order indices.
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Fig. 7: Case 2 inner-loop convergence of si for the NN trained with 400 LHS samples:
(a) first-order indices, and (b) total-order indices.

100
150

200
250

300
350

400

Data points (NN models)

10-4

10-3

10-2

10-1

d
a
[S

i]

x y z
1

z
2  S

a
=0.01

(a)

100
150

200
250

300
350

400

Data points (NN models)

10-4

10-2

100

d
r[S

T
,i
]

x y z
1

z
2

 S
T

r
=0.1

(b)

Fig. 8: Case 2 outer-loop convergence of si terminated on (a) da  ✏a criteria: first-
order indices, and on (b) dr  ✏r criteria: total-order indices.
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Fig. 9: Case 2 Sobol’ index values of input parameters computed by the converged NN
model: (a) first-order indices, and (b) total-order indices.

4 Conclusion

Global sensitivity analysis (GSA) of large-scale data sets is an important prob-

lem in engineering and science decision-making. The algorithm presented in this

paper directly tackles this important task in the context of simulation-based

problems. In particular, this work demonstrates that simulation-based GSA us-

ing neural network-based function prediction can be iteratively improved and

terminated once accurate sensitivities are obtained, thereby enabling e�cient

adaptive GSA for large-scale problems.

Future steps in this work will focus on how to adaptively sample the NN

model using model uncertainty, which will alleviate the resampling stage of the

algorithm. An important step in this work will be to characterize the computa-

tional cost and benchmark it against current state-of-the-art methods, as well

as to perform numerical experiments on high-dimensional problems involving

physical and computational data.
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