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Abstract. This paper focuses on the analysis of agricultural and engi-
neering processes using simulation decomposition (SD). SD is a technique
that utilizes Monte Carlo simulations and distribution decomposition to
visually evaluate the source and the outcome of different portions of data.
Here, SD is applied to three distinct processes: a model problem, a non-
destructive evaluation testing system, and an agricultural food-water-
energy system. The results demonstrate successful implementations of
SD for the different systems, and the illustrate the potential of SD to
support new understanding of cause and effect relationships in complex
systems.

Keywords: Simulation decomposition - food-water-energy systems - non-
destructive evaluation - physics-based simulations - parameter variability.

1 Introduction

Simulation decomposition (SD) [1] is not only a great visualizing technique for
engineering processes, but also an efficient application to utilize the resulting
data set created by the Monte Carlo [2] sampling process. An illustration, such
as a stacked bar chart, can express the decomposed variability of simulation
inputs and outputs to understand the results. Furthermore, SD has the poten-
tial to understand cause and effect relationships between the input and output
parameters of a given system [3].

In this work, a recent SD method [3] is applied to problems in the area
of agriculture and engineering system analysis. The first problem is intended
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to illustrate the SD method using is a model problem with three inputs and
one output. The second problem has relevance to nondestructive evaluation and
involves an ultrasonic testing (UT) system with a pillbox void. The last problem
involves an agricultural model that computes the nitrogen export of the state
of Towa. The commonality of the second and the third problems is that they
both involve processes that utilize physics-based computational simulations and
have input parameters with variability. The SD analysis provides a graphical
representation of the effect of input variability on the simulation outputs.

The next section gives the formulation of the problem and a description
of the SD analysis technique. The following section presents the results of the
three numerical cases. The last section summarizes this work and discusses the
potential future work.

2 Methods

This section describes the general problem formulation and gives the details of
the SD method.

2.1 Problem statement

System analysis can be represented as a black box model as

Yy= f(X)7 (1)

where the left-side of the equation represents the model output y and the right-
side of the equation represents the model f with input parameters x. It is im-
portant to understand the effects of uncertainties of the input parameters on
the output response when making design decisions. In this work, the effects of
the input parameters on the output parameters are visualized using simulation
decomposition (SD).

2.2 Simulation decomposition

SD [1, 3] is an approach to visualize the effects of variability on models. Further-
more, SD analysis is used to distinguish the influences of different cases of inputs
affecting the model output. Figure 1 shows a flowchart of the SD workflow. The
process starts by generating random samples as the input data set. First, specify
the statistical distributions for each input parameter and choose the states of in-
terest for each input parameter individually. Then, divide the distributions into
sub-distributions according to the chosen states. Next, generate every possible
combination of the input data from the sub-distribution using Monte Carlo sam-
pling and categorize them into different cases. These cases would determine the
model output that is to-be-decomposed. Then, conduct the simulations with the
input samples and obtain the output data set. Meanwhile, register the output of
each simulation according to their cases. Lastly, construct the outcome probabil-
ity for each case and decompose the full outcome probability into different cases
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Fig. 1: A schematic of the simulation decomposition workflow.

accordingly. The importance of each case can be observed by the occurrence in
the decomposed output visually, and cross-checking important cases provide a
sense of importance for the input parameters.

3 Numerical Examples

This section presents the results of SD analysis of a model problem, an ultrasonic
nondestructive testing system, and the Iowa food-energy-water system analyzed.

3.1 Model problem

The simple analytical function is written as [4]
y(®) = 21 + w03, (2)

where 1, x5, and x3 are the input parameters with the variabilities given in
Table 1, and y is the function output parameter. A data set of a total 10° points
is created using Latin hypercube sampling (LHS) [5].

Figure 2 shows how each input parameter is decomposed into two states that
define eight cases for the parameter space. All the parameters are considered to
be uniformly distributed. For x1, 500 is set to divide the complete distribution
into sub-distribution, and 50 and 5 are used to divide x5 and x3, respectively.

Figure 3 shows the decomposed distribution of the output y. In general, a
low value of y is contributed by almost all combinations of the input parameters.

Table 1: Input parameters and their statistical distributions for the model problem.

Parameter Distribution
1 U(1, 1000)
To U(1, 100)
I3 U(l, 10)
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Fig. 2: Decomposed distribution of input parameters from SD for the model problem.
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Fig. 3: Decomposed distribution of the model problem output.
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However, a high value of y is mainly obtained by the cases with high values of
r9 and x3. In particular, in the cases where x1 and x5 are both low, the simple
function can still yield high y with high z3, and vice versa. In this case, the SD
analysis shows that the output of the analytical function is dominated by x3,
which is as expected when inspecting the function directly.

3.2 Ultrasonic testing (UT) system with a pillbox void

Ultrasound testing (UT) is a widely used nondestructive testing (NDT) tech-
nique for flaw detection. In this problem, a pillbox-inclusion-defect under planar
UT transducer is considered [6]. Figure 4 shows the setup of the problem. The
planar transducer is placed in water and the probe angle (6) and the probe co-
ordinates (z and y) are varied. A fused quartz block with a pillbox-like void is
inspected by the transducer where the distance between the transducer and the
surface of the block (z1) and the distance between the surface of the block and
the defect (z2) can vary based on the setup. The variability distributions for
this problem are given in Table 2. The output response is the reflected pulse (v)
received by the transducer. A data set of 10° data points is generated by LHS [5]
for this problem.

Figure 5 shows the sub-distributions of sampled input parameters in two
states. The variability of probe angle () is considered normal distribution and
the rest of input parameters are considered uniform distributions in this problem.
For 6, the complete distribution is divided by the statistical mean of 0 degree.
The sub-distributions of the probe coordinates x and y are both divided by 0.5
mm. z; and zo are consider using full distribution in this work for simplicity.
The total of eight cases are shown in figure 5.

Figure 6 shows the decomposed distribution of output response (v). A diago-
nal trend can be observed. In particular, the SD analysis shows that high values
of the inputs yield low values of response. Furthemore, the results show that the
response is dominated by 6, followed by x, and then .

Planar
transducer

Pillbox void / inclusion

Fig. 4: A schematic showing the setup of the ultrasonic testing system.
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Table 2: Ultrasonic testing system input parameters statistical distributions.

Parameter Distribution
0 (deg) N(0, 0.5%)

z (mm) U(0, 1)
y (mm) U(0, 1)
21 (mm) U(24 9, 25.9)
29 (mm) U(12.5, 13.5)
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Fig. 5: Decomposed distribution of input parameters from SD for UT system.

3.3 Iowa food-energy-water system

A simulation-based model of the Iowa food-water-energy (IFEW) system com-
putes the surplus nitrogen (Ny) considering the weather, agriculture, and animal
agriculture domains in the state of ITowa [7]. Figure 7 show an extended design
structure matrix (XDSM) diagram of the simulation model. The input parame-
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Fig. 6: Decomposed distribution of ultrasonic testing system output parameter.

ters, intermediate parameters and output parameters are listed in Table 3, and
the details of the computation for different domains are described in [7]. This
work focuses on the SD analysis of the variability input parameters given in
Table 4 and assumes other input parameters are fixed. A data set of 10° points
is created for the SD analysis using LHS [5].

Figure 8 shows the distribution of sampled input parameters in two states and
the four corresponding cases. The variability distributions of the July temper-
ature (wp) and precipitation (ws) are considered to be normal and log-normal,

Wi—5, CW,

Crop-Weather
Model

X5, X6, X7, X8

CN, FN, GN

Agriculture

Animal Ag

N surplus

Fig. 7: Extended design structure matrix of lowa food-water-energy system model.
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Table 3: Parameters of the IFEW simulation system model.
Parameter Description

w1 July temperature

Wa July precipitation

w3 June precipitation

T4 July-August average temperature

x5 July-August average precipitation

cwq May planting progress

x1 Corn yield

To Soybean yield

x3 Rate of commercial nitrogen for corn

T4 Rate of commercial nitrogen for soybean

T5 Hog/pigs population

T6 Beef cattle population

x7 Milk cows population

s Other cattle population (heifers + slaughter cattle)
CN Commercial nitrogen (nitrogen in commercial fertilizers)
FN Biological fixation nitrogen of soybean crop

GN Grain nitrogen (Nitrogen harvested in grain)
MN Manure nitrogen (Nitrogen in animal manure)

N Surplus nitrogen in soil

Table 4: Input parameters of the IFEWS simulation model with with variability.

Parameter Distribution
wy (°F) N(74, 22)
wo (in.) LogN (0.4, 0.4%)

respectively. A temperature of 76 °F and a precipitation 2.5 in. are used to divide
the distributions into sub-distributions of w; and ws, respectively. The states can
be identified as regular temperature (below 76 °F) and high temperature (above
76 °F). Similarly, the states of precipitation are low precipitation (below 25 in.)
and regular precipitation (above 25 in.).

Figure 6 shows the decomposed distribution of nitrogen surplus (Ny), i.e.,
the output parameter of the IFEW system model. The results suggests that the
major contribution of nitrogen surplus is coming from regular temperature and
regular precipitation of July. Other cases are the combinations of less common
weather conditions which lead to extreme amounts of nitrogen surplus but are
rare.
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Fig. 8: Decomposed distribution of input parameters from SD for the IFEW system.
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Fig. 9: Decomposed distribution of the nitrogen surplus output of the IFEW system
simulation model.

4 Conclusion

This work demonstrates that simulation decomposition (SD) can support the
analysis of agricultural and engineering systems involving input parameters of
variability. In particular, SD can provide new insights into the effects of the
model input ranges on its output. This insight can be useful in understanding
cause and effect relations in complex systems. Future work will explore the po-
tential of combining global sensitivity analysis (GSA) with the SD technique.
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Furthermore, the use of surrogate modeling in conjunction with those analyses
will be investigated to create computationally efficient algorithms for analysis
with SD and GSA.
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