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We derive partial-wave unitarity constraints on gauge-invariant interactions of an axionlike particle up to
dimension-6 from all allowed 2 → 2 scattering processes in the limit of large center-of-mass energy.
We find that the strongest bounds stem from scattering amplitudes with one external axionlike particle and
only apply to the coupling to a pair of SUð2ÞL gauge bosons. Couplings to Uð1ÞY and SUð3ÞC gauge
bosons and to fermions are more loosely constrained.
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I. INTRODUCTION

Axionlike particles (ALPs) are generic pseudo-
Goldstone bosons that can emerge from the spontaneous
breaking of some global symmetry at energies well above
the electroweak (EW) scale v. While the main represen-
tative is the QCD axion (either “invisible” [1–8] or in
modern setups where the tie between axion mass and
couplings is relaxed [9–27]), this class of particles encom-
passes a large number of exotic states that can emerge in
composite Higgs models [28–32], models with spontane-
ous breaking of lepton number (“majorons”) [33,34],
dynamical flavor theories (“axiflavons”) [35–38], string
theory [39,40], and many other scenarios.
ALPs are usually studied within a model-independent

effective field theory (EFT) framework [41,42]. Their
pseudo-Goldstone nature justifies the assumption that
ALPs are the only light remnant of a much heavier new
physics sector, whose interactions are suppressed by a

characteristic scale fa ≫ v. A priori, the allowed parameter
space spans several orders of magnitude both in the ALP
mass ma and in the couplings to Standard Model (SM)
particles that, within the EFT approach, enter at lowest
order as dimension-5 operators.
The interest in the ALP Lagrangian as a self-consistent

EFT has grown recently, leading to several studies of its
theoretical properties. For instance, the renormalization
group evolution and the matching to the ALP EFT valid
below the EW scale were derived in Refs. [43–45]. The
interplay between dimension-5 ALP interactions and
dimension-6 operators in the Standard Model EFT
(SMEFT) was explored in Ref. [46]. The matching of
the ALP EFT to concrete QCD axion models was examined
in Ref. [47], which pointed out theoretical subtleties when
applying the EFT approach to loop processes.
In this work, we examine the validity range of the ALP

EFT at high energies on the basis of its perturbative partial-
wave unitarity properties. It is well known that classically
nonrenormalizable interactions give rise to rapid growth
of the scattering amplitudes with energy, which leads to
partial-wave unitarity violation at some large value of the
center-of-mass energy

ffiffiffi
S

p
. Generically, partial-wave uni-

tarity violation signals the breakdown of the low-energy
description and indicates that extra fundamental degrees of
freedom or the onset of the nonperturbative regime must be
present around or below the apparent unitarity violation
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scale in order to restore the physical behavior of scattering
amplitudes. Paradigmatic examples of the use of unitarity
relations to derive constraints on the validity of a theory
include the seminal work of Lee et al. [48,49] that imposed
an upper bound on the Higgs mass by analyzing the
unitarity of the standard model and was used to build a
case in favor of the construction of the present generation of
colliders. Another classical example are the bounds on new
fermions obtained by Chanowitz et al. [50]. On a more
formal front, unitarity arguments have also been employed,
for example, in connection with the requirement of gauge
invariance [51].
In the last decades, partial-wave unitarity has been

employed ubiquitously to constrain effective interactions,
in particular in the electroweak sector (see, for example,
Refs. [52–59]). Recently, Refs. [60–62] presented a general
systematic study of unitarity bounds for the case of
effective interactions in the SMEFT and Higgs EFT
(HEFT). Generically, unitarity preservation imposes con-
sistency conditions on the theory such that, for the EFT
to be valid up to a given

ffiffiffi
S

p
, the effective couplings (scale)

need to be smaller (larger) than a certain threshold.
Conversely, for given values of the EFT coefficients and
scale, unitarity imposes an upper limit on the energy scales
at which the EFT can be applied. In that respect, unitarity
bounds are crucial for the interpretation of actual experi-
ments, which study tails of kinematical distributions, since
one can infer unphysical bounds that are too strong if these
limits are not respected.
For the case of ALP EFT, the rapid growth of the

scattering amplitudes with energy, which leads to partial-
wave unitarity violation, is particularly enhanced. The
reason for that is the pseudo-Goldstone nature of the
ALPs which requires all their interactions to be classically
invariant under shifts aðxÞ ↦ aðxÞ þ α, i.e., to be of the
form Jμ∂μa. As a consequence, an explicit momentum
dependence is present in all ALP couplings.
A partial analysis of unitarity constraints on ALP

couplings was presented in Refs. [63,64]. Here we
adopt a more systematic approach and derive maximal
constraints on all ALP interactions of dimension 5 and 6
from partial-wave unitarity, examining all allowed 2 → 2
scattering processes in the limit of large center-of-mass
energy. We adopt a procedure analogous to the one
employed in [60–62] for the case of effective interactions
in the SMEFT and HEFT.
The outline of this article is as follows. We present the

relevant Lagrangian employed in Sec. II and briefly discuss
the number of relevant operators we consider. The core of
the results is contained in Sec. III, where we derive first the
most general bounds for the ALP couplings to SM gauge
bosons which are obtained from the partial-wave analysis
of the scattering of boson pairs in Sec. III A. Section III B
contains our derivation of the most general independent

constraints on ALP couplings to SM fermions which are
obtained with the partial-wave analysis of scatterings
involving fermion pairs. We briefly discuss the results in
Sec. IV. Explicit expressions of the helicity amplitudes for
all the relevant processes are presented in the Appendix.

II. ALP EFFECTIVE LAGRANGIAN

We consider the SM extended by the ALP effective
Lagrangian [41,42,65]

LALP ¼ 1

2
∂μa∂μa −

m2
a

2
a2 þ CB̃OB̃ þ CW̃OW̃

þ CG̃OG̃ þ CaΦOaΦ

þ ½CuΦOuΦ þ CdΦOdΦ þ CeΦOeΦ þ H:c:�
þ Cð2Þ

aΦO
ð2Þ
aΦ; ð1Þ

where the effective operators

OB̃ ¼ a
fa

BμνB̃μν; OuΦ ¼ i
a
fa

q̄YuΦ̃u; ð2Þ

OW̃ ¼ a
fa

Wi
μνW̃iμν; OdΦ ¼ i

a
fa

q̄YdΦd; ð3Þ

OG̃ ¼ a
fa

Ga
μνG̃

aμν; OeΦ ¼ i
a
fa

l̄YeΦe; ð4Þ

OaΦ ¼ ∂μa

fa
ðiΦ†ðDμΦÞ − iðDμΦÞ†ΦÞ

Oð2Þ
aΦ ¼ ∂μa∂μa

f2a
ðΦ†ΦÞ ð5Þ

form a complete basis of CP-even ALP interactions up to
Oðf−3a Þ terms. Here, Bμ;Wi

μ, and Ga
μ are the gauge bosons

of the Uð1ÞY × SUð2ÞL × SUð3Þc SM symmetry, respec-
tively, and the dual field strengths are defined by
X̃μν ¼ 1

2
εμνρσXρσ. Φ denotes the SUð2ÞL Higgs doublet,

while Φ̃ ¼ iτ2Φ� is its dual (with τi being the Pauli
matrices). Upon EW symmetry breaking, hΦ†Φi ¼
ðvþHÞ2=2, with H being the physical Higgs boson.
The left- (right-)handed fermion multiplets are denoted
by q, l (u, d, e), and Yu, Yd, Ye are the 3 × 3 Yukawa
matrices. All index contractions were left implicit, and
repeated indices are summed over unless otherwise speci-
fied. A mass termma for the ALP was introduced, which is
generically induced in the presence of soft breaking of shift
invariance, such as nonperturbative instanton effects in the
case of the QCD axion [6,66–68].
We neglect CP-violating effects such that all Wilson

coefficients Ci are real scalar quantities. Although this is
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not manifest in Eqs. (2)–(5), all ALP interactions are
classically shift invariant: the interactions to bosons can
be written as ∂μaJ

μ
X by integration by parts, where JμX is the

Chern-Simons current associated to the X ¼ fB;W;Gg
gauge boson.1 The operators with fermions were taken to
follow the minimal-flavor-violation ansatz [69–71], i.e., to
respect a Uð3Þ5 global symmetry that is only broken by
insertions of the Yukawa couplings. With this flavor
structure, they could also be equivalently traded for a set
of chirality-conserving ones of the form ð∂μaÞðψ̄pγ

μψ rÞδpr,
with p, r flavor indices [44,72].
The operator OaΦ is actually redundant [41,45,65,72]:

OaΦ ¼ OuΦ −OdΦ −OeΦ þ H:c: ð6Þ

Nevertheless, it is often retained because the set
fOB̃;OW̃;OG̃;OaΦg forms a complete and nonredundant
operator basis at dimension 5 in the bosonic sector that can
be of phenomenological interest.

The operator Oð2Þ
aΦ has been previously considered

in Refs. [73–76], and it is the only shift-invariant
operator2 that can be constructed at dimension 6.
SMEFT operators of dimension 6 are neglected; we
assume them to be suppressed by a scale ΛSMEFT ≠ fa
and work consistently at order ðf−2a Λ0

SMEFTÞ. Discussing
the interplay of the two expansions is beyond the scope
of this work.3

III. ANALYSIS OF UNITARITY CONSTRAINTS

A. Helicity amplitudes for the scattering
of pairs of bosons

Consider the two-to-two scattering of bosons Vi with
helicities λi,

V1λ1V2λ2 → V3λ3V4λ4 ; ð7Þ

where we denote by V either gauge bosons, Higgs, or ALP.
The corresponding helicity amplitude can be expanded in
partial waves in the center-of-mass system as [78]

MðV1λ1V2λ2 → V3λ3V4λ4Þ

¼ 16π
X
J

ð2J þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ

V2λ2
V1λ1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ

V4λ4
V3λ3

r

× dJλμðθÞeiMφTJðV1λ1V2λ2 → V3λ3V4λ4Þ; ð8Þ

where λ ¼ λ1 − λ2, μ ¼ λ3 − λ4, M ¼ λ1 − λ2 − λ3 þ λ4,
and θ (φ) is the polar (azimuthal) scattering angle. d is
the usual Wigner rotation matrix. This expression holds for
gauge bosons with λ ¼ 0;�1 and for scalars (Higgs or
ALP) with λ≡ 0; the fermion case will be addressed below.
For further details and conventions, see Ref. [60].
In the limit S ≫ ðMV1

þMV2
Þ2, partial-wave unitarity

for a given elastic channel requires that

jTJðV1λ1V2λ2 → V1λ1V2λ2Þj ≤ 1: ð9Þ

The most stringent bounds are obtained by diagonalizing
TJ in the particle and helicity space and then applying the
condition in Eq. (9) to each of the eigenvalues. This is the
approach which we follow.
We start by calculating the scattering amplitudes for all

possible combinations of bosons and helicities generated
by the SM extended with the Lagrangian in Eq. (1) for a
given total electric charge Q ¼ 2, 1, 0 and that give
nonvanishing projections on a given partial-wave J propor-
tional to some ALP coupling. Conservation of color implies
that initial or final states with color have to be considered
independently of those in a color singlet state. So, one is led
to consider separately the TJ ðT̄JÞ amplitude matrices for
processes with color singlet (octet) in the initial and final
states. One must also take into account that parity con-
servation at tree level implies the relation

TJðV1λ1V2λ2 → V3λ3V4λ4Þ
¼ ð−1Þλ1−λ2−λ3þλ4TJðV1−λ1V2−λ2 → V3−λ3V4−λ4Þ ð10Þ

and leads to a reduction of the number of independent
helicity amplitudes. Time-reversal invariance further
reduces the number of helicity amplitudes that need to
be evaluated.
Altogether, the initial/final states contributing a priori to

the TJ matrices for each value of Q and J are

1In the G case, only a discrete version of the shift invariance
is preserved due to the presence of nonvanishing instanton
configurations.

2One more operator structure is present at dimension 6,
namely, ð∂μ∂μaÞ2. However, applying the ALP equation of
motion, this can be fully reabsorbed into a redefinition of the
ALP mass. We have checked the completeness of the dimension-
6 set with BASISGEN [77].

3As will become clear from the discussion in Sec. III, the
bounds on CW̃ , CfΦ, CaΦ, and Cð2Þ

aΦ are not expected to change
significantly in the presence of dimension-6 SMEFT operators,
independently of the interplay between the SMEFT and ALP
expansions. This is because all these bounds are dominated by
scatterings with one or two external ALPs.
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ðQ; JÞ States Total

ð2; 0Þ Wþ
�W

þ
� Wþ

0 W
þ
0 3

ð2; 1Þ Wþ
�W

þ
0 Wþ

0 W
þ
� 4

ð1; 0Þ Wþ
�Z� Wþ

0 Z0 Wþ
�γ� Wþ

0 a 6

ð1; 1Þ Wþ
0 Z0 Wþ

�Z0 Wþ
0 Z� Wþ

�Z� Wþ
0 γ� Wþ

�γ� Wþ
�a Wþ

0 a Wþ
�H 16

ð0; 0Þ Wþ
�W

−
� Wþ

0 W
−
0 Z�Z� Z0Z0 Z�γ� γ�γ� Z0H G�G� Z0a Ha aa HH 17

ð0; 1Þ Wþ
0 W

−
0 Wþ

�W
−
0 Wþ

0 W
−
� Wþ

�W
−
� Z�Z0 Z0Z� Z�γ� Z0γ� Z0H Z�H γ�H Z0a Z�a γ�a Ha 26

;

ð11Þ

and correspondingly the states contributing to the T̄J

matrices are

ðQ; JÞ States Total

ð1; 0Þ Wþ
�G� 2

ð1; 1Þ Wþ
0 G� Wþ

�G� 4

ð0; 0Þ Z�G� γ�G� 4

ð0; 1Þ G�G� G�a Z�G� Z0G� γ�G� 10

ð12Þ
where upper indices indicate charge and lower indices
helicity. We also display in Eqs. (11) and (12) the dimension-
ality of the particle and helicity matrix for each independent
ðQ; JÞ channel. In Eq. (11), the statesHH andW�H are only
present when the dimension-6 operator is considered.
We list in Tables I–IV, which are in the Appendix, the

expressions for the most S-divergent part of the amplitudes
for the channels which give the dominant contribution to
the TJ and T̄J matrices.

1. Bounds on individual operators

As seen in Tables I–III, for processes with zero or two
ALPs as external states, the most energy-divergent ampli-
tudes occur for scattering of transversely polarized gauge
bosons, as expected. These amplitudes are all proportional
to the product of two axion couplings; therefore, the two
powers of their momentum involved in the coupling of ALP
to the gauge boson generate the leading S=f2a dependence.
A good fraction of them contributes to J ¼ 0 matrices,
which are, a priori, expected to lead the strongest bounds.
Furthermore, for amplitudes with gluon pairs, the strongest
bounds are obtained for the gluon pair in the singlet color

state 1
N2

C−1

PN2
C−1

a¼1 jGaGai.
Altogether from the diagonalization of the J ¼ 0 matri-

ces and assuming only one nonzero coupling at a time, we
find that the largest eigenvalues correspond to the Q ¼ 0,
T0 matrix and read

1þ ffiffiffiffiffi
97

p

16π

S
f2a

C2
W̃
;

1þ ffiffiffiffiffi
33

p

16π

S
f2a

C2
B̃
;

4ðN2
C − 1Þ
π

S
f2a

C2
G̃

and
1

32π

S
f2a

Cð2Þ
aΦ; ð13Þ

respectively. Applying the condition in Eq. (9) to each of
these eigenvalues, we obtain the bounds

jCW̃ j ≤ 2.1
fa
TeV

�
TeVffiffiffi

S
p

�
; ð14Þ

jCB̃j ≤ 2.7
fa
TeV

�
TeVffiffiffi

S
p

�
; ð15Þ

jCG̃j ≤ 0.31
fa
TeV

�
TeVffiffiffi

S
p

�
; ð16Þ

jCð2Þ
aΦj ≤ 101

f2a
TeV2

�
TeV2

S

�
: ð17Þ

We observe that the constraint on the dimension-6

operator Oð2Þ
aΦ is dominated by scattering amplitudes with

two ALP external states.
Unlike the amplitudes with an even number of ALP in

the external states, some helicity amplitudes with only one
ALP in either the initial or final state have a leading
behavior S

3
2=ðfaM2

WÞ, as seen in Table IV.4 These ampli-
tudes involve two longitudinally polarized gauge bosons,
whose polarization vectors are proportional to

ffiffiffi
S

p
, and one

transversely polarized gauge boson, whose momentum
contributes another power of

ffiffiffi
S

p
. This configuration can

only be generated by a combination of the SM vertices and
those induced by OW̃, and, consequently, the amplitudes
involve a single power of the CW̃ coupling and of the SM
coupling e and do not depend on any other Wilson
coefficient. As seen from the scattering angle dependence
of the amplitudes in Table IV, they contribute only to the
TJ¼1 matrix with either Q ¼ 0 or Q ¼ 1. Diagonalizing
these, we find that the largest eigenvalue is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2w þ 2c4w

p
24π

S3=2

faM2
W
eCW̃; ð18Þ

4This is in contrast with what is found for effective interactions
in the SMEFT [60–62] for which all operators of a given
dimension lead to most divergent amplitudes with the same
power of S, that is, S for dimension-6 operators and S2 for
dimension-8 operators.
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where cw is the cosine of the weak mixing angle. Therefore,
the condition in Eq. (9) implies the constraint on CW̃ ,

jCW̃ j ≤ 0.14
fa
TeV

�
TeVffiffiffi

S
p

�
3

: ð19Þ

Comparing the bounds on CW̃ from J ¼ 0-wave unitar-
ity, Eq. (14), and from J ¼ 1-wave unitarity, Eq. (19), we
find that the constraint derived from the J ¼ 1 amplitudes is
the strongest for

ffiffiffi
S

p
> 260 GeV:

2. Including multiple operators simultaneously

Fixing Cð2Þ
aΦ ¼ 0 (or equivalently barring cancellations

between dimension-5 and-6 terms) and allowing multiple
dimension-5 operators to vary simultaneously does not alter
significantly the bounds reported above. For CW̃, this is
obvious because the leading constraint Eq. (19) is genu-
inely independent of the other Wilson coefficients. For CB̃
and CG̃, this can be understood by considering that CG̃ is
dominantly constrained by G�G� → G�G� scattering in
the color-singlet channel, which is independent of CB̃.
We have also verified this explicitly by diagonalizing
the Q ¼ 0 TJ¼0 matrix with CB̃, CG̃ present at the same
time. The diagonalization can still be done analytically,
though the resulting expressions for the eigenvalues are
not particularly illuminating. Imposing the unitarity
limits on those eigenvalues yields the same bounds as in
Eqs. (15) and (16).
Allowing all operators of dimension 5 and 6 to be present

simultaneously (i.e., allowing cancellations between both
orders), we find that the largest eigenvalues are

5

8π

S
f2a

C2
W̃
;

1

8π

S
f2a

C2
B̃
;

4ðN2
C − 1Þ
π

S
f2a

C2
G̃

and
1

32π

S
f2a

Cð2Þ
aΦ; ð20Þ

and correspondingly the unitarity limits on the Wilson
coefficients are

jCW̃ j ≤ 2.2
fa
TeV

�
TeVffiffiffi

S
p

�
; ð21Þ

jCB̃j ≤ 5.0
fa
TeV

�
TeVffiffiffi

S
p

�
; ð22Þ

jCG̃j ≤ 0.31
fa
TeV

�
TeVffiffiffi

S
p

�
; ð23Þ

jCð2Þ
aΦj ≤ 101

f2a
TeV2

�
TeV2

S

�
: ð24Þ

These results hold irrespective of whether CW̃; CB̃, and CG̃
are included simultaneously or individually. It is also

worth noting that the bounds onCG̃ and Cð2Þ
aΦ are unchanged

compared to the individual limits (16) and (17).
Considering that CW̃ is always dominantly constrained
by Eq. (19), we conclude that only the unitarity constraint

on CB̃ depends significantly on whether Cð2Þ
aΦ is included

or not.

3. Truncating at dimension 5

Finally, it can be interesting to investigate bounds on the
dimension-5 interactions only. As we have seen above, the
most stringent bounds on CW̃ originate from processes
exhibiting just one dimension-5 vertex; therefore, it is not
modified when we truncate the EFT expansion to Oðf−1a Þ.
To obtain limits on CB̃ and CG̃ independently of

assumptions about Cð2Þ
aΦ, we can restrict our analysis to a

subspace of initial states such that contributions of the
dimension-6 operator are negligible for all the scattering
amplitudes retained. This is achieved by eliminating
“flavor” states in Eqs. (11) and (12) that lead to processes
containing two ALP external legs. We can rederive the
constraints on this flavor subspace, and we obtain that the
largest eigenvalues come from the Q ¼ 0, T0 matrix,
and they coincide with those in Eq. (20), leading to the
bounds in Eqs. (21)–(23). The result is the same, irre-
spective of whetherCB̃ and CG̃ are included simultaneously
or individually.

B. Helicity amplitudes involving fermions

ALP couplings to fermions can contribute to processes

f1σ1 f̄2σ2 → V3λ3V4λ4 ; ð25Þ

which can also violate unitarity. In this case, the partial-
wave expansion is given by

Mðf1σ1 f̄2σ2 → V3λ3V4λ4Þ
¼ 16π

X
J

ð2J þ 1Þδσ1;σ2dJσ1−σ2;λ3−λ4ðθÞ

× TJðf1σ1 f̄2σ2 → V3λ3V4λ4Þ: ð26Þ

In principle, f1σ1 f̄2σ2 → V3λ3V4λ4 amplitudes of a given J
partial wave can be incorporated together with the
V1λ1V2λ2 → V3λ3V4λ4 amplitudes in the corresponding TJ

matrix by extending the basis of states to incorporate the
relevant f1σ1 f̄2σ2 combinations contributing to a given Q;
see, for example, Ref. [50]. However, we find that the most
energy divergent amplitudes for fermion-antifermion scat-
tering grow at most as

ffiffiffi
S

p
and, therefore, the contributions

from the ALP-fermion couplings enter with different power
of S with respect to the ALP–gauge boson couplings in the
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eigenvalues of this generalized TJ matrices. Thus, to derive
independent unitarity constraints on the CfΦ couplings,
we find it more convenient to follow the alternative
procedure presented in Ref. [57] and relate the correspond-
ing f1σ1 f̄2σ2 → V3λ3V4λ4 amplitude to that of the elastic
process

f1σ1 f̄2σ2 → f1σ1 f̄2σ2 : ð27Þ

In this case, the unitarity relation is

Im½TJðf1σ1 f̄2σ2 → f1σ1 f̄2σ2Þ�
¼ jTJðf1σ1 f̄2σ2 → f1σ1 f̄2σ2Þj2
þ

X
V3λ3

;V4λ4

jTJðf1σ1 f̄2σ2 → V3λ3V4λ4Þj2

þ
X
N

jTJðf1σ1 f̄2σ2 → NÞj2; ð28Þ

where we take the limit S≫ ðMV3
þMV4

Þ2;ðMf1 þMf2Þ2.
N represents any state which f1σ1 f̄2σ2 can annihilate into
that does not consist of two bosons. Equation (28) is a
quadratic equation for Im½TJðf1σ1 f̄2σ2 → f1σ1 f̄2σ2Þ�, which
only admits a solution if

X
V3λ3

;V4λ4

jTJðf1σ1 f̄2σ2 → V3λ3V4λ4Þj2 ≤
1

4
: ð29Þ

The strongest bounds can be found by considering some
optimized linear combinations

jXi ¼
X
f1;σ1

xf2;σ2 jf1σ1 f̄2σ2i ð30Þ

with the normalization condition
P

fσ jxfσj2 ¼ 1, for which
the amplitude TJðX → V3λ3V4λ4Þ is the largest.
In this approach, processes of fermion scattering into one

gauge boson and one ALP provide independent constraints
on the ALP-fermion coupling. As mentioned above, the
most divergent relevant helicity amplitudes grow as

ffiffiffi
S

p
and

are listed in Table V. For couplings to leptons of a given
generation, the strongest bounds are obtained with jXi ¼
1ffiffi
2

p je−þeþþ þ e−−eþ−i (or equivalently with jXi ¼ jν−eþ−i).
For couplings to quarks of a given generation, accounting
for the NC ¼ 3 color states, the strongest bounds are
obtained with jXi ¼ 1ffiffiffiffiffiffi

2Nc

p PNc
a¼1 jqaþq̄aþ þ qa−q̄a−i, or equiv-

alently with 1ffiffiffiffi
Nc

p
PNc

a¼1 juaþd̄aþi and 1ffiffiffiffi
Nc

p
PNc

a¼1 jua−d̄a−i).
Furthermore, within the assumed flavour symmetry of
the axion coupling to fermions, the strongest bounds
correspond to the processes with fermions of the third
generation, and they read

jCaΦ − CeΦj ≤
16π

jYτj
�
faffiffiffi
S

p
�

¼ 50

jYτj
fa
TeV

�
TeVffiffiffi

S
p

�
; ð31Þ

jCaΦþCuΦj≤
16πffiffiffiffiffiffiffi
NC

p jYtj
�
faffiffiffi
S

p
�
¼ 29

jYtj
fa
TeV

�
TeVffiffiffi

S
p

�
; ð32Þ

jCaΦ−CdΦj≤
16πffiffiffiffiffiffiffi
NC

p jYbj
�
faffiffiffi
S

p
�
¼ 29

jYbj
fa
TeV

�
TeVffiffiffi

S
p

�
: ð33Þ

Because these bounds are inversely proportional to the
Yukawa coupling of the fermion and involve larger
coefficients, we conclude that the unitarity constraints on
the ALP-fermion couplings are orders of magnitude weaker
than those on ALP–gauge boson couplings even for the
coupling to the up quarks. Moreover, the operator OaΦ
should only be considered in a scenario where the fer-
mionic operators are absent. In this case, the most stringent
unitarity constraint on its coupling originates from Eq. (32).

IV. CONCLUSIONS

We have derived maximal constraints on the effective
interactions of axionlike particles from partial-wave uni-
tarity in 2 → 2 scattering processes. Our results are
summarized in Fig. 1. They hold in the kinematic regime
where

ffiffiffi
S

p
≫ v, and the ALP mass was also implicitly

0

FIG. 1. Summary of unitarity bounds derived in this work. The
shaded regions indicate allowed values of fa=C (fa=

ffiffiffiffi
C

p
in the

case of Cð2Þ
aΦ) and

ffiffiffi
S

p
for each bosonic interaction. For CW̃, we

plot the most stringent bound between Eq. (14) and (19). The
solid red line indicates the bound on CB̃ in Eq. (22), derived

allowing Cð2Þ
aΦ to vary simultaneously. The individual bound on

CB̃ given in Eq. (15) is drawn as a dotted line in the same color.
The bounds on fermionic operators are always subdominant and
are only marked as solid lines. The bound on CaΦ, that should
only considered in a setup where the fermionic operators are
absent, coincides with that on CuΦ. Finally, the gray dashed line
marks the diagonal for reference.
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taken to be ma ≪
ffiffiffi
S

p
. Furthermore, the consistency of the

ALP EFT expansion requires
ffiffiffi
S

p
≪ fa.

We find that, for fixed C=fa, the most stringent unitarity
bound is imposed on CW̃ in VV → Va scattering processes,
while the weakest limits are on ALP-fermion interactions.
The constraints exhibit only a limited dependence on
whether the effective operators are taken individually or
allowed to vary simultaneously, signaling that each of them
is dominantly constrained in a class of scattering ampli-
tudes that is nearly orthogonal to the others.
The constraints we have derived can be particularly

relevant for ALP searches at colliders [65,74,75,79–91],
where, depending on their masses, ALP particles could be
observed in a → XX decays, with X a generic SM state, in
Xa associated production (with the ALP either going
undetected or decaying to photons or light fermions) or
in nonresonant 2 → 2 scattering processes, where the ALP
appears as an off-shell internal line [86,90,91].
In this respect, let us stress that our results should not be

interpreted as strict unitarity constraints on any specific
process used in the ALP searches, in the sense that it might
be difficult to directly identify the kinematic information
available with the subprocess center-of-mass energy of an
individual 2 → 2 scattering. Notwithstanding, unitarity
bounds must be satisfied in the event generation and,
consequently, can affect the shapes of expected distribu-
tions used in the searches.
For example, recently, the ATLAS Collaboration has

searched for axions in events with an energetic jet [92]
or a photon [93] and missing transverse momentum. The
monojet analysis [92] constrains the axion coupling to
gluons to satisfy CG̃=fa < 0.008 TeV−1 at 95% C.L. Using
Eq. (23), we find that for the largest allowed coupling in
this search unitarity is preserved up to center mass-of-mass
energy of 39 TeV, clearly beyond the LHC reach. On the

other hand, the monophoton analysis limits the CW̃ cou-
pling to satisfy CW̃=fa < 0.12 TeV−1 at 95% C.L. From
Eq. (19), we read that for CW̃=fa at the 95% C.L. boundary
unitarity is violated in subprocesses with center-of-mass
energy greater than 1.04 TeV. We conclude that the tail of
the expected missing ET distribution should be analyzed
cautiously and the unitarity constraints could have an
impact in the derivation of the monophoton search bound.
The unitarity bounds derived in this work would be also

relevant in the event that an ALP signal will be detected in
the future (independently of the energy regime at which the
experimental search is conducted), leading to a defined
measurement of one or more ALP couplings. In this case,
unitarity bounds would provide an upper limit to the mass
scale of the new physics sector the ALP originates from and
motivate further searches in this energy region.
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APPENDIX: HELICITY AMPLITUDES AT
LEADING ORDER IN S

We present here the list of unitarity violating amplitudes
for all the 2 → 2 scattering processes considered in the
evaluation of the unitarity constraints.

TABLE I. Leading contributions to the helicity amplitudes for the channels involving SM bosons and even number of gluons in the
initial or final state and with projections in J ¼ 0. They contribute to the TJ matrices with Q ¼ 2, 1, 0 and J ¼ 0, 1. In the expressions,
Xþ ¼ ð1þ cos xÞ and X− ¼ ð1 − cos xÞ, where x is the polar angle.

λ1 λ2 λ3 λ4 Mð× S
f2a
Þ

WþWþ → WþWþ 1 −1 1 1 2C2
W̃

−1 1 ∓1 �1 X�C2
W̃

WþZ → WþZ −1 ∓1 1 �1 �2CW̃X−ðs2wCB̃ þ c2wCW̃Þ
WþZ → Wþγ −1 ∓1 1 �1 ∓2cwCW̃swX−ðCB̃ − CW̃Þ
Wþγ → Wþγ −1 ∓1 1 �1 �2CW̃X−ðc2wCB̃ þ s2wCW̃Þ
WþW− → WþW− −1 −1 −1 −1 4C2

W̃
−1 ∓ 1 1 �1 −2C2

W̃
X�

WþW− → ZZ −1 −1 ∓1 ∓1 �2
ffiffiffi
2

p
CW̃ðs2wCB̃ þ c2wCW̃Þ

WþW− → Zγ −1 −1 �1 �1 �4cwCW̃swðCB̃ − CW̃Þ
WþW− → γγ −1 −1 ∓1 ∓1 �2

ffiffiffi
2

p
CW̃ðc2wCB̃ þ s2wCW̃Þ

(Table continued)
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TABLE II. Leading contributions to the helicity amplitudes for the channels involving SM bosons and two ALPs and an even number
of gluons in the initial or final state. They contribute to the TJ matrices with Q ¼ 1, 0 and J ¼ 0 or J ¼ 1. In the expressions,
Xþ ¼ ð1þ cos xÞ and X− ¼ ð1 − cos xÞ, where x is the polar angle.

λ1 λ2 λ3 λ4 Mð× S
f2a
Þ

Wþa → Wþa −1 0 −1 0 −2C2
W̃
X−

−1 0 1 0 4C2
W̃
X−

0 0 0 0 1
2
Cð2Þ
aΦX−

WþW− → aa −1 −1 0 0 4
ffiffiffi
2

p
C2
W̃

−1 1 0 0 −2
ffiffiffi
2

p
C2
W̃

0 0 0 0 1ffiffi
2

p Cð2Þ
aΦ

ZZ → aa −1 −1 0 0 4ðs2wC2
B̃
þ c2wC2

W̃
Þ

−1 1 0 0 −2ðs2wC2
B̃
þ c2wC2

W̃
Þ

0 0 0 0 Cð2Þ
aΦ

Zγ → aa −1 −1 0 0 −4
ffiffiffi
2

p
cwswðC2

B̃
− C2

W̃
Þ

−1 1 0 0 2
ffiffiffi
2

p
cwswðC2

B̃
− C2

W̃
Þ

Za → Za −1 0 −1 0 −2X−ðs2wC2
B̃
þ c2wC2

W̃
Þ

−1 0 1 0 4X−ðs2wC2
B̃
þ c2wC2

W̃
Þ

0 0 0 0 1
2
Cð2Þ
aΦX−

Za → γa −1 0 −1 0 2cwswX−ðC2
B̃
− C2

W̃
Þ

−1 0 1 0 −4cwswX−ðC2
B̃
− C2

W̃
Þ

(Table continued)

TABLE I. (Continued)

λ1 λ2 λ3 λ4 Mð× S
f2a
Þ

ZZ → ZZ −1 −1 −1 −1 2ðc2wCW̃ − s2wCB̃Þ2
−1 1 ∓1 �1 −X�ðc2wCW̃ − s2wCB̃Þ2

ZZ → Zγ −1 −1 −1 −1 2
ffiffiffi
2

p
cwswðCB̃ − CW̃Þðs2wCB̃ − c2wCW̃Þ

−1 −1 ∓1 �1 −
ffiffiffi
2

p
X�cwswðCB̃ − CW̃Þðs2wCB̃ − c2wCW̃Þ

ZZ → γγ −1 −1 −1 −1 −2ððC2
B̃
þ C2

W̃
Þc2ws2w − CB̃CW̃ðc4w þ s4wÞÞ

−1 −1 1 1 −2CB̃CW̃
−1 1 ∓1 �1 X�ðCB̃ − CW̃Þ2c2ws2w

Zγ → Zγ −1 −1 −1 −1 4c2ws2wðCB̃ − CW̃Þ2
−1 −1 1 1 −2CB̃CW̃X−
−1 1 ∓1 �1 −2X�ðCB̃ − CW̃Þ2c2ws2w

γγ → γγ −1 −1 −1 −1 2ðc2wCB̃ þ s2wCW̃Þ2
−1 1 ∓ 1 �1 −X�ðc2wCB̃ þ s2wCW̃Þ2

WþW− → GaGb −1 −1 ∓1 ∓1 �8
ffiffiffi
2

p
CG̃CW̃; δab

ZZ → GaGb −1 −1 ∓1 ∓1 �8CG̃ðs2wCB̃ þ c2wCW̃Þδab
Zγ → GaGb −1 −1 ∓1 ∓1 ∓8

ffiffiffi
2

p
CG̃cwswðCB̃ − CW̃Þδab

γγ → GaGb −1 −1 ∓1 ∓1 �8CG̃ðs2wCB̃ þ c2wCW̃Þδab
GaGb → GcGd −1 −1 −1 −1 32C2

G̃
δabδcd

−1 −1 1 1 16C2
G̃
ðX−δacδbd þ Xþδadδbc − 2δabδcdÞ

−1 1 −1 1 −4XþC2
G̃
δacδbd

−1 1 1 −1 −4X−C2
G̃
δadδbc
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TABLE IV. Leading contributions to the helicity amplitudes for the channels involving SM bosons and one ALP. They contribute to
the TJ matrices with Q ¼ 1, 0 and J ¼ 1. In these amplitudes, Y ¼ sin x, where x is the polar angle.

λ1 λ2 λ3 λ4 Mð×e S3=2

faM2
W
Þ

WþW− → Za −1 0 0 0 ffiffiffi
2

p c2w
sw
CW̃Y

0 −1 0 0 −
ffiffiffi
2

p c2w
sw
CW̃Y

0 0 −1 0
ffiffiffi
2

p cw
sw
CW̃Y

WþW− → γa 0 0 −1 0
ffiffiffi
2

p
CW̃Y

WþZ → Wþa −1 0 0 0 −
ffiffiffi
2

p c2w
sw
CW̃Y

0 −1 0 0 ffiffiffi
2

p c2w
sw
CW̃Y

0 0 −1 0 −
ffiffiffi
2

p c2w
sw
CW̃Y

Wþγ → Wþa 0 −1 0 0
ffiffiffi
2

p
CW̃Y

TABLE II. (Continued)

λ1 λ2 λ3 λ4 Mð× S
f2a
Þ

γγ → aa −1 −1 0 0 4ðc2wC2
B̃
þ s2wC2

W̃
Þ

−1 1 0 0 −2ðc2wC2
B̃
þ s2wC2

W̃
Þ

γa → γa −1 0 −1 0 −2X−ðc2wC2
B̃
þ s2wC2

W̃
Þ

−1 0 1 0 4X−ðc2wC2
B̃
þ s2wC2

W̃
Þ

GaGb → aa −1 −1 0 0 16C2
G̃
δab

−1 11 0 0 −8C2
G̃
δab

Ha → Ha 0 0 0 0 1
2
Cð2Þ
aΦX−

HH → aa 0 0 0 0 1
2
Cð2Þ
aΦ

TABLE III. Leading contributions to the helicity amplitudes for the channels with one gluon in the initial and final states. They
contribute T̄J with Q ¼ 1, 0 and J ¼ 0, 1. Xþ ¼ ð1þ cos xÞ and X− ¼ ð1 − cos xÞ, where x is the polar angle.

λ1 λ2 λ3 λ4 Mð× S
f2a
Þ

WþGa → WþGb −1 ∓1 1 �1 �8CG̃CW̃X−δab
ZGa → ZGb −1 ∓1 1 �1 �8CG̃X−ðs2wCB̃ þ c2wCW̃Þδab
ZGa → γGb −1 ∓1 1 �1 ∓8CG̃cwswX−ðCB̃ − CW̃Þδab
γGa → γGb −1 ∓1 1 �1 �8CG̃X−ðc2wCB̃ þ s2wCW̃Þδab
Gaa → Gba −1 0 −1 0 −8C2

G̃
X−δab

−1 0 1 0 16C2
G̃
X−δab
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