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Unitarity constraints on ALP interactions
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We derive partial-wave unitarity constraints on gauge-invariant interactions of an axionlike particle up to
dimension-6 from all allowed 2 — 2 scattering processes in the limit of large center-of-mass energy.
We find that the strongest bounds stem from scattering amplitudes with one external axionlike particle and
only apply to the coupling to a pair of SU(2), gauge bosons. Couplings to U(1), and SU(3). gauge

bosons and to fermions are more loosely constrained.
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I. INTRODUCTION

Axionlike particles (ALPs) are generic pseudo-
Goldstone bosons that can emerge from the spontaneous
breaking of some global symmetry at energies well above
the electroweak (EW) scale v. While the main represen-
tative is the QCD axion (either “invisible” [1-8] or in
modern setups where the tie between axion mass and
couplings is relaxed [9-27]), this class of particles encom-
passes a large number of exotic states that can emerge in
composite Higgs models [28-32], models with spontane-
ous breaking of lepton number (“majorons”) [33,34],
dynamical flavor theories (“‘axiflavons™) [35-38], string
theory [39,40], and many other scenarios.

ALPs are usually studied within a model-independent
effective field theory (EFT) framework [41,42]. Their
pseudo-Goldstone nature justifies the assumption that
ALPs are the only light remnant of a much heavier new
physics sector, whose interactions are suppressed by a

fbrivio @thphys.uni-heidelberg.de
‘eboli @if.usp.br
“maria. gonzalez-garcia@stonybrook.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/104(3)/035027(11)

035027-1

characteristic scale f, > v. A priori, the allowed parameter
space spans several orders of magnitude both in the ALP
mass m, and in the couplings to Standard Model (SM)
particles that, within the EFT approach, enter at lowest
order as dimension-5 operators.

The interest in the ALP Lagrangian as a self-consistent
EFT has grown recently, leading to several studies of its
theoretical properties. For instance, the renormalization
group evolution and the matching to the ALP EFT valid
below the EW scale were derived in Refs. [43—-45]. The
interplay between dimension-5 ALP interactions and
dimension-6 operators in the Standard Model EFT
(SMEFT) was explored in Ref. [46]. The matching of
the ALP EFT to concrete QCD axion models was examined
in Ref. [47], which pointed out theoretical subtleties when
applying the EFT approach to loop processes.

In this work, we examine the validity range of the ALP
EFT at high energies on the basis of its perturbative partial-
wave unitarity properties. It is well known that classically
nonrenormalizable interactions give rise to rapid growth
of the scattering amplitudes with energy, which leads to
partial-wave unitarity violation at some large value of the
center-of-mass energy /S. Generically, partial-wave uni-
tarity violation signals the breakdown of the low-energy
description and indicates that extra fundamental degrees of
freedom or the onset of the nonperturbative regime must be
present around or below the apparent unitarity violation

Published by the American Physical Society


https://orcid.org/0000-0002-0396-5866
https://orcid.org/0000-0003-4107-6012
https://orcid.org/0000-0003-4681-8521
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.035027&domain=pdf&date_stamp=2021-08-27
https://doi.org/10.1103/PhysRevD.104.035027
https://doi.org/10.1103/PhysRevD.104.035027
https://doi.org/10.1103/PhysRevD.104.035027
https://doi.org/10.1103/PhysRevD.104.035027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

BRIVIO, EBOLIL and GONZALEZ-GARCIA

PHYS. REV. D 104, 035027 (2021)

scale in order to restore the physical behavior of scattering
amplitudes. Paradigmatic examples of the use of unitarity
relations to derive constraints on the validity of a theory
include the seminal work of Lee et al. [48,49] that imposed
an upper bound on the Higgs mass by analyzing the
unitarity of the standard model and was used to build a
case in favor of the construction of the present generation of
colliders. Another classical example are the bounds on new
fermions obtained by Chanowitz et al. [SO]. On a more
formal front, unitarity arguments have also been employed,
for example, in connection with the requirement of gauge
invariance [51].

In the last decades, partial-wave unitarity has been
employed ubiquitously to constrain effective interactions,
in particular in the electroweak sector (see, for example,
Refs. [52-59]). Recently, Refs. [60-62] presented a general
systematic study of unitarity bounds for the case of
effective interactions in the SMEFT and Higgs EFT
(HEFT). Generically, unitarity preservation imposes con-
sistency conditions on the theory such that, for the EFT

to be valid up to a given VS, the effective couplings (scale)
need to be smaller (larger) than a certain threshold.
Conversely, for given values of the EFT coefficients and
scale, unitarity imposes an upper limit on the energy scales
at which the EFT can be applied. In that respect, unitarity
bounds are crucial for the interpretation of actual experi-
ments, which study tails of kinematical distributions, since
one can infer unphysical bounds that are too strong if these
limits are not respected.

For the case of ALP EFT, the rapid growth of the
scattering amplitudes with energy, which leads to partial-
wave unitarity violation, is particularly enhanced. The
reason for that is the pseudo-Goldstone nature of the
ALPs which requires all their interactions to be classically
invariant under shifts a(x) — a(x) + a, i.e., to be of the
form J#0,a. As a consequence, an explicit momentum
dependence is present in all ALP couplings.

A partial analysis of unitarity constraints on ALP
couplings was presented in Refs. [63,64]. Here we
adopt a more systematic approach and derive maximal
constraints on all ALP interactions of dimension 5 and 6
from partial-wave unitarity, examining all allowed 2 — 2
scattering processes in the limit of large center-of-mass
energy. We adopt a procedure analogous to the one
employed in [60-62] for the case of effective interactions
in the SMEFT and HEFT.

The outline of this article is as follows. We present the
relevant Lagrangian employed in Sec. II and briefly discuss
the number of relevant operators we consider. The core of
the results is contained in Sec. III, where we derive first the
most general bounds for the ALP couplings to SM gauge
bosons which are obtained from the partial-wave analysis
of the scattering of boson pairs in Sec. III A. Section III B
contains our derivation of the most general independent

constraints on ALP couplings to SM fermions which are
obtained with the partial-wave analysis of scatterings
involving fermion pairs. We briefly discuss the results in
Sec. I'V. Explicit expressions of the helicity amplitudes for
all the relevant processes are presented in the Appendix.
II. ALP EFFECTIVE LAGRANGIAN

We consider the SM extended by the ALP effective

Lagrangian [41,42,65]

1 m2
‘CALP = Eaﬂaﬁ"a - 7612 + CBOB + CVVOW

+ €506 + CaoOuo

+ [Cu‘ZDOu(D + Cdd)Od(I) + CeCI)Oed) + HC]

+ Coa Ol (1)
where the effective operators

04 =L BB O=ilqrdu ()

a a

Oy = = Wi, Wi, Oup = ifqud(Dd, (3)

a a

O = —G4LGM™, O, = ifiZYecbe, (4)

0 |
00 = 22 (id%(D,®) — i(D,®) D)

;— (@) (5)

form a complete basis of CP-even ALP interactions up to
O(f7*) terms. Here, B,, Wi, and G% are the gauge bosons
of the U(1)y, x SU(2), x SU(3), SM symmetry, respec-
tively, and the dual field strengths are defined by
X, =1€,,,X. ® denotes the SU(2), Higgs doublet,
while ® = iz?®* is its dual (with 7/ being the Pauli
matrices). Upon EW symmetry breaking, (®'®) =
(v+ H)?/2, with H being the physical Higgs boson.
The left- (right-)handed fermion multiplets are denoted
by ¢, [ (u, d, e), and Y, Y,, Y, are the 3 x 3 Yukawa
matrices. All index contractions were left implicit, and
repeated indices are summed over unless otherwise speci-
fied. A mass term m, for the ALP was introduced, which is
generically induced in the presence of soft breaking of shift
invariance, such as nonperturbative instanton effects in the
case of the QCD axion [6,66—68].

We neglect CP-violating effects such that all Wilson
coefficients C; are real scalar quantities. Although this is
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not manifest in Egs. (2)—(5), all ALP interactions are
classically shift invariant: the interactions to bosons can
be written as d,aJ’ by integration by parts, where J is the
Chern-Simons current associated to the X = {B,W,G}
gauge boson.' The operators with fermions were taken to
follow the minimal-flavor-violation ansatz [69-71], i.e., to
respect a U(3)> global symmetry that is only broken by
insertions of the Yukawa couplings. With this flavor
structure, they could also be equivalently traded for a set
of chirality-conserving ones of the form (0,a) (¥, ", )6"",
with p, r flavor indices [44,72].

The operator 0,4 is actually redundant [41,45,65,72]:

an) = qu, - Od(I) - Oeq:. + H.c. (6)

Nevertheless, it is often retained because the set
{03,0y,0, 0,6} forms a complete and nonredundant
operator basis at dimension 5 in the bosonic sector that can

be of phenomenological interest.

The operator 0512 has been previously considered

in Refs. [73-76], and it is the only shift-invariant
operator’ that can be constructed at dimension 6.
SMEFT operators of dimension 6 are neglected; we
assume them to be suppressed by a scale Agvgrr # fa
and work consistently at order (f72A2ygpr)- Discussing
the interplay of the two expansions is beyond the scope
of this work.’

III. ANALYSIS OF UNITARITY CONSTRAINTS

A. Helicity amplitudes for the scattering
of pairs of bosons

Consider the two-to-two scattering of bosons V; with
helicities 4;,

Vin,Vay, = Vi, Vay,, (7)

'In the G case, only a discrete version of the shift invariance
is preserved due to the presence of nonvanishing instanton
configurations.

One more operator structure is present at dimension 6,
namely, (0,0"a)>. However, applying the ALP equation of
motion, this can be fully reabsorbed into a redefinition of the
ALP mass. We have checked the completeness of the dimension-
6 set with BASISGEN [77].

’As will become clear from the discussion in Sec. III, the
bounds on Cy, C t@> Caws and Cﬁp are not expected to change
significantly in the presence of dimension-6 SMEFT operators,
independently of the interplay between the SMEFT and ALP
expansions. This is because all these bounds are dominated by
scatterings with one or two external ALPs.

where we denote by V either gauge bosons, Higgs, or ALP.
The corresponding helicity amplitude can be expanded in
partial waves in the center-of-mass system as [78]

MV 13, Vo, = V31, Vay,)

v 1
= 167:2(2] + 1)\/1 +dy," \/1 +oy,

X d/{,l(e)eiM(pTJ(Vu] Vi, = Vi Vi), (8)

where A :ﬂ‘l —),2, H :)3 —14, M://{l —/12 —/13 +/14,
and 0 (@) is the polar (azimuthal) scattering angle. d is
the usual Wigner rotation matrix. This expression holds for
gauge bosons with 4 = 0,41 and for scalars (Higgs or
ALP) with A = 0; the fermion case will be addressed below.
For further details and conventions, see Ref. [60].

In the limit S>> (My, + My,)?, partial-wave unitarity
for a given elastic channel requires that

T/ (Vi3 Vs, = Viy, Vo) S 1. (9)

The most stringent bounds are obtained by diagonalizing
T’ in the particle and helicity space and then applying the
condition in Eq. (9) to each of the eigenvalues. This is the
approach which we follow.

We start by calculating the scattering amplitudes for all
possible combinations of bosons and helicities generated
by the SM extended with the Lagrangian in Eq. (1) for a
given total electric charge Q =2, 1, 0 and that give
nonvanishing projections on a given partial-wave J propor-
tional to some ALP coupling. Conservation of color implies
that initial or final states with color have to be considered
independently of those in a color singlet state. So, one is led
to consider separately the 77 (77) amplitude matrices for
processes with color singlet (octet) in the initial and final
states. One must also take into account that parity con-
servation at tree level implies the relation

T/ (Vi Vay, = V3, Vay,)
= (- ATV, Vo, = V3 Vas,,)  (10)

and leads to a reduction of the number of independent
helicity amplitudes. Time-reversal invariance further
reduces the number of helicity amplitudes that need to
be evaluated.

Altogether, the initial/final states contributing a priori to
the 77 matrices for each value of Q and J are
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(Q,J) States Total
2.0) Wiwl wiwg 3
2.1) Wiwg wiwi 4
(1.0) Wiz, WiZ, Wir. Wa 6 .
(L1) W§zy WiZy, W{Z. WiZ. Wgys Wiye Wia Wia WIH 16
(O, 0) WIW; WgWa ZiZi Z()ZO Z:t]/:t Y+V+ Z()H G:tG:t Z()a Ha aa HH 17
(0, 1) Wg Wa Wl Wa W(TW; WlW; Z:EZO Z()Zi Ziyi Zo}/i ZoH ZiH ViH Zoa Zia y+a Ha 26

and correspondingly the states contributing to the T
matrices are

(Q,J) States Total
(1.,0) WIG. 2
(1.1) WiG. WIG, 4
(0,0) Z:Gy y.G. 4
0.1) G.Gy Gia Z.G. ZyGy 7:G: 10

(12)

where upper indices indicate charge and lower indices
helicity. We also display in Egs. (11) and (12) the dimension-
ality of the particle and helicity matrix for each independent
(Q,J) channel. In Eq. (11), the states HH and W= H are only
present when the dimension-6 operator is considered.

We list in Tables I-IV, which are in the Appendix, the
expressions for the most S-divergent part of the amplitudes
for the channels which give the dominant contribution to
the 77 and 77 matrices.

1. Bounds on individual operators

As seen in Tables I-III, for processes with zero or two
ALPs as external states, the most energy-divergent ampli-
tudes occur for scattering of transversely polarized gauge
bosons, as expected. These amplitudes are all proportional
to the product of two axion couplings; therefore, the two
powers of their momentum involved in the coupling of ALP
to the gauge boson generate the leading S/f2 dependence.
A good fraction of them contributes to J = 0 matrices,
which are, a priori, expected to lead the strongest bounds.
Furthermore, for amplitudes with gluon pairs, the strongest
bounds are obtained for the gluon pair in the singlet color

1 NZ-1
State mzail |GaGa>.
Altogether from the diagonalization of the J = 0 matri-
ces and assuming only one nonzero coupling at a time, we

find that the largest eigenvalues correspond to the Q = 0,
T° matrix and read

1+97 S 1+V33 8
C16x f2 W’ 16 f? 2

4(N2-1) S 1S

WNe=D)S 0 g L 500 (13)
/s fa 32x £

(11)

respectively. Applying the condition in Eq. (9) to each of
these eigenvalues, we obtain the bounds

ICy 32.1T’;”V <T\2.’> (14)
ICyl 52.7T’;“V (%) (15)
Cyl <03113C—V<T"\/¥), (16)
1c?) < 101%%}2 (Te;ﬂ). (17)

We observe that the constraint on the dimension-6
operator 0(02(11 is dominated by scattering amplitudes with
two ALP external states.

Unlike the amplitudes with an even number of ALP in
the external states, some helicity amplitudes with only one
ALP in either the initial or final state have a leading
behavior 83/(f,M32,), as seen in Table IV.* These ampli-
tudes involve two longitudinally polarized gauge bosons,
whose polarization vectors are proportional to v/, and one
transversely polarized gauge boson, whose momentum
contributes another power of /S. This configuration can
only be generated by a combination of the SM vertices and
those induced by Oy, and, consequently, the amplitudes
involve a single power of the Cy; coupling and of the SM
coupling e and do not depend on any other Wilson
coefficient. As seen from the scattering angle dependence
of the amplitudes in Table IV, they contribute only to the
T’=! matrix with either Q = 0 or Q = 1. Diagonalizing
these, we find that the largest eigenvalue is

V142 +2ch $832

247 faM%V

eCy, (18)

“This is in contrast with what is found for effective interactions
in the SMEFT [60-62] for which all operators of a given
dimension lead to most divergent amplitudes with the same
power of S, that is, S for dimension-6 operators and S2 for
dimension-8 operators.
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where c,, is the cosine of the weak mixing angle. Therefore,
the condition in Eq. (9) implies the constraint on Cy,

f. (TeV\3
Cyl 20l4—(—F) .
Cwl < TeV \ VS

Comparing the bounds on Cy, from J = 0-wave unitar-
ity, Eq. (14), and from J = I-wave unitarity, Eq. (19), we
find that the constraint derived from the / = 1 amplitudes is
the strongest for

(19)

VS > 260 GeV.

2. Including multiple operators simultaneously

Fixing CE{?, =0 (or equivalently barring cancellations

between dimension-5 and-6 terms) and allowing multiple
dimension-5 operators to vary simultaneously does not alter
significantly the bounds reported above. For Cy, this is
obvious because the leading constraint Eq. (19) is genu-
inely independent of the other Wilson coefficients. For Cj
and Cg, this can be understood by considering that C is
dominantly constrained by GG, — GG, scattering in
the color-singlet channel, which is independent of Cj.
We have also verified this explicitly by diagonalizing
the Q =0 7779 matrix with Cj, Ci present at the same
time. The diagonalization can still be done analytically,
though the resulting expressions for the eigenvalues are
not particularly illuminating. Imposing the unitarity
limits on those eigenvalues yields the same bounds as in
Egs. (15) and (16).

Allowing all operators of dimension 5 and 6 to be present
simultaneously (i.e., allowing cancellations between both
orders), we find that the largest eigenvalues are

S5 2 iic% 4(N2C_1)£C2_
8zfa W 8xfi ¥ T fi ¢
S
and Ef—i ad> (20)

and correspondingly the unitarity limits on the Wilson
coefficients are

ol <220 <T 21)

51
\,/

TeV
Gyl < 5.0T’;—“V (%) (22)
Cal <031 TJ;—V ng) (23)
%) < 101 %}2 (Te;’2>. (24)

These results hold irrespective of whether Cy;, Cg, and Cg
are included simultaneously or individually. It is also
worth noting that the bounds on Cg and C[(i[), are unchanged
compared to the individual Ilimits (16) and (17).
Considering that Cy; is always dominantly constrained
by Eq. (19), we conclude that only the unitarity constraint
on Cp depends significantly on whether Cﬁg
or not.

is included

3. Truncating at dimension 5

Finally, it can be interesting to investigate bounds on the
dimension-5 interactions only. As we have seen above, the
most stringent bounds on Cy, originate from processes
exhibiting just one dimension-5 vertex; therefore, it is not
modified when we truncate the EFT expansion to O(f;!).

To obtain limits on Cz and Cg independently of
assumptions about ngql, we can restrict our analysis to a
subspace of initial states such that contributions of the
dimension-6 operator are negligible for all the scattering
amplitudes retained. This is achieved by eliminating
“flavor” states in Eqgs. (11) and (12) that lead to processes
containing two ALP external legs. We can rederive the
constraints on this flavor subspace, and we obtain that the
largest eigenvalues come from the Q =0, T° matrix,
and they coincide with those in Eq. (20), leading to the
bounds in Egs. (21)—~(23). The result is the same, irre-
spective of whether Cj and Cg are included simultaneously
or individually.

B. Helicity amplitudes involving fermions

ALP couplings to fermions can contribute to processes

f101f262 - V3/13 V%, (25)
which can also violate unitarity. In this case, the partial-
wave expansion is given by

M(f16,f20, = V3i,Vas,)
=167) (2] +1)8,, p,d? _, ;. _;.(0)
7

X T (f15,f20, = V31, Vas,)- (26)
In principle, f1,, /25, = V3,,Va,, amplitudes of a given J
partial wave can be incorporated together with the
V14, Vas, = V3,,Va;, amplitudes in the corresponding 7”7
matrix by extending the basis of states to incorporate the
relevant f,, f_z,,z combinations contributing to a given Q;
see, for example, Ref. [50]. However, we find that the most
energy divergent amplitudes for fermion-antifermion scat-
tering grow at most as v/S and, therefore, the contributions
from the ALP-fermion couplings enter with different power
of S with respect to the ALP—gauge boson couplings in the
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eigenvalues of this generalized 7”7 matrices. Thus, to derive
independent unitarity constraints on the Cyq couplings,
we find it more convenient to follow the alternative
procedure presented in Ref. [57] and relate the correspond-
ing f1,,f20, = V3;,Va,, amplitude to that of the elastic
process

flalezrz - f161f20'2' (27)

In this case, the unitarity relation is

Im[TJ(flalf_Zaz - f10'1f_20'2>]
= |Tl(f10'1f262 - f151f202)|2
+ Z T (f16,f20, = Vai,Vai,)?

Vi Vasy

+ Z|Tj(flo'|f262 - N)
N

2, (28)

where we take the limit $>> (My, +My,)?, (M, +M,)>
N represents any state which f f_262 can annihilate into
that does not consist of two bosons. Equation (28) is a
quadratic equation for Im[7” (1, f202 = fio, f262)], which
only admits a solution if

_ 1
Z T (f10,f20, = Vai,Var,)|* < 1 (29)

Vi Vs,

The strongest bounds can be found by considering some
optimized linear combinations

|X> = zxfz,oz |flo'1f20'2> (30)
f1.01

with the normalization condition ), |x;,|> = 1, for which
the amplitude 77 (X — V3, Vy,,) is the largest.

In this approach, processes of fermion scattering into one
gauge boson and one ALP provide independent constraints
on the ALP-fermion coupling. As mentioned above, the
most divergent relevant helicity amplitudes grow as v/S and
are listed in Table V. For couplings to leptons of a given
generation, the strongest bounds are obtained with |X) =

\/%|e;e+ +eZel) (or equivalently with |X) = |v_el)).
For couplings to quarks of a given generation, accounting
for the No =3 color states, the strongest bounds are

obtained with |X) = \/%1725;1 lg% g% + q“q%), or equiv-

alently with —L=370, [ufd%) and —=370 [ucde)).
Furthermore, within the assumed flavour symmetry of
the axion coupling to fermions, the strongest bounds
correspond to the processes with fermions of the third
generation, and they read

50 f, (Tev
‘mmv(%)’ B

167 (fo\_29 fo (TeV
|C“‘D+C”“’|S\/N—c|Y,I<JS’)_IY,|TeV<\/§>’ (32)

. 16 (f.\_29 fo (TeV
Cao C"‘I"S\/zv—am(ﬁ) |Yb|Tev(ﬁ>' (33)

Because these bounds are inversely proportional to the
Yukawa coupling of the fermion and involve larger
coefficients, we conclude that the unitarity constraints on
the ALP-fermion couplings are orders of magnitude weaker
than those on ALP-gauge boson couplings even for the
coupling to the up quarks. Moreover, the operator O,q
should only be considered in a scenario where the fer-
mionic operators are absent. In this case, the most stringent
unitarity constraint on its coupling originates from Eq. (32).

167 fa>
Cio — Cop| < —
Cav = Ceol <77} («s

IV. CONCLUSIONS

We have derived maximal constraints on the effective
interactions of axionlike particles from partial-wave uni-
tarity in 2 — 2 scattering processes. Our results are
summarized in Fig. 1. They hold in the kinematic regime
where /S > v, and the ALP mass was also implicitly
104
103
102

10!

10°

fa/Cams OF fu/V C2 [TeV]

101

102 ' '
10T, 100 107 102

V'S [TeV]

FIG. 1. Summary of unitarity bounds derived in this work. The
shaded regions indicate allowed values of f,/C (f,/+/C in the

case of Cﬁ,) and /S for each bosonic interaction. For C W, we
plot the most stringent bound between Eq. (14) and (19). The
solid red line indicates the bound on Cj in Eq. (22), derived

allowing Cﬁ to vary simultaneously. The individual bound on

Cjy given in Eq. (15) is drawn as a dotted line in the same color.
The bounds on fermionic operators are always subdominant and
are only marked as solid lines. The bound on C,g, that should
only considered in a setup where the fermionic operators are
absent, coincides with that on C,q. Finally, the gray dashed line
marks the diagonal for reference.
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taken to be m, < \/S. Furthermore, the consistency of the

ALP EFT expansion requires /S < f,.

We find that, for fixed C/f,, the most stringent unitarity
bound is imposed on Cy; in VV — Va scattering processes,
while the weakest limits are on ALP-fermion interactions.
The constraints exhibit only a limited dependence on
whether the effective operators are taken individually or
allowed to vary simultaneously, signaling that each of them
is dominantly constrained in a class of scattering ampli-
tudes that is nearly orthogonal to the others.

The constraints we have derived can be particularly
relevant for ALP searches at colliders [65,74,75,79-91],
where, depending on their masses, ALP particles could be
observed in @ — XX decays, with X a generic SM state, in
Xa associated production (with the ALP either going
undetected or decaying to photons or light fermions) or
in nonresonant 2 — 2 scattering processes, where the ALP
appears as an off-shell internal line [86,90,91].

In this respect, let us stress that our results should not be
interpreted as strict unitarity constraints on any specific
process used in the ALP searches, in the sense that it might
be difficult to directly identify the kinematic information
available with the subprocess center-of-mass energy of an
individual 2 — 2 scattering. Notwithstanding, unitarity
bounds must be satisfied in the event generation and,
consequently, can affect the shapes of expected distribu-
tions used in the searches.

For example, recently, the ATLAS Collaboration has
searched for axions in events with an energetic jet [92]
or a photon [93] and missing transverse momentum. The
monojet analysis [92] constrains the axion coupling to
gluons to satisfy Cg/f, < 0.008 TeV~! at95% C.L. Using
Eq. (23), we find that for the largest allowed coupling in
this search unitarity is preserved up to center mass-of-mass
energy of 39 TeV, clearly beyond the LHC reach. On the

TABLE 1.

other hand, the monophoton analysis limits the Cy, cou-
pling to satisfy Cy/f, < 0.12 TeV~! at 95% C.L. From
Eq. (19), we read that for Cy;,/ f, at the 95% C.L. boundary
unitarity is violated in subprocesses with center-of-mass
energy greater than 1.04 TeV. We conclude that the tail of
the expected missing E distribution should be analyzed
cautiously and the unitarity constraints could have an
impact in the derivation of the monophoton search bound.

The unitarity bounds derived in this work would be also
relevant in the event that an ALP signal will be detected in
the future (independently of the energy regime at which the
experimental search is conducted), leading to a defined
measurement of one or more ALP couplings. In this case,
unitarity bounds would provide an upper limit to the mass
scale of the new physics sector the ALP originates from and
motivate further searches in this energy region.
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APPENDIX: HELICITY AMPLITUDES AT
LEADING ORDER IN S

We present here the list of unitarity violating amplitudes
for all the 2 — 2 scattering processes considered in the
evaluation of the unitarity constraints.

Leading contributions to the helicity amplitudes for the channels involving SM bosons and even number of gluons in the

initial or final state and with projections in J = 0. They contribute to the T’/ matrices with Q =2, 1,0and J = 0, 1. In the expressions,
X, = (I 4+cosx) and X_ = (1 —cosx), where x is the polar angle.

A A A3 A4 M(Xf_sz)
WHW+H - wHw+ 1 -1 1 1 202,

-1 1 F1 +1 X.Cy,
Wtz - Wtz -1 ¥l 1 +1 +2CyX_(s2Cp + c2Cy)
WHtZ — Wty -1 F1 1 +1 F2¢,,Cyy5,,X_(Cp — Cyp)
Wty > Wty -1 ¥l 1 +1 +2CyX_(c3Cp + s2Cy)
WEW= - WHw- -1 -1 -1 -1 4CL

-1 Fl 1 +1 —2C2 X,
WtW- = ZZ -1 -1 F1 F1 +2v2Cy (s2C + 2 Cy)
WHW- = Zy -1 -1 +1 +1 +4c,,Cyps,,(Cz — Cy)
WHW~ = yy -1 -1 Fi F1 +2v2Cy(c2Cy + 52.C)

(Table continued)
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TABLE 1. (Continued)

A YR A3 A4 M(x %)
77 - 77 -1 -1 -1 -1 2(c2Cy — s2Cp)?
-1 1 ¥l +1 -X . (c3Cy — s2.C3)?
77 — Zy -1 -1 -1 -1 2v/2¢,,5,,(Cy — Cyi) (s2C3 = c2Cy)
-1 -1 Fi +1 —\/EXiCWSW(CB - CVV)(SEVCB - C%’CW)
77 = yy -1 -1 -1 -1 =2((C} + C3))ensy — CpCy (e + 53)
-1 -1 1 1 -2C3Cy
-1 1 ¥l +1 X, (Cy — Cy)*clss,
Zy - Zy -1 -1 -1 -1 4252 (Cp — Cy)?
-1 -1 1 1 —-2CCyX_
-1 1 ¥l +1 —2X.(Cy — Cy)*cks?,
Yy =y -1 -1 -1 -1 Z(C%,CB + S%VCW)Z
-1 1 F1 +1 —X,(c}Cx + s2Cy)?
WW- - GG -1 -1 Fl Fl +8v2C;Cyy. Bap
77 — GG® -1 -1 ¥l F1 +8C:(s3Cx + 2 Cy)0a
Z}/ - GaGb -1 -1 :Fl :Fl ng\/icf}cwsw(cl? - CW)éab
vy — G9G® -1 -1 ¥l ¥l +8Cx(s2Cx + c2.Cy)dap
GG > GeG? -1 -1 -1 -1 32(,%;5,1;,550/
-1 -1 1 1 16C2(X_64c6p4 + X 8aabpe — 2846ca)
-1 1 -1 1 —4X C%848pa
-1 1 1 -1

~4X_C2%3,48

TABLEII. Leading contributions to the helicity amplitudes for the channels involving SM bosons and two ALPs and an even number
of gluons in the initial or final state. They contribute to the 77 matrices with Q =1, 0 and J =0 or J = 1. In the expressions,
X, = (14 cosx) and X_ = (1 — cosx), where x is the polar angle.

R Ay A A4 M(x f%)
Wtra - Wta -1 0 -1 0 203 X_
-1 0 1 0 4C% X
2)
0 0 0 0 X
WtW~ - aa -1 -1 0 0 4\/56%‘/
-1 1 0 0 _zﬂcﬁv
0 0 0 0 1@
V2 Ta®
77 — aa -1 -1 0 0 4(s3.C3 + 3. CY)
-1 1 0 0 —2(s3,C3 + 3, Cy)
2
0 0 0 0 c?
Zy = aa -1 -1 0 0 _4ﬂcwsw(C% — C%/)
— 2 2
1 1 0 0 2\/§cwsw(Cg -C%)
Za — Za -1 0 -1 0 —2X_(s3,C% + ¢ Cx)
-1 0 1 0 4X_(s,2VC% + c%,C%V)
2)
0 0 0 0 Lelx.
Za = ya -1 0 -1 0 2¢,5,X_(C3 = C})
2 2
-1 0 1 0 —4¢,,5,X_(C% - C%)
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TABLE II. (Continued)

/11 22 ),3 /14 M(X J’%)
Yy = aa -1 -1 0 0 4(C%,C2E + SIZVC%V)

-1 1 0 0 —2(c3C5 + 53,C3)
ya = ya -1 0 -1 0 —2X_(c,2vC§ + sﬁ,C%V)

-1 0 1 0 4X_(cyCy + 53,Cy)
GG’ > aa -1 -1 0 0 16C266ab

-1 11 0 0 —8C%5u

2
Ha — Ha 0 0 0 0 %C%X_
HH — aa 0 0 0 0 1c®
2 ~ad

TABLE III. Leading contributions to the helicity amplitudes for the channels with one gluon in the initial and final states. They
contribute 77 with Q = 1, 0 and J =0, 1. X, = (1 + cosx) and X_ = (1 —cosx), where x is the polar angle.

A A 3 A4 M(x f%)
WG - WGP -1 ¥l 1 +1 +8C:CyX_ 84
7G4 > ZGP -1 =g 1 +1 +8CX_(s2Cp + c2Cyy)dup
7ZG% - yG" -1 = 1 +1 F8C:C, 5, X_(C — Cii)Sup
rG* = yG" -1 ¥l 1 £l £8CEX(ch.Ch + 52Cw )b
G — G'a -1 0 -1 0 —8CLX 84

-1 0 1 0 16CEX 6,

TABLE IV. Leading contributions to the helicity amplitudes for the channels involving SM bosons and one ALP. They contribute to

the 77 matrices with Q = 1, 0 and J = 1. In these amplitudes, Y = sinx, where x is the polar angle.

A A A3 A4 /\/l(xeff;;%v)
WHW~ - Za -1 0 0 \/E%CWY
-1 0 _\@%CWY
0 - 0 VAS Y

WTW~ = ya 0 0 -1 0 V2CiY
WZ - Wta -1 0 0 _\/55_7 CoY
-1 0 \/ji_CWY
0 -1 0 VA Cyy

Wry - Wha 0 -1 0 0 V2CiY
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TABLE V. Leading contributions to the helicity amplitudes for the channels with fermion scattering. a, b denote color indices, and r, s

denote flavor indices.

g o) A3 A4 M(l‘f/—g)
eyel = Za - - 0 0 % (Caw = Cea)(Y7) s
+ + 0 0 \/LE (Ca<I) - Cetb)(Ye)sr
1_/res+ - Wta - - 0 0 (Ca<1> - Ce<I> (YZ)rs
u‘,‘ﬁi’ — Za - - 0 0 % (Ca<I> + Cu@)(YZ)rséab
+ + 0 0 Lz (CaCD + Cull>)(Yu)vr5db
didb - Za - - 0 0 % (Caw = Caa)(Y ) rs8ab
+ + 0 0 7 (Cao = Cao) (Y ) 0
uldt - wta - - 0 0 (Caw = Caa)(Y3) s8ab
+ + 0 0 (CaCD + Cu<1>)(Yu)sr5ab
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