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We present a comprehensive study of the electroweak interactions using the available Higgs and
electroweak diboson production results from LHC runs 1 and 2 as well as the electroweak precision data in
terms of the dimension-six operators. Under the assumption that no new tree-level sources of flavor
violation or violation of the universality of the weak current are introduced, the analysis involves 21
operators. We assess the impact of the data on kinematic distributions for the Higgs production at the LHC
by comparing the results obtained by including the simplified template cross-section data with those in
which only total Higgs signal strengths are considered. We also compare the results obtained when
including the dimension-six anomalous contributions to order 1=Λ2 and to order 1=Λ4. As an illustration of
the LHC potential to indirectly learn about specific forms of new physics, we adapt the analysis to constrain
the parameter space for a few simple extensions of the standard model which generate a subset of the
dimension-six operators at tree level.
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I. INTRODUCTION

The large integrated luminosity accumulated by ATLAS
and CMS during run 2 of the Large Hadron Collider (LHC)
extended the reach of direct searches for new physics. It
also allowed for studying some processes in more detail—
e.g., differential distributions are available for the Higgs
production, or new channels were employed to explore the
self-interactions of the electroweak gauge bosons. The
outcome of the direct searches has been negative so far:
no new states were observed. The most straightforward
interpretation of this result points to a higher-than-
kinematically-accessible new physics scale. This makes
the framework of effective Lagrangians [1–3] the obvious
tool to search for indirect signals of (or limits on) new
physics.

The effective Lagrangian approach is suited for model-
independent analyses, since it is based exclusively on the
low-energy-accessible states and symmetries. Assuming
that the scalar particle observed in 2012 [4,5] belongs to an
electroweak doublet, we can realize the SUð2ÞL ⊗ Uð1ÞY
symmetry linearly. The resulting model is the so-called
standard-model effective field theory (SMEFT). In this
framework, dimension-six operators are the ones that can
contribute to the LHC physics at the lowest order. But even
limiting the effective Lagrangian to dimension six, the
number of operators which can give signals at the LHC is
large, stressing the relevance of the new kinematic infor-
mation and the new observed channels.
In this work, we focus on the part of the dimension-six

Lagrangian that modifies the electroweak interactions.
Under the assumption of no new tree-level sources of
flavor violation or violation of universality of the weak
current, 21 dimension-six operators are relevant, and we
introduce in Sec. II our choice of operator basis. Their
Wilson coefficients parametrize our ignorance of the
specific form of the new physics, and to obtain the strongest
possible bounds in this general scenario, one must perform
global analyses using all available experimental informa-
tion. Here, we take into account the electroweak precision
data (EWPD) and the data on electroweak diboson and
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Higgs productions at the LHC (see Sec. II). Recently,
ATLAS and CMS released information on the kinematic
distributions for the Higgs in the form of simplified
template cross sections (STXSs) [6,7]. In order to under-
stand the impact of such distributions with the present
integrated luminosity, we have performed our studies using
the STXS data as well as the Higgs results in the form of
total signal strength (SS).
In a bottom-up approach, all Wilson coefficients are

treated as free parameters. But, in a realistic UV comple-
tion, the Wilson coefficients are determined by the high-
energy physics and might be correlated. In order to
illustrate the importance of these correlations, we also
obtain constraints on simple extensions of the standard
model (SM) that give rise to dimension-six operators at tree
level. We consider extensions with only one single particle
added to the spectrum and two Higgs doublet models which
we introduce in Sec. II A.
The results stemming from our global analyses, pre-

sented in Secs. IV and VI, show no statistically significant
source of tension with the SM. We stress the complemen-
tarity of the different datasets in reaching this conclusion. In
particular, we find that the LHC integrated luminosity is
large enough to allow for non-negligible tightening of the
bounds on some of the Wilson coefficients already con-
strained by the EWPD. Moreover, we show that the use of
Higgs data is important to limit departures from the SM
predictions for the triple electroweak gauge couplings
(TGCs) due to the correlation introduced by the linear
realization of the SM gauge symmetry in the effective
operators.
Our analyses were conducted using the theoretical

predictions linear [i.e., OðΛ−2Þ] in the Wilson coefficients,
as well as including the quadratic [OðΛ−4Þ] terms with the
aim of estimating the uncertainties associated with the
expansion in power of the high scale Λ. When working up
to order Λ−4, a set of (quasi)degenerate solutions appear
associated with the flipping of the sign of some Higgs
coupling. They lead to disconnected allowed ranges for the
correspondingWilson coefficients which do not contain the
SM. Our analysis shows how Higgs kinematic distributions
not only reduce the allowed SM-connected solutions, but
also help in resolving some of these degeneracies, ruling
out the non-SM-connected solutions for some of the
operators. Generically, we find that, when focusing on
SM-connected ranges of parameters, the precision on the
bounds derived at OðΛ−2Þ and at OðΛ−4Þ become com-
parable for most operators. Quantitatively, our results are
summarized in Table VI and Figs. 12 and 13.
At present, the comprehensive analysis of collider results

in the framework of the SMEFT is in the hands of
phenomenologists (see Refs. [8–13] for the most recent
analyses). This article adds to this literature by including
the most updated datasets and by the different working
hypothesis employed. In brief, some of the cited analyses

make a detailed study of flavor effects; however, they do
not take into account the Higgs kinematic distribution in the
STXS format; see, for instance, Refs. [8,10,11]. From the
point of view of data samples included in the analysis,
Refs. [12,13] are the most complete, also including top
results. But respecting Higgs analysis, they did not include
the full updated ATLAS and CMS STXS of run 2 Higgs
data, which we consider here. This allows us to quantify the
present impact of the Higgs kinematic distribution data by
contrasting the bounds obtained using STXS with those
found using only the signal-strength data. In respect to the
working hypothesis, we perform our analyses using the
Hagiwara, Ishihara, Szalapski, and Zeppenfeld (HISZ)
basis [14,15], which does not exhibit blind directions in
the EWPD, in contrast with the Warsaw basis [16]
employed in Refs. [8–13]; see Sec. II. Finally, as mentioned
above, we perform our analysis both at OðΛ−2Þ and at
OðΛ−4Þ as a way to quantitatively address the importance
of higher-order terms and the use of EFTwithin its range of
validity.

II. THEORETICAL FRAMEWORK

In order to describe the effects of new physics only
directly accessible at a higher energy scale Λ, we supple-
ment the SM with higher-dimension operators:

Leff ¼ LSM þ
X
n>4;j

fn;j
Λn−4 On;j; ð2:1Þ

where the SM SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY gauge sym-
metry is realized linearly in the On;j operators. Neutrino
physics strongly constrains the dimension-five operator
[17]; therefore, dimension-six operators are those with the
lowest dimension that contribute to processes at the LHC.
For the sake of simplicity, we focus on dimension-six
operators which conserve C and P (besides total lepton and
baryon number). It is well known that there are 59
independent dimension-six operators [16], up to flavor
and Hermitian conjugation. Here, we focus on those that
modify the electroweak interactions impacting precision
electroweak data, TGCs, and Higgs physics. For our
analysis, 21 independent dimension-six operators are
relevant, and we list our choice of basis in Tables I and II.
In particular, for the pure bosonic operators, we use the

HISZ basis [14,15] (see Table I).Φ stands for the SMHiggs
doublet, and we have defined B̂μν ≡ iðg0=2ÞBμν and Ŵμν≡
iðg=2ÞσaWa

μν, with g and g0 being the SUð2ÞL and Uð1ÞY
gauge couplings, respectively. In respect to the main effect
of these operators in the observables, the OBW and OΦ;1

operators are ubiquitous: they modify the electroweak
gauge boson couplings among themselves and the cou-
plings to the Higgs boson and fermions. The operator OΦ;2

rescales all the SM Higgs couplings. OB, OW , and OWWW
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contribute to triple gauge couplings, while OB, OW , OBB,
OWW , andOGG affect the Higgs couplings to gauge bosons.
We notice that our choice of operators differs from the

independent basis choice in Ref. [16] and from that
employed in other analyses (see Refs. [8–11,13,18–20]
for some recent examples and references therein). Here, we
keep the operators OB and OW , and we remove instead
some operators involving fermions.
The independent set of fermionic operators employed in

our analysis is presented in Table II, where the lepton
(quark) doublet is denoted by L (Q) and fR are the SUð2ÞL
singlet fermions. When including a subindex, it refers to the
fermionic generation. When no subindex is included, the
operator is the same for three generations. In addition, we

define Φ†D
↔

μΦ ¼ Φ†DμΦ − ðDμΦÞ†Φ and Φ†D
↔a

μΦ ¼
Φ†TaDμΦ − ðDμΦÞ†TaΦ with Ta ¼ σa=2, with σa being
the Pauli matrices. The Gell-Mann matrices1 are repre-
sented by λa. In selecting the operators in Table II, we have
assumed no family mixing in order to prevent the gen-
eration of too-large flavor violation [22,23], and, for the
sake of simplicity, we have considered the operators
involving couplings to gauge bosons to be generation
independent. With these hypotheses, the operators involv-

ing lepton doublets Oð1Þ
ΦL and Oð3Þ

ΦL are removed from our
basis [24], employing the freedom associated with the use
of equations of motion [25–28]. This, as mentioned above,
differs from the choice of basis in Ref. [16], in which these
lepton doublet operators are kept in the exchange of the
bosonic operatorsOB andOW . The advantage of our choice
is that it avoids the existence of blind directions [29,30] in

the EWPD analyses so that the results of EWPD can be
shown independently. It also allows for better discrimina-
tion of the impact of the LHC data on the precise
determination of the fermion-gauge couplings versus gauge
boson self-couplings.
In summary, the operators in the first two lines of Table II

modify the fermion couplings to electroweak gauge bosons
and the Higgs. And we notice that with our choice of basis,
the only operator that modifies the Z coupling to leptons is

Oð1Þ
Φe. On the other hand, the operator in the third line is the

only one in our analyses affecting the fermion-gluon
coupling, and it was included because it impacts the
Higgs production via gluon fusion. The operators modi-
fying the Yukawa interactions are presented in the fourth
line, while the last one contains the only four-fermion
operator that takes part in the determination of the Fermi
constant.
Altogether, eight operators contribute at OðΛ−2Þ at tree

level to the EWPD observables [31], and the relevant part of
the effective Lagrangian reads

ΔLEWPD
eff ¼ fð1ÞΦQ

Λ2
Oð1Þ

ΦQ þ fð3ÞΦQ

Λ2
Oð3Þ

ΦQ þ fð1ÞΦu

Λ2
Oð1Þ

Φu þ
fð1ÞΦd

Λ2
Oð1Þ

Φd

þ fð1ÞΦe

Λ2
Oð1Þ

Φe þ
fBW
Λ2

OBW þ fΦ;1

Λ2
OΦ;1

þ 2
fLLLL
Λ2

OLLLL: ð2:2Þ

The production of electroweak gauge boson pairs
WþW−, W�Z, and W�γ (from here on, EWDBD) receives
contributions from dimension-six operators that modify the
electroweak gauge boson couplings to fermions, as well as
the triple gauge couplings. It is interesting to notice that
dimension-six operators do not give rise to anomalous
TGCs among neutral gauge bosons, which appear only at

TABLE I. Dimension-six operators containing only bosonic fields that we considered in our analyses. The
notation is given in the text.

OBW ¼ Φ†B̂μνŴ
μνΦ OΦ;1 ¼ ðDμΦÞ†ΦΦ†ðDμΦÞ OΦ;2 ¼ 1

2
∂μðΦ†ΦÞ∂μðΦ†ΦÞ

OB ¼ ðDμΦÞ†B̂μνðDνΦÞ OW ¼ ðDμΦÞ†ŴμνðDνΦÞ OWWW ¼ Tr½Ŵν
μŴ

ρ
νŴ

μ
ρ�

OGG ¼ Φ†ΦGa
μνGaμν OBB ¼ Φ†B̂μνB̂

μνΦ OWW ¼ Φ†ŴμνŴ
μνΦ

TABLE II. Dimension-six operators containing fermionic fields that we considered in our analyses. The notation
is given in the text.

Oð1Þ
ΦQ ¼ Φ†ðiD↔μΦÞðQ̄γμQÞ Oð3Þ

ΦQ ¼ Φ†ðiD↔a
μΦÞðQ̄γμTaQÞ Oð1Þ

Φu ¼ Φ†ðiD↔μΦÞðūRγμuRÞ
Oð1Þ

Φd ¼ Φ†ðiD↔μΦÞðd̄RγμdRÞ Oð1Þ
Φud ¼ Φ̃†ðiD↔μΦÞðūRγμdRÞ Oð1Þ

Φe ¼ Φ†ðiD↔μΦÞðēRγμeRÞ
OtG ¼ ðQ̄3σ

μν λa

2
u3ÞΦ̃Ga

μν

OeΦ;ii ¼ ðΦ†ΦÞðL̄iΦeR;iÞ i ¼ 2, 3 OuΦ;33 ¼ ðΦ†ΦÞðQ̄3Φ̃uR;3Þ OdΦ;33 ¼ ðΦ†ΦÞðQ̄3ΦdR;3Þ
OLLLL ¼ ðL̄γμLÞðL̄γμLÞ

1We did not considered six dipole operators whose interference
with the SM contributions vanishes for EWPD observables. As
shown in Ref. [21], including those additional operators would
have no impact on the determination of the operators considered
here.
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dimension eight [32]. The part of the effective Lagrangian
that contributes to EWDBD, in addition to that partici-
pating in the EWPD analysis, is

ΔLTGC
eff ¼ fWWW

Λ2
OWWW þ fW

Λ2
OW þ fB

Λ2
OB

þ fð1ÞΦud

Λ2
ðOð1Þ

Φud þ H:c:Þ: ð2:3Þ

The last operator modifies just the right-handed W cou-
plings to quarks, and consequently, it does not contribute to
the EWPD observables at OðΛ−2Þ.
Dimension-six operators modify the Higgs production

and decay through changes in its couplings to fermions and
gauge bosons. We parametrize the contributions exclusive
to the Higgs physics as

ΔLH
eff ¼

fμmμ

Λ2v
OeΦ;22 þ

fτmτ

Λ2v
OeΦ;33 þ

fbmb

Λ2v
OdΦ;33

þ ftmt

Λ2v
OuΦ;33 þ H:c:

−
αs
8π

fGG
Λ2

OGG þ fBB
Λ2

OBB þ fWW

Λ2
OWW

þ fΦ;2

Λ2
OΦ;2 þ

ftG
Λ2

OtG: ð2:4Þ

In summary, we consider the total effective Lagrangian:

Leff ¼ LSM þ ΔLEWPD
eff þ ΔLTGC

eff þ ΔLH
eff : ð2:5Þ

For a complete list of vertices generated by Eq. (2.5), see
Ref. [33]. The explicit form of the couplings and the
different Lorentz structures generated can be found, for
example, in Refs. [24,34–37], to which we refer the reader
for details.
As wewill see in the following section, at present there is

enough experimental information to individually bound the
21 Wilson coefficients. But it is important to notice that
some Wilson coefficients can lead to a sign change of
Higgs couplings with respect to the SM predictions,
consequently leading to discrete (quasi)degeneracies in
the global analyses. For instance, the modification of the
coefficient of the HWþ

μ W−μ vertex is
�
g2v
2

��
1 −

v2

4

�
fΦ;1

Λ2
þ 2

fΦ;2

Λ2

��
: ð2:6Þ

Since fΦ;1=Λ2 is strongly bounded by EWPD, it is
only possible to have a degeneracy with the SM results
for both fΦ;2=Λ2 ¼ 0 and fΦ;2=Λ2 ∼ 4=v2 ∼ 65 TeV−2.
These points in parameter space are also nearly degenerate
for the vertex HZμZμ.
In similar fashion, the anomalous interactions can also

lead to Yukawa couplings of the order of the SM ones, but
with a different sign, the coefficient of the Hf̄f vertex is
now

−
mf

v

�
1 −

v2

4

�
fΦ;1

Λ2
þ 2

fΦ;2

Λ2
þ 2

ffiffiffi
2

p ff
Λ2

��
; ð2:7Þ

where f ¼ μ, τ, b, and t. Therefore, fΦ;2=Λ2 and ff=Λ2 can
flip the sign of the Yukawa coupling. In combination with
the twofold degeneracy fΦ;2=Λ2 in Eq. (2.6), there are 2×2

quasidegenerate SM-like solutions: two for ff=Λ2 ¼ 0 and
two with ff=Λ2 � 2 ∼

ffiffiffi
2

p
=v2 ∼ 45 TeV−2 [33].

Another potential source of approximate degeneracies/
correlations is the effective photon-photon-Higgs coupling
HFμνFμν, for which the dimension-six operators induce a
tree-level contribution

Aðγγ → HÞ ¼ ASMðγγ → HÞ

þ e2v
4

fWW þ fBB − fBW
Λ2

; ð2:8Þ

where ASMðγγ → HÞ ≃ −8.25 × 10−3 TeV−1. First, taking
into account the strong EWPD bounds on fBW , this
dependence leads to a strong anticorrelation between the
allowed values of two remaining Wilson coefficients. That
correlation is partly broken by the measurement of the
effective photon-Z coupling HFμνZμν, which constrains a
different combination of fWW=Λ2, fBB=Λ2, and fBW=Λ2.
Furthermore, it is possible to find SM-like solutions for
ðfWW þ fBBÞ=Λ2 ∼ 3 TeV−2 with an inverted sign of the
photon-photon-Higgs effective coupling.
The equivalent effect is also present in the gluon-gluon-

Higgs interaction. In the large-top-mass limit, the lowest-
order amplitude is2

Aðgg → HÞ ¼ ASMðgg → HÞ
�
1þ 3

2
v2

fGG
Λ2

−
v2

4

�
fΦ;1

Λ2
þ 2

fΦ;2

Λ2
þ 2

ffiffiffi
2

p ft
Λ2

�

−
ffiffiffiffiffiffiffiffiffiffi
2παs

p
vm3

t

m2
H

ftG
Λ2

�
: ð2:9Þ

It is important to notice that in most cases, the operators
contributing to the Higgs vertices in Eqs. (2.6)–(2.9)
involve different numbers of derivatives of the Higgs field.
Consequently, we can anticipate the relevance of the data
on kinematic distributions to resolve the vertex degener-
acies and limit the correlations [38–40]—in particular, for
gluon-gluon-Higgs, which contributes to the main Higgs
production mechanism.

2Notice that we have defined the Wilson coefficient of the
gluon-gluon-Higgs operator fGG in Eq. (2.4) to include a looplike
suppression factor, so even if it gives a tree-level contribution to
the amplitude, it can be factorized in this form in the large-top-
mass limit. We work here in a different convention than
Refs. [24,33] and do not include in the definition of OGG the
effects of the anomalous operators that modify the couplings of
the top quarks running in the loop.
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A. Effective Lagrangians for simplified models

Effective Lagrangians provide the framework for a
bottom-up approach for the search for new physics through
deviations of the SM predictions in a model-independent
fashion. The disadvantage of this approach is that specific
UV completions give rise, in general, to relations between
theWilson coefficients of different operators, which result in
stronger constraints. To illustrate the potential of the
effective Lagrangian framework, we consider some simple
modelswhosematching at high energies are at tree level. For
the sake of simplicity, we do not consider the running of the
Wilson coefficients to the electroweak scale [22,41,42]. This
renders the results independent of the matching scale and
can lead to bounds which can either be slightly weaker or
slightly stronger depending on the model [9].
(1) Extensions of the SM Higgs sector. The simplest

model in this category is obtained by adding a
singlet scalar (S) which mixes with the SM Higgs
with a mixing angle θ. An interesting feature of the
most general form of this model is that it can exhibit
a strong first-order electroweak phase transition
that can be addressed in complementary studies
by colliders and gravitational wave experiments
[43,44]. Here, however, we will focus on the case
with a Z2 symmetry [9,45]. At the high scale
Λ ¼ Ms, this model generates just one nonvanishing
Wilson coefficient at tree level:

fΦ;2

Λ2
¼ tan2θ

v2
: ð2:10Þ

We also consider four classes of two-Higgs-doublet
models (2HDMs) that satisfy the Weinberg-Glashow

condition to avoid flavor-changing neutral currents
[46]; these are labeled as 2HDM type I, 2HDM
type II, 2HDM lepton specific, and 2HDM flipped
(for further details, see Refs. [9,47,48]). The Wilson
coefficients generated at tree level by these 2HDMs
in the alignment limit (jcosðβ−αÞj≪1) are [9,48,49]

fb
Λ2

¼ −ηb
cosðβ − αÞ

tan β

ffiffiffi
2

p

v2
;

ft
Λ2

¼ −ηt
cosðβ − αÞ

tan β

ffiffiffi
2

p

v2
;

fτ
Λ2

¼ −ητ
cosðβ − αÞ

tan β

ffiffiffi
2

p

v2
; ð2:11Þ

where tan β is the ratio between the Higgs doublet
vacuum expectation values (VEVs) and α is the
neutral Higgs mixing angle. The η factor depends on
the 2HDM type:

2HDM ηt ηb ητ

Type I 1 1 1

Type II 1 −tan2β −tan2β
Lepton specific 1 1 −tan2β
Flipped 1 −tan2β 1

.

(2) Simplified models [50] that contain the addition of
one new (no-scalar) state. We consider five different
charge assignments for the additional state as listed
in Table III (see Ref. [51]). We also list in the third
line the SM particles which couple to the new state.
For consistency with our EFT assumptions, we
assume equal couplings of the new state to the three

TABLE III. New particle content and Wilson coefficients generated by extending the SM with an extra state. All Wilson coefficients
must be multiplied by χ2=M2, where χ parametrizes the universal strength of the allowed couplings of the new state to the SM particles
and M is its mass.

Additional state Vector B Vector B0 Vector W Lepton E Quark U
Rep ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ (1,1,0) (1,1,0) (1,3,0) ð1; 1;−1Þ ð3; 1; 2=3Þ
Couplings Higgs Higgsþ quarks Higgsþ quarks leptons quarks

fΦ;1=Λ2 −2 −2 � � � � � � � � �
fΦ;2=Λ2 1 1 3=4 � � � � � �
fð1ÞΦ;Q=Λ2 � � � −1 � � � � � � 1=4

fð3ÞΦ;Q=Λ2 � � � � � � −1=4 � � � −1=4

fð1ÞΦu=Λ2 � � � −1 � � � � � � � � �
fð1ÞΦd=Λ2 � � � −1 � � � � � � � � �
fb=Λ2 � � � � � � −

ffiffiffi
2

p
=4 � � � � � �

ft=Λ2 � � � � � � −
ffiffiffi
2

p
=4 � � � ffiffiffi

2
p

=2
fτ=Λ2 � � � � � � � � � ffiffiffi

2
p

=2 � � �
fμ=Λ2 � � � � � � � � � ffiffiffi

2
p

=2 � � �
fð1ÞΦl=Λ2 � � � � � � � � � −1=4 � � �
fð3ÞΦl=Λ2 � � � � � � � � � −1=4 � � �
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families. For simplicity, we also assume that the
nonzero couplings of the new state to the SM
particles have the same strength χ.
With these assumptions, the Wilson coefficients

generated at tree level by the new states are those
listed in Table III. Notice that the existence of a
heavy lepton Eð1; 1Þ−1 generates two operators that
were removed from our basis. Consequently, we
have to rotate the result back to our basis using the
fact that

Oð1Þ
Φl;jj¼

8

g02
OB−2OΦ;2þ4OΦ;1þ

4

g02
OBBþ

4

g02
OBW

−2OΦe;jjþ
1

3
Oð1Þ

ΦQ;jjþ
4

3
OΦu;jj−

2

3
OΦd;jj;

ð2:12Þ

Oð3Þ
Φl;jj ¼ −

8

g2
OW þ 6OΦ;2 −

4

g2
OWW −

4

g2
OBW

−Oð3Þ
ΦQ;jj − 2½Y†

uOuΦ þ Y†
dOdΦ þ Y†

eOeΦ�;
ð2:13Þ

where Yf stands for the Yukawa coupling of the
fermion f.

III. ANALYSIS FRAMEWORK

In order to study the Wilson coefficients of the dimen-
sion-six operators of the effective Lagrangian [Eq. (2.5)],
we take into account the EWPD, diboson production, and
Higgs data on signal strength and simplified template cross-
section measurements. We perform the global analyses
either using only the contributions that are linear on the
Wilson coefficients [Oð1=Λ2Þ], or including the quadratic
terms [Oð1=Λ4Þ] as well.

In the EWPD analysis, we study 15 observables, of
which 12 are Z observables [31]:

ΓZ; σ0h; AlðτpolÞ; R0
l; AlðSLDÞ; A0;l

FB; R0
c;

R0
b; Ac; Ab; A0;c

FB; and A0;b
FBðSLD=LEP-IÞ; ð3:1Þ

supplemented by three W observables: he W mass (MW)
taken from Ref. [52], its width (ΓW) from LEP2/Tevatron
[53], and the leptonicW branching ratio [BrðW→lνÞ] [52].
The first component of our global χ2 function is therefore

suited for the EWPD data:

χ2EWPDðfBW;fΦ;1;f
ð3Þ
Φ;Q;f

ð1Þ
Φ;Q;f

ð1Þ
Φ;u;f

ð1Þ
Φ;d;f

ð1Þ
Φ;e;fLLLLÞ: ð3:2Þ

In the EWPD analysis, we include the correlations among
the above observables, as displayed in Ref. [31], while
the SM predictions and uncertainties are extracted from
Ref. [54]. For further details of this part of the statistical
analysis, we refer the reader to Refs. [35,37].
Triple gauge boson couplings have already been studied

in the production of electroweak gauge boson pairs at LEP2
[55], and in runs 1 and 2 of the LHC [56–67]. Here we
analyze the most complete samples ofWþW−,W�Z,W�γ,
and Zjj. More specifically, the channels that we study and
the kinematic distribution included in the analysis are listed
in Table IV. Further details on the analysis of EWDBD from
run 1 can be seen in Ref. [37]. Generically, for most data
samples from the above publications, we extract the
observed event rates in each bin (Na

i;d), as well as the
background expectations (Na

i;bck) and the SM predictions
(Na

i;sm) for each channel. An exception are the results for the
W�γ of CMS [65], and Zjj in ATLAS [67], for which the
experiments provide the results in the form of reconstructed
differential cross sections.
In our analyses, we simulate the results in the WþW−,

W�Z, W�γ, and Zjj channels that receive contributions
from TGC and anomalous fermion pair couplings to gauge

TABLE IV. Diboson data from the LHC used to constrain the dimension-six operators. For theWþW− results from ATLAS run 2 [66],
we combine the data from the last three bins into one to ensure Gaussianity.

Channel (a) Distribution Number of bins Dataset Integrated luminosity

WW → lþl0− þ ETð0jÞ pleading;lepton
T

3 ATLAS 8 TeV, 20.3 fb−1 [56]

WW → lþlð0Þ− þ ETð0jÞ mllð0Þ 8 CMS 8 TeV, 19.4 fb−1 [57]
WZ → lþl−lð0Þ� mWZ

T 6 ATLAS 8 TeV, 20.3 fb−1 [58]
WZ → lþl−lð0Þ� þ ET Z candidate pll

T 10 CMS 8 TeV, 19.6 fb−1 [59]
WW=WZ → lνJ pJ

T 6 ATLAS 8 TeV, 20.2 fb−1 [62]
WZ → lþl−l0� MðWZÞ 7 CMS 13 TeV, 137.2 fb−1 [63]
WW → lþlð0Þ− þ 0=1j Mðlþlð0Þ−Þ 11 CMS 13 TeV, 35.9 fb−1 [64]
Wγ → lνγ d2σ

dpTdϕ
12 CMS 13 TeV, 137.1 fb−1 [65]

WW → e�μ∓ þ ETð0jÞ mT 17 (15) ATLAS 13 TeV, 36.1 fb−1 [66]
WZ → lþl−lð0Þ� mWZ

T 6 ATLAS 13 TeV, 36.1 fb−1 [61]
Zjj → lþl−jj dσ

dϕ
12 ATLAS 13 TeV, 139 fb−1 [67]
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bosons using MadGraph5_aMC@NLO [68] with the UFO files
for our effective Lagrangian generated with FeynRules

[69,70]. We employ PYTHIA8 [71] to perform the parton
shower and hadronization, while the fast detector simu-
lation is carried out with DELPHES [72]. Jet analyses were
performed using FASTJET [73].
In order to account for higher-order corrections and

additional detector effects, we obtain the SM diboson cross
section in the fiducial region defined by the experimental
collaborations, requiring the same cuts and isolation criteria
employed in the experimental studies, and we normalize
our results bin by bin to the experimental collaboration
predictions for the kinematic distributions under consid-
eration. Then, we apply these correction factors to our
simulated contributions to diboson distributions from the
relevant dimension-six operators.
These predictions are statistically confronted with the

data from LHC runs 1 and 2 by constructing a binned

log-likelihood function based on the data contents of the
different bins in the kinematic distribution of each channel.
In addition to the statistical errors, we incorporate the
systematic and theoretical uncertainties, adding them in
quadrature and assuming some partial correlation among
them, which we estimate with the information provided by
the experiments. In particular, some of the experimental
publications contain analysis of their EWDB data in the
framework of some anomalous TGCs. In those cases, we
can compare the allowed region of parameter space
obtained with our constructed likelihood function for that
data sample with that of the experiment, and we can use that
comparison to fine-tune our treatment of the systematic
uncertainties and correlations to match the results of the
experimental analysis as closely as possible. Altogether, we
build the function χ2EWDBD, summing the χ2 constructed for
the analysis of each sample in Table IV. Then, combining it
with the EWPD bounds, we define

χ2EWPDþEWDBDðfB; fW; fWWW; fBW; fΦ;1; f
ð3Þ
Φ;Q; f

ð1Þ
Φ;Q; f

ð1Þ
Φ;u; f

ð1Þ
Φ;d; f

ð1Þ
Φ;ud; f

ð1Þ
Φ;e; fLLLLÞ: ð3:3Þ

Respecting Higgs results in our studies, we use the
available Higgs data depicted in Table V. Notice that
Ref. [74] summarizes the ATLAS results on H → γγ
[75], H → 4l [76], and H → bb̄ [77], and the detailed
statistics information can be extracted from these
references.
In order to assess the effects of including the kinematic

information, we have performed two different analyses of
the Higgs results. In the first one, we only include the data
on the total signal strengths. We label that Analysis SS.
This includes the results labeled as Analysis SS in Table V,
which corresponds to 22 data points for run 1 and

11ðATLASÞ þ 23ðCMSÞ ¼ 34 data points for run 2, for
a total of 56 data points.
In the second analysis, labeled as Analysis STXS, we

make use of all the available information on the kinematic
distributions as provided in the form of simplified template
cross sections. For those channels and luminosities for
which the STXS data is not available, we use the corre-
sponding data as the total signal strength. In this form, the
STXS analysis includes the same 22 data points for run 1
and 45 (58) STXS points for the ATLAS (CMS) run 2,
supplemented with the 7 (12) SS points for the channels for
which no STXS data is available. So, in total, the STXS

TABLE V. Higgs data used to compute χ2Higgs. In the column labeled “Data format,” SS stands for total signal strength and STXS for
simplified template cross section. The column marked “Analysis” specifies which of the two analyses include each dataset. In that
column, SS labels the analysis which includes only total signal strengths for all channels, and STXS labels the analysis which includes
instead the kinematic information in the form of simplified template cross sections for those channels for which it is available.

Source Data format Analysis Integrated luminosity (fb−1) Number of Data points

ATLASþ CMS at 7 & 8 TeV [78] (Table 8, Fig. 27) SS SS & STXS 5 & 20 20þ 1

ATLAS at 8 TeV [79] (γZ) SS SS & STXS 20 1
ATLAS at 13 TeV [80] (Figs. 7 and 20) SS SS 36.1–139 9
ATLAS at 13 TeV [81] (γZ) SS SS & STXS 139 1
ATLAS at 13 TeV [82] (μþμ−) SS SS & STXS 139 1
ATLAS at 13 TeV [74] (γγ, 4l, bb̄) STXS STXS 139 43
ATLAS at 13 TeV [80] (Figs. 5 and 6) SS STXS 36.1–139 7
CMS at 13 TeV [83] (Table 5) SS SS 35.9–137 23
CMS at 13 TeV [84] (γγ) STXS STXS 137 24
CMS at 13 TeV [85] (4l) STXS STXS 137 19
CMS at 13 TeV [86] (τþτ−) STXS STXS 137 11
CMS at 13 TeV [87] (WþW−) STXS STXS 137 4
CMS at 13 TeV [83] (Table 5) SS STXS 35.9–137 12
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analysis includes 144 data points. It is important to notice
that the STXS results of ATLAS for different channels are
all presented in Ref. [74], where a full correlation matrix
between the different STXS bins for different channels is
provided. On the contrary, the different STXS results from
CMS are given in different publications Refs. [84–87] for
different channels, and no correlations between bins for
different channels are available. So, in our analysis, we
have set those to zero.
We obtain the theoretical predictions for the Higgs

production by gluon fusion in the channels tagged as
STXS in Table V using MadGraph5_aMC@NLO [88] with
the SMEFT@NLO UFO files [89]. Notice that we took into
account not only the contribution to this process from OGG
but also those coming from OΦ;2, OuΦ;33, and OtG.
Moreover, the STXS 1.2 classification was performed
using RIVET [90].

The statistical comparison of our effective theory pre-
dictions with the LHC results including those two data
samples is made by means of a χ2 analysis performed in the
21-dimensional statistical function and adding the infor-
mation from EWPD and EWDBD. Furthermore, the
operator OtG contributes not only to the gluon-fusion
Higgs production [91,92], but also to the top production
[12,93–97], which provides independent information. We
include such information on this operator in the form of a
Gaussian bias built with the result of the full global fit to
top-quark physics performed in Ref. [95]:

χ2bias;topðftGÞ ¼
ðftGΛ2 − 0.5Þ2
ð0.22Þ2 : ð3:4Þ

Altogether, we define the χ2 for our global analysis as

χ2GlobalSSðSTXSÞ ¼ χ2EWPDþEWDBDðfB;fW;fWWW;fBW;fΦ;1;f
ð3Þ
Φ;Q;f

ð1Þ
Φ;Q;f

ð1Þ
Φ;u;f

ð1Þ
Φ;d;f

ð1Þ
Φ;ud;f

ð1Þ
Φ;e;fLLLLÞ

þ χ2HIGGSSSðSTXSÞðfB;fW;fBB;fWW;fBW;fGG;fΦ;1fΦ;2;f
ð3Þ
Φ;Q;f

ð1Þ
Φ;Q;f

ð1Þ
Φ;u;f

ð1Þ
Φ;d;f

ð1Þ
Φ;ud;f

ð1Þ
Φ;e;ftG;fb;ft;fτ;fμÞ

þ χ2bias;topðftGÞ: ð3:5Þ

IV. EFFECTIVE FIELD THEORY RESULTS

Figures 1–8 and 11 depict Δχ2 profiles for the dimen-
sion-six Wilson coefficients, where we have marginalized
with respect to all undisplayed parameters. We show the
results for four different combinations of datasets:
(1) EWPD: Δχ2EWPD, which constrains the 8 coefficients

in ΔLEWPD
eff [Eq. (2.2)]. They are given by the green

lines in Fig. 1, which have been obtained by
considering only the contributions to the observables
that are OðΛ−2Þ; see Ref. [35]. We also assess the
impact of relaxing the flavor universality hypothesis
by considering a different coupling to the third
family, whose result is displayed in Fig. 2.

(2) EWPDþ EWDBD: Δχ2EWPDþEWDBD, which limits
the 12 coefficients in ΔLEWPD

eff þ ΔLTGC
eff [Eqs. (2.2)

and (2.3)]. In the EWDBD analysis, we consider
contributions to the observables up to OðΛ−2Þ and
up to OðΛ−4Þ. Our results are displayed in Fig. 3.

(3) GLOBAL: Δχ2Global ANALYSIS [Eq. (3.5)], which con-
strains the 21 coefficients in Leff in Eqs. (2.2)–(2.4).
As described in the previous section, we consider
two different sets of HIGGS data, one which
includes only the total signal strengths, Analysis
SS, and one which includes also the information on
the kinematic distributions, Analysis STXS (see
Table V). For each case we perform two analyses:
one in which the theoretical predictions are ex-
panded to OðΛ−2Þ, and another one including the

predictions up to OðΛ−4Þ. Different projections of
the corresponding Δχ2Global ANALYSIS are shown in
Figs. 1–8 and 11 summarizes the results for the
STXS analysis.

A. Lessons from the EWPD

We start our analysis by focusing on the dimension-six
operators in Eq. (2.2) that directly impact EWPD. Our
results are presented in Fig. 1. The bounds imposed by the
EWPD analysis are represented by the green lines, while
the limits coming from the global SS (STXS) analyses are
given by the black (red) lines, including up to OðΛ−4Þ and
up to OðΛ−2Þ terms as full and dashed lines, respectively.
As is well known, EWPD leads to very stringent constraints
on fermion-gauge interactions and on new oblique correc-
tions to the gauge boson propagators. However, as illus-
trated in the figure, with the accumulated LHC statistics,
EWDBD and Higgs results already contribute to tighten the
EWPD bounds for some of the coefficients despite the
larger 21-parameter space.
In the upper-left and upper-central panels of Fig. 1, we

find the Δχ2 dependence on fBW=Λ2 and fΦ;1=Λ2, which
correspond to the S and T oblique corrections, respectively.
For these coefficients, the EWPD limits are only slightly
improved by the global analysis including the STXS Higgs
data when the theoretical predictions include the quadratic
contributions of the Wilson coefficients.
Turning to the quark gauge couplings, the upper-right

(middle-left) panel of Fig. 1 presents the Δχ2 dependence
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on the coefficient fð3ÞΦ;Q=Λ2 (fð1ÞΦ;Q=Λ2), which modifies the
couplings of left-handed quarks to Z and W (only Z)
bosons. The middle-central and middle-right panels corre-

spond to the dependences on fð1ÞΦ;u=Λ2 and fð1ÞΦ;d=Λ2, which
give corrections to the uR and dR couplings to Z, respec-
tively. The inclusion of the LHC observables leads to a
small but not negligible improvement on the determination

of fð1ÞΦ;u=Λ2 at linear order, while it only affects the EWPD

bounds on fð1ÞΦ;Q=Λ2 whenOðΛ−4Þ terms are included in the
LHC analysis. The largest effect of the combination with

the LHC observables occurs for fð3ÞΦd=Λ2 and fð3ÞΦ;Q=Λ2. In
particular, the EWPD analysis favors nonvanishing values

for fð1ÞΦd=Λ2 at 2σ, a result driven by the 2.7σ discrepancy
between the observed A0;b

FB and the SM. On the contrary, the
inclusion of the LHC data gives rise to a shift towards zero

of fð1ÞΦd=Λ2, reducing the tension with the SM. This
behavior was already observed in Refs. [33,37], but we

find now that with the accumulated statistics, LHC also is
able to provide relevant constraints when including the
effect of dimension-six operators only at OðΛ−2Þ. As the
LHC observables included are mostly sensitive to gauge
couplings of the light quarks in the parton distribution
functions, one expects that this result relies upon the
assumption that the operators involving fermion couplings
to gauge bosons are generation independent. To test this,
we perform an analysis in which we drop this assumption

for the operator fð1ÞΦd=Λ2 and allow3 fð1ÞΦ;d11
¼fð1ÞΦ;d22

≠fð1ÞΦ;d33
.

The results are shown in Fig. 2, where we display the

FIG. 1. Δχ2 as a function of the Wilson coefficients fBW=Λ2, fΦ;1=Λ2, fð1ÞΦ;Q=Λ2, fð3ÞΦ;Q=Λ2, fð1ÞΦ;u=Λ2, fð1ÞΦ;d=Λ2, fð1ÞΦ;e=Λ2, and
fLLLL=Λ2, as indicated in the panels after marginalizing over the remaining fit parameters. The green solid line stands for the fit of the
EWPD that constrains only eight of 21 Wilson coefficients in Eq. (2.5). The red solid (dashed) line represents the 21-parameter fit to the
LHC run 1 and 2 data including the STXS Higgs data and working at order-1=Λ4 (order-1=Λ2) approximation. For comparison, we
present the corresponding results for the global fit using the SS Higgs data (black solid and dashed lines).

3If one relaxes the assumption of generation-independent
quark couplings, the EWPD cannot constrain all quark couplings,
because there is not enough information in the observables
considered to resolve the contributions of the two first gener-
ations. Furthermore, for the third generation of quarks, only fð1ÞΦ;d33

and the linear combination 4fð1ÞΦ;Q33
þ fð3ÞΦ;Q33

contribute independ-
ently to the Z and W observables.
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FIG. 3. Δχ2 dependence on the fB=Λ2 (left panels), fW=Λ2 (central panels), and fWWW=Λ2 (right panels) parameters after the
marginalization over the 11 (20) undisplayed fit parameters for the analysis of EWDBDþ EWPD (global STXS) data, as labeled in the
figure. The upper panels show the results of our analysis using terms up to OðΛ−4Þ in the Wilson coefficients, while the lower ones
retained only the OðΛ−2Þ terms.

FIG. 2. Δχ2 as a function of the Wilson coefficients contributing to the gauge couplings of the quarks for nonuniversal right-handed

quark coupling of the bottom quark; this is for fð1ÞΦ;d1
¼ fð1ÞΦ;d2

≠ fð1ÞΦ;d3
. The green solid line stands for the fit of the EWPD that constrains

only nine of 22 Wilson coefficients. The red solid (dashed) line represents the 21-parameter fit to the LHC run 1 and 2 data including the
STXS Higgs data and working at order-1=Λ4 (order-1=Λ2) approximation.
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FIG. 4. 1σ and 2σ (2 d.o.f.) allowed regions on the fB=Λ2 × fW=Λ2 plane obtained from the analysis of different combinations of data
samples as labeled in the figure. All results use predictions up to theOðΛ−2Þ terms in theWilson coefficients and have been marginalized
over the undisplayed ones.

FIG. 5. Marginalized Δχ2 distributions as a function of the Wilson coefficients for the nine operators that only affect the Higgs physics
and for the four variants of the global analysis as labeled in the figure (see text for details).
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bounds imposed by the EWPD on the relevant quark
operators with those from the global STXS analysis
including up to OðΛ−2Þ and up to OðΛ−4Þ terms.
Comparing these with the corresponding panels in
Fig. 1, we see that the combination of EWPD with the
LHC observables results in the quoted improvement
on the bounds for those operators contributing to the light

quark couplings. Conversely, fð1ÞΦ;d33
is only marginally

affected by the inclusion of the EWDBD and Higgs data,
and its best fit remains no-zero at ∼2σ in the global
analysis.
Finally, the lower panels of Fig. 1 display the margin-

alized Δχ2 for fð1ÞΦ;e=Λ2 and fLLLL=Λ2. The global analyses
do not lead to significant improvement on the determi-
nation of these couplings. This is expected, since the

operator Oð1Þ
Φ;e modifies the Z coupling to right-handed

leptons, which were very precisely tested at LEP. On the
contrary, it enters the LHC observables only via its
contribution to the decay rate of the Z boson to leptons
in some of the final states considered. In other words,
the dominant dependence of the global analysis on these
coefficients still resides in the EWPD. The main effect of
the inclusion of the LHC results is indirect via the
restriction of the allowed range of variation of the other
coefficients entering into the EWPD analysis.

B. Triple anomalous gauge coupling constraints

We present our results on the Wilson coefficients of the
TGC operators OB, OW , and OWWW in Fig. 3. We first
consider the 12-dimensional parameter space

FIG. 6. 1σ and 95% C.L. (2 d.o.f.) allowed regions from the SS and STXS global analyses for the coefficients of the operators entering
into the gluon-gluon Higgs vertex [Eq. (2.9)]. These results were obtained using terms up toOðΛ−4Þ of the theoretical prediction, and the
color code indicates the used dataset as labeled in the figure.
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ffB; fW; fWWW; fBW; fΦ;1; f
ð3Þ
Φ;Q; f

ð1Þ
Φ;Q; f

ð1Þ
Φ;u; f

ð1Þ
Φ;d;

fð1ÞΦ;ud; f
ð1Þ
Φ;e; fLLLLg

and include the EWDBD and EWPD. The upper (lower)
panels contain the one-dimensional Δχ2 distributions after
marginalization over the 11 undisplayed coefficients, and
they were obtained using the up-to-quadratic (up-to-linear)
contributions of the 12 Wilson coefficients. Each panel
shows as dashed lines the impact of the different diboson

datasets, and as a full black line the combined EWPDþ
EWDBD analysis. For comparison, we also show the
corresponding projections obtained from the global
STXS fit performed in the 21-parameter space (red lines).
Respecting fB=Λ2, we find that EWPDþ EWDBD

provides only loose constraints on this parameter at
OðΛ−2Þ (see the black line in the lower-left panel of
Fig. 3). Comparing this with the black line in the upper-
left panel of the figure, we see how the inclusion of the
OðΛ−4Þ terms leads to better bounds, with theWW channel

FIG. 7. 1σ and 95% C.L. (2 d.o.f.) allowed regions from the (STXS) SS global analysis in the plane fBB=Λ2 × fWW=Λ2, shown in the
left (right) panel. These results were obtained by using the theoretical predictions up to OðΛ−2Þ or up to OðΛ−4Þ approximations, as
indicated by the color code.

FIG. 8. 1σ and 95% C.L. (2 d.o.f.) allowed regions from the STXS global analysis in the plane fΦ;2=Λ2 × fb=Λ2. These results were
obtained using the Higgs SS and STXS data, keeping the quadratic terms of the theoretical prediction, as indicated by the color code.
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(blue dashed line) playing the dominant role. This is so
even though the integrated luminosity is larger for the Wγ
data than for WW, because the Wγ data depend on the
combination ðfB=Λ2 þ fW=Λ2Þ, which allows for cancel-
lations between fB=Λ2 and fW=Λ2. Similarly, the WZ
channel also depends on fB=Λ2 in another linear combi-
nation with fW=Λ2, and furthermore, its coefficient is
suppressed by a factor tan2 θW with respect to fW=Λ2.
From these panels we also conclude that fB=Λ2 is much
more strongly constrained by the global analysis (red lines)
than by EWPDþ EWDBD. This is so because OB con-
tributes to both Higgs production and decay. This fact was
observed before in Ref. [98]. But we find now that with the
large run 2 luminosity and the STXS information, the
constraints on fB=Λ2 are substantially improved even when
including the dimension-six parameters only up toOðΛ−2Þ.
The Δχ2 distributions for fW=Λ2 are displayed in the

middle panels, where we see that the dominant diboson
channels constraining fW=Λ2 are the WW and WZ chan-
nels. Here too, Wγ production is not able to produce any
sensible bound on fW=Λ2 due to its (anti)correlation with
fB=Λ2, as previously commented. In this case, the limits
obtained at OðΛ−2Þ are already rather stringent, and they
are significantly improved by the global analysis.
In order to show the importance of the Higgs data in

constraining fB=Λ2 and fW=Λ2, we present in Fig. 4 the 1σ
and 2σ allowed regions of the plane fB=Λ2 × fW=Λ2

obtained with different data samples. These results were
obtained using only the contributions up to OðΛ−2Þ on the
Wilson coefficients and the SS (STXS) Higgs data in the
left (right) panel. As we can see, the EWPDþ EWDBD
datasets lead to a very large allowed region (shown in pink).
The constraints coming from the SS Higgs data (shown in
the green regions on the left panel in combination with the
EWPD) are also loose, but they are important to improve
the limits when combined also with the EWDBD. But most
interestingly, using only the Higgs STXS analysis in
combination with EWPD (right panel), we are able to
place much stronger bounds on fW=Λ2 and fB=Λ2;
compare the green and pink regions. Clearly, the global
fit on OB is dominated by the data samples in the
Higgs STXS analysis, while the constraints on OW
receive comparable contributions from Higgs STXS and
EWDBD.
Finally, the right panels of Fig. 3 contain the dependence

of the marginalizedΔχ2 on fWWW=Λ2. In contrast to fB=Λ2

and fW=Λ2, the channel Wγ plays a significant role in
constraining fWWW=Λ2 due to the use of kinematic dis-
tributions specially chosen to avoid the cancellation of the
1=Λ2 contribution [99,100]. In fact, we can see from the
lower-right panel of Fig. 3 that the most important con-
tributions to the EWPDþ EWDBD analysis originate from
those channels (Wγ and Zjj). Also, as expected, the global
analysis has barely any additional impact on limiting

OWWW , since this operator does not contribute to the
Higgs observables.

C. Higgs couplings

In order to probe for deviations from the SM predictions
for the Higgs couplings, we have performed four global fits
including the effects of the 21 operators in Eqs. (2.2)–(2.4)
under different assumptions. As mentioned in Sec. III, in
order to access the importance of the newly available
kinematic distributions, we make two analyses: One in
which that information is not included (Global SS) and
another one in which it is (Global STXS). And, as for
EWDBD, we make two variants of the analyses: one
employing the theoretical predictions up to OðΛ−2Þ terms
in the Wilson coefficients, and one including up to
OðΛ−4Þ terms.
We have discussed in the context of Figs. 1 and 3 the

results from these global analyses for the 12 operators that
contribute also to the EWPD and EWDBD; therefore, we
focus here on the nine operators not studied yet. We show
in Fig. 5 the dependence of the marginalized Δχ2global on
each of these nine Wilson coefficients for the four analysis
variants.
From Fig. 5 we observe, as expected, that for the analysis

including only the contributions up to OðΛ−2Þ (dashed
lines), there is a unique minimum in either the global SS or
global STXS analysis. In comparing the red and black
dashed lines, we conclude that atOðΛ−2Þ, the impact of the
STXS observables in the overall picture amounts to an
uncertainty reduction of 30%–40% for some of the bosonic
operators, as well as a shift in the allowed region in a
few cases.
Conversely, we also see in Fig. 5 that for the analysis

including up to OðΛ−4Þ terms and the SS samples for the
Higgs data (solid black lines), all panels present some set of
(quasi)degenerated minima. They are a direct reflection
of the (quasi)degeneracies in the Higgs couplings in
Eqs. (2.6)–(2.9). Comparing the solid black and red lines,
we see the relevance of the kinematic distributions in
resolving some of these degeneracies.
First, let us focus on the middle-left panel of Fig. 5,

which depicts theΔχ2 distribution as a function of fΦ;2=Λ2.
In the SS analysis at OðΛ−4Þ, there are two clearly almost
degenerate minima associated with the flipping of sign of
all Higgs couplings discussed below Eq. (2.6) for
fΦ;2=Λ2 ≃ 65 TeV−2. In fact, we find that the analysis
shows a slight preference for this nonstandard solution. As
seen in the figure, this is still the case once the information
of the STXS observables is included but theΔχ2 of the SM-
connected solution is reduced to ∼1.3σ.
The power of the kinematic distributions is particularly

striking for the coefficients fGG=Λ2, ft=Λ2, and ftG=Λ2,
which, together with fΦ;2=Λ2, enter into the effective
gluon-gluon Higgs vertex, and for which the marginalized
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χ2 for the global SS analysis shown in the black curves in
Fig. 5 presents a complex structure of local minima. This is
further illustrated in Fig. 6. In this figure, we show the
allowed regions from the global analysis performed at
OðΛ−4Þ, projected over pairs of these parameters (after
marginalization over the 19 undisplayed parameters in
each panel). We observe the complex structure of allowed
regions in fGG=Λ2 × fΦ;2=Λ2, fGG=Λ2 × ft=Λ2, and
ftG=Λ2 × fΦ;2=Λ2 that appear in the SS OðΛ−4Þ analysis.4
As inferred from the figure, the inclusion of the Higgs
kinematic distributions in the analysis is able to fully
separate the contributions from OGG, OtG, and OuΦ;33,
while the degeneracy associated with OΦ;2 remains.
We now turn to the operators involved in the photon-

photon-Higgs vertex. The upper-left and upper-central
panels of Fig. 5 contain Δχ2 as functions of fBB=Λ2 and
fWW=Λ2, respectively. The four analyses, SS and STXS
with predictions at OðΛ−2Þ and OðΛ−4Þ, lead to a unique
allowed range for both Wilson couplings compatible with
the SM at the 2σ level, but for the STXS analysis atOðΛ−4Þ
we still observe several minima. To better understand these
results, we present in Fig. 7 the 1σ and 95% C.L. two-
degree-of-freedom (2 d.o.f.) allowed regions from the SS
and STXS global analyses in the plane fBB=Λ2 × fWW=Λ2.
From the figures we see that all allowed regions display the
strong anticorrelation between those parameters associated
with the ðfWW þ fBBÞ=Λ2 dependence of the Higgs-
photon-photon vertex. This correlation is not exact, because
it is broken by other measurements—in particular, by the
HFμνZμν branching ratio, which constrains a different
combination: fWW=Λ2 and fBB=Λ2. In the figure, we also
observe the existence of the second allowed region(s)
around ðfWW þ fBBÞ=Λ2 ∼ 3 TeV−2 in the analysis per-
formed to OðΛ−4Þ, associated with the flipping of sign of
the Higgs-photon-photon coupling with respect to the SM
value discussed below Eq. (2.8). In this case, unlike for the
gluon-gluon-Higgs vertex, the kinematic information con-
tained in the STXS observables cannot resolve these two
solutions, for which the kinematics is identical. In addition,
there are two solutions for each of the mirror solutions
associated with the degeneracy associated with fΦ;2, which
affects the production cross section. For the STXS analysis,
the two solutions become separated enough to lead to the
two additional disconnected regions observed in the right
panel. Further details can be obtained from the correlation
matrices presented in the Appendix.
In respect to the Yukawa couplings Hff, as discussed in

Sec. II, they exhibit a fourfold degeneracy in the OðΛ−4Þ
analysis because the sign of this coupling can be flipped by
fΦ;2=Λ2 and ff=Λ2; see Eq. (2.7). This degeneracy favors

the existence of three disconnected allowed ranges [33],
and it is clearly observable in both analyses at OðΛ−4Þ in
the three lower panels in Fig. 5 for the bottom, τ, and μ
Yukawas, as well as in the left panel of Fig. 8. These
solutions are not totally degenerate because, as discussed
above, in the OðΛ−4Þ analysis we find a slight preference
for the nonstandard solution for fΦ;2=Λ2. Including the
kinematic information in the form of the STXS observables
does not resolve this degeneracy.
For ft=Λ2, the fourfold degeneracy is expected to be

partially broken, since the scattering amplitude for the tH
production receives contributions from the ttH and VVH
vertices, being sensitive to the relative signs of the different
diagrams contributing [101–103]. Conversely, the contri-
bution of this coupling to the effective gluon-gluon-Higgs
vertex introduces the additional degeneracy and correla-
tions with fGG and ftG described above. Altogether, we
find that the STXS Higgs data is able to constrain
univocally the top Yukawa coupling even at OðΛ−4Þ.
We present the 1σ bounds and correlations in the

Appendix for the OðΛ−2Þ global SS and STXS analyses.
From these results, we can see that the strongest (anti)
correlations are between the pairs of operators OB ⊗ OBB,
OB ⊗ OWW , OBB ⊗ OWW , OGG ⊗ OuΦ;33, OGG ⊗ OtG,

OBW ⊗ OΦ;1, and Oð1Þ
Φ;e ⊗ OLLLL. The first three stem

mainly from the Higgs decay into photon pairs, while
the next two are due to the Higgs coupling to gluons, and
the last two are dominantly due to their contribution to the
EWPD observables. Furthermore, OΦ;2 possesses sizable
correlations with many dimension-six operators due to the
possibility of flipping the sign of the Higgs couplings.

V. RESULTS FOR SIMPLIFIED MODELS

Figures 9 and 10 contain the results of the analyses for
the simplified models presented in Sec. II A.
The Δχ2 distribution for the singlet scalar extension of

the SM is presented in the left panel of Fig. 9, for both
global analysis and the predictions obtained up to OðΛ−2Þ
and up to OðΛ−4Þ, which lead to similar results. We find,
for example, that considering only the effects at order
OðΛ−2Þ, the bound obtained from the SS analysis is

j sin θj < 0.279 ð5:1Þ

at a 95% C.L. This model only generates fΦ;2=Λ2 at tree
level; therefore, we can translate the above limit into
fΦ;2=Λ2 < 1.4 TeV−2 using Eq. (2.10). Notice that this
constraint is about 4 times stronger than the limit origi-
nating from the 21-parameter analysis; see Table VI. Also,
this limit is similar to that derived in Ref. [80].
The Δχ2 distributions for the simplified models that

contain the addition of one state as described in Table III
can be found in the right panel of Fig. 9. For concreteness,
we show the results for the global STXS analysis at

4We notice that the fact that the external bias on ftG from top
observables [Eq. (3.4)] is not centered at zero further adds to the
complex structure of local minima.
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FIG. 10. Allowed regions of the plane cosðβ − αÞ × tan β for several two-Higgs-doublet models. The results shown correspond to the
global analyses with the STXS Higgs datasets, including only the contributions that are linear on the Wilson coefficients [Oð1=Λ2Þ].

FIG. 9. The left (right) panel contains Δχ2 as a function of θ=π (χ=M) for the singlet scalar model (models with one additional state).
The results shown in the right panel correspond to the global analysis with the STXS Higgs datasets and including only the contributions
that are linear on the Wilson coefficients [OðΛ−2Þ].

ALMEIDA, ALVES, ÉBOLI, and GONZALEZ–GARCIA PHYS. REV. D 105, 013006 (2022)

013006-16



OðΛ−2Þ, but for these models the inclusion of the quadratic
terms has very little impact, indicating the stability of the
results with respect to higher-order corrections, as well as
the validity of the high-mass expansion. From the figure,
we read the following 95% C.L. bounds on χ2=M, which
imply the quoted mass limit for χ ¼ 1:

χ

M
< 0.084 TeV−1 ðM> 12 TeVÞ Model withEð1;1Þ−1;

χ

M
< 0.15 TeV−1 ðM> 6.7 TeVÞ Model withB0ð1;1Þ0;

χ

M
< 0.16 TeV−1 ðM> 6.2 TeVÞ Model withBð1;1Þ−1;

χ

M
< 0.35 TeV−1 ðM> 2.8 TeVÞ Model withWð1;3Þ0;

χ

M
< 0.58 TeV−1 ðM> 1.7 TeVÞ Model withUð3;1Þ2=3:

ð5:2Þ

The tightest constraint is for the model containing a new
lepton E (brown curve), since this model generates the

strongly bound Wilson coefficients fð1ÞΦ;e=Λ2 and fΦ;1=Λ2,
which appear when the Wilson coefficients generated at the
high scale matching are rotated to the HISZ basis using
Eqs. (2.12) and (2.13). The models with an extra vector B

are also subject to strong limits because they generate
fΦ;1=Λ2—i.e., they contribute to the T parameter.
The additional vector tripletW and the extra vector quark

U prompt the appearance of the Wilson coefficient

fð3ÞΦ;Q=Λ2, which is well constrained by the precise deter-
mination of the electroweak gauge couplings of left-handed
quarks with EWPD and LHC diboson [37] and Higgs
associated production [104,105] data. The extra vector

quark U also generates fð1ÞΦ;Q=Λ2 but with the opposite sign.

fð1ÞΦ;Q=Λ2 also contributes to the couplings of the left-
handed quarks to the Z boson, which leads to a small
anticorrelation between these two coefficients. This results
in the slighter weaker bounds in this model.
Figure 10 contains the constraints on 2HDMs that we

obtain by performing the global analysis at OðΛ−2Þ and
using the STXS Higgs datasets. In the figure, we see that
the allowed range for cosðβ − αÞ is tightly constrained in
agreement with the alignment assumption, with the only
exception being the Type-I model in the large tan β limit,
for which the Wilson coefficients we are considering
approach zero, and therefore no bound can be imposed
in this approximation. In fact, with that exception, our
results show that the allowed parameter space at the
95% C.L. is strongly bounded. Compared to the experi-
mental results obtained in Ref. [106] that used just a

TABLE VI. Marginalized 95% C.L. allowed ranges for the Wilson coefficients for the four different global analyses performed in this
work.

Operator

95% C.L. f=Λ2 (TeV−2)

Global SS OðΛ−4Þ, Global SS OðΛ−2Þ, Global STXS OðΛ−4Þ, Global STXS OðΛ−2Þ,
OB (−9.8, 14) (−5.5, 37) (−11, 15) (−23, 3.0)
OW (−2.0, 2.8) (−3.0, 2.6) (−2.0, 2.7) (−1.2, 2.3)
OWWW (−0.80, 0.81) (−3.5, 4.5) (−0.81, 0.78) (−4.1, 4.2)
OBB (−2.8, 7.5) (−1.2, 9.6) (−3.4, 9.4) (−6.6, 0.65)
OWW (−3.9, 3.7) (−8.3, 1.8) ð−6.1;−1.7Þ ∪ ð0.78; 4.5Þ (0.30,7.9)
OGG ð−1.0; 5.7Þ ∪ ð22; 23Þ (−9.7, 0.23) (−3.7, 1.4) (−4.3, 1.7)
OtG (0.11,0.71) (0.073,0.93) (−0.010, 0.48) (−0.035;−0.53)
OΦ;2 ð0.33; 2.0Þ ∪ ð62; 68Þ (−1.7, 5.2) ð−4.7;−0.71Þ ∪ ð66; 72Þ (−5.7, 0.26)
OuΦ;33 ð−18;−7. 3Þ ∪ ð−1.3; 1.7Þ (−2.8, 16) (−10, 5.9) (−0.89, 11)
OdΦ;33 ð−52;−37Þ ∪ ð−5.6; 3.3Þ ∪ ð41; 45Þ (−1.6, 7.8) ð−60;−44Þ ∪ ð−3.5; 5.2Þ ∪ ð44; 54Þ (−2.8, 5.0)
OeΦ;33 ð−50;−40Þ ∪ ð−3.7; 2.7Þ ∪ ð44; 45Þ (−2.5, 4.2) ð−53;−43Þ ∪ ð−7.0; 6.2Þ ∪ ð43; 51Þ (−0.64, 6.3)
OeΦ;22 ð−57;−28Þ ∪ ð−18; 11Þ ∪ ð41; 51Þ (−14, 12) ð−69;−30Þ ∪ ð−22; 15Þ ∪ ð39; 62Þ (−15, 11)
OBW (−0.21, 1.7) (−0.064, 1.8) (−0.19, 1.6) (−0.22, 1.7)
OΦ;1 (−0.040, 0.14) (−0.024, 0.16) (−0.037, 0.14) (−0.037, 0.14)
Oð3Þ

Φ;Q
(−0.23, 0.23) (−0.30, 0.24) (−0.25, 0.26) (−0.15, 0.27)

Oð1Þ
Φ;Q

(−0.041, 0.10) (−0.091, 0.085) (−0.034, 0.11) (−0.098, 0.075)

Oð1Þ
Φ;u

(−0.22, 0.24) (−0.34, 0.22) (−0.26, 0.29) (−0.41, 0.094)

Oð1Þ
Φ;d

(−0.42, 0.10) (−0.95, 0.0096) (−0.34, 0.11) (−0.81;−0.054)

Oð1Þ
Φ;ud

(−0.13, 0.13) � � � (−0.12, 0.12) � � �
Oð1Þ

Φ;e
(−0.076, 0.0040) (−0.081;−0.0016) (−0.072, 0.0020) (−0.074;−0.0040)

OLLLL (−0.046, 0.0035) (−0.047, 0.0029) (−0.045, 0.0046) (−0.046, 0.0034)
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fraction of the run 2 integrated luminosity,5 we find
stronger bounds on cosðβ − αÞ for fixed tan β by up to a
factor of four, depending on the model and the sign of
cosðβ − αÞ. Also, in our analysis, we do not find the small
lobe features observed in Ref. [106] for positive cosðβ − αÞ
and large tan β. Our bounds on Type-I and Type-II models
are comparable with those derived in Refs. [9,107].

VI. DISCUSSION

In this work, we have presented the results of compre-
hensive analyses of low-energy electroweak precision
measurements as well as LHC data on gauge boson pair
production and Higgs observables in the context of the
SMEFT. We focused on observables related to the electro-
weak sector, which at present allow for precision tests of
the couplings between electroweak gauge bosons and
fermions, triple electroweak gauge couplings, and the
couplings of the Higgs to fermions and gauge bosons.
For the sake of assessing the impact of the Higgs kinematic
distributions, we performed an analysis with and without
the STXS Higgs data in combination with the Higgs total
signal strengths. In total, the global analyses of EWPD and
EWDBD and Higgs results from LHC encompass 167
observables when considering only SS data and 255

observables when including the STXS samples; see
Sec. III for further details.
We worked in the framework of effective Lagrangians,

assuming the linear realization of the electroweak gauge
symmetry. Dimension-six operators are those with the
lowest dimension which contribute significantly to the
considered processes at lowest order. The global analysis
involves the 21 operators in Eq. (2.5) under the flavor
assumption that the new operators do not introduce addi-
tional tree-level sources of flavor violation or violation of
the universality of the weak current. Furthermore, we also
analyzed the constraints on a few simplified models to
illustrate how relations between the generated Wilson
coefficients within specific models lead to tighter limits.
All of the analyses performed show no statistically

significant source of tension with the SM. We find

χ2min EWPDþEWDBD;SM ¼ 91; 111 observables;

χ2min Global SS; SM ¼ 133; 166 observables;

χ2min Global STXS;SM ¼ 304; 255 observables; ð6:1Þ

to be compared with

χ2min EWPDþEWDBD;SMEFTOðΛ−4Þ ½SMEFTOðΛ−2Þ� ¼ 87½85�; 111 observables& 12 operators;

χ2min Global SS;SMEFTOðΛ−4Þ ½SMEFTOðΛ−2Þ� ¼ 115½112�; 166 observables& 21 operators;

χ2min Global STXS;SMEFTOðΛ−4Þ ½SMEFTOðΛ−2Þ� ¼ 266½264�; 255 observables& 21 operators: ð6:2Þ

We summarize our results of the χ2 dependence on the
Wilson coefficients for the OðΛ−2Þ and OðΛ−4Þ analyses,
which we performed with the most comprehensive dataset
including the kinematic information on the Higgs observ-
ables, by displaying the corresponding one-dimensional
Δχ2 distributions shown in Fig. 11, where we marginalized
over the 20 undisplayed variables in each panel. With these
results and the corresponding ones for the global SS
analysis, we obtain the 95% C.L. allowed ranges of the
21 Wilson coefficients that we present in Table VI, and we
graphically display them in Fig. 12. The maximum allowed
value for each Wilson coefficient at a given C.L. can be
translated into a lower bound on an effective new physics
scale

Λmin;C.L. ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf=Λ2jmax;C.L.

q ; ð6:3Þ

which is depicted in Fig. 13. Notice that Λmin;C.L. only
coincides with the minimum energy scale in the operator
expansion, Λ, for coefficients f ¼ 1. Λ could be smaller
than Λmin;C.L. if the coupling is weak.
In brief, the main results that we would like to stress are

the following:
(1) In our basis, there is no blind direction in the

electroweak precision observables. Therefore, the
limits originating from EWPD are already stringent
on eight Wilson coefficients. In fact, the EWPD
dominates the bounds on OLLLL, O

ð1Þ
Φ;e, OΦ;1, OBW ,

and fð1ÞΦ;Q=Λ2 up to some small but not negligible
contribution from LHC data (see Fig. 1).

(2) Conversely, the global analysis results in a sizable
reduction of the uncertainty on fð3ÞΦ;Q=Λ2 with respect
to the limits obtained using only EWPD. This is
expected due to the role played by this operator in
the Higgs associated production [104,105].

(3) The analysis of the EWPD of fð1ÞΦd=Λ2 points towards
a nonzero value for this coefficient due to the 2.7σ
discrepancy between the observed A0;b

FB and the SM.
Under the assumption that the operators modifying

5Notice also that Ref. [106] obtained their constraints by
adapting the so-called κ framework, which contains quadratic
terms in the anomalous couplings.
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the fermion-gauge couplings are generation inde-
pendent, the inclusion of the EWDBD and the Higgs
data in the analysis (either SS or STXS) gives rise to
a result compatible with the SM at better than
95% C.L. and with slightly reduced errors. In

addition, the global constraint on fð1ÞΦu=Λ2 is also

slightly improved by combining EWPD with the
LHC results.

(4) Allowing for fð1ÞΦd=Λ2 to be different for the bottom
quark, the combination of EWPD with the LHC
observables results in the quoted improvement on
the bounds for those operators contributing to the

FIG. 11. Marginalized one-dimensional Δχ2 distributions for the 21 parameters appearing in our global fit including the STXS Higgs
datasets. The dashed (solid) line stands for the results obtained with the theoretical predictions for the observables expanded at OðΛ−2Þ
[OðΛ−4Þ] in the Wilson coefficients.
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FIG. 12. 95% C.L. on the 21 Wilson coefficients used in our analyses. The color code indicates the dataset used and the order of the
predictions used.

FIG. 13. 95% C.L. minimal effective scale for each of the 21 Wilson coefficients. The color code indicates the dataset used and the
order of the predictions used.
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light quark couplings, but fð1ÞΦ;d33
is only marginally

affected by the inclusion of the EWDBD and Higgs
data, and its best fit remains nonzero at ∼2σ in the
global analysis.

(5) The operator Oð1Þ
Φ;ud induces right-handed charged-

current couplings for quarks, and it can only be
bound via its quadratic [OðΛ−4Þ] contributions.
Including those in the LHC observables, its Wilson
coefficient can be bounded with precision compa-
rable to that of the other operators affecting gauge-
quark couplings; see Fig. 11.

(6) The new EWDBD lead to a significantly improved
sensitivity to OWWW that is the only TGC operator
that does not contribute to the Higgs couplings.
Furthermore, the constraints on fB=Λ2 and fW=Λ2

are also significantly tightened, especially when
combining the information from both EWDBD
and Higgs data—in particular, the STXS kinematic
distributions; see Figs. 3 and 4.

(7) As anticipated, the recently available kinematic
distributions of the Higgs not only lead to
more stringent limits but also remove some
the correlations between the different operators
entering into the gluon-gluon-Higgs interactions;
see Fig. 6.

(8) Degeneracies associated with the flipping of the sign
of some Higgs couplings to gauge bosons and
Yukawa couplings, that originate from OΦ;2, are
not resolved in the present STXS analysis if per-
formed at OðΛ−4Þ. In fact, we can see clearly the
effect of the existence of two fΦ;2=Λ2 local minima
in many panels of Fig. 11.

(9) One can check the stability of the results of the
overall picture by comparing the bounds derived
using just the 1=Λ2 contribution with those derived
with predictions containing terms up to 1=Λ4; see
Fig. 11. From the figure, we read that the analysis
performed at Oð1=Λ2Þ does not allow for the
degenerate solutions associated with the flipping
of the sign of the Higgs couplings, or the strong
correlations induced in the effective gluon-gluon-
Higgs interaction or photon-photon-Higgs interac-
tion. Generically, the bounds derived including 1=Λ4

terms are somewhat stronger. This is particularly the

case for the coefficients of OWWW and Oð1Þ
Φd, which

dominantly contribute to EWDBD. This stability
suggests that the power series on 1=Λ is under
control for the range of energy probed at LHC run 2.
Notwithstanding, it is also important to notice
that diboson production has serious theoretical
problems at OðΛ−2Þ, since its differential cross
section is negative in some regions of the parameter
space [108], and theOðΛ−4Þ terms should be kept in
that case.

(10) As is well known, EFTs have a limited range of
validity, which can be signaled, for instance, by the
rapid growth of the cross section with the energy and
consequent violation of unitarity [35,36]. Conse-
quently, it is a matter of concern whether the bounds
on the Wilson coefficients are driven by regions of
the phase space where the EFT expansion is no
longer valid. Unfortunately, there is no systematic
way to truncate the phase space in the observables
included in the analysis to avoid such problematic
regions. Alternatively, the comparison of the limits
obtained by the analyses performed at the orders
1=Λ2 and 1=Λ4 allows us to estimate the size of the
higher-order contributions that would be most rel-
evant in those phase-space regions. Our results of
this comparison indicate that for most operators, the
Oð1=Λ4Þ contribution is smaller than the leading
one, indicating that, generically, the analysis uses
EFT in its validity range.

(11) Contrasting with the results of our previous analysis,
Refs. [37,109,110], we find that the bounds on
bosonic operators modifying the Higgs couplings
are much more stringent once the full LHC run 2
data are considered. In particular, the kinematic
distributions provided in the STXS format allow
the derivation of constraints which are a factor of 2
to 10 stronger for theWilson coefficients ofOB,OW ,
OBB, OW , and OGG at order 1=Λ2.

(12) At OðΛ−2Þ, the precision on the Yukawa couplings
ft=Λ2, fb=Λ2, fτ=Λ2, and fμ=Λ2 is similar whether
using the SS or STXS datasets, and their allowed
range is reduced by ∼30% for fb and fτ, and by ∼2
for fμ with respect to our previous results [37].

(13) Despite the added complexity to the Higgs-gluon-
gluon vertex [see Eq. (2.9) and Fig. 6], the intro-
duction of the additional contribution (OtG) to the
Higgs production via gluon fusion does not signifi-
cantly affect the analysis once the independent
constraint from top physics [Eq. (3.4)] is included.
In addition, the Higgs dataset is able to improve
slightly the limits on this coefficient, favoring a value
closer to zero, with respect to the top physics bias.

(14) Finally, the study of simplified models shows that
the available datasets are able to put stringent limits
on the model parameters, as we see in Figs. 9 and 10
and in Eqs. (5.1) and (5.2). In particular, for all
2HMD variants, our analysis results in bounds on
cosðβ − αÞ, for a fixed β, which are up to a factor ∼4
stronger than those derived in the experimental
analysis of Ref. [106].

Altogether, we find that the increased integrated lumi-
nosity gathered at 13 TeVallows us to obtain more stringent
bounds on a larger set of anomalous interactions and to
perform new tests of the SM. So far, there is no indication
of deviations from the SM predictions.

ELECTROWEAK LEGACY OF THE LHC RUN II PHYS. REV. D 105, 013006 (2022)

013006-21



ACKNOWLEDGMENTS

This work is supported in part by Conselho Nacional de
Desenvolvimento Centífico e Tecnológico (CNPq), Grants
No. 307265/2017-0 (A. A.) and No. 305762/2019-2
(O. J. P. E.), and by Fundação de Amparo à Pesquisa do
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APPENDIX: ANALYTICAL EXPRESSION OF χ 2

FOR OðΛ − 2Þ SS AND STXS ANALYSIS

By definition, when the theoretical predictions for the
observables considered in the analysis are expanded to
linear order [i.e., OðΛ−2Þ] in the Wilson coefficients, Δχ2
takes the form

Δχ2 ¼
XN
i¼1

�
fi
Λ2

−
f0i
Λ2

�
V−1
ij

�
fj
Λ2

−
f0j
Λ2

�
;

where V is the covariance matrix

Vij ≡ σiσjρij:

For the SS analysis, we find the best-fit values and uncertainties

OB OW OWWW OBB OWW OGG OtG OΦ;2 OuΦ;33 OdΦ;33 OeΦ;33 OeΦ;22 OBW OΦ;1 Oð1Þ
Φ;Q Oð3Þ

Φ;Q Oð1Þ
Φ;u Oð1Þ

Φ;d Oð1Þ
Φ;e OLLLL

f0

Λ2 ðTeVÞ−2 16 −0.23 0.49 4.2 −3.2 −4.7 0.52 1.7 6.6 3.1 0.83 −1.1 0.89 0.068 −0.003 −0.030 −0.061 −0.47 −0.041 −0.022
σ 11 1.4 2.0 2.7 2.5 2.5 −0.21 1.7 4.7 2.3 1.7 6.4 0.48 0.046 0.044 0.14 0.14 0.24 0.020 0.013

where the correlation matrix in the same order of operators as the above table is

ρ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1.000 0.345 −0.065 0.945 −0.965 −0.045 −0.025 0.575 −0.155 0.585 0.185 0.035 0.135 0.105 0.025 0.095 −0.135 0.075 −0.285 −0.245

0.345 1.000 −0.185 0.265 −0.335 −0.045 −0.035 −0.055 −0.085 0.035 0.175 0.005 0.125 0.145 −0.135 0.755 −0.455 0.455 −0.295 −0.285

−0.065 −0.185 1.000 −0.045 −0.015 −0.035 −0.095 −0.015 −0.045 −0.015 −0.075 −0.055 −0.095 −0.025 −0.045 0.035 −0.095 0.005 −0.075 −0.105

0.945 0.265 −0.045 1.000 −0.995 −0.095 −0.035 0.605 −0.165 0.615 0.145 0.035 0.235 0.245 0.055 0.065 0.045 0.045 −0.315 −0.345

−0.965 −0.335 −0.015 −0.995 1.000 −0.055 −0.065 −0.695 0.055 −0.705 −0.215 −0.125 −0.145 −0.165 −0.045 −0.125 −0.015 −0.095 0.095 0.045

−0.045 −0.045 −0.035 −0.095 −0.055 1.000 −0.955 −0.075 −0.945 −0.015 0.055 −0.055 −0.045 −0.045 −0.055 0.025 −0.055 −0.045 −0.035 −0.045

−0.025 −0.035 −0.095 −0.035 −0.065 −0.955 1.000 −0.035 0.725 −0.015 −0.035 −0.035 −0.045 −0.035 −0.045 −0.045 −0.035 −0.055 −0.045 −0.055

0.575 −0.055 −0.015 0.605 −0.695 −0.075 −0.035 1.000 −0.315 0.485 −0.115 −0.015 −0.055 0.005 −0.115 −0.045 0.005 0.035 −0.135 −0.125

−0.155 −0.085 −0.045 −0.165 0.055 −0.945 0.725 −0.315 1.000 −0.025 −0.035 −0.045 −0.075 −0.065 −0.045 −0.065 −0.055 −0.045 −0.025 −0.025

0.585 0.035 −0.015 0.615 −0.705 −0.015 −0.015 0.485 −0.025 1.000 0.305 0.025 0.025 −0.025 0.025 −0.135 0.015 −0.035 −0.115 −0.135

0.185 0.175 −0.075 0.145 −0.215 0.055 −0.035 −0.115 −0.035 0.305 1.000 0.005 −0.005 −0.005 −0.055 0.095 −0.115 0.045 −0.095 −0.085

0.035 0.005 −0.055 0.035 −0.125 −0.055 −0.035 −0.015 −0.045 0.025 0.005 1.000 −0.035 −0.035 −0.055 −0.015 −0.055 −0.025 −0.055 −0.065

0.135 0.125 −0.095 0.235 −0.145 −0.045 −0.045 −0.055 −0.075 0.025 −0.005 −0.035 1.000 0.865 0.045 0.115 0.165 −0.425 −0.955 −0.885

0.105 0.145 −0.025 0.245 −0.165 −0.045 −0.035 0.005 −0.065 −0.025 −0.005 −0.035 0.865 1.000 0.035 0.095 0.285 −0.435 −0.955 −0.715

0.025 −0.135 −0.045 0.055 −0.045 −0.055 −0.045 −0.115 −0.045 0.025 −0.055 −0.055 0.045 0.035 1.000 −0.125 0.505 0.615 −0.175 −0.205

0.095 0.755 0.035 0.065 −0.125 0.025 −0.045 −0.045 −0.065 −0.135 0.095 −0.015 0.115 0.095 −0.125 1.000 −0.665 0.695 −0.215 −0.215

−0.135 −0.455 −0.095 0.045 −0.015 −0.055 −0.035 0.005 −0.055 0.015 −0.115 −0.055 0.165 0.285 0.505 −0.665 1.000 −0.045 −0.425 −0.255

0.075 0.455 0.005 0.045 −0.095 −0.045 −0.055 0.035 −0.045 −0.035 0.045 −0.025 −0.425 −0.435 0.615 0.695 −0.045 1.000 0.365 0.195

−0.285 −0.295 −0.075 −0.315 0.095 −0.035 −0.045 −0.135 −0.025 −0.115 −0.095 −0.055 −0.955 −0.955 −0.175 −0.215 −0.425 0.365 1.000 0.725

−0.245 −0.285 −0.105 −0.345 0.045 −0.045 −0.055 −0.125 −0.025 −0.135 −0.085 −0.065 −0.885 −0.715 −0.205 −0.215 −0.255 0.195 0.725 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

For the STXS analysis, we find the best-fit values and uncertainties

OB OW OWWW OBB OWW OGG OtG OΦ;2 OuΦ;33 OdΦ;33 OeΦ;33 OeΦ;22 OBW OΦ;1 Oð1Þ
Φ;Q Oð3Þ

Φ;Q Oð1Þ
Φ;u Oð1Þ

Φ;d Oð1Þ
Φ;e OLLLL

f0

Λ2 ðTeVÞ−2 −10: 0.56 0.061 −2.9 3.6 −1.3 0.25 −2.7 5.0 1.1 2.8 −2.0 0.72 0.054 −0.012 0.057 −0.16 −0.38 −0.035 −0.021
σ 6.6 0.90 2.1 1.8 −1.7 1.5 0.14 1.5 3.0 2.0 1.7 6.6 0.47 0.045 0.043 0.11 0.13 0.22 0.019 0.012

where the correlation matrix in the same order of operators as the above table is
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ρ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1.000 −0.305 −0.035 0.855 −0.935 −0.215 0.095 0.365 −0.095 0.345 0.085 0.005 0.255 0.205 0.035 −0.335 0.285 −0.235 −0.255 −0.315

−0.305 1.000 −0.115 −0.375 0.325 −0.155 −0.045 −0.555 0.225 −0.435 −0.005 −0.055 0.155 0.135 −0.235 0.705 −0.295 0.305 −0.295 −0.255

−0.035 −0.115 1.000 −0.035 −0.035 −0.035 −0.065 0.015 −0.065 0.025 −0.075 −0.045 −0.055 −0.045 −0.105 0.115 −0.125 0.025 0.015 −0.015

0.855 −0.375 −0.035 1.000 −0.975 −0.155 0.085 0.465 −0.215 0.405 0.065 0.005 0.365 0.315 0.025 −0.445 0.355 −0.325 −0.385 −0.275

−0.935 0.325 −0.035 −0.975 1.000 0.095 −0.135 −0.535 0.235 −0.495 −0.125 −0.085 −0.185 −0.165 −0.135 0.365 −0.405 0.215 −0.015 −0.005

−0.215 −0.155 −0.035 −0.155 0.095 1.000 −0.875 −0.085 −0.845 −0.075 −0.025 −0.065 −0.175 −0.185 −0.045 −0.065 −0.065 −0.055 0.135 0.055

0.095 −0.045 −0.065 0.085 −0.135 −0.875 1.000 0.145 0.495 0.155 0.005 0.015 0.005 0.055 0.025 −0.075 0.005 −0.095 −0.185 −0.125

0.365 −0.555 0.015 0.465 −0.535 −0.085 0.145 1.000 −0.285 0.625 −0.005 −0.035 −0.075 −0.045 −0.035 −0.465 0.305 −0.295 −0.125 −0.035

−0.095 0.225 −0.065 −0.215 0.235 −0.845 0.495 −0.285 1.000 −0.055 −0.045 −0.055 0.045 0.045 −0.035 0.165 −0.165 0.035 −0.145 −0.115

0.345 −0.435 0.025 0.405 −0.495 −0.075 0.155 0.625 −0.055 1.000 0.105 −0.025 0.115 −0.005 0.035 −0.345 0.165 −0.195 −0.095 −0.035

0.085 −0.005 −0.075 0.065 −0.125 −0.025 0.005 −0.005 −0.045 0.105 1.000 −0.025 −0.095 −0.035 −0.065 −0.075 −0.015 −0.075 −0.065 −0.045

0.005 −0.055 −0.045 0.005 −0.085 −0.065 0.015 −0.035 −0.055 −0.025 −0.025 1.000 −0.035 −0.035 −0.045 −0.055 −0.035 −0.055 −0.045 −0.045

0.255 0.155 −0.055 0.365 −0.185 −0.175 0.005 −0.075 0.045 0.115 −0.095 −0.035 1.000 0.865 0.045 0.035 0.325 −0.325 −0.955 −0.885

0.205 0.135 −0.045 0.315 −0.165 −0.185 0.055 −0.045 0.045 −0.005 −0.035 −0.035 0.865 1.000 0.045 −0.015 0.405 −0.355 −0.935 −0.745

0.035 −0.235 −0.105 0.025 −0.135 −0.045 0.025 −0.035 −0.035 0.035 −0.065 −0.045 0.045 0.045 1.000 −0.395 0.575 0.475 −0.215 −0.235

−0.335 0.705 0.115 −0.445 0.365 −0.065 −0.075 −0.465 0.165 −0.345 −0.075 −0.055 0.035 −0.015 −0.395 1.000 −0.545 0.335 −0.085 −0.055

0.285 −0.295 −0.125 0.355 −0.405 −0.065 0.005 0.305 −0.165 0.165 −0.015 −0.035 0.325 0.405 0.575 −0.545 1.000 0.285 −0.515 −0.405

−0.235 0.305 0.025 −0.325 0.215 −0.055 −0.095 −0.295 0.035 −0.195 −0.075 −0.055 −0.325 −0.355 0.475 0.335 0.285 1.000 0.195 0.175

−0.255 −0.295 0.015 −0.385 −0.015 0.135 −0.185 −0.125 −0.145 −0.095 −0.065 −0.045 −0.955 −0.935 −0.215 −0.085 −0.515 0.195 1.000 0.745

−0.315 −0.255 −0.015 −0.275 −0.005 0.055 −0.125 −0.035 −0.115 −0.035 −0.045 −0.045 −0.885 −0.745 −0.235 −0.055 −0.405 0.175 0.745 1.000

1
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