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ABSTRACT: We study solutions of the Thermodynamic Bethe Ansatz equations for rela-
tivistic theories defined by the factorizable S-matrix of an integrable QFT deformed by
CDD factors. Such S-matrices appear under generalized TTbar deformations of integrable
QFT by special irrelevant operators. The TBA equations, of course, determine the ground
state energy F/(R) of the finite-size system, with the spatial coordinate compactified on a
circle of circumference R. We limit attention to theories involving just one kind of sta-
ble particles, and consider deformations of the trivial (free fermion or boson) S-matrix by
CDD factors with two elementary poles and regular high energy asymptotics — the “2CDD
model”. We find that for all values of the parameters (positions of the CDD poles) the
TBA equations exhibit two real solutions at R greater than a certain parameter-dependent
value R,, which we refer to as the primary and secondary branches. The primary branch is
identified with the standard iterative solution, while the secondary one is unstable against
iterations and needs to be accessed through an alternative numerical method known as
pseudo-arc-length continuation. The two branches merge at the “turning point” R, (a
square-root branching point). The singularity signals a Hagedorn behavior of the density
of high energy states of the deformed theories, a feature incompatible with the Wilsonian
notion of a local QFT originating from a UV fixed point, but typical for string theories.
This behavior of E(R) is qualitatively the same as the one for standard TTbar deformations
of local QFT.
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1 Introduction

The so-called TThar deformations [1, 2] of two-dimensional quantum field theories (QFTs)
has brought about a renewed interest to UV properties of Renormalization Group (RG)
flows generated by higher dimensional (a.k.a. “irrelevant”) operators. The TTbar de-
formation is defined as the one-parameter family of formal “actions” A, determined by
the flow

d

Ao = /(TT)a(x) Fe (1.1)

where (TT)(x) is a special composite operator built from the components of the energy-
momentum tensor associated with the theory A, [3]. The deformation (1.1) has a number of
notable properties. The theory A, is “solvable”, in the sense that certain characteristics can
be found exactly in terms of the corresponding ones in the undeformed theory A,—g. This
is remarkable, because the deformation operator (TT)a has exact dimension 4, meaning
the perturbation in (1.1) is “irrelevant” in the RG sense. Normally, such deformations
are expected to break the short-distance structure of the quantum field theory, generally



rendering the theory UV incomplete, and possibly violating causality at short scales. The
abnormal UV properties of the theory A, are manifest already in the short-scale behavior
of its finite-size ground-state energy. If the spatial coordinate of the 2D space-time is
compactified on a circle of circumference R, its ground-state energy F,(R) is determined
exactly, via the equation [1, 2]

Ea(R) = EO(R - aEa(R)) ; (1'2)

in terms of the ground state energy FEy(R) of the undeformed theory, at o« = 0. The
equation (1.2) shows that, depending on the sign of the deformation parameter «, the
ground state energy either develops a square root singularity at some R, ~ 1/+/]a], or has
no short-distance singularity at all. Neither of these types of behavior is compatible with
the idea of QFT as the RG flow stemming out of a UV fixed point. The theory defined
by (1.1) therefore is not a local QFT in the Wilsonian sense [4]. Moreover, at negative «,
the singularity at finite R signals a very fast growth of the density of states at high energies,
a common hallmark of string theories, leading to the Hagedorn transition [5]. The behavior
of E4(R) at positive « is possibly even more puzzling, as it suggests a finite number of states
per unit volume, an unlikely feature if one thinks of a QFT as a system of continuously
many interacting degrees of freedom, unless quantum gravity is involved.! Therefore, the
deformed theory determined by (1.1) cannot be considered a conventional UV complete
local QFT. At the same time, however, the TTbar deformation has a number of robust
features which makes one reluctant to simply dismiss it as “pathological”. It is instead
tempting to think that the deformation (1.1) exemplifies some meaningful extension of the
notion of local QFT. In particular, an interesting interpretation of the theory A, in terms of
its gravitational dual was proposed in [8], where a relation to the state of the bulk gravity in
the dual theory was suggested. Several questions about 2D physics of the deformed theory
need to be elucidated in order to put such suggestions on a solid ground. For example,
does the deformation preserve any part of the local structure of QFT? Notice how the very
definition (1.1) depends on the notion of the energy-momentum tensor, conventionally a
part of such a local structure. Another important question concerns the macro-causality in
2D space-time. While the deformation (1.1) with positive « is suspected to display super-
luminal propagation [6, 8], the case of negative « is most likely free from this problem.
We will not dwell on this question, as it is the negative-a deformation which will be of
interest to the present discussion. In any case, we believe it is important to understand
the physical origin of the above abnormal short-distance properties.

Another exact result about the theory A, concerns the deformation of its S-matrix,
whose elements differ from the corresponding undeformed ones by a universal phase factor,
available in closed form [6]. In particular, the 2 — 2 elastic scattering amplitude has
the form

Sal0) = So(0) exp (—iaM?sinh0) (1.3)

where Sy(0) = Sa—0(0) is the 2 — 2 scattering amplitude of the undeformed theory. Here
0 = 61 — 05 is the difference between rapidities of the two particles involved — assumed for

LA relation of the TTbar deformation to the Jackiw-Teitelboim gravity was indeed proposed in [6, 7].



simplicity to be identical — and M denotes their mass; in what follows we set the units so
that M = 1. A notable feature of the additional phases acquired under the deformation is
their abnormally fast high-energy growth, which is evident already in the form (1.3).2 The
scattering phase in (1.3) determines the density of two-particle states, suppressing it when
a > 0 but greatly enhancing it at negative .. In the latter case, one might be led to believe
that the Hagedorn behavior is directly related to this rapid growth of the 2 — 2 scattering
phase. One of the results of the present work is to show that the situation is more subtle:
the growth of the two-particle scattering phase in (1.3) is not a necessary condition for the
formation of the singularity of the finite-size energy at finite real R. We will study certain
generalizations of the TThar deformation which can be defined whenever the original QFT
is integrable [1]. In most of such deformations, the scattering phases present a less exotic
high-energy behavior — i.e., they have finite limit at & — oo — while, at the same time,
the overall density of states grows nonetheless exponentially with the energy, leading to
the Hagedorn singularity.

The generalizations of the TTbar deformations we will be interested in are based on
the integrability of the original QFT. This assumes that the theory possesses infinitely
many conserved local currents of higher Lorentz spins s + 1, with s taking values in the
set {s} of odd natural numbers: s = 1,3,5,7,... .3 The deforming operators TT(*)(z) are
constructed from these currents in the exact same way as the operator T'T'(x) is built from
the energy-momentum tensor, see [1] for details. It can be then shown that the theory
deformed by adding such operators retains its integrability, preserving the same set of
conserved local currents. Therefore the deformations of an Integrable QFT (IQFT) by the
operators TT®) generate an infinite-dimensional family of flows generalizing (1.1),

00y Fo) (
o / TTE) (@) (1.4)
Here {a} denotes the infinite set of the deformation parameters {a} := {as}, and the

subscript {a} under the operator T7T()(z) is added to emphasize that it is constructed
in terms of the conserved currents of the deformed theory Ay,;. In what follows we refer
to (1.4) as the generalized TTbar flow.* For integrable theories, the infinite-parameter
flow (1.4) generalizes the one-parameter deformation (1.1). The latter corresponds to the
special case as = 0 for s > 1, and a3 = «. To distinguish them, below we often refer
to (1.1) as the “T'Tbar proper”, or simply TTbar, reserving the term “Generalized TTbar”
to the generic deformation (1.4). It was argued that the deformation (1.4) leads to the

2A similar behavior of the scattering phase was previously found in non-commutative field theories [9].

3Generally, the set of spins {s} of local Integrals of motion may be different in different integrable
theories. Here we assume, again for simplicity, the most common situation — represented e.g. by sinh-
Gordon or sigma models — where {s} involves all odd natural numbers. In different models the CDD
factor discussed below may be constrained by additional conditions, which however do not change the
overall conclusions below.

“In [10], a different family of generalizations of the TTbar flow, in which the deforming operators TTs
are asymmetrically constructed from the energy-momentum tensor and a higher-conserved current, was
explored.



following deformation of the elastic two-particle S-matrix

S{a}(e) = S{O}(a) <I>{a}(9), @{a}(e) = exp —1 Z Qg sinh (S (9) y (1.5)
s€2Z+1

with the same notations as in (1.3) and (1.4).° The phase factor ®(,)(6) is known with the
name of CDD factor [13]. Generally, it is an energy-dependent phase factor ®(f) which
can be added to the 2 — 2 scattering amplitude without violating the analyticity, unitarity
and crossing symmetry conditions. The unitarity and crossing demand that ®(0) satisfies
the functional relations

OO)D(—0) =1, D) = d(ir —0) , (1.6)

which ®;,1(0) in (1.5) obviously does term by term in the sum over s. Moreover, it is
easy to see that (once the overall sign ambiguity is ignored) any solution of (1.6) can be
represented by the form (1.5), with the series in the exponential converging in some vicinity
of the point # = 0. However, the series does not need to converge at all . The S-matrix
analyticity forces ®(6) to be a meromorphic function of #, with the locations of the poles
constrained by the condition of macro-causality (more on this momentarily). Therefore,
for (1.5) to represent a physically sensible S-matrix, the sum over s is allowed to have a
finite domain of convergence, while its analytic continuation must admit the representation

(P{a} (9) = (I)pole(e) (I)entire(‘g) s (17)

where the first factor absorbs all the poles located at finite 8, whose number N is in general
arbitrary (possibly infinite),

ﬁ sinh 6, + sinh 6

¢066 - e 1 A . 1 A
pol () sinh 6, — sinh

(1.8)
p=1

and
Dentire(#) = exp {—i Z as sinh (s 0)} . (1.9)

In this last factor, the series in the exponential is assumed to converge at all 6, so that
Dentire(f) represents an entire function of . Macro-causality restricts possible positions of
the poles 6, to either the imaginary axis Re#, = 0, or to the strips Im 6, € [—, 0] mod 27
since, in virtue of (1.6), ®(#) is a periodic function, ®(27i + ) = ®(0). Let us stress here
that the representation (1.7)—(1.9) of the generic CDD factor ®(,1(¢) differs from the one

®The parameters cs in (1.3) coincide with the flow parameters defined in (1.4) provided a specific
normalization of the fields TT{(Z)} (z) is chosen, otherwise the terms in the sum in (1.3) would have additional
normalization-dependent numerical coefficients. The form (1.3) was explicitly derived in [1] for the deformed
sine-Gordon model, to leading order in the deformation parameters. However, this form of the S-matrix
deformation under the flow (1.4) can be proven in the general case, using the methods of [11] or the approach
developed in [12]. We will elaborate this point elsewhere.



given in (1.5) only in the parameterization: any factor (1.7)—(1.9) can be written in the
form (1.5), with the parameters «y expressed in terms of ay and 6,, and conversely any
factor @;,y(f) defined in (1.5), being analytically continued to the whole #-plane, can be
written in the form (1.7).

In the present work we focus our attention on the class of S-matrices (1.5) having CDD
factors (1.7) for which the entire part (1.9) is absent,’

D103 (0) = Ppote(6) (1.10)

and the product in (1.8) involves finitely many factors, i.e. N < co. Note that, unlike (1.3),
such CDD factors have regular limits at 8 — +o0o. Therefore, if the undeformed S-matrix
So(0) behaves regularly — presenting no abnormal growth of the scattering phase — at
large 6, so does the deformed S-matrix Sp(6)®(f). We now raise the following question:
how does an S-matrix deformation such as the one just described affect the short-distance
behavior of the theory? Unfortunately, for the general TThar deformation (1.4) no closed
form of the finite-size energy levels similar to (1.2) is available with which one could analyze
their dependence on the size R of the system. However, having an exact expression for
the deformed IQFT S-matrix, the finite-size ground-state energy E(R) can be obtained by
solving the associated Thermodynamic Bethe Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving only
one kind of particles, having mass M = 1. In this case the two-particle S-matrix consists
of a single amplitude S(€), which itself satisfies the equations (1.6). Therefore we can limit
attention to the functions S(6) of the form (1.8).” There are two substantially different
cases, depending on the sign of S(0) = 0 = £1. Following [16], we refer to these cases as
the “bosonic TBA” when ¢ = +1 and “fermionic TBA” for 0 = —1. Given S(6), let ¢(0)
be the derivative of the scattering phase,

p(f) = n —log S(0) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single function
€(0), the pseudo-energy,

do’
e(0) = R cosh 0 — / P00 L(0) (1.12)
T
where
L(9) := —o log (1 - 06_6(9)) . (1.13)
The ground state energy can then be recovered from the pseudo-energy via the following
expression
o0 dé
E(R) = — / coshOL(0) 5 (1.14)
oo m

SA first analysis of models whose S-matrix is deformed by a CDD factor consisting of only of a generic
entire part (1.9) has been performed in [14].
"One can think of these as CDD deformations of the free S-matrix S(0) = +1.



In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important
insight into high energy, viz. short distance, properties of the deformed theories (1.4).
A numerical solution can be obtained, with practically arbitrary accuracy, by numerical
integration of (1.12). This approach was employed to obtain E(R) in a number of IQFT’s
with known S-matrices, see e.g. [16, 17]. Usually, the numerical solution is obtained by
iterations, starting from a seed function, conventionally taken to be €(f) = R cosh 6, and
successively substituting the result of the previous iteration in the right-hand-side in (1.12).
We will review this approach in section 3.1. If one considers the S-matrix associated with
a UV complete local IQFT — such as a conformal field theory (CFT) perturbed by a
relevant operator, the sine-Gordon model, or an integrable sigma-model — the iterations
turn out to converge for all R > 0, and the resulting ground-state-energy F(R) happens
to be analytic at all positive real R, developing a Casimir singularity at R = 0. But how
adding a CDD factor to the S-matrix will affect the TBA solution? This question was
addressed in the early 90’s by Al. Zamolodchikov, who has considered the modification
of the trivial fermionic S-matrix S(f) = —1 by the simplest possible rational CDD factor,
namely (1.8) with N = 1. In the resulting theory, the celebrated “staircase model” [17],
the iterative solution of the TBA still converges at all positive R, producing a ground-
state-energy F(R) analytic for R > 0. He also observed that when adding more general
CDD factors the situation changes qualitatively. Typically, the convergence of the iterative
solution breaks down at R below a certain critical value R,, and the form of the numerical
solution at R > R., where the iterations converge, strongly indicates the existence of a
square-root singularity of E(R) at R, [18]. A similar observation was made in [19], where a
particular CDD deformation of the trivial bosonic S-matrix S(f) = 1 was studied and the
numerical solution of the associated TBA equation was found consistent with the existence
of a singularity at finite R, > 0. We wish to stress that the presence of the singularity
at finite R, and, moreover, its square-root character, are features very similar to the ones
displayed by E(R) in the TTbar deformed QFTs, as shown in figure 2 below.

In this work we study a few simple cases of CDD deformed TBA equations, using a
refined numerical routine based on the so-called “pseudo-arc-length continuation” (PALC)
method. This allows one to recover solutions to the TBA equation (1.12) which are unstable
under the standard iterative approach. This method is explained in detail in section 4.
The object of our attention will be trivial S-matrices S(¢) = o = £1 deformed by CDD
factors (1.8) with N = 1,2. The case N = 1 with ¢ = —1 corresponds to either the
sinh-Gordon or the staircase model, depending on the position of the pole. As mentioned
just above, these models do not display any abnormal short-distance behavior and were
extensively studied in the literature. The bosonic TBA with N = 1 was considered in [19]
and we will comment on it in section 5, along with the N = 2 case. Of these, we mostly
address the fermionic cases, although some results for the bosonic TBA are also presented.
We find that for all allowed values of the parameters 6, (p = 1,2) the fermionic TBA
equation (1.12) with sufficiently large R possesses two real solutions, or “branches”, which



merge at some finite R = R,. For R < R, these branches are likely to continue as a
pair of conjugated complex-valued solutions. Of these two real solutions at R > R,, one
reproduces the iterative solution of the TBA equations (1.12). We will call this solution the
“primary branch”, while referring to the other one as the “secondary branch”. Let us stress
here that it is the primary branch which directly corresponds to the deformed theory: E(R)
on the primary branch represents the finite-size vacuum energy of the deformed theory (in
particular, at R — oo the effect of the deformation disappears, as expected); it also gives
the specific free energy of the deformed theory at temperature T'=1/R (in particular, it is
the primary branch solution which correctly sums up the virial expansion associated with
the input particle theory). In this sense, one could call the primary branch the “physical”
one, although we will not use such a term.® The secondary branch always has lower energy
E(R) than the primary one, which is qualitatively similar to the behavior observed in the
TThbar deformations with negative «, see figure 2. Since the two branches merge at some
finite R = R, this can be regarded as a “turning point”, where the continuation along
the graph of E(R) turns backward into the secondary branch. This is precisely the kind
of situation the PALC method is designed to deal with. The secondary branch remains
real for all R > R, and, moreover, develops a linear asymptotic ~ es, R as R — oo. This,
again, is in full qualitative agreement with the TTbar deformations, together with the
important fact that the singularity of the pseudo-energy €(0|R), viewed as a function of R,
occurs at R = R, that is independent of 6. Of the above features, the existence of primary
and secondary branches with the turning point at finite R,, independent from 6, repeat
verbatim in the bosonic 2CDD model. On the other hand, we still cannot check the large
R behavior of the secondary branch with sufficient accuracy, due to some instability in the
numerical procedure. We will return on this problem in a future work.

It is likely that the general situation displayed in the models studied here, i.e. the
solution of the TBA equation developing a square-root singularity at finite R., which signals
the presence of a Hagedorn transition, remains qualitatively the same when more CDD
poles are added in (1.8) — with the possible exceptions of special domains, hypersurfaces of
lower dimension, in the parameter space.’ This of course will have to be carefully verified.
We regard the present work as a first step in the program of systematically studying
the short-distance behavior of the generalized TTbar deformations (1.4) of IQFTs. The
qualitative similarity to the TTbar-deformed QFTs, with negative «, suggests that the
same mechanism behind the formation of the Hagedorn singularities is at play in all of
these models. Understanding the physics underlying this phenomenon remains the most
important open problem in this context, as well as the main motivation for the present work.

8The reason is that this would imply that the secondary branch is “unphysical”, which we are reluctant
to claim. Although the secondary branch definitely does not have direct interpretation in terms of “physics”
of the input S-matrix, it might very well have some physical content of its own. In fact, understanding
physical mechanism behind the secondary branch is one of the outstanding problems which remains open
both for the generalized TTbar deformations and for the TTbar proper.

9Examples of such cases can be found in [20-22].



2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a fac-
torizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be derived
from the S-matrix deformation (1.3) via the TBA equations. We will present a somewhat
simplified version of the much more general arguments of [2] (for related work see [23, 24]
and the more recent [25, 26]). Whereas the analysis in [2] applies to all the energy eigen-
values of the TThar deformed theory (1.1), we limit our considerations to the ground-state
energy, which we denote as F(R). The advantage is that the simple arguments presented
below apply to the deformation (1.3) of an essentially generic integrable theory. The only
assumptions, made for simplicity, are that the particle scattering theory associated with
Ay involves only one kind of neutral particles, with the factorizable scattering of fermionic
type,'? i.e. Sp(0) = —1. The goal is to emphasize some important properties of the solution
which, as we will see, are shared by the TBA solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the following
kernel

0a(0 —0) = po(0 —0") — a cosh(6 — &) . (2.1)

Recall that the ground state energy E,(R) is given by (1.14), which in our case reads

©0 do
Fo(R) = — / cosh 0 La(0]R) & (2.2)
o s
where L, (0|R) := log (1 + e*GQ(O‘RU satisfies the deformed TBA equation (1.12),
, P
ea(0|R) :Rcoshe—/goa(Q—G)La(O IRy (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate the
dependence on # and @’ in the rightmost term in the kernel (2.1) so that the TBA equation
can be written as follows

do’

alB1R) = (R~ a Ea(R)) cosh® — [ 40(6 —0) La(0'|R) 5 .

(2.4)

where we used the definition (2.2). For reasons that will become clear shortly we have
made explicit the fact that (0| R) and L(0|R) are functions of R as well as of the rapidity
0. This last form (2.4) shows that e,(0|R) satisfies the same TBA equation as €y(0|R),
only with R replaced by R — aFE,(R). It then follows that

ea(0|R) = eo(0|R — aEu(R)) (2.5)

which immediately implies the equation (1.2) for the deformed energy.

10 xtension to the bosonic case S(0) = 41 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with different or equal masses. We will elaborate on such cases elsewhere.



Figure 1. Finite-size ground state energy Eo(R) of a conventional Wilsonian relativistic QFT. Its
R — 0 behavior —m¢/6R is controlled by the UV fixed point. At large R, Eo(R) shows the linear
behavior ~ g9 R, with the slope ¢ representing the bulk vacuum energy density. We have to stress
that the TBA equations actually compute the difference Ey..(R) — €gR, and in our subsequent
analysis F(R) stands for this difference. (That is why in all plots below the R — oo slope of the
primary branch is always set to zero.)

It is also worth reminding here how the singularity of E,(R), signifying the Hagedorn
density of states, follows from (1.2). This takes a particularly simple form in terms of the
function R, (F), inverse to the function E,(R), where « is regarded as a fixed parameter,

Ro(E) = Ro(E) + o E . (2.6)

This expression shows that the graph of the deformed function E,(R) differs from the
graph of Ey(R) just by an affine transformation (R, F) — (R+aFE, E) of the (R, E) plane.
If we assume, as we do, that the undeformed theory Ag is a conventional QFT, defined &
la Wilson as the RG flow from some UV fixed point down to an IR one (see [4]), then the
graph of Ey(R) looks qualitatively as shown in figure 1.

At large R the function Ey(R) approaches a linear asymptotic g9 R, where g¢ is the
vacuum energy density of the infinite system, with the rate of the approach controlled by
the IR fixed point, which, typically, is a non-critical one. On the other hand, at R — 0
it diverges as the Casimir energy determined by the UV fixed point, Fo(R) — —7c/6R,
where c is the Virasoro central charge of the UV fixed point CFT. Then, according to (2.6),
the plot of E,(R) will look as either one of the panels (a) or (b) in figure 2, depending on
the sign of a. In what follows we will concentrate our attention to the case of negative «,
shown in panel (a). Note that the curve E,(R) has two branches, each of which having
real values for R above a certain critical value R,. It is the upper “primary” branch that
corresponds to the ground state energy of the TTbar-deformed theory (1.1).

The two branches merge at R = R,, where the function E,(R) develops a square-root
branch point, i.e. the derivative dEq(R)/dR diverges as (R — R.)~Y/2. At R < R,, the
analytic continuation of E,(R) returns complex values and the two branches are complex
conjugate.

It is the singularity at R, that signals the Hagedorn phenomenon in the deformed
theory, which can be inferred as follows. When the Euclidean theory is considered in the
geometry of a very long cylinder of circumference R, as shown in figure 3, its partition



(a) <0 (b) a>0

Figure 2. Finite-size ground state energy of the TThar deformed theory. (a) a < 0. The graph
E,(R) shows the “turning point” at some finite R., which signals the Hagedorn transition. (b)
a > 0. Ey(R) shows no singularity at R = 0.

function Z is saturated by the finite-size ground state
—logZ ~ LE,(R), (2.7)

where L — oo is the length of the cylinder. This corresponds to the picture in which
the coordinate y along the cylinder is taken as the Euclidean time. Alternatively, if one
uses the picture where = plays the role of Matsubara time, the same partition function is
represented as the trace

Z =tr (e_Rﬁ“”) = / dE T(E) e FE = ¢~ RE(R) (2.8)
0

where dET(E) ~ dE€ e3() denotes the density of states, i.e. the number of states in the
energy interval d€. While in a local QFT whose high-energy limit is governed by the UV
fixed point the entropy S grows as S(€) ~ \/2nc/3 VLE as £ — oo — this is known as
Cardy formula [27] — the singularity of F/(R) at finite positive R = R, is formed when the
entropy S(&) grows much faster,

S(E) ~ R.E, (2.9)

so that the partition sum diverges at R < R.. We will discuss the density of states in the
TTbar deformed theories in more details in section 6.

In the above discussion we have denoted by R, the position of the singularity of E,(R)
as a function of R. It is important to observe that the solution e, (0| R) displays a singularity
at the same position R = R,, independent on the value of the rapidity 8. In other words, in
the two-dimensional space spanned by the variables (6, R) the singularity of €, (6| R) occurs
along the line (6, R = R,). We will see that this feature of the singularity associated with
the Hagedorn transition will be reproduced in the generalized TThar flows studied below.

As already mentioned, the enhancement of the density of states in the deformed theory
is well expected. The scattering phase in (1.3) grows fast with the center of mass energy,
leading to the increase of the density of two-particle states, implying a yet greater increase of
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Figure 3. The Euclidean space-time cylinder representing the finite-size geometry in our anal-
ysis. The coordinate x is compactified on a circle of circumference R, while the length L of the
cylinder is assumed to be asymptotically large. In the picture where y is regarded as the Euclidean
“time” the partition function (2.7) is dominated by the finite-size ground state contribution. In the
complementary picture, where y is interpreted as spatial coordinate while = plays the role of the
Matsubara “time”, the same partition function is given by the thermal trace (2.8).

the density of all multi-particle states. The calculation presented above demonstrates that
the resulting entropy displays the Hagedorn behavior (2.9). It is then tempting to assume
that the formation of the Hagedorn density (2.9) is directly related to the fast growth
of the scattering phase. In the next section we will show that the Hagedorn singularity
develops just as well in models whose associated CDD factor has a finite behavior at high
energies, as in (1.8) with finite N, which indicates that the physical origin of the Hagedorn
transition in the deformed theories is substantially more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by the
pole factor (1.8), which we write as

N .. .
1sin u, + sinh 0
S(0) = P 3.1
(0) =0 1:[ isinu, —sinh ¢ (3.1)
p=1
where, as before, 0 = — (resp. ¢ = +) corresponds to the fermionic (resp. bosonic) case.

The parameters u, may be taken to be complex and, in view of the obvious periodicity of
S(0), we may limit our attention to the strip —m < Re(up) < 7. The standard analytic
requirements for the physical S-matrix, however, impose restrictions on the possible loca-
tions of the poles 0, = iu,. Taking these restrictions into consideration, the parameters
u,, are allowed to be either real or complex with negative real parts. The poles 0, = iu,,
with real positive u, signal the existence of bound states — new stable particles of mass
2M cos(up/2). Since the presence of such particles violates our working assumption that
the mass spectrum of the theory only involves a single kind of stable particle with mass M,
henceforth we will assume that all parameters u, in (3.1) possess a negative real part: 1

—m < Re(up,) <0, Vp=1,...,N. (3.2)

1This leaves out the possibility of having a pole at § = 2mi/3 which may be identified with the same
particle of the mass M = 1. Such interpretation requires that S(6) satisfies additional bootstrap condition.
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This leaves us with poles 6, = iu, lying in the unphysical region, i.e. the region of the
complex center-of-mass energy s-plane reached by analytically continuing the scattering
amplitude through the two-particle branch cut. When w, has nonzero imaginary parts,
such poles are associated to unstable particles, having complex masses M, = 2M cos(u,/2),
with the real and imaginary parts identified as usual with the mean center of mass energy
and the width of the resonances. The poles with real negative u, do not have clear particle
interpretation, but the number of such poles signify the increment of the scattering phase
as the function of 6 at low energies; these poles are often referred to as the virtual states
(see e.g. [28]).

A final requirement is that of unitarity of the physical S-matrix, which demands that
S(—0) = S*(0) at all real 0, or, equivalently, that S() takes real values at pure imaginary 6.
It follows that any non-real parameter u, in (3.1) either has fixed real part Re(u,) = —7/2

or appears together with its conjugate w). We can then refine the range (3.2) to the

-
following three cases

a) Im(up) =0 and Re(uy) € (—m,0),

b)  Im(up,) #0 and Re(up) =—= (3.3)

c) Im(up) >0 and Re(u,) € (—77,—7;> U <—72r,0}

and I/ <N st uy =u)

Thus, each subfamily (o, N) of (3.1) contains a number of, in principle, different models,
determined by a given combination of the ranges (3.3) for each of the parameters {up};,vzl
Some simple combinatorics'? tells us that this number is

T4 (- ) N € 2Zsg

(3.4)

VR
+ M\Z

1
ZN2+N+
NE N e€2Zso—1

Since for any model determined by (3.1), with parameters in the ranges (3.2), the mass
spectrum contains a single stable excitation, the resulting single-particle TBA equation
takes the simple form (1.12), with the kernel () being the derivative of the scattering
phase which, in the case of (3.1), explicitly reads

190
pnepp(t) = 55 log Snepp(f) = ->
p=1

2sinuy, cosh @

. 3.5
sin? u,, + sinh? 6 (8:5)

This possibility, known as the “¢® property”, cannot be realized in the 2CDD model considered in this
work, but may be relevant when N is greater than 2. We hope to address this type of models elsewhere.

12Given the number N of poles one needs to partition it into three non-negative integers n,, ny and n.
with the constraint that n, +ns +2n. = N. Once a value of n. = 0,1,...,|N/2]| is chosen, one is obviously
left with N — 2n. + 1 non-equivalent arrangements of poles between the cases a) and b). Thus the number
of different models is given by ZLN/QJ N —2n. + 1), which gives the result (3.4).
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An equivalent, sometimes more useful, expression of this kernel is its partial fractions
expansion

N 1 1

oD (¥) = pzzjl cosh (0 + i (up + 5)) T Cosh 0 —i(up+7))

(3.6)

In what follows, we are going to concentrate our attention on two particular subfamilies:
the “1CDD models” where N = 1 and the “2CDD models” with N = 2.

The 1CDD models. When N = 1 the S-matrix (3.1) consists of a single factor

isinu + sinh

Sicop(f) = o (3.7)

isinuy —sinh 6

According to the breakdown of cases (3.3), for each choice of the TBA statistics we only
have two possible models, corresponding to the following ranges of the parameter u;:

(a) ug € Rand —7w < uy <0,
(b) u1 = —m/2+ifp and Oy € R.

Considering at first the fermionic case o = —1, one recognizes in (3.7), for the case (a), the
well-known S-matrix of the sinh-Gordon model

isinu; + sinh 0

Ssh(;(g) = —_nm<u; <0. (3.8)

isinu; —sinh 6’
On the other hand, the case (b) corresponds to the S-matrix of the “staircase model”,
introduced in [17]

sinh 6 — ¢ cosh 6

Sstair () = sinh @ 4 i cosh 6y ’

0 eR. (3.9)

In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to the
TBA equation converges at all positive values of R, producing a function F(R) analytic in
the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in full agreement
with the interpretation of F(R) as the ground state energy of a UV complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation has
a considerably more intricate behavior. The case (a) of u; real was first addressed in [19],
where it was observed that the iterative solution of the TBA equation only converges for
sufficiently large radius R > R, > 0. The authors also noticed that the function E(R)
appears to develop some sort of singularity at R = R,. Below in section 5 we will show
that the solution to the TBA equation, and, consequently, the ground state energy F(R),
possesses, as a function of R, two branches. These merge at R = R,, meaning that R, is
a square-root branching point. We also show that this behavior extends to the case (b) of
complex parameter uy; = —m/2 + i6y.
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The 2CDD model. In the N = 2 subfamily, a pair of CDD factors is present in (3.1):

isinuq + sinh 6 7 sin uy + sinh #

Socnp(0) = o (3.10)

isinu; — sinh @ 4sinug —sinh @
Following the breakdown (3.3), we see that there are 4 possibly distinct models, corre-
sponding to the following ranges of the parameters u; and uo

(a) up €Rand —7w < ug <0,
us € Rand —m < ug < 0,

(b) Ay € R and U1:—7T/2+i90,
us € R and —m < ug <0,

(b’) up e Rand —7 < w3 <0,
Op € R and uy = —7T/2—|—’i90,

(¢) 6p € R and uy = —7/2 + iby,
0 € R and uy = —7/2 + 6},

(d) p e R,y (—7/2,7/2), us =y — /2 + 16y and ug = uj.

The model (a) can be considered as a special instance of the more general case d). On
the other hand the models (¢) and (b) — equivalent to (b’) — are genuinely distinct. All
the models above display, both for the bosonic and fermionic statistics, the same type of
behavior observed in the bosonic 1CDD models mentioned above: the iterative procedure
for solving the TBA equation (1.12) only converges for R larger than some positive value
R, > 0 and the ground state energy E(R) apparently develops a singularity at R = R,.

While we are going to present some data for all the various 2CDD cases, we devoted
most of our attention to the case (d), that we will call, with some definitional abuse, the
“2CDD model”. Tts S-matrix and TBA kernels explicitly read as follows

sinh @ — i cosh(6y + i7y) sinh 6 — i cosh(0y — imy)
0) = . A1
S2cop(0) = o sinh 0 + i cosh(6y + i7y) sinh 6 4 i cosh(fy — imy) (3.11)
1
pacop(0) = (3.12)

Tt cosh (0 +nbp + in'y)

3.1 Iterative solution

The chances of a non-linear integral equation of the form (1.12) to be amenable to an
explicit analytic solution are considerably slim. For this reason the main investigation
approach to the TBA equations is of numerical nature.!® In most situations, a simple
iterative procedure of the following type

€n(0) = Rcosh 6 + U/Lp(@ — 0" log {1 — ge 1) ;LG , (3.13)
T

13Tn some limiting cases, it is possible to derive exact expressions, e.g. for the ground-state energy in the
conformal limit, via the so-called “dilogarithm trick”, as explained nicely in [29].

— 14 —



appropriately discretized, is shown to converge to the actual solution
Jim_ en(0) =€(0) , (3.14)

when the seed function €y(#) is chosen as the driving term'*

€0(f) = Rcoshf . (3.15)

The existence and uniqueness of the limit (3.14) has been proven rigorously in [30] for the
fermionic single-particle’> TBA equation (1.12) with a kernel satisfying the requirement

lelly = [ le@I 52 < 1. (3.16)

The fermionic 1CDD models do satisfy this condition and, as such, the iteration procedure
is guaranteed to converge nicely in the whole range R € R+, a fact which is easily verified
numerically. All the other models we considered above, on the other hand, violate one or
more of the hypotheses of the existence and uniqueness theorem in [30] — being either of
bosonic statistic, or having a kernel with L' measure ||¢||; = 2, or both — and are not
guaranteed to possess a convergent iterative solution. Notice that the L' measure of the
TBA kernel (3.6) counts the number of CDD factors

lenconll; =N, (3.17)

meaning that, in the class of models described by the S-matrix (3.1), only the subfamily
with (o, N) = (—1,1) is guaranteed to have a convergent iterative solution.

We investigated numerically the 1CDD models (a) and (b) and the 2CDD models (b)
to (d),'¢ for both the bosonic and fermionic statistic, using the iterative procedure (3.13).
As already mentioned above we observed that only for the 1CDD fermionic models this
procedure converges for all positive values of the radius R. In every other case, there
exists a positive “critical radius” R, > 0 such that for R < R, the iterative routine stops
converging. As R approaches R, from larger values, we noticed that the rate of convergence
of the iterative numerical routine slows down dramatically, a telltale sign of the existence
of some kind of singularity nearby.'” In figure 4 we collected the plots of the ground-state
energy F(R) for one representative point in the parameter space for each of the models we
mentioned above along with one for the T'T-deformed free fermion. The shape of the curves
suggests that all the cases, apart from the fermionic 1CDD models, behave qualitatively in
the same way as the TT-deformed free fermion, that is to say they develop a square-root
type singularity at some critical value of the radius R = R, > 0:

E(R) ~ cy+cipV/R—Ri+O[R-R,)). (3.18)
R—>R

11 the case in which the iterative procedure does converge, there is actually a vast freedom in the choice
of the seed function. However the standard choice indicated in the main text is the most natural one.

15See also [31] for an extension to fermionic multi-particle TBA equations.

Remember that the 2CDD model (a) is really a sub-case of model (d).

" This same “critical slowing down” of the numerical iterative procedure is observed as R — 0 in any
TBA system with iterative solution converging in R € Rso. In this cases it reflects the existence of a
Casimir-like singularity of the ground-state energy at R = 0.
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Figure 4. Ground-state energies for the various models discussed above, along with that of the
TT-deformed free fermion (black dots). The empty (resp. filled) markers correspond to models
with bosonic (resp. fermionic) statistics. The fermionic sinh-Gordon and staircase models can be
solved iteratively all the way to the R — 0 limit, while the rest fail to converge below a certain
model-specific scale R,. The parameters of the models were chosen as to allow a comfortable visual
comparison between the curves and are the same for both bosonic and fermionic versions of the
same model. Insets: inverse square of the (numerical) derivative. As shown by the fits (dotted
lines), the fermionic sinh-Gordon and staircase models show the conventional UV behavior oc R,
while the other models develop a o« R behavior reminiscent of the square-root branching singularity

of the ground state energy.

In order to further confirm this suspicion we plotted the derivative of the ground-state
energy to the power —2 in the vicinity of the supposed critical point. As we can see in the
insets of figure 4, the numerical results are in good accord with the hypothesis that R, is

a singular point of square root type, as expressed by (3.18).

3.2 Two branches

Having our expectation confirmed leaves us with the question of how to deal numerically
with such a square root critical point. In particular, the behavior (3.18) implies the exis-
tence of a secondary branch of the ground-state energy, behaving as

E(R) ~ c—cipVR—R.+O(R-R,), (3.19)

R—Rf
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Figure 5. Here is plotted the ground-state energy E(R) for the model with S-matrix (3.11) with
0o = 1/2 and v = 37/20, obtained through the PALC routine described in section 4. The numerical
points are sided by three lines, approximating F(R) for large R on both branches and for R 2 R,.

in the vicinity of the critical point. Here and below we are going to use the notation E (R)
for the secondary branch. We would like to be able to access numerically to this secondary
branch and to explore its properties, e.g. its large R behavior and the possible existence of
further critical points. The iterative routine (3.13) is ill suited for this job and we need to
employ a more refined method, the PALC mentioned in the introduction and described in
section 4. Deferring a more thorough analysis of the properties of F(R) to section 5, let us
present here its main qualitative features, concentrating on a single point in the parameter
space of the fermionic 2CDD model (d) as a representative case.

More specifically let us set 8y = 1/2 and v = 37/20 and compute numerically the
ground-state energy of the model defined by the S-matrix (3.11). The result is displayed in
figure 5. We see that the function E(R) does indeed possess two branches with distinctly
different IR behavior. The primary branch is characterized by the universal IR behavior

E(R) ~ —%Kl(R)Jro(e*?R) , (3.20)

R—o0

where K stands for the modified Bessel function while the secondary branch approaches
a linear behavior at large R

E(R) ~ —&_R, (3.21)

R—o0

with a rate of approach likely to be some negative power of R. For the specific case depicted
in figure 5 the coefficient of the linear term is found to be

1 3T
_ = — = — | = —2.87452 ... .22
. (90 o 20) 87452... (3.22)
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while the constant term is vanishing up to the precision we used for our numerical rou-
tines. We will see in section 5 that this is the asymptotic behavior predicted by analytical
considerations. In the zoomed box in figure 5 we also plotted a fit of the function E(R)
in the vicinity of the critical point R.. As expected the behavior in this region is best
described by the square-root function (3.18) (and (3.19) for the secondary branch), with
the coefficients taking the following values

1 3T
o= —,v= > | = —1.11767...
CO< 0 27’7 20) 767 9
1 3
¢y (9():2,7:275) — 2.03547 ... , (3.23)
1 3T
(0 ==,7="2) = 0.61478849... .
R (6’0 5 ol 20) 0.61478849

Another notable fact is that we see no trace of additional singular points: the PALC
method can, apparently, reach arbitrarily large values of R on the secondary branch and the
resulting ground-state energy quickly approaches the expected asymptotic linear behavior.

We note again that the behavior of F(R) depicted in figure 5 is qualitatively identical
to the one exhibited by the ground-state energy of TT-deformed models for negative values
of the deformation parameter «, as described in section 2 (see e.g. figure 2).

Finally, we stress that the features of F(R) described here for a point in the parameter
space of a specific model really are representative of the general behavior of the ground-state
energy in the family of models defined by the S-matrices (3.1), at least for what concerns
the case of fermionic statistics. As we will discuss in section 5 the status of the models with
bosonic statistics is still not completely settled. In particular it is still unclear whether the
secondary branch of F(R) displays additional critical points or continues undisturbed in
the deep IR and, if this was the case, what type of behavior it follows.

4 Numerical method

The results displayed in the previous section suggest that the solution to the TBA equa-
tion (1.12), for S-matrices of the form (3.1), may generically possess a singular dependence
on the parameter R. In particular the slope of the tangent to the graph of F(R) apparently
diverges at some R = R,. Such critical points are known as turning points. Their presence
in the dependence of the ground-state energy E on the system size R evokes the case of
the TThbar deformed models, in which all the quantities obtainable from the TBA display
a square-root singularity at the same value R = R,.

The iterative procedure described in section 3.1 becomes unstable at R — R, therefore
it is not particularly suitable for analyzing the vicinity of the singular point. Fortunately,
many powerful methods exist that are capable of handling numerically critical points in
non-linear equations. We refer to the nice monograph by Allgower and Georg [32] for
an introduction, paired with an extensive literature, to the subject. The simplest of these
numerical routines is the already mentioned PALC method which, in spite of the simplicity
of its implementation, will be entirely sufficient to handle the situations of interest for us.
In this section we will quickly review this method and its main features.
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4.1 The pseudo-arc-length continuation method

Before starting let us point out a trivial fact: the TBA equation (1.12) is non-linear. It is
then not at all surprising that its solutions can develop a highly non-trivial dependence on
the parameters. Conversely, what is remarkable is that in the vast majority of instances
known in the literature, the solution to the TBA equations display a simple behavior as
functions of R. In full generality, we should expect a solution €(0|R) to potentially present,
as a function of R,'® any type of critical point imaginable. As we will see later, in the
cases of the 1CDD and 2CDD models we are concerned with here, only turning points
appear. We will thus restrict our attention to the simple cases in which every critical
point is a turning point. This considerably simplifies both the discussion and the actual
implementation of the PALC method, although, if needed, it is entirely possible — and
not exceedingly difficult — to include the existence of bifurcations in the game.

Since our goal is to analyze the TBA equation (1.12) numerically, we are going to
describe the principles of the PALC for maps between finite-dimensional spaces. Let us
then truncate and discretize the real 6-line on a N-point lattice {0 | k = 1,2, ..., N} which,
for the moment, we are not going to specify further. Now, consider a parametrized map H
which takes as input a parameter R € R together with the values e = €(0;) € R of some
real function on the lattice, and yields N real numbers:

RV xR — RV
H . , (4.1)
(&R) — H(ER)

where we packaged the values ¢, and Hj into vectors € and H. We wish to explore the
following fixed-point condition

H(ER)=0. (4.2)
Note that the TBA equation (1.12), appropriately discretized and truncated, can be written
in the above form. By definition, the map H acts between spaces of different dimensionality,
meaning

dim[Ker(H)] > 1, (4.3)

or, in other words, the image of the null vector 0 € RY under the inverse map H~! is a
space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this image
is a curve

C: JCR — RYxR. (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point C; = (&, R;) to
a final one Cy = (€, R¢). The most straightforward way to achieve this is to simply

181n principle, the solution might possess critical points also in its dependence on the other parameters
present in the TBA equation. We found no hint of such a possibility and we will thus simplify our discussion
by concentrating on the dependence on the parameter R.

~19 —



parametrize the curve by R and employ some numerical iterative routine, such as the
one reviewed in section 3.1, to move from C; = C(R;) to Cy = C(Ry). However this
simple-minded approach fails at any point in the parameter space where the rank of the
Jacobian

OHj,
O¢ '

is not maximal. There we can no longer rely on the implicit function theorem to solve (4.2)

Tkl =

(4.5)

for € in terms of R. More geometrically, what happens is that the curve C(R) displays
a turning point, where %C’ (R) diverges. Fortunately there exists a very simple cure for
this problem: instead of parameterizing the curve C by the parameter R, we can use an
auxiliary quantity s, traditionally chosen to be the arc-length of C' or a suitable numerical
equivalent, whence the name pseudo-arc-length given to this approach. The condition (4.2)
then becomes

H(C(s)=0, seJCR. (4.6)

In order to proceed, let us take a derivative of this condition with respect to the parameter
s. We immediately obtain

H'(C(s)C(s) =0, (4.7)

where the extended Jacobian

H(C(s)) = <.7 o ) | 18)

is a N x (N + 1) block matrix, while

d =
EE

C(s) = : (4.9)

is an (IV + 1) column vector. At this point we seem to be short of 1 condition, since we
introduced an additional parameter. However, remember that we decided to choose s as
the (pseudo-)arc-length of C', which means

IC(s)]| =1. (4.10)

Summing up, we converted our non-linear problem, supported by the starting point (€;, R;),
into an initial value problem

H(C($)C(s) =0, [IC)|=1,  Cls) = (@R, (4.11)

capable of dealing with the presence of turning points. Still, this formulation is somewhat
unnatural as it completely disregards the fact that the curve C' is the fixed point of the
map H, and, as such, should enjoy powerful local contractive properties with respect to
iterative solution methods — such as Newton’s method. We are then led to an integrated
approach in which we numerically integrate (4.11) very coarsely and subsequently employ
some kind of iterative method to solve (4.6) locally. This is the general strategy behind the
approaches known as predictor-corrector routines. In appendix A we are going to describe
the one that we employed in this work and present a pseudo-code of its implementation.
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5 Results for the 2CDD model

Here we present some results obtained using the numerical techniques of the previous
section. We first concentrate on the fermionic 2CDD models and then discuss some facts
about the bosonic models.

5.1 Fermionic case

The numerical data we collected, of which we have shown some example in section 3.2,
strongly indicate the following properties of the ground-state energy E(R) as a function
of R:

— E(R) is a double-valued function of R, in the range R > R, with values in the
negative real numbers;

— The point R = R, is a square-root branching point — or, using the terminology of
section 4, a turning point — of the function E(R);

— There is no sign of additional turning or singular points other than R = R,;

— The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property (3.21)
can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this end,
we write the equation as follows

€(0) = d(0) — x(0) , (5.1)
where d(#) is the driving term and (@) the convolution:
de’

d(f) = Rcosh@ , x(0) = / 00 —0") log [1 + 676(9,)} o (5.2)

As R — oo, the driving term becomes large, ~ R, and, in order for the equation (5.1) to
be satisfied, it has to be balanced by a similar behavior in either €(6), x(#) or both. The
standard assumption is that

e(0) ~ d9), x(0) < d), (5.3)

R—o0 R—o0

which turns out to be consistent, since, as one easily verifies,

de’ e(0) _gr
— o~ —= Rcoshf. (54
2T R—oco /2R € R§<oo o8 ( )

However this is not, in general, the only possibility. It might be the case that the convo-

x(0) ~ / (0 —0") log {1 + e_RCOShGI}
R—o0

lution term x(#) is diverging as R — oo and becomes comparable with either €(0), d(6) or
both. It is then not difficult to check that only two possibilities are consistent:
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1. €(d) — 0 and the kernel () is not integrable on the real line;
R—o0

2. €(0) o —R f(0) where f(#) is positive only in some finite'? subset ©® C R of the

oo
real line and negative everywhere else.

The scenario 1 cannot arise for the class of models we are dealing with,?° since the ker-
nels (3.6) are obviously bounded functions of # € R. The situation 2 is, on the other hand,
a possible one. Let us explore its consequences.

In the hypothesis that

fO)>0,0e€0 CR,
e0) ~ —Rf(), ; (5.5)
R—o0 fO)<0 6cO-=R-0,
the convolution can be approximated as follows
o’ n do’
~ iy n 22 _g —R[f(ONI] 2
X(6) R%OR/ (0 =0 f(0) 5+ | (00 log[1+c |5 690
© R
Discarding the second term in the right-hand side, we arrive at the linear equation
| . db’
f(@)z—cosh@—i—/cp(@—&)f(@)%. (5.7)
S)

Due to our hypothesis on the function f(f), we see that the integrand in the right-hand
side above is positive for any (, ') € R?, which implies the following bound

dy’

0< [ ot0-0)70) Y <17 [ 00~ 0) 2 (5.9

(C] S}

Now, let O\ € O be such that f(6y) = 1}/[%}( [f(t)], then the following inequalities are true
€

dae’
—cosh Oy < f(Om) < —cosh Oy + f(GM)/ 0Oy — 0 5 (5.9)
o
Rearranging the right inequality above, we find that
do’ cosh Oy
O —0)—>1 1 5.10

S}

which we can interpret as a constraint on the class of models which allow for this scenario.
In fact, remember that the integral of the kernel on the whole real line, (3.17), counts the

19The subset © cannot be infinite, since the equation (5.1) forces €(#) to behave as d(6) for # — +oo.

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
Dentire(0) (1.9). In particular it describes the large R behavior of the secondary branch E(R) in the
TT-deformed theories.
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number N of CDD factors appearing in the S-matrix (3.1). But, since we assumed that ©
is a finite subset of R, we find that

/

d
N>/¢(0M—0’)E>1 — N>1. (5.11)
(S

Thus we have found that the fermionic 1CDD models, namely sinh-Gordon and the
staicase models, can only display the standard large R behavior (5.3), (5.4). We stress that
this result should not be read as a proof of the absence of turning points in these models,
but rather as a sanity check for the correctness of our computations, since the ground-
state energy for fermionic 1CDD models is well known to be a smooth and monotonously
increasing function of the radius in the whole range R > 0. Conversely, all fermionic
NCDD models with N > 1 allow for both the standard large R behavior (5.3), (5.4) and
the non-standard one (5.5). Consequently, their ground-state energy will possibly display
both the asymptotic behavior (3.20) and (3.21), where

E_ = / cosh 6 f(0)do , (5.12)
©

in accordance with the numerical data we have obtained.

5.1.2 Analysis of the numerical data

The fermionic 2CDD models were classified in section 3 into cases (a) to (d). We have per-
formed numerical analysis for all the different cases and the results show that the behaviors
are qualitatively the same. Thus, we are going to show here the details of the numerical
analysis only for the representative case (d). We begin by analyzing the numerical solution
obtained through the PALC method for large values of R. It was argued in the previous
section that the pseudoenergy should behave as in (5.5), assuming negative values in a fi-
nite subset of the real line and positive values elsewhere. This is indeed checked to be true
for all the 2CDD models under consideration, as illustrated for a particular member of this
family in figure 6, and to be contrasted with the standard iterative solution (the primary
branch) which is positive everywhere. The numerics indicate that the negativity region is
always a single interval centered at the origin of the form © = {# € R| —A <0 < A}. They
also indicate that the interval size A is model-dependent. In particular, it seems to grow
with 6y and decreases with . Nevertheless, the precise dependence of A on the parameters
deserves further investigation.

We then proceed to analyze the secondary branch solution in the opposite extremum
of R, i.e., as R approaches the critical value R,. For some of the plots it will be convenient
to show the results in terms of the log-scale distance

x = log(R/2) (5.13)

that alleviates the exponential dependence (with z, = log(R./2) for the corresponding
critical point). Here we find it more instructive to display L(6) instead of the pseudoenergy
itself in order to ease the comparison with the primary branch solution. The situation is
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Figure 6. Pseudoenergy €(f) for the secondary branch solution (blue) at large values of R, showing
the expected behavior (5.5), namely it is below 0 (marked with the dashed line) in a finite interval.
Corresponding behavior of the iterative solution (red). Here the model parameters are 6y = 2 and
~v = 47 /10, though we checked the qualitative picture to remain the same within the whole set of
admissible values of 6y and ~.

R =0.0257
— R =0.0225
4+ - |=——=R =0.0200
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Figure 7. L(0) for both the primary (red) and secondary (blue) branch solutions as R approaches
the critical value R.. For each color (blue or red), the color gradient indicates the decrease of R
towards R., where the two branches merge. Here 6y = 5 and v = 47 /10, which lead to R. = 0.0192.

illustrated in figure 7. The two branches approach each other as the value of R decreases,
eventually merging at R = R, after which they become complex-valued. For each R,
the function L(6) for the secondary branch is everywhere larger than the corresponding
primary branch counterpart, which is compatible with the previously mentioned fact that
it has lower energy (recall the overall minus sign in (1.14)).

The critical value R, could in principle have a dependence on 6. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate 6-
independence to high accuracy, even though at this moment we do not have an analytic
proof of this property. The analyses were as follows. We first ran the iterative numerical
routine and computed the pseudoenergy () for at least ten different values of = differing
from each other and from z, by 10~8. Then, we selected several values of 8 and for each
value we performed a square root fit of the form a(6)+b()\/—z.(0) + x. The fits were done
using Mathematica’s NonlinearModelFit function by giving an initial estimate for z.(0).
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Figure 8. Dependence of the critical z, in the model parameters. Black lines correspond to
fermionic 2CDD models, red lines correspond to bosonic ones. On (a), we demonstrate the validity
of the narrow resonance limit approximation for x, (red and black bullets/boxes), see in 5.3.

By comparing all the obtained z,(#), we verified that they agree up to errors greater than
10~® which was our minimal working precision. The analysis was performed for several
values of 0y and for 7 in the range 0 < v < (99/200)7. In many cases, when the number
of necessary points in the discretized 6 grid was not very high it was possible to work with
even higher precision. In those cases, another way of getting x, with high precision is by
assuming a square root behavior for the pseudoenergy and solving the resulting equations
using Mathematica’s FindRoot function.

In addition, we also verified that R, depends smoothly on the model parameters 6
and +, as shown in figure 8 for both the fermionic and bosonic models. In particular, for
large 6y we have the asymptotic behavior z, = log(R./2) = —0y + 20 (see section 5.3 for
a derivation in the special limit where v is close to /2, for whiclr(lojrio) = loglog(2 + 2v/2);

for other values of 7 the linear term remains the same, though z. "’ is different).

5.2 Bosonic case

We have also repeated the analysis described above using the PALC method to the case of
bosonic systems. The numerical routine used in this case only differs from the fermionic
case by a few signs. As already mentioned in section 3, the solutions to the TBA equation
for the bosonic models have intricate behavior already for the 1CDD cases. It was first
noticed in [19] (for the case of real uj, in the notation of (3.7)) that the numerical iterative
routine stops converging for some R,, signaling the presence of a singularity. In fact,
we have verified numerically that all the bosonic models up to two CDD factors behave
similarly to the fermionic 2CDD models of previous section, i.e., they have a “primary
branch” and a “secondary branch” which merge at a critical scale R, where the energies
E(R) have square-root singularities in R, and the value of R, is independent of 6.
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Figure 9. L(6) for the 2CDD bosonic model of type (d) with 6y = 5 and v = 37/10, in which
case R, ~ 0.2382. Similarly to the fermionic case the function L(#) for the secondary branch is
everywhere greater than the one for the first branch.

There is a simple argument based on the well-known relation between bosonic and
fermionic TBA which makes this behavior of the bosonic 1CDD model rather natural.
Consider the TBA equation (1.12), (1.13) with ¢ = +1 and an NCDD kernel (3.1), and

introduce the following function
&(0) = log @ 1] . (5.14)

Some trivial manipulations show that this function satisfies a fermionic TBA equation with
kernel

3(0) = o(0) + 278(0) | (5.15)

with the §(f) being the Dirac J-function. Therefore, a general bosonic NCDD model
is equivalent to the (N 4+ 1)CDD fermionic TBA, taken in the limit when uyy; — 0
(see (3.6)).2! Recalling the arguments presented in section 5.1.1, we conclude that bosonic
NCDD models admit two different types of large R behaviors whenever N > 0.

The large R regime of the pseudoenergy €(6) for the primary branch is as expected and
it is easily accessed numerically, however for the secondary branch it is more involved to
compute it. By increasing the value of R, eventually we reach a value R’ where the PALC
method suddenly ceases to provide a real solution and reverts back to the primary branch
solution. Analyzing the behavior of €() for complex values of 6, we verified that a pair of
complex conjugate zeros of z(f) =1 — e—<(9) is approaching the real axis and causing the
numerical instability. In principle it is possible to refine the numerical methods so as to
obtain solutions for R > R’. However, it is not clear at the moment whether or not those
singularities of L(6) ever cross the real axis. In case they do, an analysis similar to the one
performed in [33] for the excited state TBA could be carried out. We leave the analysis of
the large R behavior of the secondary branch in bosonic models for a future study.

The behavior of the models for R close to R, is illustrated in figure 9 by the L(0)
function for a 2CDD model of type (d). The qualitative picture is similar to the fermionic

i sin u—sinh 6

2I'Notice that limy_o logZEni—mns = i sign(6), for the principal branch of the log function.
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case, i.e. the function L(6) for the secondary branch solution is greater everywhere than
the one for the primary branch and the two merge as the critical point is approached.
We conclude this subsection by showing in figure 8 the smooth dependence of z, on the
model parameters and in particular in the limit v — 7 /2. In addition, notice that the
bosonic curve is always above of the fermionic curve for the same parameters. This can
be understood by analyzing the map (5.15) and the fact that the additional delta function
term always give a positive contribution to the convolution term of the TBA equations.

5.3 Narrow resonance limit

™

Here we consider the special limit v — 7 of the kernel (3.12). In this limit the poles of
the kernel get closer to the real line, finally forming two Dirac ¢ functions. We shall refer
to this as the Narrow Resonance (NR) limit. After integration of the delta functions and
exponentiation, TBA (1.12) becomes the difference equation

Y (0|R) = e Tteoh011 — 5V (6 + 6| R)]°[1 — oY (0 — 60| R)] 7, (5.16)

€(0IR) Note that this can be seen as an

where we introduced the notation Y (0|R) = e~
infinite set of equations relating the values of Y on the grid points 6 € (—6y, 6y) + 6oZ.
Let us focus on the fermionic case (0 = —1). Introducing yr = Y (0 + k) and

— e R cosh(0+kbo)

Ik we can write (5.16) as

Yk = gk(1+ yp—1)(1 + Yrt1) » (kez) (5.17)

and look for a solution for different grids specified by a choice of #. This is an infinite
set of equations, however starting with & = 0 one can obtain an approximate solution by
truncating the system for some |k| < m, since g and y; decay very rapidly with R and 6,
and hence with k. Truncating to m = 1 leads to the quadratic equation

Yo = ko[l + g1(yo + D][1 + g-1(yo + 1)]. (5.18)

One can now choose the integer lattice (i.e., # = 0), to get

yo = —1 — e~ Reosho %eR(1+2cosh9o) (1 + \/1 — 4e—R(14coshbo) (] 4 e—RcoshHQ)) . (5.19)
The solution develops a square root singularity at z, ~ —6g + loglog(2(1 4 v/2)), which
is compatible with our findings in section 5.1.2. This point is shown as a red bullet in
figure 8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of 0 lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (0 = +1) using the half-integer lattice leads to the black box
shown in figure 8a.??

Note that the truncation to m = 1 is only valid for sufficiently large R and 6. Increas-
ing the truncation order leads to more coupled equations, which in turn can be recast as an

22The analog of (5.19) comes with a more complicated square root argument and no analytical solution
for x. as a function of Oy can be found in that case, although it is straightforward to find it numerically.
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Figure 10. Approaching the Narrow Resonance (NR) limit for 8y = 2 and = = 1.75.

(more complicated) algebraic equation for yg, with parameters depending on 6. The number
of solutions increases accordingly. However, for any 6 € (—6p,6y) there is always a single
pair of solutions which collide and form a branching point at some z,.(0) ~ —6y + const.,
corresponding to real, positive R.(f), a feature that is not altered by increasing the trun-
cation order.

Finally, we remark that in the further special limit §y = 0, the difference equa-
tions (5.16) become simple algebraic equations for Y () that can be exactly solved both
in the fermionic and the bosonic case, leading to exact expressions x, = loglog2 and
s« = loglog %\/3 for the critical points, respectively. These points are also shown in fig-
ure 8a, emphasizing the smooth nature of the limit v — 7.

In figure 10 we present as an example a solution with m = 8 truncation together with
the iterative solution of the integral equation (1.12) for 6y = 2 and ~ approaching /2,
just before reaching the (first) critical R.(6) of the NR limit. The transition seems to be
smooth, however we do not yet have a complete understanding of the nature of this limit.
We plan to revisit the narrow resonance model in a more sistematic way in the future.

6 Discussion

There are two general questions which we believe our results shed some light upon. One
concerns the short-distance behavior of the theory under the generalized TTbar deforma-
tion (1.4). Our results supports the expectation that, at least in the cases when the CDD
factor in the associated S-matrix deformation has the form (1.10), (1.8) with finite IV, the
theory develops the Hagedorn singularity corresponding to a density of high-energy states
much greater than what is allowed in a Wilsonian QFT. Although we demonstrated this
in a limited set of examples — the 2CDD deformations of the free S-matrix with both
fermionic and bosonic statistics and the 1CDD deformations of the free boson S-matrix —
this result likely extends to more general NCDD deformations, at least for massive theories
involving only one kind of particles. In fact the case N = oo, a model known as Elliptic
sinh-Gordon, is shown to display the same behavior as the ones studied here [34]. We
note that this behavior is qualitatively the same as the one encountered under the “TTbar
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proper” deformation (1.1) of a generic local QFT. Moreover, the singularity of F(R) at the
Hagedorn point R, is a square-root branching point, exactly as in the TTbar deformations
with negative a. From a formal point of view, this nature of the singularity is not en-
tirely unexpected. Indeed, the character of the singularity relates to the rate of approach
of the Hagedorn asymptotic (2.9) at high energy & — oo. Assume that the approach is
power-like?

a LH—H
gn

where k is some positive number, L is the spatial size of the system which is assumed

S(E) = R, € —

. (6.1)

to be asymptotically large, and the dots represent yet higher negative powers of £. The
dependence on L of the subleading term reflects the extensive nature of the entropy, which
must behave as Lo(E/L) in the limit L — oo, with the intensive quantity - the entropy
density o - depending on the energy density £/L. Inspection of (6.1) reveals the mass
dimension of the coefficient a to be a ~ [mass]?*™!. Having in mind that all the deformation
parameters «; in (1.4) have even integer dimensions, one could expect that the exponent
2k + 1 is an integer. The lowest positive x consistent with this assumption is x = 1, and
then (6.1) leads exactly to the square-root singularity of E(R). Still, the physics behind
this simple character of the singularity appears mysterious. Analytic continuation of F(R)
below R, returns complex values of E. This likely signals an instability of the ground
state at R < R, against some sort of decay. If so, what is the product(s) of the decay?
Usually in a theory with finite range of interaction the decay of the unstable ground state
goes through the process of nucleation, as in the “false vacuum” decay studied in [36, 37].
However such a decay would imply a much weaker — and analytically more complicated
— singularity at R,. Therefore the simple algebraic character of the actual singularity
appears puzzling. A different, but possibly related, question is the physical interpretation
of the secondary branch of E(R) discovered in section 5.

An even more general question concerns the relation between the S-matrix and the
underlying local structure. Suppose we are given an S-matrix, i.e. a collection of masses of
stable particles as well as the full set of scattering amplitudes, satisfying all the standard re-
quirements of the S-matrix theory - unitarity, analyticity, crossing and bootstrap conditions
(see e.g. [38, 39]), with the singularity structure consistent with the macro-causality [40].
Is there a local QFT generating such a scattering theory? The answer is generally no.
There are consistent S-matrices which cannot be derived from Wilsonian QF T, and indeed
do not have an underlying local structure, meaning a complete algebra of local operators.
This possibility is famously realized in string theories. The results presented here sup-
port the expectation that the overwhelming majority of self-consistent S-matrices are not
derivable from local QFT. Although this expectation arise from a general analysis of the
RG flows [4], we substantiate it by providing concrete examples in 1+1 dimensions with
factorizable S-matrices consisting of pure CDD factors. We studied a number of exam-
ples of such S-matrices and verified that they lead to the Hagedorn density of high-energy
states (2.9), familiar to the string theories. What’s more, it looks likely that this situation

231t is interesting to compare this assumption with the analysis of thermodynamic stability in [35].
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is rather general: with the exception of a small subset of “local field-theoretic” S-matrices,
the bulk part of the space of consistent, factorizable S-matrices in 1+1 dimensions, leads to
a Hagedorn transition. This statement of course needs to be verified on a more systematic
level, but it is tempting to conjecture that this is a general situation, not limited to inte-
grable theories and to low space-time dimensions. If so, would it mean that the majority
of consistent S-matrices correspond to some kind of string theories? Or maybe there is a
more general class of theories, besides the strings, which break the standard local structure
of QFT while preserving macro-causality and exhibit the stringy density of states?

The present work represents a first step of a project having as a goal the system-
atic analysis of the TBA equations for completely general CDD-deformed factorizable
S-matrices, with arbitrarily complicated CDD factors (1.7), possibly including the fac-
tors (1.9) with singular behavior at high energies. Clearly, also CDD deformations of
more complicated S-matrices, involving more than one kind of particles — possibly hav-
ing mass degeneracies, a situation leading to off-diagonal scattering — have to be studied.
Such S-matrices lead to systems of TBA equations more complicated than the simple equa-
tion (1.12). Nonetheless, we believe that the numerical methods adopted here, in particular
the PALC routine, can be adopted in full generality. Finally, a similar analysis can be ex-
tended to the CDD deformed “massless TBA systems” (see e.g. [29, 41, 42]). Although
the physical foundation here is less firm — since the notion of S-matrix is ambiguous for
massless theories in 141 dimensions — these cases might yield welcome surprises.
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A Predictor-corrector routine

In general, a predictor-corrector routine is, as the name suggests, a two-step procedure
to solve an equation, by first performing an educated (numerical) guess and subsequently
adjusting it. In the case we are concerned with, we wish to solve the equation

/
H(e,R) = —€(#) + Rcosh — / Zi¢(e —6)log (1 + e—ﬁw’)) =0, (A.1)
T
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with ¢ being the 2CDD kernel (3.12)

1

) = > .
it cosh(0 + ow + io’7)

(A.2)

Obviously, we are going to deal with an appropriate truncation and discretization of the
above equation, taking the following form

— 1 —€
Hk(é, R) = —€ + RCOSth — % %:A@gokl log (1 +e l) =0 s (A?))

with Af being the lattice step (taken to be constant, for simplicity) and

1

o= . '
o,0'==%1 COSh((k - l)AH +ow + zglfy)

(A.4)

The two steps of the predictor-corrector routine can be then described as follows

o Predictor. This part of the routine takes as input a point c¢(s;) = (€j, R;) on the
solution curve and uses the initial value problem form (4.11), which we recall here

H(e(s)e(s) =0, llels)l =1, e(s;) = (&.Ry). (A.5)

©) RO

to yield a reasonable guess for a new point ¢(?)(s;11) = (€, i+1)- The simplest way

D
to obtain such a point is to employ the so-called Fuler predictor, which implements

the equation
4
121

where the N + 1 vector ¢; is tangent to the extended Jacobian H'(c(s)) at the point
(€, R)):

@D, RY)) = (&, Ry) + b5 (A.6)

H'(&, R;)t; = 0. (A7)

e Corrector. This second part of the routine engages in the problem of adjusting the

predictor’s output (gﬁ)l, R§.°+)1

does so by some iterative method for solving the equation H=0 starting from an

) to a point actually lying on the solution curve. It

initial, reasonably close, guess. The fastest and least expensive of these methods is
the Newton’s one, which in our case would take the following form

g(“‘l) _ =0 [T

(¢ ¢
j+1 — &1 T 6() R()

j+1s j+1)]_1H(€(6) RY) RD = gD (A.8)

J+1 j+1) ’ 7+1 g

if only we were not worried to encounter a point where J is not invertible. In fact
we are concerned precisely with such an eventuality, it being the very reason that
led us to consider the PALC method and the associated predictor-corrector routine.
Hence, we need to appropriately modify Newton’s method in order to accommodate
the possibility of a singular J, with H' of maximal rank N. The way to handle such
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a situation is to consider the concept of quasi-inverse (also called Moore-Penrose
inverse) AT of a matrix A, defined as

AT = AT (44T (A.9)

where a superscript 1" denotes standard matrix transposition. Notice that, if A is
a square matrix, the above definition is equivalent to the standard inverse. Now, if
A is instead an N x (N + 1) matrix of maximal rank N and ¢ is its tangent vector
At = 0, then the following statements are equivalent

1. Ar=band tTz =0,
2. x=A"b,

3. x = mvm[HvH ‘ Av = b} which, in plain words, means that x is the vector of
minimal norm which solves the equation Ax = b.

Without going too much in the details (see chapter 3 of [32]), the takeaway is that
we can implement Newton’s method in the usual way, as long as we trade the inverse
of the Jacobian for the quasi-inverse of the extended Jacobian:
(1) pe+)y _ =20 po) 20 p) i+ 20 pl)
(€j+1 At ) = (€j+17R_j+1) - [H/(€j+1’Rj+1)} H(€j+1ij+1) . (A.10)
The above equation is then iterated as long as necessary, until reaching a point
(E'](JLr)l, R;i)l) = (€j4+1,Rj4+1) deemed, by some appropriate convergence test, close
enough to a point on the solution curve.
Here follows a pseudo-code summarizing the procedure expounded above. As we can
immediately see, the algorithm requires an initial point solving the TBA equation. This can
be provided by using the standard iterative procedure of section 3.1 to solve the equation
at some value of R > R,. This will yield a solution (€p, Rp) on the first branch, from which
to start the PALC.
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Algorithm 1: Euler-Newton predictor-corrector routine

Part 1: Input;

1 (€0, Ro), s.t. H(ey,Ro) =0 INITIAL POINT;
2 s STEP SIZE;
3 Natep STEP NUMBER,;
4n<l NUMERICAL TOLERANCE;
Part 2: Initialization;

5 Solve (7)o@ = — & H FIND INITIAL TANGENT;

Py (@) .
6 (t,7) = e NORMALIZE TANGENT;

for j =1 to Ny, do
Part 3: Predictor;

7 | Solve (g ) (t> ( ) FIND NEW TANGENT:
T
0 0 t ,Tj
s | @Y,RY) = (&, Ry) + s ||(t§,fj)u EULER PREDICTOR:

Part 4: Corrector;
for / =0 to oo, until break do

- 4 £) 54
o (6e.6R) = — (B (&,.RY),)| " (&),, R),) CORRECTION STEP;
{41 {+1 4 l
10 (5 BEY) = (89, BYY,) + (9¢ 0R) RELAXATION;
1 if ||| < » BREAK CONVERGENCE CONDITION;
12 | (641, Rjy1) = (4‘21, Rﬂl) MOVE TO NEXT POINT;
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