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1 Introduction

The scaling behavior of the 2D Ising model in the external magnetic field H near its
ferromagnetic critical point (T,H) = (Tc, 0) is of much interest since it represents the basic
universality class which includes, in particular, the Curie criticality in the axial ferromagnet,
as well as the liquid-vapor critical point of simple gases in two dimensions [1]. It is also
of much interest as the model of quantum field theory as it exhibits a range of interesting
phenomena [1–3]. At zero magnetic field the model admits, of course, an exact solution
because in this case it is reduced to the theory of free Majorana fermions in 2D Euclidean
space-time. At generic nonzero magnetic field the model is not free, and generally not
integrable. This work is a continuation of an extended project of studying the analytic
properties of the theory (i.e. its thermodynamic and correlation characteristics) at complex
values of the parameters, initiated in ref. [3].

Ising Field Theory. The (Euclidean) quantum field theory which appears in this scaling
limit is generally referred to as the Ising Field Theory (IFT) [4]. It can be alternatively
defined as the Renormalization Group (RG) flow out of the Ising fixed point (described by the
minimal CFTM3/4 [5]) generated by its two relevant scalar operators — the “energy density”
ε(x) and the “spin density” σ(x). This definition can be expressed via the formal action

AIFT = AICFT + m

2π

∫
ε(x) d2x+ h

∫
σ(x) d2x (1.1)

where AICFT stands for the formal action of the Ising fixed point theory — the minimal
CFTM3/4 with the Virasoro central charge cIsing = 1

2 . The coupling parameters are related
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to the deviations from the critical point in the scaling limit, m ∼ Tc − T , h ∼ H. Their
exact normalizations depend on the normalizations of the fields ε(x) and σ(x); we fix the
latter by the short-distance asymptotic behavior of the two-point correlation functions

〈 ε(x)ε(x′) 〉 → |x− x′|−2 , 〈σ(x)σ(x′) 〉 → |x− x′|−1/4 (1.2)

as |x− x′| → 0. Then the parameters m and h have the mass dimensions m ∼ [mass], h ∼
[mass]15/8. Therefore, up to overall scale, the theory depends on a single scaling parameter

ξ = h

|m|15/8 ∼
H

|Tc − T |15/8 , (1.3)

where the last form is to remind the relation to the parameters of the microscopic Ising model.
Thus, various thermodynamic and correlation functions depend, apart from the overall scale,
on the dimensionless parameter ξ. This work is a follow-up to ref. [3], where the analytic
properties of these functions at complex values of the scaling parameter1 was considered.
Here we concentrate attention on the “High-T” domain m < 0 (T > Tc), where at h = 0 the
Z2 symmetry σ → −σ is unbroken, and the thermodynamic characteristics of the theory (1.1)
analytically depend on ξ2.2 In what follows we fix the scale by choosing the units in which

|m| = 1 ; (1.4)

in this units h coincides with ξ.
The theory (1.1) is massive at all real values of ξ. The number of stable particles depends

on ξ, while their masses change continuously with scaling parameter ξ [2, 3]. In this work
we are interested in the mass of the lightest particle, denoted here as M , which defines the
correlation length Rc = M−1. Also, we denote F the bulk vacuum energy density defined,
as usual, as the infinite 2D volume limit of − log(Z)/V .3 In statistical mechanics application
of the theory (1.1) F is interpreted as the specific free energy. These quantities exhibit
analytic dependence on ξ2 for all ξ2 ≥ 0, and they can be analytically continued to complex
values of ξ2. Thus defined functions M(ξ2) and F (ξ2) are analytic on the whole complex
ξ2-plane with the branching point at certain negative value ξ2 = −ξ2

0 ≈ −0.03583 . . . . This
singularity appears as the result of condensation of the Yang-Lee zeros in the thermodynamic
limit, and it is known as the Yang-Lee edge singularity. One defines the principal branch
by introducing the branch cut along the real axis, from −∞ to −ξ2

0 , as shown in figure 1.
Physically, this branch cut represents the line of the first order phase transitions, whereas
the branching point −ξ2

0 is critical (the inverse correlation length M vanishes at this point,
see [6] and our discussion below).

1At real ξ the scaling parameter (1.3) relates to η = m/h8/15 defined in [3] as ξ = (−η)−8/15, with η
taking real negative values in the High-T domain.

2On the other hand, in the “Low-T domain” m > 0 the analyticity is broken at <eξ = 0, which is the
line of the first-order phase transition.

3Under our choice of units |m| = 1 the function F (ξ2) simply relates to the scaling function G(ξ) defined
in [3], G(ξ) = F (ξ2).
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−ξ2
0

ξ2

Figure 1. Analyticity structure of F (ξ2) and M(ξ2) at complex ξ2 plane in the high temperature
domain (T > Tc). The branching point located at ξ2 = −ξ2

0 is the YL singularity. The branch cut
extends from −ξ2

0 to −∞, which represents the line of first order phase transition.

Yang-Lee singularity and Yang-Lee QFT. When m is real and negative (i.e. T > Tc)
and h is taken pure imaginary, h = ig, (1.1) defines a quantum field theory which, albeit
being non-unitary, exhibits many reality properties of conventional QFT.4 In particular,
when ξ2 is negative but ξ2 + ξ2

0 > 0, the theory (1.1) has unique ground state with real
energy density F , and it gives rise to the particle theory having a single particle of a real
massM , with non-trivial scattering theory. The mass M(ξ2) vanishes at the Yang-Lee point
ξ2 = −ξ2

0 , which therefore is critical [6]. The large-scale behavior of this critical theory is
controlled by certain conformal field theory — the Minimal Model M2/5 with the central
charge cYL = −22

5 [7]. (Below we refer to the corresponding RG fixed point as AYLCFT,
the notation interchangeable with M2/5.) On the other hand, when ξ2 + ξ2

0 is negative,
the theory (1.1) has two vacua |0±〉 with complex vacuum energy densities F± which are
complex conjugate to each other, F− = F ∗+. These vacua are “degenerate” in the sense that
the real parts of the associated energy densities are equal. Correspondingly, the space of
states of the infinite system splits into two sectors, one for each of the vacuum states |0±〉,
and each involving a rich spectrum of complex-mass “particles”.

Let us remind here some basics about the Minimal CFTM2/5. This CFT is non-unitary,
and has the negative Virasoro central charge cYL = −22

5 . There are two primaries, the
identity operator I and the scalar primary φ with the conformal dimensions (∆φ, ∆̄φ) =
(−1

5 ,−
1
5). Despite being non-unitary, this CFT has a real structure. One can choose the

normalization of φ(x) so that all the coefficients in the conformal OPE

φ(x)φ(x′) = −|x− x′|4/5 [I + descendants]

+ |x− x′|2/5 Cφφφ [φ(x) + descendants] (1.5)

4This is related to the “pseudo-hermiticity” of the theory: at pure imaginary h its Hamiltonian satisfies
H† = SHS, where the involution S, S2 = 1, acts by changing the sign of the spin density σ. The involution
S generates an indefinite metric in the space of states. As the result, some quantities which in unitary QFT
are interpreted as probabilities (such as cross sections) may take negative values.
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are real, in particular

Cφφφ = 51/4

10π
Γ2(1

5)Γ(2
5)

Γ(4
5)

≈ 1.91131 . . . . (1.6)

Let us stress that we use here the normalization of the primary φ which differs by the factor
of i from the one commonly used in the literature (e.g. [6, 8]),

φ = iϕ . (1.7)

This explains the minus sign in the first term in (1.5). Although ϕ is directly related to the
Lansau-Ginzburg field of [6], the advantage of our normalization is that it makes the reality
property of the OPE algebra (1.5) explicit.

The CFT AYLCFT has exactly one relevant operator suitable for generating RG flow
out of this fixed point, the field φ(x) itself. This flow is known as the Yang-Lee QFT (see
e.g. [6–10]). It is described by the formal action5

AYL = AYLCFT + λ

∫
φ(x)d2x (1.8)

where, as before AYLCFT is the Minimal CFTM2/5. As the primary field φ(x) has conformal
dimensions (−1

5 ,−
1
5), the coupling constant λ carries the mass dimension [λ] = [mass]12/5.

At λ 6= 0 the QFT is massive and integrable [11]. It inherits much of the reality properties
from the Yang-Lee CFT, provided the coupling constant λ is chosen real and positive. At
the positive values of λ, the associated factorizable scattering theory was identified in [9]; it
involves a single kind of neutral particles with the real mass MYL,

MYL = CYL λ
5/12 , (1.9)

where [12]

CYL = 2
19
12
√
π

5
5
16

[
Γ(3

5)Γ(4
5)
] 5

12

Γ(2
3)Γ(5

6)
= 2.64294463 . . . , (1.10)

and with the two-particle S-matrix

SYL(θ) = sinh θ + i sin(2π/3)
sinh θ − i sin(2π/3) . (1.11)

The vacuum energy density FYL of YLQFT (1.8) is given by [10]:

FYL = fYLM
2
YL , fYL = −

√
3

12 . (1.12)

The theory remains integrable at negative real λ (and indeed at complex λ as well),
although its physical content in this regime is still poorly understood. At negative λ the
QFT (1.8) has two ground states, |0± 〉 (the phenomenon which can be interpreted as the
“spontaneous breakdown” of the symmetry φ→ φ∗), the associated vacuum energy densities
F± being complex conjugate to each other.

5The absence of the factor i in the perturbation term is related, again, to our normalization of the field
φ, as in (1.5).
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iσ(x)
ε(x)

Ising fixed point

Yang-Lee fixed point

ξ2 = −ξ2
0

ξ2 < −ξ2
0 ξ2 > −ξ2

0

PP ′
φ(x)

λ < 0 λ > 0

Figure 2. The topology of the RG flow at pure imaginary h. Critical and non-critical RG fixed
points are given by bullets and crossed circles respectively. Some RG trajectories originated from
Ising fixed point are shown with solid arrowed lines. The trajectories are labeled by ξ2, and ξ2 = −ξ2

0
denotes the massless flow down to YL fixed point. Single and double dashed lines are showing the
RG flows from the Yang-Lee fixed point to non-critical fixed points P and P ′, with positive and
negative λ respectively.

Renormalization group flow and effective action. The transition at pure imaginary
h described in the previous subsection, as well as the diagram in figure 1, has clear
interpretation in terms of the Renormalization Group (RG) flow. Since RG flow represents
just the change of the overall scale, the scaling parameter ξ labels the RG trajectories.
Because the change of sign of h in (1.1) can be compensated by the field transformation
σ(x) → −σ(x), such transformation would act invariantly on the theories with pure
imaginary h = ig. The topology of the RG flow with pure imaginary h (real g) is shown
schematically in figure 2. The point ξ2 = −ξ2

0 in figure 1 represents the RG flow from the
Ising fixed point AICFT down to the Yang-Lee fixed point AYLCFT. The two trajectories
which originate at the Yang-Lee fixed point and flow to the non-critical fixed points6 P
and P ′ represent the Yang-Lee QFT (1.8) with positive and negative λ, respectively. Close
vicinity of the point ξ2 = −ξ2

0 in figure 1 consists of trajectories which originate at the Ising
fixed point, quickly approach the neighborhood of the Yang-Lee fixed point but narrowly
miss it, and after long stay close to AYLCFT finally depart towards the non-critical fixed
points, following closely the YL QFT trajectories. The last two stages of the RG evolution
are responsible for the formation of the critical singularities at the Yang-Lee point in figure 1.
The singularities of the thermodynamic and correlation characteristics of the IFT near the

6As usual, “non-critical” refers to a fixed point with zero correlation length Rc = 0 [13]. The points P
and P ′ in figure 2 are understood as follows. At P the field φ is essentially frozen at certain real value φ̄,
whereas P ′ represents a superposition of the states with φ concentrated near two complex conjugate values.

– 5 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
7

Yang-Lee criticality ξ2 = −ξ2
0 is then governed by the effective action

Aeff = AYLCFT + λ

∫
φ(x)d2x+

∑
i

ai

∫
Oi(x)d2x (1.13)

where the first two terms constitute the Yang-Lee QFT, eq. (1.8), and the sum represent
contributions from the infinite tower of irrelevant scalar operators from the fixed point CFT
AYLCFT, introduced to capture the structure of the RG flow in the vicinity of the YL fixed
point. The fields Oi(x) are scalars of the scale dimensions 2∆i with ∆i > 1; correspondingly,
the coupling constants ai in (1.13) have mass dimensions ai ∼ [mass]2−2∆i . Below we will
say more about the content of the irrelevant operators appearing in the expansion (1.13).

The effective action (1.13) can be understood as the result of the RG flow from the
vicinity of the Ising fixed point to the neighborhood of the Yang Lee fixed point. More
precisely, the theory (1.1) with sufficiently small ξ2 + ξ2

0 flows to

AIFT → f V +Aeff , (1.14)

which differs from (1.13) by the “induced cosmological term”; here V is the volume of the
2D space-time, and f is ξ2-dependent constant. This term does not affect the physical
content of the theory apart from bringing in the regular term f(ξ2) in eq. (1.18) below. We
mention it here because in statistical mechanics it is the full specific free energy F , not
just the singular terms in (1.18) which is directly measurable (In fact, it takes quite an
elaborate analysis to isolate the singular terms from the data, see [3]).

The effective theory describes the vicinity of the critical point ξ2 = −ξ2
0 of the Ising

QFT (1.1), and the parameters f , λ as well as all ai depend on the scaling parameter
ξ2. The functions f(ξ2), λ(ξ2), and ai(ξ2) are analytic at the point −ξ2

0 and in some
domain of ξ2 surrounding this point [13]; these parameters enjoy the convergent power
series expansions

λ(ξ2) = (ξ2 + ξ2
0)λ1 + (ξ2 + ξ2

0)2 λ2 + . . . (1.15)
f(ξ2) = f0 + (ξ2 + ξ2

0) f1 + (ξ2 + ξ2
0)2 f2 + . . . (1.16)

and
ai(ξ2) = ai,0 + (ξ2 + ξ2

0) ai,1 + (ξ2 + ξ2
0)2 ai,2 + . . . (1.17)

The condition that λ(−ξ2
0) = 0 in the effective theory (1.13) associated with the QFT (1.1)

is tautologically equivalent to the statement that ξ2 = −ξ2
0 is the critical point. One of the

objectives of the present work is to give estimates of the most important of the coefficients
λk and ai,k.

The effective action (1.13) generates the singular expansions of physical quantities in
fractional powers of ξ2+ξ2

0 . Thus, the singular part Fsing of the specific free energy, defined as

F = f + Fsing , (1.18)

and the mass M(ξ2), admit the expansions

Fsing(ξ2) = BYL [λ(ξ2)]
5
6 + a1(ξ2)B1 [λ(ξ2)]

5∆1
6 + higher terms , (1.19)

M(ξ2) = CYL [λ(ξ2)]
5
12 + a1(ξ2)C1

[
λ(ξ2)

] 5
12 (2∆1−1)

+ higher terms , (1.20)
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x

y

Figure 3. Space-time cylinder, with x ∼ x +R.

where we assumed that O1(x) is the lowest of the irrelevant operators in (1.13). The con-
stants BYL, B1, CYL, C1, as well as similar coefficients in the higher terms are computable,
in principle, from the YLQFT (1.8). In particular, BYL = −

√
3

12 C
2
YL, where CYL is given in

eq. (1.10). Below we will say more about B1, C1 and some higher coefficients in the singular
expansion (1.20).

Finite size spectrum and TFFSA. Technically, most of our analysis will be in terms
of the energy spectrum of the theory in the finite size geometry. We consider the theory (1.1)
in the geometry of a long Euclidean cylinder, with the “spatial” coordinate x compactified
on a circle of the circumference R, x ∼ x+R, while the complimentary Cartesian coordinate
y playing the role of imaginary time, see figure 3. At finite R the energy spectrum is discrete,
and generally non-degenerate. We denote |n〉R, n = 0, 1, 2, 3, . . . the consecutive eigenstates
of the finite-size Hamiltonian of (1.1) with the spatial momentum Pn = 0, and assume the
standard normalization

R〈 n|n′〉R = δn,n′ . (1.21)

The R dependence of the corresponding energy eigenvalues En(R) will be the main instru-
ment of our analysis.

The RG flow can be traced by going from short distances, R → 0, to long distances
R�M−1. While

En(R)→ −C
(UV)
n

12
2π
R

as R→ 0 (1.22)

with the constants C(UV)
n determined by the UV fixed point CFT, at large R the levels

En(R) behave as
En(R) = FR+ En(R) (1.23)

where the coefficient F is identified with the bulk vacuum energy density, and En(R) are
bounded at large R. The large R behavior of En(R) depends on whether the RG flows to a
non-critical or a critical IR fixed point. At the critical point the behavior is governed by
the CFT associated with the IR fixed point,

En(R)→ −C
(IR)
n

12
2π
R

as R→∞ (1.24)

where the coefficients now depend on the central charge and dimensions of the IR CFT. Away
from the critical point, when the correlation length Rc = M−1 is finite, En(R) approach the
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finite-size spectrum of massive particles, the details being determined by mass spectrum
and the S-matrix of the massive QFT. Thus, the lowest two levels are the vacuum state
and the state of one particle at rest,

E0(R) = O
(
e−MR

)
(1.25)

E1(R) = M +O

(
e−
√

3
2 MR

)
(1.26)

At generic values of ξ2 (including positive, negative, and even complex values of this
parameter) one can compute the spectrum En(R) using the so-called Truncated Free
Fermion Space Approach (TFFSA) introduced in [14], and further developed in [3]. It is a
modification of the Truncated Conformal Space Approach of [15], specifically designed to
handle the IFT (1.1). It utilizes the fact that in the absence of the last term in (1.1), i.e. at
h = 0, the IFT reduces to the theory of free Majorana fermions

AFF = 1
2π

∫ [
ψ∂̄ψ + ψ̄∂ψ̄ + im ψ̄ψ

]
d2x (1.27)

where (ψ, ψ̄) are two components of the neutral fermi field, and (∂, ∂̄) =
(
∂x−i∂y

2 ,
∂x+i∂y

2

)
.

It is of course the theory of free neutral fermi particles of the mass |m|, and the space of its
states is the fermionic Fock space, spanned by the multi-particle states

|p1, p2, . . . , pN 〉 (1.28)

which are the eigenvectors of the Hamiltonian HFF of the theory (1.27) with the eigenvalues

Evac +
N∑
i=1

ω(pi) , ω(p) =
√
m2 + p2 . (1.29)

If the coordinate y along the cylinder in figure 3 is chosen to be the (Euclidean) time, the
momenta pi are quantized, pi = 2π ki

R , where ki are integers or half-integers, depending
on whether we take periodic or anti-periodic boundary conditions for the fermi field ψ,
ψ(x, y) = ψ(x +R, y) (R-sector) or ψ(x, y) = −ψ(x +R, y) (NS sector). There are certain
conditions on the fermion number in each of these sectors, which depend on the sign of m.
All details of the structure of the space of states of the spatially finite system (1.27) can be
found in ref. [3] (see also [1]), including expressions for the finite size ground state energies
in each sector, E0 (R)(R) and E0 (NS)(R).

When a non-zero magnetic field h is added, the Hamiltonian acquires an additional
term

HIFT = HFF + h

∫ R

0
σ(x) dx (1.30)

where the integral in the second term is over the equal-time slice x = (x, y = 0), and σ(x) is
the “spin field”. In terms of the representation (1.27), the operator σ(x) creates dislocation
in the field (ψ, ψ̄) at the point x ((ψ, ψ̄) changes to (−ψ,−ψ̄) when one goes around the
point x), and hence it intertwines the R- and NS- sectors. All the matrix elements of σ(x)
between the Fock states (1.28) are known in a closed form [3], and the energy levels En(R) of

– 8 –
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the full IFT (1.1) can be found by diagonalizing the operator (1.30). To render this problem
amendable to numerical analysis one needs to make finite-dimensional approximation for
the space of states in which the operator (1.30) acts. As in [3], we truncate the space of
states according to the condition

N∑
i=1
|ki| ≤ 2L (1.31)

where the number L (integer for all admissible states [3]) is called the “truncation level”.7

When L is increased, the low-laying eigenvalues obtained by the numerical diagonalization
of the truncated Hamiltonian (1.30) stabilize and approximate well the exact eigenvalues of
the full theory, as long as the spatial compactification size R is not too large. The accuracy
of the results can be judged by the L-dependence of the eigenvalues in the truncated
space. The results with L = 11, 12, 13 are usually very stable for few lowest eigenvalues, for
|m|R ≤ 10. For larger R the inaccuracy signified by the dependence on L — the “truncation
effects” — is still noticeable at L = 13, while with larger truncation levels the numerical
diagonalization becomes prohibitively difficult. The described procedure can be applied
to (1.30) with any complex h, but here we limit attention to the cases of real and pure
imaginary h (real h2). In this paper, most numerical analysis were obtained at truncation
level L = 13, where the size of the truncated hamiltionian is 1001× 1001.8

Results. In this work we determine the most important parameters of the effective
action (1.13). We give numerical estimates of the leading coefficients in the expan-
sions (1.15), (1.16) (eqs. (4.7), (3.10) below), as well as in the expansions (1.17) for the
most important irrelevant couplings, see eqs. (3.19), (3.20). For the mass function M(ξ2)
we give some detalization of the singular expansion (1.20). We also confirm the expected
analyticity of M(ξ2) on the whole complex ξ2 plane with the branch cut along the real axis
from −∞ to −ξ2, as shown in figure 1.

2 Yang-Lee criticality and singular expansion

Here we describe the general structure of the effective action (1.13) associated with the
Yang-Lee criticality, along with some exact results, notably the role played by the “TTbar”
contributions.

Space of (scalar) fields in YL CFT. As is well known, the space of local fields FYLCFT
of the minimal CFTM2/5 involves two irreducible representations of the Virasoro algebra
with the central charge cYL = −22

5 ,

FYLCFT =
(
V0 ⊗ V̄0

)
⊕
(
V−1/5 ⊗ V̄−1/5

)
(2.1)

7The level roughly correlates with the maximal energies of the admitted states, whereas this truncation
is relatively easy to implement. This truncation method is very similar to that used in TCSA [15].

8Due to the spatial reflection symmetry the space of states splits into two subspaces of states, even and
odd w.r.t. this involution. Lowest energy levels E0, E1, E2, E3, E4 belong to the even sector, and for this
reason in this work we limit attention to this sector, which at truncation level 12 has the dimension 1001.
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l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N (l)
I 1 0 1 0 0 0 1 0 1 0 1 0 2 0 2

N (l)
φ 1 0 0 0 1 0 1 0 1 1 1 1 2 1 2

Table 1. Dimensionalities N (l)
0 and N (l)

−1/5 of the level l subspaces in V̂0 and V̂−1/5.

where V∆ denotes the irreducible Virasoro module with the lowest weight ∆. The first and
the second term in the direct sum in (2.1) consist of the Virasoro descendants of the two
primary fields in this CFT, the identity field I and the field φ, respectively. The latter
is a scalar, and its left and right Virasoro dimensions are (−1

5 ,−
1
5). Since only scalar

fields can appear in (1.13) (as the flow from Ising CFT down to YL CFT preserves the
rotational symmetry), only the scalar fields, i.e. the descendants of the dimensions (l, l) and
(−1

5 + l,−1
5 + l), enter the effective action (1.13); the positive integer l represents the level of

the descendant. The scale dimensions of the level l descendants of I or φ are equal to 2l or
−2

5 + 2l, respectively. The fields which are the space-time derivatives of another local fields
(i.e. the descendants generated by the Virasoro generators L−1 and L̄−1) can be ignored,
as they don’t contribute to the bulk theory (1.13). The space of fields that can enter the
effective action (1.13) is therefore isomorphic to V̂0 ⊕ V̂−1/5, where V̂∆ stands for the factor
spaces V∆/L−1V∆. The numbers of the independent descendants N (l)

I and N (l)
φ which may

appear in (1.13) are then computed as the coefficients of the q-expansions of (1− q)χ0(q)+ q

and (1− q)χ−1/5(q), respectively, where χ∆(q) are characters of the irreducible Virasoro
moduli at cYL = −22

5 . Table 1 shows these multiplicities for few lowest levels. We see that
at low levels the nonzero entries are relatively sparse. This is related to the fact that at
cYL = −22

5 the Virasoro moduli have additional null vectors, which must be factored out of
the irreducible representations. Thus, the module V−1/5 has two independent null vectors[

L−2 −
5
2L

2
−1

]
φ = 0 ,

[
L−3 −

10
9 L−1L−2 + 25

36L
3
−1

]
φ = 0 . (2.2)

Likewise, the irreducible module V0 is obtained by factoring out the null-vectors

L−1I = 0 ,
[
L−4 −

5
3L

2
−2

]
I = 0 (2.3)

together with all their descendants.
Let us briefly review few lowest irrelevant descendants. The lowest nontrivial scalar

descendant of the identity operator is L2L̄−2I, alternatively known as T T̄ . Thus, the
field T T̄ generally brings in the least irrelevant contribution to the effective action (1.13).
Adding this operator generates the so-called “TTbar deformation”, which allows for much
analytic control over its contribution to finite-size energy levels associated with (1.13) (see
below). In view of the null-vector equations (2.3), the descendants of I at the levels 3, 4, 5
are all total derivatives of the T T̄ , that is why the slots l = 3, 4, 5 in the first raw of table 1
are empty. The next nonzero entry in that row appears at the level 6; the corresponding
descendant L2

−3L̄
2
−3I has the scale dimension 12. In section 5 we will say more about the

higher descendants of I at l = 8, 10, 12, . . . .
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The first nontrivial descendant of φ appear at the level 4. In what follows we use the
notation

Ξ(x) =
(
L−4 −

625
624L

4
−1

)(
L̄−4 −

625
624 L̄

4
−1

)
φ(x) , (2.4)

for the scalar level 4 quasi-primary descendant.9 Its scale dimension 2∆Ξ = 38
5 = 7.6 is

greater than the dimension of T T̄ but lower than the dimensions of the higher descendants
of the identity. The next non-derivative scalar descendant of φ is at the level 6; its scale
dimension is 58

5 = 11.6.

Effective action and perturbative analysis. In this work we disregard all irrelevant
operators with the mass dimension greater than 38/5 in (1.13), considering the effective
action

Aeff = AYLCFT + λ

∫
φ(x) d2x+ α

π2

∫
T T̄ (x) d2x+ β

2π

∫
Ξ(x) d2x , (2.5)

where α and β are coupling constants with negative mass dimensions, α ∼ [mass]−2 , β ∼
[mass]−28/5.10 In IFT they depend on the scaling parameter ξ2, and admit convergent
expansions in the powers of ξ2 + ξ2

0 ,

α(ξ2) = α0 + (ξ2 + ξ2
0)α1 + . . . , (2.6)

β(ξ2) = β0 + (ξ2 + ξ2
0)β1 + . . . . (2.7)

Since we regard (2.5) as the perturbation of the full theory YLQFT (1.8), not just the
CFT point, let us briefly comment on how the fields T T̄ (x) and Ξ(x) are defined in YLQFT
away from the CFT point λ = 0. The field T T̄ (x) is universally defined in generic 2D QFT
in terms of its energy-momentum tensor, see ref. [16].11 The field Ξ(x) is the only scalar
field of the dimension 38

5 which is not a derivative of other local field, therefore the eq. (2.4)
defines this field in the off-critical theory (1.8) uniquely, up to the overall normalization
and the derivative terms (see [17]). The latter ambiguity can be fixed by imposing the
normalization conditions

〈Ξ(x)Ξ(x′)〉YLFT |x− x′|
76
5 → N2

Ξ , 〈Ξ(x)φ(x′)〉YLQFT |x− x′|
36
5 → 0 , (2.8)

as |x−x′| → 0. Here NΞ = 3·8803
25/2·5·13 is the norm of the CFT state associated with Ξ, and the

second condition in (2.8) reflects our choice of the derivative terms in (2.4), which makes it
a qusi-primary field in the CFT limit.

Of course, the perturbation theory in the couplings α and β is non-renormalizable. The
perturbative calculations beyond the leading orders require introducing infinitely many

9The terms with L−1 and L̄−1 are total derivatives, and play no role in the effective action (2.5) below.
However, using the quasi-primary form (2.4) simplifies calculation of its matrix elements and correlation
function.

10Note our definition of the coupling constant α here agrees with the notations in [16], but differs by the
factor 1/4 from the eponymous parameter defined in [3].

11Let us stress that here we define T T̄ in terms of the energy-momentum tensor Tµν of the effective
theory (1.13), which differs from the energy-momentum tensor of the full RG flow (1.1) by the “cosmological
term”, T IFT

µν = Tµν + f gµν , see eq. (1.14). The difference between the flow generated by our T T̄ and T T̄ IFT

amounts to trivial scale renormalization.
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largely undetermined counterterms, making the results ambiguous. However, the operator
T T̄ is special. This operator generates the so-called TTbar deformation [16, 18], where
the expansion in α is not only well defined, but for some quantities can be computed in a
closed form (see the subsection below for some details). The TTbar deformation faithfully
reproduces the perturbation series in α for (2.5) up to the order α5 (the term ∼ α6 competes
dimension-wise with the contribution of the operator L2

−3L̄
2
−3I, which is disregarded in (2.5),

but may be present in (1.13)).
Higher orders in β are difficult even to define, and here we limit attention to the leading

contributions ∼ β from the operator Ξ in (2.5), which of course is well defined. Moreover,
the TTbar deformation reproduces unambiguously the terms ∼ αβ (again, the terms α2β

and higher in α compete with the contributions from the higher descendants of φ not
accounted in (2.5)).

As was mentioned in the Introduction, the Yang-Lee QFT (1.8) is integrable. Moreover,
the TTbar deformation of the integrable theory is integrable as well [16]. On the other hand,
the IFT (1.1) at generic values of ξ2, including neighborhood of the Yang-Lee critical point,
is not integrable.12 Therefore, one expects that some irrelevant operators in (1.13) break
integrability. The significance of the operator Ξ in (2.5) is that it is the lowest dimensional
term which does that.

TTbar deformation. As was mentioned in the previous paragraph, adding the lowest
irrelevant term ∼

∫
T T̄ (x)d2x in (2.5) can be understood in terms of the “TTbar deformation”

of the Yang-Lee QFT (1.8). Generally, the TTbar deformation of a given theory A(0) is
defined by the flow equation

d

dα
A(α) = 1

π2

∫
(T T̄ )(α)(x)d2x (2.9)

where α is the deformation parameter, and (T T̄ )(α)(x) is a scalar local operator of exact
dimension 4 built from the components of the energy-momentum tensor of the deformed
theory A(α), as is explained in ref. [19]). One can develop the solution of the flow equa-
tion (2.9) as the power series in the deformation parameter α. In the leading order this
generates the term ∼

∫
T T̄ (x) d2x, as in (2.5). The higher orders in α bring in a string of

the operators of higher dimensions, all descendants of the identity operator I, i.e. belonging
to the first row in the table 1.13

The TTbar deformation of a given QFT is “solvable”, in the sense that some important
quantities of the deformed theory can be found in a closed form in terms of the corresponding
quantities in the undeformed theory [16, 18]. This in particular concerns the finite-size energy
levels E(R), which are uniquely determined by the finite-size energies of the undeformed
theory A(0). Below we consider only the states of the finite-size system (figure 3) having
zero spatial momentum Px = 0; in this case the relation is particularly simple. Given an

12The massless flow at ξ2 = −ξ2
0 , although converging to the integrable CFT in both the ultraviolet and

infrared limits, is not integrable at all scales.
13This is literally true in the case when the undeformed theory A(0) is a CFT. In general case the operators

are more complicated, but still can be understood as “deformations” of the corresponding descendants of I.
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energy level E(0)(R) of the undeformed theory A(0), the associated level E(α)(R) of A(α) is
expressed as

E(α)(R) = E(0)
(
R− αE(α)(R)

)
. (2.10)

A simple consequence of (2.10) is the α-dependence of the vacuum energy density F (α) in
eq. (1.23), and the mass M (α)

F (α) = F (0)

1 + αF (0) , M (α) = M (0)

1 + αF (0) = M (0) (1− αF (α)) . (2.11)

Singular expansions near YL critical point. The irrelevant operators in (2.5) are
responsible for the subleading terms in the singular expansions of the thermodynamic and
correlation functions in fractional powers of ξ2 + ξ2

0 . Generally, for an effective action (1.13),
the mass M admits expansion in the irrelevant couplings ai

M = MYL +
∑
i

C(i) ai [MYL]2∆i−1 +
∑
ij

C(ij) aiaj [MYL]2∆i+2∆j−3 + . . . (2.12)

where MYL is the mass (1.9) of the theory (1.8), and C(i), C(ij), . . . , are numerical
coefficients. The coefficients C(i) at the leading order are related in a simple way to the
diagonal matrix elements of the operators Oi between the one-particle states,14

C(i)M2∆i = 〈θ|Oi(0)|θ〉 , (2.13)

in the YLQFT (1.8). In general, the higher orders are largely undetermined. The per-
turbation theory in the couplings ai in (1.13) is non-renormalizable, with all the usual
problems related to the presence of an infinite number of ambiguous counterterms, and the
coefficients C in (2.12) beyond the linear order are not uniquely determined through the
perturbation theory. However, the expansion in α in (2.5) constitutes a notable exception,
as was explained in the previous subsection. The coefficients of the α-expansion are not
only well defined, but can be computed in closed form. With the effective action (2.5) the
mass M expands as follows

M = MYL (1− αFsing)
(

1 + β

2π mΞM
28/5
YL +O

(
M

48/5
YL

))
(2.14)

where MYL is the mass of the YLQFT, eq. (1.9), and Fsing is the vacuum energy density of
the effective theory (2.5); it in turn expands as

Fsing =
F

(0)
sing

1 + αF
(0)
sing

, F
(0)
sing = fYLM

2
YL + β

2π fΞM
38/5
YL +O

(
M58/5

)
(2.15)

(fYL = −
√

3/12). These expansions take into account the T T̄ flow equations (2.11), as well
as the leading term in β. The numerical coefficients mΞ and fΞ are given by the diagonal
matrix elements of the operator Ξ [20],

mΞM
38/5
YL = 〈θ|Ξ(0)|θ〉 , fΞM

38/5
YL = 〈0|Ξ(0)|0〉 , (2.16)

14By Lorentz invariance, the matrix elements do not depend on θ, but depend on the normalization of the
states. We assume the standard normalization of the particle states, 〈θ1|θ2〉 = 2π δ(θ1 − θ2).
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in the YLQFT (1.8). The higher terms omitted in (2.14). (2.15) can come from the
contributions of the higher irrelevant operators (L3

−2L̄
3
−2I, L−6L̄−6φ, etc), neglected in (2.5),

as well as the higher-order terms in β and higher couplings. Since

MYL = MYL(ξ2) = CYL
[
λ(ξ2)

]5/12
= CYL (ξ2 + ξ2

0)5/12
[
λ1 + λ2 (ξ2 + ξ2

0) + . . .
]5/12

(2.17)
the expansion (2.14) translates into the singular expansion of M(ξ2) near the Yang-Lee
critical point

M(ξ2) = (ξ2 + ξ2
0)5/12

[
b0 + b1 (ξ2 + ξ2

0) + c0 (ξ2 + ξ2
0)5/6 + . . .

]
(2.18)

with the coefficients

b0 = CYL λ
5/12
1 , b1 = 5

12 CYL λ2 λ
−7/12
1 , c0 = −α0 fYL b

3
0 . (2.19)

3 Finite size spectrum at the Yang-Lee point

In this section we shall discuss properties of the finite-size energy spectrum, i.e. the
eigenvalues En(R) of the Hamiltonian (1.30), on the cylinder geometry of figure 3, at
the Yang-Lee critical point ξ2 = −ξ2

0 . For this value of ξ2, the IFT (1.1) describes the
massless RG flow from the Ising fixed point down to the Yang-Lee fixed point (see figure 2).
Correspondingly, the R→ 0 limit of the levels En(R) is determined by the Ising CFTM3/4,
whereas their R → ∞ behavior is controlled by the Yang-Lee CFT M2/5. Here we are
specifically interested in the large R expansions of the levels En(R), whose leading terms
are given by the eigenvalues of the operator

f0R+ 2π
R

HYLCFT , (3.1)

where the asymptotic slope f0 = f(−ξ2
0) is the vacuum energy density of (1.1) at the

Yang-Lee critical point,and HYLCFT is the Hamiltonian of the YLCFT on the cylinder in
figure 3 with R = 2π.

Let us briefly recall the structure of the space of states HYLCFT and the spectrum of
HYLCFT, in order to fix the notations.

Spectrum of YLCFT. By the standard operator-state correspondence of CFT, the
space of states HYLCFT of the YLCFT is isomorphic to the space (2.1), where V∆ (V̄∆)
stands for the irreducible lowest weight module over the left (right) Virasoro algebra with
the lowest weight ∆. The operators

Ln =− R2π

∫ R

0

dz

2π T (z)e−
2πi
R
nz+ c

24δn,0, L̄n =− R2π

∫ R

0

dz

2π T̄ (z)e−
2πi
R
nz̄+ c

24δn,0 (3.2)

where z = x + iy and z̄ = x− iy are the standard Cartesian coordinates on the cylinder in
figure 3, form the two commuting copies of the Virasoro algebra, with the commutators
[Ln,Lm] = (n −m) Ln+m + c

12 n(n2 − 1) δn+m, 0, and similarly for the L̄’s. Here c is the
central charge, which in this case takes the value −22/5 [9]. We use bold face notations for
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these operators to distinguish them from the Virasoro generators Ln acting on the space of
fields (2.1), which are defined in terms of the integrals over small contours encircling the
insertion point.15

Let us denote |I〉 and |φ〉 the primary states corresponding to the primary fields I (the
identity operator) and φ(x), respectively, so that L0|I〉 = L̄0|I〉 = 0 and L0|φ〉 = L̄0|φ〉 =
−1

5 |φ〉, with the standard CFT normalizations 〈I|I〉 = 〈φ|φ〉 = 1.16 The space HYLCFT
consists of these two primaries along with all their Virasoro descendants.

The finite-size Hamiltonian of YLCFT (with R = 2π) is

HYLCFT = L0 + L̄0 −
c

12 , (3.3)

while the spatial (x-direction in figure 3) momentum is Px = L0 − L̄0. In what follows
we limit attention to the states with zero spatial momentum Px = 0. In this sector the
eigenvalues of the YLCFT Hamiltonian (3.3) are of the form

− c

12 + 2∆φ + 2l and − c

12 + 2l (3.4)

for the descendants of the level l = 0, 1, 2, 3, . . . of |φ〉 and |I〉, respectively; here again
c = cYL = −22

5 and ∆φ = −1
5 .

Energy levels at large R. We assume that the eigenstates |n〉R, n = 0, 1, 2, 3, . . . of
the finite-size Hamiltonian (1.30) are labeled in the order of increasing eigenvalues En(R),
so that |0〉R is the ground state, |1〉R is the first excited state, etc. At pure imaginary ξ the
eigenvalues are either real or appear in complex conjugate pairs, so in fact we order En(R)
according to their real parts (with arbitrary attribution when the real parts are equal),
<eEn(R) ≤ <eEn+1(R). As is convenient for the massless flows, we introduce the functions

Cn(R) = −6R
π

(En(R)− f0R) (3.5)

which approach constants in both UV and IR limits, R → 0 and R → ∞, respectively.
For the ground state level E0(R) the limiting values C0(R→ 0) and C0(R→∞) coincide
with the “effective central charges” ceff of the UV fixed point AICFT and IR fixed point
AYLCFT, respectively. We loosely refer to the functions (3.5) as the effective central charges
associated with the levels |n〉(R). Generally, Cn(R) are expected to interpolate between
their UV and IR limits,

Cn(R)→ c(UV) − 24∆(UV)
n as R→ 0 , (3.6)

Cn(R)→ c (IR) − 24∆(IR)
n as R→∞ , (3.7)

15The operators Ln in (2.1) are defined, as

LnO(z0, z̄0) =
∮
Cz0

T (z) (z − z0)n+1 O(z0, z̄0) dz

2πi ,

with similar definition for L̄n. The integration contour Cz0 is encircling the insertion point z0 (z̄0) clockwise
(anticlockwise), whereas the contour in (3.2) goes around the cylinder.

16We assume |φ〉 = limy→−∞ iφ(x, y)|I〉 on the cylinder in figure 3.
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Figure 4. 5 lowest energy levels at ξ2 = −0.035846, this value is very close to the critical point
−ξ2

0 , where the theory is gapless.

where c(UV) = cIsing = 1
2 and c(IR) = cYL = −22

5 are the Virasoro central charges associated
with the UV and IR fixed points, while 2∆(UV, IR)

n are the eigenvalues of the operator
L0 + L̄0 on the state |n〉 in the UV and IR CFT, respectively.

In these notations, the R→∞ limits of the states |n〉R relate to the YLCFT states as
follows

|0〉R → |φ〉 , |1〉R → |I〉 , |2〉R → N2 L−1L̄−1|φ〉 ,
|3〉R → N3 L2

−1L̄2
−1|φ〉 , |4〉R → N4 L−2L̄−2|I〉 , etc (3.8)

with the coefficients Nn (e.g. N2 = 5
2 , N3 = 25

12 , N4 = 5
11 , etc) inserted to impose the standard

normalization 〈 n|n′〉 = δn,n′ . The limiting values of the functions −Cn := −Cn(R =∞) are

−C0 = −2
5 = −0.4 , −C1 = 22

5 = 4.4 , −C2 = −2
5 + 24 = 23.6 ,

−C3 = −2
5 + 48 = 47.6 , −C4 = 22

5 + 48 = 52.4 . (3.9)

The rate of approach of Cn(R) to these limiting values is controlled by the effective ac-
tion (1.13), as we discuss below.

Cn(R) from TFFSA. The first five energy levels En(R) of (1.1) at ξ2 = −0.035846,
which we believe to be very close to exact YL point −ξ2

0 (see section 4), are shown in figure 4.
The data was obtained numerically, using TFFSA (see section 1) with the truncation level
L = 13. Note that E0(R), E1(R) and E2(R) are real for all values of R, whereas E3(R)
and E4(R) turn into a complex conjugated pair at some intermediate values of R (Plots
in figure 4 show the real parts). This phenomenon is typical to the higher levels: while
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Figure 5. Comparison of truncation effects for different energy levels, the plots show the deviations
∆En(R) = E

(L=13)
n (R) − E

(L=12)
n (R), of data at different truncation levels. Unfortunately, no

analytic estimate of errors due to the truncation is presently available. This figure is to give a
rough estimate of the accuracy of the TFFSA data E0, E1, E2 at L = 13 only. For higher En the
truncation errors are generally greater.

taking real values for sufficiently large as well as at sufficiently small R, the energies En(R)
with n > 4 form a complicated pattern of complex conjugated pairs at intermediate R.
Whereas full understanding of pattern remains an interesting open problem, below we
present partial explanation of the intricate interplay of the levels E3 and E4 in figure 4 (see
the last subsection of this section).

In figure 4 we limit attention to the interval R = [0 : 17.5] because at larger R the
quality of the TFFSA data rapidly deteriorates (see figure 5). Nonetheless, even in this
interval the ground state energy E0(R) clearly develops linear asymptotic E0(R)→ f0R,
with the slope

f0 ≈ 0.092746 . . . , (3.10)
in agreement with the result of [3]. This gives the estimate of the “cosmological” parameter
f in (1.13) at the YL point, f0 := f(−ξ2

0). The behavior of the higher levels n = 2, 3, 4
is consistent with the expected large-R YLCFT form, eq. (3.1). This is seen better in
figure 6, where the associated functions −Cn(R) are plotted. The functions −Cn(R) seem
to approach the expected large-R limits (3.9), although the deviations are greater for the
higher levels. We attribute these deviations to the contributions of the irrelevant terms in
the effective action (1.13) at the YL critical point.

Effective action and large R expansion. The irrelevant terms in the effective ac-
tion (1.13) generate large-R expansions of the energy levels En(R). In the leading order in
the couplings ai we have

En(R) := En(R)− f0R = −π Cn6R +
∑
i

2πai [Oi]nn
(2π
R

)2∆i−1
+ . . . , (3.11)
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Figure 6. Plots of the −Cn(R) at ξ2 = −0.035846, the dashed lines show −Cn from the infrared
CFT. Note that −Cn(R) grows with energy levels.

where Cn are the coefficients (3.9), and the numerical coefficients [Oi]nn are related to the
diagonal matrix elements

[Oi]nn := 〈n|Oi|n〉CFT
(
R

2π

)2∆i

(3.12)

in the YLCFT. The dots in (3.11) stand for the higher-order contributions.
The dominating correction in (3.11) clearly comes from the operator T T̄ in (2.5). In

fact, the higher orders in α, up to the order α4, can be explicitly taken into account using
the T T̄ deformation formula (2.10). This is done as follows. Consider first the fictitious
effective action (2.5) with α = 0. In such theory the leading correction in (3.11) would be
determined by the operator Ξ, i.e.

E(0)
n (R) := E(α=0)

n (R) = −π Cn6R + β0 Ξnn
(2π
R

) 33
5

+O
(
R−

53
5
)

(3.13)

or

C(0)
n = Cn − 12β0 Ξnn

(2π
R

) 28
5

+O
(
R−

48
5
)
, (3.14)

where Ξnn is the diagonal matrix element (3.12) of the operator Ξ in the YLCFT, and β0
is the value of β(ξ2) for massless flow. Matrix elements 〈n|Ξ|n〉 in the YLCFT, for the first
few n, are computed in appendix A,

Ξ00 = 1
12002 Cφφφ , Ξ22 =

( 601
23 · 3 · 53

)2
Cφφφ, Ξ33 =

( 56417
24 · 3 · 54

)2
Cφφφ , (3.15)

where Cφφφ is the constant (1.6), while Ξ11 = Ξ44 = 0.
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C0(R), with α-corrections
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Figure 7. Plots of TFFSA data for C0(R) (in red line), and the plots of (3.18) against R̃ (TTbar-
undressed C(0)

0 (R)), with few sample values of α0.

Now, the contributions of the T T̄ term in (2.5) can be taken into account (up to the order
α4) via the TTbar deformation formula (2.10), which amounts to replacing R in (3.13) by

R̃ = R− αE(R) (3.16)

i.e.

En(R) = − π Cn
6(R− α En(R)) + β0 Ξnn

( 2π
R− α En(R)

) 33
5

+O
(
R−

43
5
)
. (3.17)

This formula implicitly defines En(R) as a series in inverse fractional powers of R, which
faithfully reproduces the energy levels of the effective theory (2.5) up to the order indicated
in (3.17). It can be compared to the TFFSA data represented in figure 8 and figure 10 to
estimate the coupling parameters α and β.

Estimating α and β. Eq. (3.17) can be used as the fitting formula for the energy levels
En(R) = En(R)−f0R of the IFT obtained by TFFSA, to determine the coupling parameters.
We found slightly different approach to be advantageous. Given the TFFSA data for the
energy levels En(R) we plot

C(0)
n = − 6

π
(R− αEn(R)) En(R) (3.18)

against R̃ = R − En(R). Under suitable choice of α these plots should reproduce the “α-
undressed” levels C(0)

n (R) defined via eq. (3.14), which at large R converge very rapidly to
the limiting constants (3.9), with the leading deviation determined by the β-term in (3.14).
These plots are given in figure 7, figure 8, figure 9 for the first three levels, with few test values
of α (The figures also show the corresponding functions Cn(R), eq. (3.5) from the data).

We observe that with α close to −1.3 the deviation of C(0)
n (R) from Cn at large R is

indeed very small. Moreover, we note that for the first excited state coefficient Ξ11 vanishes.
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C1(R), with α-corrections

α-undressed C1(R), with α0=-1.323

C1=-4.4

α-undressed C1(R), with α0=-1.073

α-undressed C1(R), with α0=-1.573

2 4 6 8 10
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|m|R

C
n

Figure 8. Plots of TFFSA data for C1(R) (in red line), and the plots of (3.18) against R̃ (TTbar-
undressed C(0)

1 (R)), with few sample values of α0. The estimating value of α0 can be read from the
blue line.

C2(R), with α-corrections

α-undressed C2(R), with α0=-1.323

C2=-23.6

α-undressed C2(R), with α0=-1.073

α-undressed C2(R), with α0=-1.573
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-28
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-20

-18
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n

Figure 9. Plots of TFFSA data for C2(R) (in red line), and the plots of (3.18) against R̃ (TTbar-
undressed C(0)

2 (R)), with few sample values of α0.
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That is, with a correct choice of α the approach of C(0)
1 (R) to −4.4 can be made even

faster.17 For this reason we take the value of α minimizing the deviation C(0)
1 (R) from −4.4

at larger R as the best estimate of α. This way we find

α|m|2 = −1.32(5) , (3.19)

where we restored the scale parameter m from (1.1) (previously set to 1) to emphasize the
units, and the uncertainty figure reflects the spread of the values which give the fastest
decay of C(0)

1 (R) + 4.4.
With this estimate of α one can use the large-R behavior of C(0)

0 (R) and C(0)
2 (R) to

estimate β. We note that the coefficient Ξ00 is numerically very small as compared to
Ξ22 (Ξ22/Ξ00 ≈ 50, 000). Therefore, at large R the deviation C

(0)
0 (R) − C0 is expected

to be much smaller than C(0)
2 (R) − C2. Indeed, figure 8 shows that with α = −1.32 the

deviation of the plot of C(0)
0 (R) from 0.4 becomes exceedingly small at R greater than 5,

while at smaller R the contribution of the β-term may become comparable to the higher
order terms neglected in (3.13). On the other hand, the deviation of C(0)

2 (R) from −23.4
remains quite appreciable even at R ≥ 8, and we can compare it with the β-term in (3.13).
Figure 10 shows the best fit of the eq. (3.13) to C(0)

2 (R) obtained from data, in the interval
R = [8 : 12], with β taken as the fitting parameter. The result is

β0
2π |m|

28
5 = +0.72± 0.06 , (3.20)

where again we made units explicit, and the uncertainty reflects the dependence on the
change of the fitting interval.

While eq. (3.20) is the first estimate of the coupling β in the effective action (2.5) at
the YL critical point ξ2 = −ξ2

0 , the parameter α was previously estimated in ref. [3]. That
work presents two independent evaluations of α0. One is based on the analysis of the finite
size ground state energy, α0 = −1.1(1) (eq. (7.4) of [3]), and the other from the singular
part of the vacuum energy density near the critical point, α0 = −1.2(2) (eq. (7.3) of [3]).18

Our result (3.19) agrees with the second of these figures within the stated accuracy, but
slightly disagrees with the first one. We believe that our result here is more reliable. While
the first estimate in [3] was made by fitting the ground state energy, while (3.19) here was
obtained from the first excited state, where the dominating contribution of the α-term
(∼ αC2

n/R
2) is ≈ 100 times greater.

Levels 3 and 4. Level crossing via the β-term. While the energies E0(R), E1(R),
E2(R) remain real at all R, the next two levels exhibit more intricate behavior, see figure 4.
Although the eigenvalues E3(R) and E4(R) are real at small as well as at large R (as is
demanded by the UV and IR CFT limits of the RG flow) in the crossover region 4 / R / 13
they turn into a complex conjugate pair. The corresponding functions C3(R) and C4(R)
are shown in figure 11. As an integrable theory is unlikely to develop such behavior,19 it is

17At least as fast as O(R−10), the degree at which the contribution of operator L−6L̄−6I would interfere
with α5 term generated by T T̄ flow.

18We adjust the results of [3] to our notations here: our α in (2.5) differs from that in [3] by the factor of 4.
19See however [21].
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) finite size spectrum, free of TTbar effect

Fitting of β-term correction to C2(0)(R

)
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2(
0)

Figure 10. Fitting of β-contribution to C(0)
2 (R̃) with the power law R̃−

28
5 . Note that now the

horizontal axis is R̃ = R− α0E2, and the best fit yields β0 in (2.5).

C3(R) from data

C4(R) from data

C3(R) with TTbar undressing

C4(R) with TTbar undressing

C3
(0)(R) given by β-leading order perturbation

C4
(0)(R) given by β-leading order perturbation
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Figure 11. “Level crossing” of C3(R) and C4(R). TFFSA data for C3(R) and C4(R) are shown in
red and blue, respectively. The real parts are shown below the crossing point at R ≈ 12.4, where
the levels turn into a complex conjugate pair. The dotted lines show the constant C3 and C4 from
eq. (3.9). The “TTbar-undressed” functions C(0)

3 (R) and C(0)
4 (R) are shown in magenta and brown

respectively. Light blue and light brown represent approximation (3.14) for C(0)
3 (R) and C(0)

4 (R).
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tempting to attribute the large R part of this pattern to the effect of the operator Ξ in (2.5),
which is the lowest dimension operator breaking integrability. At large R, C3(R) and C4(R)
are expected to approach constants C3 = −47.6 and C4 = −52.4, respectively (see eq. (3.9)).
Although the cutoff bound R < 17 (beyond which the TFFSA data become less reliable)
does not allow to see this expected R→∞ asymptotic, the behavior of C3(R) and C4(R)
in figure 11 is at least consistent with it. The functions C3(R) and C4(R) remain real (with
−C4(R) > −C3(R)) at all R above the “level crossing” point R34 ≈ 12.4, where the levels
collide and become a complex conjugate pair at R < R34. (Here we ignore another level
crossing at much smaller R′34 ≈ 4.5, which hardly can be explained in terms of the pertur-
bative analysis bases of the IR effective action (1.13).) Qualitatively, this behavior of C3(R)
and C4(R) agrees with what one expects from the contribution of the operator Ξ in (2.5).

Consider “α-undressed” functions C(0)
3 (R) and C(0)

4 (R) which correspond to the energy
levels of (2.5) with α = 0. Their large-R behavior is expected to follow (3.14). The
separation between the asymptotic values C3 and C4 is relatively small, and with the
matrix elements Ξ33 and Ξ44 from (3.15) and positive β the values of C3(R) and C4(R) get
yet closer when one goes from large to smaller R. Eventually, at some R the separation
become very small. In this domain of R the formulae (3.14) (which are based on the first
order perturbation in β) do not apply. Instead, one has to use the perturbation theory for
near-degenerate levels, which involve the off-diagonal matrix elements Ξ34 = Ξ43. Simple
analysis of the corresponding secular equation shows that the levels C3(R) and C4(R) would
collide at some R, and turn into complex conjugate pair at lower R. On the qualitative
level, this nicely agrees with the level-crossing patters in figure 11. Moreover, with the our
previous estimates of α0 and β0 (eqs. (3.19) and (3.20)), TFFSA data for C3(R) and C4(R)
are reproduced very closely.

In figure 11 we show, along with the direct TFFSA data for C3(R) and C4(R), the
“α-undressed” functions C(0)

3 (R) and C(0)
4 (R) obtained from the data by applying the T T̄

flow formula, as explained in the previous subsection, with the estimated value of α0 in
eq. (3.19). Note that the approach of the “undressed” functions to the constants C3 and C4
looks much more convincing than that of the full C3(R) and C4(R). In the same figure 11 we
plot the perturbative estimate for these functions, eq. (3.14) with the coupling β from (3.20)
(since Ξ44 = 0 the plot of perturbative C(0)

4 (R) from (3.14) is just the horizontal line C4).
One can see that the separation between these perturbative C(0)

3 (R) and C(0)
4 (R) becomes

small at R ≈ 14. As was already mentioned, in this region the approximation (3.14) for
C

(0)
3 (R) and C(0)

4 (R) breaks down. Instead, in this domain the levels C(0)
3 (R) and C(0)

4 (R)
must be obtained by diagonalization of the 2× 2 matrix(

C3 0
0 C4

)
− 12β0

(2π
R

) 28
5
(

Ξ33 Ξ34
Ξ43 Ξ44

)
(3.21)

where Ξ34 = Ξ43 denotes the matrix element 〈3|Ξ|4〉 ≈ 2.37768i in the YL CFT (see
appendix A). In figure 12 we compare the C(0)

3 (R), C(0)
4 (R) obtained by “T T̄ undressing”

of the TFFSA data, with α0 from (3.19), as described above, to the eigenvalues of the
matrix (3.21) with β0 from (3.20). The impressive agreement may be regarded as an
independent cross-check of our estimates (3.19) and (3.20).
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C3(R) from data

C4(R) from data

C3(R) with TTbar undressing

C4(R) with TTbar undressing
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(0)(R) given by β-leading order perturbation
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Figure 12. Same as in figure 11, but now light blue and light brown show eigenvalues of the
matrix (3.21).

4 Correlation length near YL critical point

Away from the YL critical point the IFT (1.1) is massive. TFFSA allows one to obtain
numerical results for the mass M(ξ2) of the lightest particle, which defines the correlation
length Rc = M−1. The most direct way to obtain M is by analyzing the TFFSA data for
the energy gap between first excited level E1(R) and ground level E0(R), which can be
done for pure imaginary h as well as for real values of this parameter. Below we concentrate
most attention on negative ξ2 between 0 and −ξ2

0 , the main objective being to verify the
singular expansion (2.18) near the YL critical point.

Finite size level E1(R) and M(ξ2). The first few levels En(R) obtained by TFFSA
with the truncation level L = 13 (eq. (1.31)), at a sample value of ξ2 between −ξ2

0 and 0, is
shown in figure 13, where we limit attention to the range of |m|R < 17, where the truncation
effects remain negligible, at least for the lowest levels. The large R behavior (1.23) is clearly
visible, with the asymptotic form (1.25) and (1.26) approached exponentially fast. In
principle, the ground state E0(R) can be used to determine the vacuum energy density F
at a given ξ2, and then (1.26) allows one to estimate M . However, this straightforward
approach does not produce optimal accuracy, in view of the limited range of R where
truncation effects are negligible. This problem becomes particularly prominent at ξ2 close
to the YL critical point −ξ2

0 . The asymptotic decay (1.25), (1.26) is expected to appear at
larger values of R� Rc, and since Rc(ξ2) diverges near the critical point these asymptotic
forms are pushed away to the domain of R where the truncation effects in TFFSA become
significant. Therefore, more elaborate analysis is desirable.
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E1(R)
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Figure 13. Off critical spectrum, an example at ξ2 = −0.0169 > −ξ2
0 . One can observe nonvanishing

gap between E0(R) and E1(R). Note that for states above E2(R) different energy eigenvalues exhibit
level crossing, forming complex conjugate pairs at intermediate values of R (only real parts are
shown in this plot). All levels become real at sufficiently large R.

Much better results are obtained when taking into account the leading finite-size
corrections to (1.25), (1.26). Thus, for the ground state the universal leading correction

E0(R) = FR+ M

π
K1(MR) +O(e−2MR) (4.1)

(see e.g. [14, 15]), where K1(r) is the Macdonald function. The above expression can be used
as the fitting formula to estimate F andM (only one stable particle is present in the domain
−ξ2

0 < ξ2 ≤ 0). This procedure was applied in ref. [3], yielding rather accurate results (5 to 6
significant digits) for F at all ξ2 not too close to the critical point. However, the estimate for
M by this method is not sufficiently precise. In the present work we have obtained much bet-
ter numerics for M by analyzing the first excited level E1(R). Our procedure was as follows.

Let S(θ) be the amplitude of the elastic scattering of two lightest particles in the
IFT (as before, θ = θ1 − θ2 denotes the rapidity difference). Then the leading finite-size
corrections to the energy gap ∆E = E1 − E0 asymptotic (see (1.25) and (1.26)) can be
expressed as [15, 22]

∆E(R) = M−
√

3M
2 Γ2e−

√
3

2 MR−M
∫
dθ

2π cosh θ
[
S

(
θ + πi

2

)
− 1

]
e−MR cosh θ+· · · , (4.2)

where Γ2 = −iResθ= 2πi
3
S(θ) (negative at pure imaginary ξ) is the square of the three-

particle vertex. The exhibited terms are contributions of the diagrams where one particle
winds around the compactified direction once, while the dots stand for contributions with
more windings which generally depend on the multi-particle scattering amplitudes. The
leading term in (4.2) suggests simple fitting formula

∆E1(R) = M +MB e−kMR , (4.3)
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with M , B, and k as the fitting parameters, for the TFFSA data for ∆E1(R) = E1(R)−
E0(R). The proximity of k obtained with this fitting to

√
3/2 can be used for the quality

control. The fitting procedure bases on (4.3) produces rather accurate results (in practice
four to five significant digits) as long as the fitting interval of R satisfies R� Rc. However,
it works well only when the correlation length Rc = M−1 remains substantially smaller
than the “cutoff” value 7.5, which we imposed to keep truncation effects negligible. This
holds reasonably well at ξ2 + ξ2

0 > 0.019 where Rc < 0.78. Closer to the critical point the
correlation length becomes comparable to the cutoff and the quality of the results rapidly
deteriorates. To obtain M at ξ2 near the critical point we used slightly refined method.

At R ∼ Rc the third term in the expansion (4.2), as well as the omitted higher terms,
become significant. As was mentioned, these terms depend on the S-matrix of the theory.
The S-matrix of IFT is generally unknown, except for special cases of ξ2 where the theory is
integrable. One of these cases is the close vicinity of the YL critical point. At ξ2 near −ξ2

0
we have M � |m|, and the low-energy behavior (E ∼M) behavior is described by YLQFT,
with known factorizable S-matrix. In this limit all finite-size corrections in (4.2) can be
efficiently summed up via the techniques [23, 24] generalizing the Thermodynamic Bethe
Ansatz (TBA). We denote G(MR) the gap E1(R) − E0(R) obtained via the generalized
TBA equations (we used the results of [10] and [24]). The fitting formula

∆E1(R) = M + B

3 G(MR) , (4.4)

with M and B the taken as the fitting parameters,20 was used in the domain −ξ2
0 < ξ2 <

−0.0169. This fitting procedure yieldsM with reasonable accuracy of 3–4 significant digits ex-
cept for the very close proximity of −ξ2

0 where Rc ∼ 10, where the accuracy falls to two digits.
Combined results for M(ξ2) obtained by these methods are presented in figure 14,

which also shows some data points at positive ξ2. As expected, the points fall onto a smooth
curve which agrees with known expansions around solvable points ξ2 = 0 and ξ2 = +∞.

Locating the critical point. The location of the YL critical point was previously
estimated in ref. [3], ξ2

0 ≈ 0.03583, and independent estimate was made in [25], ξ2
0 ≈ 0.03587.

Here we use the numerical results forM(ξ2) from the previous subsection to obtain somewhat
more accurate estimate.

The singular expansion (2.18) suggests, in particular that the ratio R(ξ2) = M(ξ2)/(ξ2+
ξ2

0)
5
12 has a finite limit at ξ2 → −ξ2

0 (with the limiting value determined by the coefficient
λ1 in (1.15), see eq. (2.19)). Since the location ξ2

0 is known only approximately, in figure 15
we plot the ratio R(ξ2) computed with several values of the parameter ξ2

0 , close to the
previous estimates. This allows to refine the location of the YL critical point,

ξ2
0 = 0.035846(4) (4.5)

where the estimated error relates to low accuracy of the our data for M(ξ2) near the YL
point (see previous subsection).

20An additional factor B was introduced to mimic the ξ2-dependence of the three-particle vertex Γ. For
the pure YLQFT B = 3, see eq. (1.11).
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Fitting results of M(ξ2) for imaginary h

Fitting results of M(ξ2) for real h

M(ξ2) predicted by dispersion relation
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Figure 14. Plots of M(ξ2) by fitting TFFSA data for ξ2 > −ξ2
0 , with real and imaginary h denoted

by blue and red dots respectively. The purple line is given by mass dispersion relation (see section 5).
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Figure 15. Data for the ratio R(ξ2) = M(ξ2)/(ξ2 + ξ2
0) 5

12 , with different values of ξ2
0 .

Singular expansion. The plots in figure 15 exhibit an approximate value of the leading
coefficient b0 ≈ 4.2,21 in the singular expansion (2.18) of M(ξ2) near the YL point, and
further coefficients can be obtained by direct fitting the data to (2.18). The best fit in the
interval 0 < ξ2 + ξ2

0 < 0.01 is obtained with

b0 = 4.228± 0.005 , b1 = 21.9± 0.9 , c0 = −14.4± 0.6 . (4.6)

The quality of the fit is shown in figure 16. With these values, the relations (2.19) allow
one to estimate some coefficients in the expansions (1.15), (2.6),

λ1 = 3.089± 0.008 , λ2 = 38.4± 1.6 (4.7)
21This estimate lacks good precision because the our data for R(ξ2) have low accuracy in the close vicinity

of the critical point. Better estimate, eq. (4.6) below, is based on more accurate data somewhat away from
the YL point.
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M(ξ2) data from the mass gap

Fitting result from the YL singular expansion
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Figure 16. 3-parameter fitting of M(ξ2) from the singular expansion, via eq. (2.18).

and

α0 = −1.32± 0.05 . (4.8)

The last number agrees with the estimate (3.19), providing another independent cross-check
of the latter. Also, the estimate of these values are in agreement with the result of ref. [3]
(see eq. (7.3) there).

In principle, the singular expansion (2.18) can be continued further,

M(ξ2) = (ξ2 + ξ2
0)5/12

[
b0 + b1 (ξ2 + ξ2

0) + b2 (ξ2 + ξ2
0)2 + . . .

]
(4.9)

+ (ξ2 + ξ2
0)5/4

[
c0 + c1 (ξ2 + ξ2

0) + . . .
]

+ (ξ2 + ξ2
0)11/4 [d0 + . . .] + . . .

where the last of the exposed terms represents the contribution of the operator Ξ in the
effective action (2.5) (and d0 ∝ β0), while the contributions of yet higher operators are
represented by the final dots. Unfortunately, the accuracy of our TFFSA data for M(ξ2) is
hardly sufficient for a reliable estimates of the higher coefficients in this expansion.

5 Analyticity of M(ξ2) and dispersion relation

In this section we verify the analyticity of the function M(ξ2) at complex values of ξ2. It
is natural to assume that M(ξ2) is analytic on the whole complex plane of ξ2 with the
branching singularity at the YL point and the branch cut from −∞ to −ξ2

0 , as shown in
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figure 1.22 This is not a trivial assumption. Although there are no other critical points on
the principal sheet in figure 1, the particle masses can have algebraic singularities similar
to the “level crossings” in Schroedinger equation with complex parameters. (In fact, the
higher masses Mn(ξ2), n = 2, 3, . . . do have such singularities, as we will discuss elsewhere.)
So, our assumption here is that the lightest mass M(ξ2) (and hence the correlation length)
has no singularities other than the YL point. In addition, M(ξ2) enjoys the asymptotic
behavior

M(ξ2)→M (0) [ξ2]
4
15 when ξ2 → +∞ (5.1)

which follows from the fact that at non-zero h the mass M has finite limit m0 |h|8/15 at
m = 0 (and in fact analytic at this point), with the coefficient M (0) known from the
integrable IFT at m = 0 (analytic expression is presented in appendix B, eq. (B.1)). With
this analyticity assumptions, the function M(u) (below in this section we use the notation
u := ξ2) must obey the dispersion relation

M(u) = 1 + u

∫ +∞

ξ2
0

dv

π

=mM(−v + i0)
v(v + u) , (5.2)

which expresses its values at all complex u in terms of the discontinuity

DiscM(−v) = M(−v + i0)−M(−v − i0) = 2i=mM(−v + i0), (5.3)

across the branch cut in figure 1. The constant term 1 on the r.h.s. of eq. (5.2) represents
the mass M(0) = |m| = 1 in our unit.

To verify the dispersion relation we need to build some approximation for the disconti-
nuity. In principle, the imaginary part of M(−u) can be determined by direct analysis of
TFFSA numerics for four lowest levels En(R) at ξ2 < −ξ2

0 . In this domain of ξ2 all energies
En(R) become complex at sufficiently large R, and form complex conjugated pairs. The
two “lowest” (in the sense of the real parts of En(R)) levels at large R approach the linear
asymptotic forms

E0(R)→ F+R , E1(R)→ F−R (5.4)

exponentially fast, with the slopes complex conjugate to each other, F− = F ∗+. In the limit
R =∞ these levels represent two “degenerate” (again, in the sense of the real parts of E)
vacua, the manifestation of the spontaneous breakdown of certain discrete symmetry. The
next two levels exponentially approach the asymptotic forms

E2(R)→ F+R+M+ , E3(R)→ F−R+M− , (5.5)

where again M+ and M− are complex conjugate to each other. The corresponding states
may be interpreted as the one-particle excitations over the vacua (5.4), with M+ and M−
interpreted as the associated complex masses.23 The functions M±(u) defined this way give

22We limit attention to the principal sheet of the Riemann surface. It is possible — and in fact likely —
that the theory has other critical singularities when analytically continued under the branch cut in figure 1,
see [26].

23Particle interpretation of the theory at ξ2 < ξ2
0 is an interesting and largely open problem. We intend

to study this regime in more details in the future. Preliminary numerical analysis supports the statement
M± = M(u± i0), see figure 17 below.

– 29 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
7

the values M(u± i0) of the analytic continuation of M(u) at the upper and lower edges
of the branch cut in figure 1. When u is taken sufficiently far away from −ξ2

0 asymptotic
behavior (5.4), (5.5) are well visible within the domain where TFFSA returns accurate data,
and =mM(u) can be estimated from these data. However, the accuracy of this estimate is
not particularly good, especially when we get closer to the critical point. Therefore, we
employed another approach to estimate =mM(u).

Our approximation is based on two complimentary sets of data. One is the singular
expansion (2.18), which allows one to construct an approximation for the discontinuity in
some domain close to the YL critical point,

=mM(−u+ i0) = (u− ξ2
0)

5
12
[
b′0 + b′1 (u− ξ2

0) + c′0 (u− ξ2
0)

5
6 + higher terms

]
(5.6)

where b′0 = b0 sin(5π/12), b′1 = b1 sin(17π/12), c′0 = c0 sin(5π/4), etc. On the other hand,
M(ξ2) admits another expansion, convergent at large ξ2, of which (5.1) represents just the
leading term. If measured in the units of |h|8/15, the mass M admits Taylor expansion

M/|h|8/15 = M(ξ2)/(ξ2)4/15 = M (0) +M (1) η +M (2) η2 +M (3) η3 + . . . (5.7)

in powers of the variable24

η := −(ξ2)−4/15 = −m/|h|8/15 . (5.8)

In principle, the coefficients M (n) can be computed via the perturbation theory around
the integrable theory (1.1) with m = 0. Thus, the first two coefficients M (0) and M (1) are
known exactly (we present the closed form expressions in appendix B). The higher M (n)

was never computed exactly, and we determined few further coefficients numerically, using
TFFSA data at small η. Thus we have

M (0) = 4.404908 . . . , M (1) = 1.29531 . . . , M (2) = 0.2002 , (M (3) = −0.051) (5.9)

At real positive ξ2 the relation (5.8) is understood in a straightforward way (the principal
branch of the power function is taken). However, it allows for analytic continuation to real
negative ξ2, where the variable (5.8) takes complex values along the rays

η = −y e±i
4π
15 , (5.10)

with real positive y. The segments of these rays y ∈ [0, Y0], where

Y0 = (ξ2
0)−4/15 = 2.4293 . . . , (5.11)

represent the images of the upper and lower edges of the branch cut in figure 1, respectively.
Therefore, the imaginary part of M at the upper edge of the branch cut in figure 1 is given
by the series

=mM(−u) = M
(0)
Im y−1 +M

(1)
Im +M

(2)
Im y +M

(3)
Im y2 + . . . (5.12)

24The scaling parameter η allows to chart the analytic picture uniting both High-T and Low-T regimes.
See [3] for details.
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b̃0 b̃1 b̃2 c̃0 c̃1 d̃0

3.0754 0.8932 −0.9767 −0.9412 1.026 0.3329

Table 2. Numerical values of the 6-parameter singular expansion coefficients, see eq. (5.15).

where again y = (−u)−4/15, and

M
(n)
Im = M (n) sin

[4π(1− n)
15

]
. (5.13)

The series in the r.h.s. of (5.12) is expected to converge at y < Y0, and at y > Y0 the
imaginary part turns to zero.

We found it convenient to evaluate the dispersion integral in (5.2) using the above
variable y := (−u)−4/15 instead of u (one of the advantages being that in this variable the
integral extends over the finite domain [0 : Y0]). The dispersion relation takes the form

M(u) =
(

1 + 15
4π

∫ Y0

0

y7/4=mM(−y + i0)
y15/4 + u−1 dy

)
, (5.14)

where =mM(y) denotes y=mM expressed through the variable y. Our approximation for
M(y) is based on the singular expansion

=mM(y) = (Y0 − y)
5
12

[
b̃0 sin

(5π
12

)
+ b̃1(Y0 − y) sin

(17π
12

)
+ b̃2(Y0 − y)2 sin

(29π
12

)

+ c̃0 (Y0 − y)
5
6 sin

(5π
4

)
+ c̃1(Y0 − y)

11
6 sin

(9π
2

)
+ d̃0(Y0 − y)

7
3 sin

(11π
4

)]
(5.15)

for y < Y0, which is equivalent of the first six terms of the expansion (5.6) (including
three of the “higher terms”, see eq. (2.18)). The coefficients b̃n, c̃n, d̃n are related to the
coefficients bn, cn, dn in (4.9) in a straightforward way, e.g.

b̃0 =
(15

4

) 5
12
Y
− 47

48
0 b0 , c̃0 =

(15
4

) 5
4
Y
− 79

16
0 c0 , b̃1 =

(5
4

) 5
12
(

360b1 + b0Y
15/4

0

32 · 3
7
12Y

275/48
0

)
. (5.16)

We use the previous estimates (4.6) to fix the coefficients b̃0, b̃1, and c̃0 according to (5.16),
and then adjust the remaining coefficients in (5.15) to match the first three terms of the
expansion (5.12) around y = 0. The resulting numerical values are displayed in table 2.25

The plots in figure 17 show how this approximation compares with direct numerical estimates
of =mM(−y + i0).

25We would like to stress that the values of b̃2, c̃1, d̃0 in table 2 are not to be regarded as meaningful
estimates of actual higher order coefficients in the expansion (2.18), and thus estimates of yet higher irrelevant
couplings in (1.13). Rather, they are just elements of our approximation (5.15) designed to match the
data (5.9).
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ℑℳ(y) from YL singular expansion

First 7 terms of the expansion Eq.(5.12)

ℑℳ(y) of extended singular expansion

Numerical fitting result

0.0 0.5 1.0 1.5 2.0

1.0

1.5

2.0

2.5

3.0

y

ℑ
ℳ

Figure 17. Plots of =mM(y) above the upper edge of YL branch cut, 0 < y < Y0. The red,
blue and purple solid lines correspond to the analytical continuation via eq. (5.6), eq. (5.12) and
eq. (5.15). The red bullets are given by fitting the imaginary part of ∆E(R) for ξ2 < −ξ2

0 .

With this approximation for the discontinuity, the dispersion relation (5.14) gives
(approximate) values of M(ξ2) at all complex ξ2 in figure 1. For real ξ2 (both positive and
negative) the result of direct numerical integration is shown in figure 14.

Some quality checks of this approximation are easy to perform. Consider the expression

∆M := 1− ξ2
0

∫ +∞

ξ2
0

du

π

=mM(−u+ i0)
u(u− ξ2

0)
(5.17)

which represents, according to (5.2), the valueM(−ξ2
0) = 0. That is, with exact =mM(−u+

i0) this expression must return zero. With our approximation, the numerical integration
in (5.17) yields ∆M = 0.00251378. Baring in mind that the integrand in (5.17) takes values
∼ 1 in the integration domain, this is reasonably small error.

Note that while the specific values of the coefficientsM (0) andM (2) in the expansion (5.7)
(eq. (5.9)) are incorporated, through the coefficients M (0)

Im and M (2)
Im , into our approximation,

the coefficient M (1) does not contribute to the expansion (5.12) at all (M (1)
Im vanishes no

matter what M (1) is). However, given the discontinuity 2i=mM(y), it is possible to recover
the coefficient M (1) through the dispersion relation (5.14). It is not difficult to derive the
relation

M (1) = −1 + 15M (0)
Im

4π Y0
− 15

4π

∫ Y0

0

=mM(−y)−M (0)
Im

y2 dy . (5.18)

With exact =mM(y) this expression must return the exactM (1) given in eq. (5.9). Numerical
evaluation of the integral in (5.18) with our approximation results in the number

M (1) = 1.29591 , (5.19)

reasonably close to the exact value (B.2).
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ℜM(ξ 2) data from fitting below YL point

ℑM(ξ 2) data from fitting below YL point

M(ξ 2) data from fitting beyond YL point

ℑM(ξ 2) from 6-term singular expansion

ℜM(ξ 2) from principle value integral
M(ξ 2) from mass disperion relation

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ξ2

M
(ξ
2 )

Figure 18. Summary of the plots of M(ξ2) from measurement and dispersion relation.

Finally, the function M(ξ2) is regular at ξ2 = 0, and admits power series expansion

M(ξ2) = −m+ µ2 ξ
2 + µ4 ξ

4 + . . . (5.20)

convergent in some domain around ξ2 = 0. The coefficient µ2 is known exactly, through the
perturbation theory of IFT around the point ξ2 = 0 (see ref. [27]), while µ4 can be estimated
by fitting the TFFSA data near at small ξ2. On the other hand, it is straightforward to
derive the identities

µn = (−)n+1
∫ Y0

0
y

15n−8
4 =mM(−y) dy . (5.21)

Then the numerical integrations yields

µ2 = 10.7485 , µ4 = −96.9807 , µ6 = 1455.36 ,

to be compared with the exact value of µ2, eq. (B.3), and the estimates µ4 = 97.22 and
µ6 = 1396 obtained by direct fitting of M(ξ2) at small ξ2.

The plots in figure 18 show combined data from the gap fitting and the results of the
numerical evaluation of the integral in (5.14). These results, as well as the above consistency
checks, strongly support our conjecture about relatively simple analytic structure of the
mass M(ξ2) at complex ξ2 shown in figure 1.
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6 Summary and discussion

In this work we continued the study of IFT, eq. (1.1), in pure imaginary magnetic field h,
with particular emphasis on the effective action designed to describe the close vicinity of
the Yang-Lee critical point h/|m|15/8 = ±iξ0. The effective action describes the RG flow
close to the “massless flow” from the Ising fixed point down to the Yang-Lee fixed point, see
figure 2. It has the form (1.13), which is the Yang-Lee QFT (1.8) deformed by an infinite
tower of irrelevant operators. Of those the most important are the lowest descendants of
I and φ, the operators T T̄ , and Ξ, as exhibited in the “truncated” effective action (2.5).
The couplings λ, α and β all depend on the scaling parameter ξ2 in a nontrivial way, but
admit the power series expansions (1.15), (2.6), (2.7). We use numerical data for few lowest
finite-size energy levels (obtained via TFFSA) to estimate some leading coefficients of these
expansions. We also give a refined numerical estimate of the position of the Yang-Lee
critical point, eq. (4.5).

Our estimate of λ1 and α0 in eq. (4.7) and (3.19) are in agreement with the previous
estimates in [3], but we believe have better precision. The estimate (3.20) of β0 is new. We
believe that the estimate (4.5) of ξ2

0 obtained here is more accurate than that given in [3].
The enhanced precision in due to a number of technical improvements. We use TFFSA

data obtained at the truncation level L = 13, whereas [3] uses levels up to 12. We employ
the T T̄ -deformation formula (2.10) in order to take into account corrections of higher order
in the coupling α in (2.5). In addition, the integrability of the Yang-Lee QFT (1.8) and the
Thermodynamic Bethe Aanzats was used to construct the form (4.4) for fitting the finite
size energy levels in close vicinity of the YL critical point.

Large part of our analysis relies on numerical solution (via TFFSA) of the IFT in
its continuous version (1.1). Alternative approach to the Ising universality class based on
numerical solution of the lattice Ising Model in a magnetic field, through the corner transfer
matrix technique, was developed in [28, 29]. Very recently that approach was extended to
the case of pure imaginary magnetic field in [25], where in particular the position of the YL
singularity was estimated as ξ2

0 ≈ 0.035868, which deviates from our estimate (4.5) only in
the last two digits.

At generic values of parameters m and h the Ising Field Theory (1.1) is not integrable.
This statement almost certainly applies to all real ξ2 except the points ξ2 = 0 and ξ2 =∞,
where (1.1) reduces to special Integrable QFT’s. The non-integrability can be seen e.g. in
the presence of inelastic scattering processes explicitly exhibited e.g. in [30, 31] at small
ξ2. As the YL QFT (1.8) (as well as its T T̄ deformation) is integrable, non-integrability of
IFT at ξ2 close to −ξ2

0 implies the presence of integrability breaking operators among the
tower of irrelevant operators in the effective action (1.13). The significance of the operator
Ξ in (2.5) is that it is the lowest dimension operator breaking the integrability. We plan to
say more on non-integrable features of IFT near YL criticality in the future work [32].

Our estimates of the parameters in (2.5) was based on the analysis of the lowest
finite-size levels E0(R), E1(R), E2(R) which behave in relatively simple manner, see figures 4
and 13. The levels E3(R) and E4(R) shown in figure 4, exhibit more intricate behavior,
with two “level crossings” where these eigenvalues collide and turn into the complex-

– 34 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
7

conjugate pair. We show that the level crossing at greater R ≈ 13 is nicely explained as the
integrability-breaking effect of the operator Ξ in the effective action (2.5). The numerical
match shown in figure 12 confirms our estimates of the coupling parameters. Yet higher
levels En(R), n = 5, 6, . . . (not presented in figure 4) generally show even more complicated
behavior, forming a web of real and complex-conjugate eigenvalues with many level crossings.
Understanding of this behavior in terms of the effective action (1.13) remains an interesting
open problem.

Our numerical data for the mass M(ξ2) allowed us to confirm the simple analyticity
conjecture of this function at complex ξ2. Specifically, we verified the dispersion relation (5.2)
which expresses this analyticity.

Let us make a remark on higher-dimension irrelevant operators not included in (2.5).
The higher level descendants of I potentially appearing in (1.13) are X5 = L3

−2L̄
3
−2I,

X7 = L4
−2L̄

4
−2I and X7 = L4

−2L̄
4
−2I, which fill the slots l = 6, 8 and 10 in table 1. These

are all representatives of an infinite series of operators Xs, s = 1, 5, 7, 11, . . . (odd integers
not divisible by 3) introduced in ref. [16]. These operators generate an infinite-dimensional
“generalized T T̄ deformations” which preserve integrability. Although for the generalized
deformations there is no formula describing the dependence of the finite-size energies on
the deformation parameters αs as simple and efficient as (2.10), the special properties of
the operators Xs give at least some control over the effect of these operators in the effective
action (1.13). In particular, the corresponding deformation of the S-matrix is known, and
can be used to take account for the contributions of the operators Xs through the TBA
technique. Including the contributions of these operators may significantly improve the
power of the effective action (1.13), especially for the higher energy levels. We hope to
return to this question in the future.
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A Matrix elements of descendent operators at criticality

Here we derive the diagonal matrix elements

Ξnn := 〈n|Ξ(0)|n〉 (A.1)

(we set R = 2π here) in Yang-Lee CFTM2/5 for the lowest four levels n, quoted in (3.15).
The field Ξ is the descendant of φ defined in (2.4). The terms in (2.4) involving L−1 and/or
L̄−1 bring zero contributions to the diagonal matrix elements (A.1), and here we set simply
Ξ = L−4L̄−4φ.

As usual, for a primary field OP its descendant L−nOP is defined as the integral

L−nOP (z0, z̄0) =
∮
Cz0

dz

2πi (z − z0)1−n T (z)OP (z0, z̄0) (A.2)
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where z is a local complex coordinate covering some neighborhood of the point z0, and
integration goes over a small contour encircling this point (and similar expression exists
for L̄−nOP ). On the r.h.s. one can replace (z − z0)1−n in the integrand by any function
Un(z − z0) having the Laurent expansion

Un(z) = 1
zn−1 +O(z3) (A.3)

without altering the result. This is because the terms (z − z0)1+n generate contributions
LnOP , which for primary OP all vanish for n > 1.

Now let z = x + iy be the global complex coordinate on a cylinder in figure 3, of
circumference R = 2π. It is possible to construct functions Un(z) which are 2π periodic,
U(z + 2π) = U(z), analytic on the cylinder everywhere except the point 0, where they have
the Laurent expansion (A.3) (these conditions of course do not fix the functions uniquely,
but any choice would do). We only need the function U4(z), which can be chosen in the form

U4(z) = 1
8

cos(z/2)
sin3(z/2)

+ 1
240 sin(z) (A.4)

Note that it admits two different Fourier expansions

U4(z)− 1
240 sin(z) = 1

2i
(
e−iz + 4 e−2iz + 9 e−3iz + 8 e−4iz + . . .

)
=mz > 0 , (A.5)

U4(z)− 1
240 sin(z) = − 1

2i
(
e+iz + 4 e+2iz + 9 e+3iz + 8 e+4iz + . . .

)
=mz < 0 , (A.6)

convergent in the upper and lower half-cylinders, respectively.
Consider a matrix element

〈f |L−4φ(0)|i〉 =
∮
C0

dz

2πi U4(z) 〈f |T (z)φ(0, 0)|i〉 (A.7)

between two states |i〉 and |f〉 from the space of states of the CFT on the cylinder; here
U4(z) is the function (A.4). The contour C0 can be deformed into the combination of two
contours, C− and C+, where C− goes around the cylinder in figure 3 below the insertion
point z = 0, while C+ does the same just above the insertion point. Then, combining
the expansions (A.5) and (A.6) with (3.2), and with some elementary algebra, (A.7) is
transformed to

〈f |L−4φ(0)|i〉 = −∆φ

480 〈f |φ(0)|i〉

+ 1
2 〈f |φ(0)

(
L−1 + 4L−2 + 9L−3 + 16L−4 + · · ·

)
|i〉 (A.8)

+ 1
2 〈f |

(
L+1 + 4L+2 + 9L+3 + 16L+4 + · · ·

)
φ(0)|i〉 .

Here dots represent terms involving Ln with n < −4 and with n > 4.
For the matrix element of Ξ = L−4L̄−4φ the operator L̄−4 can be handled in the same

manner. For the diagonal matrix elements between the states (3.8) a little more algebra
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yields

〈0|Ξ(0)|0〉 =
Cφφφ

12002 ≈ 1.327× 10−6 , (A.9)

〈2|Ξ(0)|2〉 =
(5

2

)2 ( 601
7500

)2
Cφφφ = 361201

9000000C
φ
φφ ≈ 0.07671 , (A.10)

〈3|Ξ(0)|3〉 =
(25

12

)2 (56417
62500

)2
Cφφφ = 3182877889

900000000 Cφφφ ≈ 6.7594 . (A.11)

The off-diagonal matrix element Ξ34 can be obtained by similar calculation, which gives:

〈3|Ξ|4〉 =
(25

12

)( 5
11

)(19807
12500

)2
i = 392317249

165000000 i ≈ 2.37768i . (A.12)

B Some exact numbers

Some coefficients appearing in different expansions of the function M(ξ2) are known exactly,
from the perturbation theory of (1.1) around integrable points in the parameter space. Parts
of these exact results are spread in different literature sources, and we present expressions
obtained by combining these results (and giving them more compact form).

The expansion (5.7) (which represents expansion of M(ξ2) at large ξ2 → +∞) can
be obtained by perturbation theory around the integrable theory (1.1) with m = 0 and
non-zero h. The first two coefficients are known in a closed form,

M (0) = 4π
Γ(2/3)Γ(4/5)Γ(8/15)

[
4π2 Γ2(13/16)Γ(3/4)

Γ2(3/16)Γ(1/4)

]4/15

= 4.404908579981566 . . . (B.1)

M (1) = 256
225

21/4
√

3
Γ(1/8)Γ(2/5)Γ(4/15)Γ(7/15)Γ2(3/4)Γ2(13/16)
Γ(7/8)Γ(3/5)Γ(4/5)Γ(11/15)Γ2(3/16)Γ3(2/3)

sin(4π/15)
sin(π/15)

×
[

cos
(2π

15

)
cos

(
π

30

)
− cos

(
π

5

)
cos

(7π
30

)]
= 1.295047691998804 . . . (B.2)

The form (B.1) can be extracted from the results in [33]. The coefficient (B.2) is combined
from exact results for the vacuum expectation value 〈ε〉m=0 given in [34] in integral form,
and brought to nice closed form in [28], and exact results foe the form factors in [35], which
we transformed to the relatively compact form above.

The coefficient µ2 in (5.20) is known exactly from the perturbations around the
integrable theory (1.1) with h = 0 and m < 0. Although there is no closed form in terms
of conventional transcendents like (B.1), (B.2) above, it can be expressed as an integral
involving special solution of the Painleve III equation, see [27], which allow to compute it
numerically, with arbitrary accuracy,

µ2 = 10.7619899 . . . . (B.3)

The mass M also enjoys expansion in fractional powers of h valid in the vicinity of the
point h = 0 and m > 0 in (1.1). A number of exact coefficients can be found in [3] and [36].
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