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Recent discoveries of charge order and electronic nematic order in the iron-based superconductors and
cuprates have pointed towards the possibility of nematic and charge fluctuations playing a role in the enhance-
ment of superconductivity. The Ba;_,Sr,NiyAs, system, closely related in structure to the BaFe,As, system,
has recently been shown to exhibit both types of ordering without the presence of any magnetic order. We
report single-crystal x-ray diffraction experiments on Bag 35St ¢sNixAs,, providing evidence that the previously
reported incommensurate charge order with wave-vector (0, 0.28, 0), in the tetragonal state of BaNi,As,
vanishes by 65% Sr substitution together with nematic order. Our measurements suggest that the nematic and
incommensurate charge orders are closely tied in the tetragonal state and show that the (0, 0.33, 0),; charge
ordering in the triclinic phase of BaNi,As, evolves to become (0, 0.5, 0),; charge ordering at x = 0.65 before

vanishing at x = 0.71.
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High-temperature superconductivity in the cuprate [1,2]
and iron pnictide families [3—5] has prompted wide research
efforts aiming to uncover the origins of their unconven-
tional pairing mechanisms. Although long-range magnetic
fluctuations have long been suggested as responsible for
the pairing, recent research into electronically driven ne-
maticity in the iron pnictides [6,7] as well as charge order
and nematic order in the cuprates [8—14] suggests that
these electronic degrees of freedom may also play impor-
tant roles in stabilizing the superconducting phases in these
systems.

Theoretical work has shown that fluctuations associated
with an electronically nematic quantum critical phase can en-
hance superconducting phases with few requirements [15,16].
The proximity of magnetism in the cuprates and iron pnictides
prevents a straightforward study investigating the potential
enhancement effects of electronic nematic fluctuations to
superconductivity. Our recent studies of the tunable supercon-
ducting pnictide material Ba;_,Sr,NiyAs, revealed a strong
sixfold enhancement of 7, from 0.6 to 3.5 K in proxim-
ity to an increase of nematic fluctuations, suggesting strong
evidence of a pairing enhancement [17]. Furthermore, with
evidence of charge [18] and nematic [17] orders in proximity
to the enhancement, Ba;_, Sr,Ni, As; is positioned as a a good
candidate for exploring the interplay of charge and nematic
degrees of freedom in the absence of magnetism within su-
perconducting systems.

The parent compound BaNi; As; is tetragonal and isostruc-
tual to its famous iron-based counterpart BaFe,As, at room
temperature. Unlike the latter, BaNi, As, undergoes a first-
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order tetragonal to triclinic structural phase transition at 7 =
135 K. Additionally, neutron measurements of BaNiAs,
have shown no evidence of a magnetic structure in its low-
temperature phase or anywhere else [19]. The tetragonal and
triclinic phases of Ba;_,Sr,Ni, As, are denoted by sets of dis-
tinct Bragg peaks that index to the space groups of 14/mmm
and P1, respectively. Here we use (H, K, L) and (H, K, L)y;
separately to describe positions in momentum space for each
phase. X-ray measurements have revealed a bidirectional in-
commensurate charge-density wave (IC-CDW) on setting just
above T; at Tjc = 148 K at a wave vector of Qi = 0.28 in a
“40Q” state on the ab plane [20]. At T, the incommensurate
CDW vanishes and gives way to a unidirectional commen-
surate CDW (C-CDW1) at wave-vector (0, 0.33,0)y; in the
triclinic phase [18]. BaNiyAs; also becomes superconducting
at 7. = 0.7 K [21], and thermal conductivity measurements
suggest that this superconducting state is fully gapped [22].
The other end member SrNi,As, shows no evidence for a
structural distortion or magnetic order, but also superconducts
below T, = 0.62 K [23]. Isovalent substitution of Sr for Ba
in Ba;_,Sr,NiyAs, has been shown to suppress 7; toward
absolute zero temperature and enhance 7, up to a maximum
value of 3.5 Katx = 0.71 [17].

Elastoresistivity measurements of Ba;_,Sr,NiyAs, prob-
ing the By, channel, corresponding to the symmetry-breaking
strain along the [100] and [010] tetragonal crystallographic
directions, have revealed a large nematic susceptibility
throughout the range of Sr substitution [17]. In addition,
this experiment also revealed striking nonreversible hysteretic
behavior in the nematic response just above the triclinic dis-
tortion between x = 0 and x = 0.5, implying the presence
of an ordered electronic nematic phase that coexists with IC
charge order in the tetragonal structural phase. In BaNi, As; at
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temperatures just above Ty, the area of hysteresis in elastore-
sistance from nematic order sharply increases with a profile
that matches the sharp intensity growth of the IC-CDW. With
increasing Sr content, this nematic order begins to fade until a
crossover to electronically driven nematic fluctuations occurs
in the intermediate region around x = 0.5. The correlation be-
tween the O, = 0.28 charge order and nematic order in both
scaled intensity and crystallographic direction suggests that
the two phases are closely linked. In this paper, we provide ev-
idence for the vanishing of the incommensurate charge order
that lives above the triclinic distortion at x = 0.65, matching
the disappearance of nematic order at the same concentration.
The absence of this incommensurate charge order in a region
void of nematic order further supports the notion that these
two phases are linked.

Single-crystal x-ray diffraction measurements were carried
out using a Xenocs GeniX three-dimensional (3D) Mo Ko«
(17.4-keV) source which delivers 2.5 x 107 photons per sec-
ond with a beam spot of 130 um. The sample was cooled
using a closed-cycle cryostat to reach a base temperature of
11 K. The sample was kept inside a Be dome, used for vacuum
and radiation shielding. Sample motion was performed using
a Huber four-circle diffractometer and x-ray detection was
captured using a Mar345 image plate to allow for 3D map-
ping of momentum space of with a resolution of Ag = 0.01
to 0.08 A~ depending on the cut [18]. Single crystals of
Ba;_,Sr,NiyAs, were grown using a NiAs self-flux solution
technique [21]. Resistivity measurements were performing
using a Quantum Design physical property measurement sys-
tem.

Charge order in the Ba;_,Sr,Ni,As, system develops in
a complex manner with different phases coexisting [20]. Just
as nematic fluctuations undergo changes in character across
the phase diagram, so too does the charge order. BaNiyAs;
develops a complex 4Q bidirectional IC-CDW with a wave
vector at (0.28, 0.28, 0),; that onsets at 148 K [20], dis-
tinctly above the first-order triclinic transition (cf. Fig. 1).
The IC-CDW order grows in x-ray intensity as tempera-
ture is lowered until the structural transition occurs where
this order abruptly disappears and a new unidirectional com-
mensurate charge (C-CDW1) order forms at (0, 0.33,0)y
in the triclinic phase and is maintained down to base tem-
perature [18]. For increasing Sr concentrations on the order
of x =0.4 to x = 0.5, the IC-CDW’s window of existence
above the triclinic order narrows closer to the triclinic on-
set temperature [20]. Additionally, in the triclinic phase,
a new unidirectional commensurate charge order forms at
(0,0.5,0)y (C-CDW2) about 20 K below the triclinic on-
set [20]. For a narrow range of Sr concentration, about x =
0.4, both C-CDW1 and C-CDW2 coexist down to base tem-
perature with C-CDW?2 being largely dominant in scattering
intensity [20].

Each charge order peak and structural transition is de-
tectable by x-ray diffraction. At a Sr concentration of x =
0.65, we report that there is no IC-CDW or any other charge
order observed within the tetragonal phase, as presented in
Fig. 2. When the system undergoes the triclinic distortion,
now at a reduced temperature of 60 K, only the C-CDW2 Q =
0.5 order is observed (Fig. 3). Increasing Sr content slightly
further to x = 0.71 has previously shown a vanishing of the
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FIG. 1. Resistance of BaNi,As, and Bag35SrgesNiaAsy
normalized to 300-K data. Bag35Srg¢5NipAs, has been offset from
BaNi,As,. The triclinic distortion in BaNi,As, can be seen in
resistance at 135 K on cooling and at 138 K on warming and in
Bay 35Sr(65Ni; As, at 40 K on cooling and at 58 K on warming. The
T. of BaNi,As, and Bag35Sr(¢sNiyAs, is measured at 0.6 and 3 K
respectfully.

triclinic and C-CDW?2 order along with an enhancement of 7.
up to 3.6 K [17,20]. The vanishing of the IC-CDW at x = 0.65
in the tetragonal phase, along with the shift of commensu-
rate order from C-CDW1 to C-CDW?2 in the triclinic phase,
indicates that the charge-ordered phases of Ba;_,Sr,NiyAs;
develop in a complex way and are not simply tuned to zero
temperature.

The charge order of x = 0.65 has quite different be-
havior than that of x = 0. Pure BaNi,As, has a triclinic
distortion at 135 K that coincides with the destruction of
the Q¢ = 0.28 incommensurate charge order and the emer-
gence of a Qy = 0.33 commensurate charge order [18].
In the absence of a precursor incommensurate order for
x = 0.65, we observe at triclinic distortion at 60 K that,
in this case, is accompanied by commensurate charge or-
der with wave-vector (0, 0.5, 0)q; (Fig. 3). The absence of
incommensurate order in the tetragonal phase is likely asso-
ciated with the absence of nematic order as they are closely
tied in Ba;_,Sr,NiyAs,. Elastoresistance measurements for
BaNi,As, have shown a hysteresis as a function of ap-
plied strain along the B, symmetry channel (Fig. 2), which
operates along equivalent crystallographic directions of the
IC-CDW. At low-Sr concentrations, the hysteresis in elas-
toresistance is thought to arise due to domain formation in
an ordered nematic phase present in the system and appears
simultaneously with the onset of the bidirectional IC charge
order [17].

As Sr concentration increases, the window for nematic
order above the triclinic distortion begins to narrow and
vanishes around x = 0.5 with a transition to electronically
driven nematic fluctuations [17]. Concurrently, the window
of existence of the IC-CDW also narrows, and the IC-
CDW has an intensity profile with temperature that scales
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FIG. 2. (a) (H,K) cuts through momentum space centered on
(0.28, 1, 7)i; at room temperature and relative temperatures above
the triclinic structural distortion for x = 0 and x = 0.65 Sr concen-
trations. Data taken from Supplemental Material Fig. S3 of Ref. [17].
At room temperature for both concentrations no CDW is present. At
x = 0 the IC-CDW is observed at 142 K. Atx = 0.65, the IC-CDW is
no longer observable above background levels. No other CDW peaks
were detected in tetragonal phase for x = 0.65 in all other regions
of observed momentum space. X-ray data taken from Supplemental
Material Fig. S3 of Ref. [17]. (b) Elastoresistivity ratios for x = 0 and
x = 0.63 for temperatures just above the triclinic distortion. In x = 0,
the signal is hysteretic with strain, indicating nematic order. In x =
0.63, the signal is reversible with strain. The observation of nematic
order and the IC-CDW occur simultaneously for Ba;_,Sr,Ni, As;.

with the hysteretic area profile seen in elastoresistance [17].
For x =0.65, we show that no IC-CDW or any other
charge order exists above the triclinic distortion. A prior
study has shown a completely reversible nematic suscep-
tibility for this region of Sr concentration and, therefore,
no signal of nematic order [17]. We claim that charge or-
der and nematic order not only scale together throughout
Ba;_,Sr,NiyAs,, but also mutually exist together throughout
the entire phase diagram. Together with prior elastroresistivity
measurements [17], our x-ray data (Fig. 2) suggest there is an
intimate tie between the two orders requiring further study to
elucidate.
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FIG. 3. (H, K) momentum space cuts in the triclinic space at x =
0.65 for selected temperatures. The Qy; = 0.5 C-CDW2 observed
via superstructure reflections at (1, 0.5, 3)y; and (—1, 0.5,4),;. An
example triclinic Bragg reflection onset is shown at (3, 1, 0),. At
75 K, above the triclinic distortion, no scattering is found in these se-
lected spaces. Intensity from each reflection is first observed starting
at 60 K and continues to be observed down to 11 K (not shown).

In conclusion, we report x-ray, transport, and magne-
tometry measurements showing an absence of long-range
charge order in Bag35Srg¢sNipAs, within the tetragonal
phase that is consistent with the absence of nematic or-
der found previously. Together with the observation of a
unique commensurate charge order with the wave vector
of (0,0.5,0)y below the triclinic distortion, which evi-
dences a complex evolution of charge-ordered phases with
Sr substitution, these data help elucidate the rich evolution
of electronic degrees of freedom in the Ba;_,Sr,NiyAs;
system.
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