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Abstract

Recently, the petroleum industry has faced the era of data explosion, and
many oil and gas companies resort to data-driven approaches for unconven-
tional field development planning. The objective of this paper is to analyze
shale oil wells in a shale reservoir and develop a statistical model useful
for upstream. Shale oil wells dataset comprises three aspects of informa-
tion: oil production rate time series data; well completion data; and well
location data. However, traditional decline curve analysis only utilizes the
temporal trajectory of the production rates. Motivated by this, we propose
a Bayesian hierarchical model that exploits the full aspects of the shale oil
wells data. The proposed model provides the following three functionalities:
first, estimations of a production decline curve at an individual well and
entire reservoir levels; second, identification of significant completion predic-
tors explaining a well productivity; and third, spatial predictions for the oil
production rate trajectory of a new well provided completion predictors. As
a fully Bayesian approach has been adopted, the functionalities are endowed
with uncertainty quantification which is a crucial task in investigating un-
conventional reservoirs. The data for this study come from 360 shale oil wells
completed in the Eagle Ford Shale of South Texas.

AMS (2000) subject classification. Primary 62F15; Secondary 62H11, 62M20.
Keywords and phrases. Bayesian hierarchical modeling, Decline curve anal-
ysis, Shale oil wells, Latent kriging

1 Introduction

1.1.  Motivation: the Era of Big Data and the Shale Boom One of the
global trends in the oil and gas industry in recent years can be characterized
by two keywords: Big Data and Shale Boom. The industry has been accu-
mulated substantial amounts of data during the process of unconventional
oil and gas production to better optimize the architecture and completion
of wells and, furthermore, to predict future production behaviors of wells
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to minimize drilling cost. And it is indisputable that the oil and gas pro-
duction from shale formation was one of the epicenters that overturned the
recent world energy market. The United States Energy Information Admin-
istration (US EIA) estimated that technically recoverable shale gas resources
in the world are 7201 trillion cubic feet, contained in a survey by US EIA
which covered 137 shale formations from 41 countries. (See Annual Energy
Outlook 2018 https://www.eia.gov/- for a detail.)

Particularly in the US energy market, unconventional oil and gas sources
are rapidly gaining in importance. Figure 1 depicts historic and projected
productions of natural gas by different sources. On the panel, it is observed
that there manifests a surge in shale gas production since the mid-2000s,
and it continuously increases through 2050. It is widely acknowledged that
the upsurge was due to the widespread utilization, advance, and conjunction
of two techniques: horizontal drilling and hydraulic fracturing technologies
(Gandossi and et al. 2013). Figure 2 describes a pictorial example of a
hydraulically fractured horizontal well. (Refer Fig 1 in Howarth et al. (2011)
for a detailed version.) Horizontal drilling is a directional drilling technology
such that a well is drilled parallel to the reservoir bedding plane (Giger et al.,
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Figure 1: Historic and expected US natural gas production by different
sources. Other includes Alaska and coalbed methane. US EIA forecasted
that shale oil production would remain as the leading source of US crude oil
production from 2017 to 2050
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Figure 2: A schematic example of a hydraulically fractured horizontal well

1984). Its main purpose is to increase reservoir contact, eventually improving
a well productivity (Joshi, 1991). Well productivity of a horizontal well is
known to be often 3 to 5 times greater than that of a vertical well (Al-Haddad
et al., 1991; Mukherjee et al., 1991), but also costs 1.5 to 2.5 times more
than a vertical well (Joshi and et al. 2003). Hydraulic fracturing, also called
fracking, is a well stimulation technique that makes use of water-based fluids
to break up nonporous rocks to access oil and gas resources that are locked
in the oil-bearing formation so that initial flow and ultimate recovery of oil
increase (Hubbert and Willis, 1972; Montgomery et al., 2010).

The US shale boom—a product of technological advances in horizontal
drilling and hydraulic fracturing that unlocked new stores of energy—has
greatly benefited the growth in the US economy. In October 2011, hydrauli-
cally fractured horizontal directional drilling became one of the predominant
methods to explore a new US crude oil and natural gas development. In 2016,
hydraulically fractured horizontal wells accounted for 69% of all oil and gas
wells drilled in the US. As end of 2018, about 6.5 million barrels per day of
crude oil were produced directly from shale oil resources which accounts for
59% of total US crude oil produced in 2018 (EIA et al., 2019). The US has
been a net energy importer since 1953, but due to a decline in energy imports
and an increase in energy exports, the US is projected to be a net energy
exporter of crude oil by the early or mid-2020s, thereby achieving The Shale
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Revolution, America’s path to energy independence. (See www.eia.gov/- for
the detailed report from US EIA.)

1.2. A Shale Reservoir Problem The eventual success of petroleum de-
velopment projects relies on a large degree of well construction costs (Valdes
et al., 2013). As for unconventional reservoirs, because of very low per-
meability, and a flow mechanism very different from that of conventional
reservoirs, estimates for the well construction cost often contain high lev-
els of uncertainty, and oil companies need to make heavy investment in the
drilling and completion phase of the wells. The overall recent commercial
success rate of horizontal wells in the US appears to be 65%, which implies
that only 2 out of 3 drilled wells will be commercially successful (Joshi and
et al. 2003). For this reason, one of the crucial tasks of petroleum engi-
neers is to quantify the uncertainty associated with the process of oil or gas
production to reduce extra initial risk for the projects.

Considerable amounts of data are being generated during the develop-
ment and operation of shale reservoirs. Here, we explain a shale oil wells
dataset from a shale reservoir region, and summarize some commonly agreed
characteristics of the dataset. After that, a “shale reservoir problem” is sug-
gested that can be useful for the upstream petroleum industry.

Let {(P;,x;, Si)}ﬁ\il denotes a collection of N shale oil wells data from
a shale reservoir region such that each of the wells is indexed by i (i =
1,---,N). We assume that all the wells are hydraulically fractured and
horizontally drilled, and no wells were refractured after initial productions.
Technically, production results of an individual well ¢ can be described by
3-tuple (P;,x;,s;) whose components are:

o P, = (P, - ,PiTi)T e R monthly oil production rate time series
data over T; months from its initial production;

o x; = (1, - ,xip)T € RP: p number of completion data;
o s; = (5;1,51) € R?: spatial location (longitude, latitude) of the well.

In petroleum engineering, well completion means the process of trans-
forming a well ready for the initial production (Bellarby, 2009; Wan, 2011).
A collection of informative data involved in the completion procedure is
called completion data, represented by the vector x;. We emphasize that
the concept of completion motivates a statistical insight. This is because the
time series data P; is observed after well completion predictors x; along with
the well location s; are determined by petroleum engineers. In other words,
for each well i, we can view the relationship between P; and (x;,s;) as an
output-and-input relationship: the 7; elements of vector P; = (Pi1,- - , P,
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. ,PZ‘Ti)T can be regarded as discrete points observed at time points ¢t =
1,---,T;, whereas the completion data x; coupled with the spatial location
s; are served as inputs. By this reason, the collection of the 3-tuples from
N wells, {(P;,x;, Sz‘)}f\ip formulates a spatial functional data possessing a
nested data structure where both temporal and location information should
be simultaneously considered.

The followings are summaries about some agreed characteristics of shale
oil wells data {(P;,x;,s;)}~.;. Most of them are investigated by Lewis et al.
(1918) through empirical studies:

(i) all the wells are rarely drilled at once (For any two wells indexed by @
and j with ¢ # j, the values P;; and P;; can be measured at different
time points. This means that the time index ‘1’ in the subscripts, P;1
and P;i, represents the initial production time.);

(ii) production period of each well can be different. (For any two wells
indexed by ¢ and j with ¢ # j, the production periods T; and T} can
be different.);

(iii) ordinarily a well reaches its maximum production at its initial produc-
tion time or within a few months after its completion (For a well i, the
value arg max;—1 ... 1, Pj; is either ¢ = 1 or some ¢ greater than 1 upper
bounded by a small integer.);

(iv) eventually the oil or gas production rate becomes so small over time
and it becomes unprofitable (For a well 4, it holds lim;_, o, P;; = 0.);

(v) number of wells NV in a reservoir region is allowed to be a large number
(For example, N can be as large as 6,000 in Eagle Ford Shale Play.);

(vi) the dimension of the completion data p can be as large as 100;

(vii) identification of significant completion predictors among p completion
data x = (x1,--- ,2,)" € RP in terms of a well productivity is one of
the paramount tasks in reservoir characterization;

(viii) set of well locations {s;}}¥, may form a band where oil or gas reserves
exist underground as shown on Fig. 3.

We are now in a position to suggest a “shale reservoir problem” based on
the aforementioned characteristics of the shale oil wells data {(P;, x;,s;) }1¥,.
Its objective is to achieve the following three sub-goals:
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US EIA)

(a) uncover a hidden pattern from the time series data P; = (P;1,- -+ , Pip, )T
for each well ¢ (i = 1,---, N) through some parametric curve q(t;9;)
involving the subject-specific parameter ;. The ¥; can be multidi-
mensional, and its component has its own interpretation explaining
the relationship between the measurements P; and some characteris-
tics of the i-th well in terms of productivity;

(b) identify significant completion predictors among the p predictors x; =
(zi1,-++ ,2ip) | explaining a well productivity described by each com-
ponent of the vector 9;;

(c) predict the temporal profile of oil production rates of a new well during
T* months, denoted by P* = (P7,--- 7P}*)T7 provided that p comple-
tion predictors x* = (z7,- - ,:E;)T and a new location s* = (s%,s5)"
are specified.



BAYESIAN HIERARCHICAL MODELING:... 7

Throughout the paper we use the straight capital letters ‘P’ and ‘P’ to repre-
sent ‘production’, and the asterisk notation ‘*’ is superscripted to emphasize
that a resultant quantity is associated with ‘prediction’.

The suggested shale reservoir problem (a)—(c) is a supervised machine
learning problem that combines (a) curve fitting, (b) feature selection, and
(c) spatial prediction. An idealistic statistical model should be able to fulfill
the sub-goals (a)—(c) integratively.

In the literature of petroleum engineering, the curve fitting analysis dedi-
cated to the purpose with sub-goal (a) is referred to as decline curve analysis
(DCA) (Arps and et al. 1945; Tlk et al., 2008; Valké et al., 2010; Clark, 2011;
Duong and et al. 2011) which will be detailed in Section 2. However, to the
best of our knowledge, there is no research work aimed at providing an inte-
grative fully Bayesian solution to achieve the three sub-goals (a)—(c) through
a single model. Recently, Vyas (2017) & Park et al. (2021) researched statis-
tical modeling to accommodate the three components of shale oil wells data,
however, the authors did not model the spatial association through a geosta-
tistical stochastic process, hence, uncertainty quantification associated with
the sub-goal (c) is disregarded.

1.3.  Research region: Fagle Ford Shale Reservoir of South Texas In this
research, we consider 360 hydraulically fractured horizontal oil wells data
{(P,,x,8:)}Y., (N = 360) collected from the Eagle Ford shale reservoir of
South Texas. No wells were refractured after their completions. Data has
been collected from DrillingInfo online database (info.drillinginfo.com). The
Eagle Ford shale reservoir (see Fig. 3) is known as possibly the largest single
economic development in the history of Texas and ranked as the largest oil
and gas development in the world based on capital invested; visit eagleford-
shale.com for a detail.

The followings are detailed descriptions of the components, {P;}Y,,
{x;}}¥,, and {s;}Y,, from the shale oil wells dataset {(P,,x;,s;)}~,, N =
360.

The time frame of the production time series data of N wells, {P; =
(Pi1, -, Pi) T N=360 ) spans from January 2011 through June 2017. Each
well i can have different production period 7;. The minimum and maximum
production periods of the 360 wells are 42 and 78 months, respectively. (That
is, min;—i ... 360 7; = 42 months, and max;—1.... 360 7; = 78 months.) Unit of
the production rate Py (t =1,---,T;) is barrel per month (BBL/Month).

Figure 4 displays the production rate trajectory for a well with API10
number given by 4201334341, and those of other wells are overlaid with gray
dashed curves. API10 is a unique identifier assigned to an individual well,
hence, there is an one-to-one correspondence between the index ¢ and the
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Figure 4: Production rate trajectory for well with API10 = 4201334341.
Other wells are transparently overlaid

APT10 number. The initial production rate of the well is 13451 BBL/Month
in June 2011. This implies that the total amount of oil produced during June
is 13451 barrels. As noted from item (iv) in Section 1.2, temporal profiles of
production rate eventually show a declining phase.

It is important to note that the declining phase commonly manifested in
the oil production rate time series data is due to the exhaustion of expulsive
force rather than depletion of oil, because much more oil is left underground
than is ordinarily brought to the surface (Lewis et al., 1918). This implies
that the advance of the drilling technology, hydraulically fractured horizontal
drilling, has been already reflected on the historical records of the monthly
rates P;, and this is the main reason why production ‘rate’ data (with a unit
BBL/Month) are prevailingly used in the DCA.

Well completion data from N wells {x; = (w1, , ;) }¥73% has p =
11 completion predictors. Table 1 lists the 11 completion data, and these fall
broadly into two classes: hydraulic fracturing design data or well test data.
Pictorial explanation of some hydraulic fracturing design data is contained
in Fig. 2. Petroleum engineers tune these predictors and optimize a well
design and manufacturing phase to attain the maximum well productivity
(Gradl, 2018; Wan, 2011; Deen et al., 2015). (Covariates presented in this
article are confined with 11, but actual dimension of completion data can be
as large as 100.)

Spatial location data {s; = (s;1,ss2) "}, represent (longitude, latitude)
coordinates of the NN wells, recorded in decimal degrees used in WGS84
coordinate reference system. They are located on the green area in Fig. 3.



BAYESIAN HIERARCHICAL MODELING:...

(ojutBuryuig :021n0g) "A[uo sexq, 03 serjdde 1] ‘sexa],

Ul SHIun pue| Jo SYO0[q ST joRIISqe Jo jrup) “ejep uorje[dwod [[om Suowre eyep uSisep Sunmnjoely o[nerpAy swos oy} SMoys ¢ "S1q [ LON

IoquInu J0RIISqY 10RIISq Y 1T

1599 9S11J ) SULINp JIajyem 01 pmbi|
wnaforjad Jo AJISUsp SAIJR[AI 9 JO JUIWIDINSBIN A91ARIS [10 9899 JSIL 0T
1591 Terjuejod [erjrul SuLInp uorjonpoid 10 pojenore)) (199) ewN{oA [10 1S9} 9SITL ] 6
[PMm gey) uo paurrofrad suorjerduwos Jo Ioquuny (19809ur) junoo uoryerduro)) Q
[eAIOUI pojelortod Jo Yjsuor] (7J) qISUS[ [RAISIUT PAJRIOLID] )
£y1odoad Suronpoad oy jo uorpeiojrod 1omor (33) uorjerojrod 10moO] )
Ly1odord Suronpoad oy jo uoryeroyrod reddn (33) woryeroyred 1eddn G
9[01] WI0}10q PapuUsIUI JO [jdop [edILI8A oNI) [RIQT, (33) yadep [esryaeA onif, i%
09 poq[uIp sem Arredoxd oy yjdep [elqf, () yadep painsesiy ¢
[9A9] PUNOIZ 03 100dSoI Ul UOT)eAd[H (3}) UoTRAS[® PUNOIX) Z

[[oM [I0 UR Ul 1899 Terjuejod [erjiur (1sd) ammssoxd
9} SuLINp peay[[eom oY} IR oINssoI] suIqny) SUIMOp 1899 4811 1
uoryeue[dxy (y1un) s10301pPaIg A
(T st o Tx) = x s109a1pard uorje[duwod [[em-TT T 9[qeT,



10 S. Y. Lee and B. K. Mallick

The rest of this paper is organized as follows. Section 2 explains the
traditional DCA and how to implement it given temporal profiles {P;}% ;.
Section 3 introduces a non-spatial extension of the traditional DCA to uti-
lize time series data and completion data {(P;,x;)}Y, and four candidate
models are suggested. Model choice is employed in Section 4 to select the
best model from the four non-spatial models. In Section 5, we further extend
the framework of the non-spatial models to a spatial platform, thereby ex-
ploiting the entire shale oil wells dataset {(P;,x;,s;)}/;. This spatial model
is applied to the 360 shale oil wells data, and some results are summarized
in Section 6, while Section 7 contains some summary and future works.

2 Traditional Decline Curve Analysis

Since the traditional DCA has been introduced by Lewis et al. (1918)
in 1918, it has been one of the most popularly utilized tools for petroleum
engineers (Mishra and Datta-Gupta, 2017). Provided a collection of the
production data {(P;,x;,s;)}Y; from N well in a shale oil or gas reservoir
as explained in Section 1.2, the traditional DCA only utilizes the time series
data {P;}}¥,, while completion and location information, {(x;,s;)}Y,, are
not involved in the analysis. The objective of the DCA was delineated in
Section 1.2 as the sub-goal (a) subsumed under the shale reservoir problem.

Consider an individual well ¢ (i = 1,--- ,N). A key ingredient of the
DCA is a parametric curve ¢(t;9;) to describe the “inherent tendency” of
the declining phase from the temporal profile P; = (P;q,- - -, PiTi)T to evolve
over time (as seen from the Fig. 4). Such a curve ¢(t;9;) is referred to
as rate decline curve (RDC). Conceptually, any parametric curve that can
describe such a declining pattern is a candidate of the RDC. Subject-specific
parameter vector 1¥; represents an “inherent characteristic” of the i-th well
dictating this tendency. Here, a notable point is that petroleum engineers
usually elicit and involve certain interpretations on each component of the
¥; in terms of a well productivity.

Most RDCs in the literature are derived from solving certain differential
equations that describe a hidden dynamic from production rate trajectory
(Arps and et al. 1945; Ilk et al., 2008; Valk6 et al., 2010; Clark, 2011;
Duong and et al. 2011), whereas some RDCs are developed by generalizing
certain probability density functions (pdf) (Weibull and et al. 1951). See
(Fetkovich and et al. 1980; Ali et al., 2015; Harris et al., 2014; Miao et al.,
2018) for an overview for some RDCs. In this paper, we introduce four widely
used RDCs: Weibull, Arps’ hyperbolic, stretched exponentiated decline, and
Duong models.
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2.1. Weibull Model Weibull model is given by

q(t; M, A\ k) M- f(t; N k) M >0,A>0,k>0.
such that f(t; A\ k) = Weibull(t;b, k) = (k/X) (/N Lexp(—(t/N)F)  (2.1)

where M, X\, and k are called the carrying capacity parameter, scale pa-
rameter, and shape parameter, respectively. Note that Weibull model is
simply a generalization of Weibull distribution (Weibull and et al. 1951). In
petroleum context, there are separate interpretations for each of the curve
parameters in terms of a well productivity: M means the maximum cumu-
lative production set by the equation; X is the value of time at which 63.2%
of the resource have been produced; and k shows how the rate of growth
changes with time and is usually less than 1 for unconventional reservoirs
(Mishra, 2012a).

In what follows, for the purpose of estimation, we use a reparameterized
Weibull model obtained via a transformation b = A\=* in Eq. 2.1:

gt M b k) = M- f(t:bk), M>0b>0k>0 (2.2)
such that f(t;b,k) = Weibull(t;b, k) = bkt* Lexp(—btF),  (2.3)

where M, b, and k are called the carrying capacity parameter, scale param-
eter, and shape parameter, respectively.

2.2.  Arps’ Hyperbolic Model Arps’ hyperbolic model (Arps and et al.
1945) is defined by

¢t q,h,D)=q1- A +hDt)™ V" 1 >00<h<1,D>0, (24)

where g1, h, and D are called the initial production rate parameter, hyper-
bolic decline exponent parameter, and initial decline rate parameter, respec-
tively. For technical interpretations for the curve parameters in terms of well
productivity, refer to Arps and et al. (1945).

Under reparameterization M = ¢;/((1 — h)D), b = 1/((1 — h)D), and
k = h/(1—h), we reexpress Arps’ hyperbolic model (2.4) as a generalization
of the generalized Pareto distribution (GPD) (Pickands and et al. 1975) as
follows:

q(t; M,b k) = M- f(t;b,k), M>0,b>0,k>0  (25)
such that f(t;b,k) = GPD(t:b,k) = (1/b)(1 + kt/b)~Y*=1  (2.6)

where M, b and k are the carrying capacity parameter, scale parameter and
shape parameter, respectively.
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2.3. Stretched Fxponentiated Decline Model The stretched exponenti-
ated decline model (SEDM) (Valké et al., 2010) is defined by

Q(ta qi1, )" k) =q exp(_(t/)‘)k)v q1 > 07 A> 07 k> 07 (27)

where ¢, A and k are called the initial production rate parameter, the char-
acteristic time parameter, and exponent parameter, respectively. For a tech-
nical interpretation for the curve parameters, refer to Valké et al. (2010).

Under reparameterization M = ¢; and b = A%, SEDM is represented as
follow:

gt M,bk) = M-f(t:bk), M>00b>0k>0 (28)
such that f(t;b,k) = exp(—btF), (2.9)

where M, b and k are the carrying capacity parameter, scale parameter, and
shape parameter, respectively.
2.4.  Duong Model Duong model (Duong and et al. 2011) is defined by

q(tiqi,a,m) = qit ™exp(a(t'™™ —1)/(1=m)), q1>0,a>0,m>0, (2.10)

where q1, a, and m are called the initial production rate parameter, intercept
constant parameter, and slope parameter, respectively. Duong and et al.
(2011) empirically showed that m is always greater than unity for shale
reservoirs, and m is less than unity for conventional tight well. As shale oil
is our concern, we restrict parameter space of m to be m > 1. For a technical
interpretation for the curve parameters, refer to Duong and et al. (2011).

Under reparameterization M = g exp(a/(m —1))/a, b=a/(m—1), and
k =m — 1, Duong model (2.10) is represented as a generalization of Fréchet
distribution (Fréchet, 1928) as follows:

qit; M,bk) = M- f(t;b,k), M>0,b>0k>0, (2.11)
such that f(t;b,k) = Fréchet(t;b, k) = bkt 1 F exp(—bt~F), (2.12)

where M, b and k are the carrying capacity parameter, scale parameter, and
shape parameter, respectively.

The Arps’ and Duong models are originally derived by solving ordinary
differential equations (Arps and et al. 1945; Duong and et al. 2011), but
after certain reparameterization they can be viewed as generalizations of
pdfs typically used in extreme value theory (DeHaan and Ferreira, 2007; Lee
and Kim, 2019). After the reparameterization, each of the curve parameters
of the RDCs, Eqgs. 2.2, 2.5, 2.9, and 2.11, share coincided notations, denoted
by carrying capacity parameter (M > 0), scale parameter (b > 0), and shape
parameter (k > 0), respectively.
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2.5.  Implementation of Traditional Decline Curve Analysis We illus-
trate how to implement the traditional DCA based on the Weibull model
(2.2), but the scheme is applicable to any choice of RDC. Consider produc-
tion rate trajectories {P;})¥., from N wells. DCA may assume an additive
error model where errors are distributed according to independent and iden-
tical Gaussian noises across all the wells (i = 1,---,N) and time points
(t=1,---,T):

Yit :M(t;01i792i793i)+6it7 Eit NN(O7J2)7 Z:17 7N7 t:17 7Ti7 (213)

where y;; = log Pj; is log-scaled oil production rate of the i-th well at the
t-th time point. The mean part in Eq. 2.13 is the log transformation of
the Weibull model (2.2), given by wu(t; 61,02, 03:) = log q(t; M;,b;, ki) =
O1; + O9; + 03; + (e — 1) - log t — e - " dictated by three real-valued
curve parameters 61; = log M;, 02; = log b;, and 03; = log k;.

Let T;-dimensional vector y, = (yi1,--- ,yiTi)T € R” represents the
log-scaled oil production rate trajectory for the i-th well during 7; months
from its initial production, and its corresponding mean vector is denoted as
pi = i (014, 00:,03) = ((1; 014, 025, 035), -+, (T35 014, 024, 03:)) T = (i, -+ -
,iir,) " € RTi. Note that the p; can be viewed as a Tj-dimensional vector-
valued function with respect to the curve parameters (6y;, 6o, 03;) € R3.

A likelihood function for the i-th well can be re-written in a vector-form:

£(91i792i7 93i7 02|yi) = NTi (yi“'l’i(eliv 92i793i)7021)7 1= 17 T 7N7

where Np(a,X) represents the T-dimensional Gaussian distribution with
mean vector a and covariance matrix 3, and I denotes an identity ma-
trix. Now, define three IN-dimensional vectors formulated from each of
the curve parameters, 81 = (f11,---,01n)", 02 = (fa1,--- ,0on)", and
03 = (031, ,03n)" across the N wells. We emphasize again that each
vector 6; (I = 1,2,3) has its own meaning in terms of a well productivity
that petroleum engineer want to infer about (Mishra and et al. 2012b).

A likelihood function based on the N observations yy.y = {y;}¥, is

N

L£(61,62,03,0°|y1.n) = [ [N (vil1:(014, 0i, 03:), o). (2.14)
i=1
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To implement the traditional DCA, one need to maximize the likelihood
(2.14) with respect to the curve parameters (01, 802,03) given o fixed, to
obtain:

(51,52,53) = arg max log 5(01,02,03,02|y1:N)
(01,02,03)€RNXRNXRN

= arg min Z ||yz l’l’z(ella 9217932)”2
(61,02,03)€ERN xRN xRN =

T;

2
= arg min Z (yzt — u(t; 911392u031)> ;
(91,02,93)€RN><RN><R i=1 t=1

where || - [|2 is the Euclidean norm. R

Following acquisition of point estimates (01, 0, 03) (which includes (61;,
021,032)) through an optimization technique via Newton-Raphson method
or Gradient descent method (Boyd et al., 2004), one may plug them into
the mean part of the model (2.13) to derive a fitted curve pu(t; 014,62, 03;)
(t = 1,---,T;) for each well . This function is then viewed as a de-
noised temporal tendency for the log-scaled oil production rates of the i-th
well during 7; months, which can be further extrapolated to see a future
production pattern. In conclusion, the traditional DCA is a deterministic
curve fitting method based on least squares estimation (Larkey, 1925; Arps
and et al. 1945; McNulty et al., 1981).

Recently, it seems that there increasingly arises a need to use probabilis-
tic approaches in carrying out the DCA to evaluate an uncertainty associated
with reserves estimates (Cheng et al., 2010). The uncertainty quantification
is even more important in exploring production results from unconventional
reservoirs. This may be because the extreme low-permeability of unconven-
tional reservoirs, generally in the nano-darcy range, ensures the continuing
presence of the pressure-transient effects (Kazemi and et al. 1969) during
well production. Reservoir modeling in such systems is an extremely com-
plicated task (Schuetter et al., 2015), and pointwise forecasting for the oil
production decline curve can produce unreliable prediction outcomes. As
remedies, two approaches are mainly used in the petroleum engineering lit-
erature: (Jochen et al., 1996; Cheng et al., 2010) carried out bootstrapping
(Tibshirani and Efron, 1993), and Gong et al. (2011, 2014); Zhang et al.
(2015) employed Bayesian approaches. One of the limitations of the au-
thors’ works is that they only utilize the production trajectories {P;},,
hence, the full aspects of the shale oil wells data are not harnessed.
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3 Non-Spatial Bayesian Hierarchical Model

3.1.  Individual-level model Consider shale oil wells data {(P;,x;)}¥,
without spatial locations. We propose a non-spatial Bayesian hierarchical
model that extends the traditional DCA to achieve the sub-goals (a) and
(b) of the shale reservoir problem. The data level of the hierarchical model
inherits a likelihood function from the traditional DCA (2.13): that is, by
letting y;; = log Py withi=1,--- N, t = 1,---,T;, the response profile
follows

Yit = M(t; Hli,egi,egi) +5it7 Eit NN(O,UQ). (3.1)

The mean part in Eq. 3.1 is described by a log-scaled RDC pu(t; 61;, 02;, 03;) =
log q(t; M;, b, ki), 61; = log M;, 02; = log b;, and 03; = log k;, which has
four options according to what RDC has been chosen from Eqs. 2.2, 2.5,
2.9), and Eq. 2.11:

e Weibull model (M;):
(1 01, 021, 03;) = 01 + Oo; + O35 + (%3 — 1) -logt — e - "' (3.2)
e Arps model (My):
(1(t; 014, 021, 03;) = 015 — Oz — (1L + e~ %7) - log(1 + eP7%i . 1), (3.3)
e SEDM model (Ms3):
[u(t; 015, 0;, 05:) = Oy — € - 27" (3.4)
e Duong model (My):
pu(t; 015, 024, 03;) = 015 4 Oo; + O35 — (1 + %) - logt — %1 . e’ (3.5)

For the purpose of articulation, the four models are assigned model notations
M, (m=1,2,3,4) as denoted in Egs. 3.2-3.5.

3.2.  Population Model The curve parameters 0; (I =1,2,3,i=1,---,
N) in (3.1) assume the following two roles: first, for each well ¢, the 3-tuple
(014, 02;,05;) € R3 dictates the shape of the log-scaled RDC pu(t; 014, 625, 03;),
(t=1,---,T;), to fit the i-th well’s temporal response y; = (yi1, -+ ,yit.) | €
R”: over time; and second, for each [, the collection of the latent variables
{Qli}fi | embeds some interpretation regarding a productivity across N wells,
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thereby motivating a population regression analysis. Roughly speaking, the
first and second roles are relevant with the sub-goals (a) and (b), respectively.

For each [ (I = 1,2,3), we construct a linear regression to explain the
between-individual differences in {91i}i]\i1 through the p completion predic-
tors x; = (21, - ,xip)T € R? as follows:

eli:al+x;r/3l+€li7 EliNN(O,O'lQ), l:152537i:1a"',N7 (36)

where o is the intercept term and 8; = (51, - - ,ﬁlp)T is the p coeflicients
corresponding to the p completion predictor x; = (x1, - - - ,a:ip)T. In multi-
level analysis, the random error terms in Egs. 3.1 and 3.6, that is, ;4 and
€13, are referred to as (remaining) intra-individual and inter-individual vari-
abilities, respectively.

Aligned with the sub-goal (b), we wish to identify significant predictors
in this regression setup (3.6), thereby necessitating a sparsity on the coeffi-
cients 8; (I =1,2,3). To impose a hard sparsity (Wainwright, 2019) on the
coeflicients which only allows zero posterior means for the noise coefficients,
one may use the spike-and-slab type priors (Mitchell and Beauchamp, 1988;
Ishwaran et al., 2005) for the coefficients. Essentially, a spike-and-slab type
prior is a mixture distribution of a Dirac measure at zero and a continuous
distribution (O’Hara et al., 2009). One of the drawbacks of such priors is its
computational burden (Van Der Pas et al., 2014) as posterior computation
may require exploration of a model space of size 2P from each of the linear
regressions (3.6) (George and McCulloch, 1993).

Instead, we place a soft-sparsity (Wainwright, 2019) on the coefficients
B; (I =1,2,3), where the posterior mean corresponding to noises coefficients
are allowed to be zeros or very close to zeros. Continuous shrinkage priors
can do this (Polson and Scott, 2010): examples include the Bayesian lasso
(Park and Casella, 2008), horseshoe prior (Carvalho et al. 2009, 2010), and
generalized double Pareto shrinkage prior (Armagan et al., 2013), GLT prior
(Lee et al., 2020c), etc, among many others (Bhattacharya et al., 2015; Bae
and Mallick, 2004).

In this paper, we use the horseshoe prior (Carvalho et al. 2009, 2010),
which is known to be computationally efficient than the spike-and-slab type
priors, and useful for addressing the variable selection problem (Van Der Pas
et al., 2014). For each [ (I = 1,2,3), a hierarchical structure underneath the
coefficients 3; in Eq. 3.6 is then given by

ﬂlj'Alj,Thal NN(07)‘ZQJTZ20l2)7 )\lj ~ C+(O7 1)7 T~ C+(071)7 l= 1,2,3, j=1-,p, (37)
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where C*(0,1) denotes the unit-scaled half-Cauchy distribution. (Density is
given by m(z) o< 1/(1 4 z?) for z > 0.) For each I, the \;;’s and 7’s are
referred as the local and global scale parameters, respectively. Essentially,
the local scale parameters are associated with signal selection from the co-
efficients, whereas the global one imposes a strong gravity over the entire
coefficients (Polson and Scott, 2010).

As for the error terms, we use the unit-scaled half-Cauchy prior for the
standard deviation of the likelihood (3.1) and Jeffreys priors for the variances
of the latent regressions (3.6). Intercept terms in the regressions (3.6) are
given by the flat priors:

o ~CT(0,1), oy ~m(ey) x 1, 0f ~m(of) x 1/of, 1=1,2,3. (3.8)

Figure 5 displays results of curve fitting for the well with API10 =
4201334341 in the Fig. 4 obtained by the four non-spatial Bayesian hierar-
chical models. Virtually, the difference of four fitted curves is shown around
the first ten months, but then it is indistinguishable as time evolves.

4 Model Choice

The aim of the present section is to choose the best model among four
non-spatial Bayesian hierarchical models where only RDCs are different,
specified by Weibull model Mj (3.2), Arps’ hyperbolic model My (3.3),
SEDM M3 (3.4), and Duong model My (3.5). To that end, we use three
model comparison criteria: deviance information criterion (DIC) (Spiegelhal-
ter et al., 2002; Gelman et al., 2004), widely applicable information criterion
(WAIC) (Watanabe, 2010), and posterior predictive loss criterion (PPLC)

Observations
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Figure 5: Bayesian decline curve analysis based on the four models
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(Gelfand and Ghosh, 1998). In the next subsections, we shall provide some
brief summaries of the criteria, and then apply them to the proposed non-
spatial models. For a detailed explanation of the criteria, refer to Banerjee
et al. (2014) & Gelman et al. (2014).

4.1.  Deviance Information Criterion Assume that y,.xy = {y;}}*, is a
collection of observations from N subjects such that a likelihood function
is denoted by L(¥|y;.y). Dimension of the y; is allowed to be multidi-
mensional. In general, when dealing with a Bayesian hierarchical model, a
possible form of a likelihood function £(9¥|y,.) may depend on which latent
variables within the hierarchy are regarded as the parameters of primary in-
terest, represented by 1: this specification issue is referred to as focus issue
(Spiegelhalter et al., 2002). Having determined the parameters of primary
interest, deviance is defined by D(9¥) = —2log L(89]y;.n)- The deviance is a
goodness-of-fit statistics, and a lower value indicates a better fitting (Celeux
et al., 2006). Typically, because a complex model gets rewards in terms of
the deviance, we often need to additionally impose a penalty for the model
complexity, also called an effective number of parameters, in manufacturing
a model comparison criterion. Roughly speaking, a common principle under-
lying the three criteria, DIC, WAIC and PPLC, is to induce some trade-off
effect between the goodness-of-fit and penalty terms.

Gelman et al. (2004) suggested DIC, a generalized version of Akaike
information criterion (Akaike, 1998) for a Bayesian hierarchical model, given
by

DIC = D(9) + 2 - pp, (4.1)

where the goodness-of-fit term is the value of deviance evaluated at the
posterior mean of 19, denoted by ¥ = Ed|y;.y], and the effective number
of parameters in the penalty term is obtained by pp = Var[D(9)|y,.5]/2 =
2-Var[log L(9]y.5)|¥1.n5]- A model with a smaller value for DIC indicates
a better predictive performance among considered models.

Going back to our examples, we measure the DIC corresponding to each
of the four models, M7, Ma, M3, and My (3.2)—(3.5), provided that the
parameters of primary interest are specified to be ¥ = (01,05, 03,0?), that
is, the collection of curve parameters and error variance for the N wells.
Under this formulation, deviance based on Eq, 3.1 is

N

D(01,62,03,0%) = =2 " log N, (y;|;(01i, 02, 03), 0°T),
=1
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where only mean part p; (615, 02;, 63;) differs according to what RDC is em-
ployed from M,,,, m = 1,2,3,4, Egs. 3.2-3.5. To obtain the DIC (4.1), we re-
sort to Markov chain Monte Carlo (MCMC) techniques (Robert and Casella,
2013) to approximate the DIC because the posterior mean 9 = E[9]y;.x]
and the effective number of parameters pp are not expressed in closed-forms.

4.2.  Widely Applicable Information Criterion (Watanabe, 2010) intro-
duced WAIC which is regarded as a fully Bayesian version of the DIC (4.1)
in the sense that a goodness-of-fit term exploits the entire posterior distri-
bution. Note that the goodness-of-fit term of the DIC (4.1) is acquired by
plugging-in the posterior mean ¥ to the deviance D(19), which lacks a fully
Bayesian sense. It is known that WAIC is asymptotically equals to Bayesian
cross-validation (Vehtari and Gelman, 2014), and also applicable to singular

models.
WAIC is defined by

WAIC = —2-LPPD + 2 - pw, (4.2)

where the goodness-of-fit term is called the log posterior predictive density
(LPPD), LPPD = sz\il log E[L(Fy;)|y1.n], and the effective number of pa-
rameter in the penalty term is defined by pw = Zf\il Var[log L(9y;)|y1.n]-
Gelman et al. (2014) pointed out that (i) although without the factor 2 in
the second term, pw looks similar to pp in Eq. 4.1 and (ii) pw is compu-
tationally stable than pp because pw computes the variance separately for
each data point and then summation is carried out.

Given posterior samples {(9)®)}5_; ~ 7(d|y;.x), the LPPD and py
terms are approximated by

LPPD = ilog( ZL |yz> (4.3)

P g{sili@og L((9)®)]y,;) — Zlogﬁ ’yi)>2}'

(4.4)

Returning to our examples, given that the parameter of primary interest
is set by ¥ = (01, 02, 03, 02) (as we did to get the DIC), we can approximate
the value of WAIC corresponding to each of the four models as follows. First,
replace £(9]y;) in Egs. 4.3 and 4.4 with the likelihood L£(61;, 02;, 03, 0%|y;) =
NTZ- (yi|,ui(01i, 021', 930, 0'21) (3.1), 1= 1, s ,N, where only [,I,i(eli, Hgi, 931)
differs based on the four options Mj, My, M3, and My (3.2)-(3.5), and
second, approximate LPPD and pw by using a MCMC method, and finally,
obtain an approximation of WAIC (4.2) corresponding to each model.
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4.3.  Posterior Predictive Loss Criterion (Gelfand and Ghosh, 1998) in-
troduced PPLC as an alternative to DIC (4.1) or WAIC (4.2), which is par-
ticularly useful to compare nonnested hierarchical models. A notable feature
of PPLC different from DIC and WAIC is its use of replicated observations,
denoted by y; ., (i = 1,---,N), corresponding to the actual observations
Yiobs: A replicate y; ., is drawn from the posterior predictive density

f(yi,rep|y1:N) = /ﬁ(ﬂ|yi,rep)ﬂ-(/l9y1:N)dﬁa i = 17 o 7N7 (45)

where L(-) is a likelihood function for the i-th component and w(d|y;.n)
is posterior distribution. The idea of using such replicates {yimep}fil for
a criticism of the model in light of the observed data {y; s}ie is also
purported by Box (1980).

A general rule of the PPLC is principled on a balanced loss function
(Zellner, 1994). Given any loss function I(-) and a positive real number k, a
balanced loss function is defined by

l(yi,rezn ag; Y1:N) = Z(Yi,repa ai) + k- l(yi,obsa ai)7 k> O, L= 1a to 7N7 (46)

where a; is a non-stochastic action vector, k is a weight, and y; .., is a repli-
cate for y; 5,5 Conceptually, the role of action vector a; is to accommodate
both y; 4, and what we predict for y; ... Note that the loss function on
the left-hand side of Eq. 4.6 penalizes actions a; both for departure from
the corresponding observed value (fit) as well as for departure from what we
expect the replicate to be (smoothness) (Banerjee et al., 2014). A generic
version of PPLC is defined by Dy = Zf\il mina, E{I(Y; ep> a3 Y1.8)¥1:8)5
where the expectation E[-|y;.y] is taken with respect to the predictive den-
sity f(¥ireplY1:nv) (4.5) for some specified k > 0. Note that the resultant Dy,
does not depend on the action vector a; and replicates {ywep}i]\il as they are
marginalized out by the minimum and expectation functions, respectively,
but is dependent on k > 0.

Having chosen the quadratic loss I(y,a) = ||y —al|3 in Eq. 4.6, the generic
PPLC Dy is simplified into

k
Dy=——G+P k> 47
EE ot k20 (4.7)

where G = SN |vi — Yiobsll3 and P = SN | 62 represent the goodness-
of-fit and penalty terms, respectively, with v; = Ely, .., ly;.y] and ¢7 =
ElllY;rep — Vil3ly1nl, @ = 1,--- ,N. Eventually, a model with a smaller
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value for the Dy (4.7) is preferable. It is known that ordering of models is
insensitive to the particular choice of k (Banerjee et al., 2014).

To apply the PPLC (4.7) to our examples, let 2 = {01, 05,03,0,{ay, 8,
o2, A1, T }3_, } denotes the collection of all the latent variables for each of the
models. Then the posterior predictive distribution of y; ,., is

f(yi,rep’ylzN) = /NTz (yi,rep’/“l’i(eliv 921’7 032')’ U2I)W(Q|Y1:N)d97 i=1,---,N.

To approximate Dy (4.7) for each model, first, choose a number k, saying
k = 1, and second, approximate v; and g? through replicates y; .., drawn
from the predictive density f(y; cp|y1.n) (4.5) for each @ = 1,--- | N, and
finally, complete the G and P to get an approximated value for the Dy, (4.7).

4.4.  Results of Model Comparison via Three Criteria Table 2 summa-
rizes the results of model choice criteria to compare the four non-spatial
Bayesian hierarchical models, M,, (m = 1,2,3,4). The smaller numbers
are indications for better predictive performance for the three creteria. As
for PPLC, we used k = 1 for the weight. Based on the results, the Weibull
model M;j (3.2) is selected as the best model, whereas the Duong model My
(3.5) is chosen as the worst model across all the three criteria.

5 Spatial Bayesian Hierarchical Model

5.1.  Spatial Extension of the Non-Spatial Model Consider a collection
of the full production results {(P;,x;,s;)}¥, from N wells in a shale reser-
voir. An essential idea underlying the extension of the non-spatial Bayesian
hierarchical model (that used {(P;,x;)} ) to a spatial one is the incorpora-
tion of a spatial random effect involving the location set {s;}¥; to the linear
regression (3.6), eventually providing a kriging (Cressie, 1990; Handcock and
Stein, 1993) through the latent level. Gaussian process (Abrahamsen, 1997)
is used to describe a spatial association between wells. For a technical de-
tail of Gaussian process, refer to Rasmussen (2004) or Chapter 6 of Bishop
(2006).

Table 2: DIC, WAIC, and PPLC for the four non-spatial models

DIC WAIC PPLC
Weibull (M) 18977 18587 4465
Arps (My) 19554 19069 4574
SEDM (Ms3) 22014 19338 4634

Duong (My) 45819 31707 8398
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A hierarchy of the proposed spatial Bayesian hierarchical model can be
represented by the following two stages:

Stage 1: individual-level model.
Yir = p(t; 015,09, 03;) + €, € ~ N(0,0%). (5.1)

Stage 2: population model.

0 = 01(s:) = oy +x; By +esi) +msi), al) ~GWN(o7), (52)
M)~ GP(0,Ky (1), Kri(siisg) =7 exp(—e” [ls; —sj[13),  (5.3)
BijI N iy 01 ~ N0, N 0t), (5.4)
o,y Mg, T~ CT(0,1), (5.5)

(5.6)

o ~m(oy) x 1, of ~n(of) x 1/a?.

The indices i, ¢, [, and j take i € {1,--- ,N}, t € {1,--- ,T;}, | € {1,2,3},
and j € {1,---,p}, respectively. As same with the non-spatial models,
the first stage (5.1) depicts the well-specific model using y;; = log Py,
M(t; 911', 921', 031) = log q(t; MZ‘, bi, ki), le’ = log Mi, 9% = log bi, and

Some ingredients used on the second stage (5.2)—(5.6) are as follows.
Notation GP(0,K(-,-)) stands for a Gaussian process with zero-mean func-
tion and covariance function K(-,-). Notation €(-) ~ GWAN (07) denotes the
Gaussian white noise (also called the nugget-effect in geo-statistics (Banerjee
et al., 2014)), defined by ¢/(-) ~ GP(0,07Z(-,-))) where Z(-, -) is the indicator
function. The spatial random effect in Eq. 5.3 is described by an isotropic
Gaussian process n;(-) ~ GP(0,K,,(-,-)) based on a Gaussian kernel ICy, (-, -),
where the ; is assumed to follow the unit-scaled half-Cauchy distribution.
The range parameters p; (I = 1,2,3) are hyper-parameters whose possible
optimal values will be chosen via a cross-validation later.

Letting the p; (I = 1,2,3) to be zeros degrades the model (5.1)—(5.6)
from a spatial model to the non-spatial model introduced in Section 3. See
Appendix for a posterior computation for the proposed model.

The platform of the spatial model (5.1)—(5.6) is called nonlinear mixed ef-
fect model, or hierarchical nonlinear model. This framework has been widely
used in biological, agricultural, environmental, epidemiological, and medical
applications to make inference on features underlying profiles of continuous,
repeated measurements from a sample of individuals from a population of
interest (Davidian and Giltinan, 1995; Lee et al., 2020b). For example, in
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a population pharmacokinetic model (Sheiner and Ludden, 1992), the re-
sponse profile y;; in Eq. 5.1 is plasma concentration measured from the i-th
patient at the ¢-th time point (a unit of time is usually an hour), and the
corresponding mean function p(t;19;) is some compartment model, involving
subject-specific parameter 1;, which helps explain the relationship between
these measurements and characteristics of the patient (Rosner and Miiller,
1997).

5.2.  Spatial Prediction via Latent Kriging A prominent feature of the
proposed spatial model (5.1)—(5.6) distinctive from most of the existing non-
linear mixed effect models that have been applied to various applications is
the latent kriging to achieve the sub-goal (c) of the shale reservoir problem.
The present subsection delineates the procedure about how to spatially fore-
cast a (log-scaled) production rate trajectory of a new well using the latent
kriging.

Consider shale oil wells data {(y;,x;,s;)}Y; from N wells as explained
in Section 1.2 where the oil production rate trajectories are log-transformed
(that is, y;x = log P;). Having observed the training data {(y;,x;,s;)}X,
our objective is now to predict the temporal profile of production rates during
T* months, that is, y* = (y7, - ,yé‘p*)—r, of a new well at a new location s* =
(s%,s3) " where p completion predictors are specified by x* = (z7, - - - ,:c;‘,)T.

To that end, we need to derive the posterior predictive density, f(y*|yi.x)
= f(y*{(y;,xi ,s:) 1Y, s*,x*), which embeds the uncertainty over the la-
tent variables of the model by taking all likely values, having seen the training
wells data into account. We concretize the derivation procedure step by step
as follows.

Let (67, 65, ¢9§)T € R? denotes the curve parameters for the new well. By
the likelihood assumption (5.1), predicted response is distributed according
to

y* |05, 05,05, 0% ~ Ny« (0 (65,603, 03%), 0°T), (5.7)

where the function p*(05,05,0%) = (u(1;07,05,05), -+, w(T*;05,05,05) " is
a T*-dimensional vector valued function with respect to (67,65, 63). By using
the linear regression assumption (5.2) indexed with [ = 1,2, 3, we can express
the joint density of curve parameters of the new and training wells

o)

where b is a N-dimensional vector whose i-th entry is given by exp(—e”!||s; —
s*3) (i = 1,---,N), and B(p;) is a N-by-N matrix whose ij-th entry is

la; + X3 b ofI+47B(p)

*\ T 2 2 2. T
al:ﬂl7al277l ~ NN+1< |:al + (X ) ﬁl:| , |:Ul +’YZ rYlb :| >7 (58)
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given by exp(—e!||s; —s;|3) (i, = 1,---,N). By carrying out the condi-
tional property of the Gaussian distribution to each of the joint density (5.8)

indexed with [ = 1,2,3, we can express the conditional distribution of the
curve parameter of the new well given those from the training wells

07101, i, By, o7,y ~ N (1f (81, 4, By, 02, ), (07) (07, ),

where the mean and variance functions are given by

w6y, a0, B,08,m) = o+ B +7b [oP1+7B(p)] (6, — 1oy — XB)),
(07)*(of,m) ai +9f — (41)°b " (07T +~7B(p)] b,

that are also referred to as kriging mean and variance, respectively, in geo-
statistical analysis; for a detail, refer to page 41 of Gelfand et al. (2010).

To avoid notational clutter, denote the collection of all the latent vari-
ables involved in the prediction as ¥ = (67, 01,65, 02,05, 03, 0,{, 8, ‘7127 AL
71, }5_,), and let £2 denotes the collection of all the latent variables used in
the posterior inference, that is, 2 = ¥ — {67, 65,05}. Now, we can express
the predictive density f(y*|y;.n) by an integral form where all the latent
variables in the ¥ are marginalized out:

fYyin) = /p(y*,leLN)dWZ /p(y*IW,yl;N) p(Ply.n)d¥.  (5.9)

The first component of integrand in Eq. 5.9 coincides with Eq. 5.7 because
of the conditional independence assumption induced from the likelihood
(5.1), hence, we have p(y*|¥,y.n) = p(¥*107,05,05,0) = N« (y*|n* (67, 65,
0%),0°I). The second component of integrand in Eq. 5.9 can be simplified
to

p(!p|y1:N) = p(Q79Ta‘9;79§‘y1:N):p(ei9§a0§|97y1:N)7T(Q|Y1:N)
3
- {prl*wz,azﬁl,o?,w)}w(rz\yl:]v)
=1

3
= {HN 9[ ‘/J’l 9l7al76l70—l 771) ( ) (Ul277l))}7r(9|YIN)
=1
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To summarize, the posterior predictive density (5.9) can be rewritten as
(67 Ivi) = [ N 70,5, 0% (5.10)

3
LTIV i 000, 1,7 0. (o) 0 ) .

=1

Note that the second component of the integrand in Eq. 5.10 produces the
latent kriging separately for each of the curve parameters indexed by [ =
1,2,3, and then the latent kriging predictors dictate the mean part of the
future production rate trajectory of a new well.

Because the density f(y*|y;.n) (5.10) is not expressed in a closed-form,
we use a Monte Carlo simulation to approximate the density. Given realized
S number of samples {(y*)®)}5_, ~ f(y*|y1.n) (5.10), we recommend to use
the posterior predictive median ?Zmedian to represent a predicted trajectory
rather than the posterior predictive mean because the former produces more
robust outcomes in current application. A spatial prediction corresponding
to the original scale of the production rates P* = (P7,--- ,P*T*)T can be
obtained by transforming the realized samples {(y*)®}5_, through P =
exp(y), thereby, leading to {(P*)®)}S, = {((P)®, - (P5r)E)1, ~
P lyy)-

As an extended application, we can also predict the estimated ultimate
recovery (EUR). In petroleum engineering, the EUR is defined as an ap-
proximated quantity of oil from a well which is potentially recoverable by
the end of its producing life (Currie et al., 2010). In the oil and gas industry,
uncertainty quantification of EUR is of the utmost important procedure and
a starting point in the decision-making process for future drilling projects.
Also, the oil and gas companies should comply with financial regulations
about EUR outlined by the U.S. Securities and Exchange Commission: see
www.sec.gov /- for the regulations. Let EUR* represents a predicted EUR
of a new well, defined by a summation of monthly oil production rates over
30-year period (360 months) at a new location s* given p completion pre-
dictor x*. (That is, EUR* = Z;‘Zl P; with T* = 360.) The EUR* can be
also approximated by using a Monte Carlo simulation based on the realized
samples {(P*)(*)}_,.

6 Results

Recall that the Weibull model M; (3.2) was chosen as the best model
among the four non-spatial hierarchical models (M1, My, M3, and My
(3.2)—(3.5)) in Section 4.4. In what follows, we describe results based on
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the Weibull model, and for the purpose of articulation the spatial Bayesian
hierarchical model (5.1)—(5.6) where the RDC is chosen by the Weibull model
is referred to as spatial Weibull model. Its non-spatial version is simply
obtained by setting the v;, [ = 1,2,3, in Eq. 5.3 to be zeros. Some relevant
R codes to implement the spatial prediction based on the spatial Weibull
model are available on https://github.com/yain22/SWM.

6.1. Spatial Prediction Versus Non-Spatial Prediction The objective of
this subsection is two-fold: first, to compare predictive performances of the
spatial and non-spatial Weibull models; and second, to choose some reason-
able range parameters, p; (I = 1,2, 3), of the spatial Weibull model. Particu-
larly, we can check whether the latent kriging helps improve the performance
or not through the first objective. Recall that the total number of shale oil
wells is N = 360. To evaluate the performances at different scenarios, we
set the number of test wells, denoted by N, to be each of 36,43, 54, 72,90,
and 180, respectively: then, the remaining wells are automatically used as
training wells. (For example, for the first setting, the number of training
wells shall be 360 — N7 = 360 — 36 = 324.) To simplify the experiments, we
use identical range parameters involved in the spatial random effects, that
is, p1 = p2 = p3, and fix them with —10, —4, —1, 0, and 1.

For evaluation criteria, we calculate mean squared error (MSE) evaluated
at a specified number of test wells Nt € {36,43,54,72,90, 180}:

1 &
MSE = NiT ZZ; ||§z<,median - YiH%v

where ¥ edian = Jis - ,@“Ti)T € R”: is the posterior predictive median
for the test data y; = (yi1,- -, yi1;) obtained from the posterior predictive
density f(y*|y,.ny) (5.10) as illustrated in Section 5.2. A smaller value of
the MSE indicates a better predictive accuracy.

Figure 6 displays MSEs of the non-spatial and spatial Weibull models
across different number of test wells Np. Based on the results, we conclude
that the spatial Weibull model universally outperforms its non-spatial coun-
terpart regardless of the number of test wells. Additionally, the gap between
the MSEs of the spatial and non-spatial Weibull models tends to increase
as the number of test wells increases. Particularly, when p; (I = 1,2,3) are
fixed with —4, the MSEs attain the smallest values across the number of
the test wells. Henceforth, we use these values, p1 = p2 = p3 = —4, as our
default choice for the range parameters.

6.2. Bayesian Decline Curve Analysis A Bayesian version of DCA, or
shortly Bayesian DCA, based on the spatial Weibull model can describe
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Figure 6: MSEs of non-spatial and spatial Weibull models across different
number of test wells. The range parameters of the spatial model are identi-
cally set by -10, -4, -1, 0, and 1. MSE attains the smallest values when the
range parameters are -4 across different number of test wells

a hidden pattern of production profile at an individual well and reservoir
levels. Bayesian DCA utilizes posterior samples realized from the full joint
posterior distribution. Suppose that {(M;)), (b;)®), (k;)*)}2_, is S number
of posterior samples from posterior density 7(M;, b;, ki|y;.n) corresponding
to the i-th well. Then Bayesian DCA at the individual well is obtained by

S
- 1 S S S
q(t; M;, biy ki) = g > aqt (M), (5:)), (ki) )
s=1
~ E[Q(ta Miabi’ki)‘ylzN]a t= 1) 7E7

Similarly, Bayesian DCA at the reservoir level can be obtained by using
posterior samples of the intercept terms «; (I = 1,2,3) in the regressions
(5.2). Note that the Bayesian DCA is different from the traditional DCA
explained in Section 2.5 in the sense that the parameters of interests are
integrated out rather than relying on a plug-in method.

Panels in Fig. 7 displays the estimation results of the Bayesian DCA
for the well with APT10 = 4201334341 (left panel) and Eagle Ford Shale
reservoir (right panel). To train the spatial Weibull model, we used the
total N = 360 wells.

6.3. Identification of significant completion predictors Figure 8 shows
the result of posterior inferences for the coefficients in spatial linear regres-
sion (5.2) obtained by training the total 360 wells to the spatial Weibull
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Figure 7: Estimation results of Bayesian decline curve analysis at an indi-
vidual well (left) and reservoir levels (right). Shaded regions on both panels
represent the pointwise posterior 95% credible intervals

model. The blue vertical bars in each panel represent the posterior 95% credi-
ble intervals corresponding to the elements of the 8;= (81, -+, Bij, - - , Blp)T
€ RP, (p =11; I = 1 (left), 2 (middle), 3 (right)), where the covariate index j
follows the Table 1.

The followings are some summaries of the results. (Technical interpreta-
tion is omitted and left to petroleum engineers.) First, as for the log-scaled
carrying capacity, #; = log M, true vertical depth and the first test oil
volume indexed by j = 4 and 9 are selected as important well completion

beta_1 beta_2 beta_3

0.25- * l

oy -}H-*--H---fi-I-H1-1-LH--+1-I-HHTH-
. |

3 6 9 3 6 9 3 6 9
coefficients

95% credible interval

Figure 8: Posterior 95% credible intervals for the coefficients: 3 (left), B
(middle), and B4 (right). The symbol e represents the posterior mean. The
integer numbers on the z-axis of the plots correspond the index j of the 11
completion predictors in Table 1
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predictors. Second, commonly from the log-scaled scale and shape param-
eters, 3 = log b and 03 = log k, the first test flowing tubing pressure has
been found to be the most important completion predictor indexed with
j=1.

6.4. Spatial Predictions at Two New Locations We use 324 wells as a
training dataset and predict the oil production decline curve at two test
locations. The locations of the training and two test wells are displayed on
the map in Fig. 9. API10 numbers of the two test wells are: well-1 (API10
= 4249332630) and well-2 (API10 = 4231135594). Note that the well-1 is
positioned near a certain group of training wells, while the well-2 is more
isolatedly located, relatively far from other neighboring wells.

Panels in Fig. 10 display the prediction results. As a metric, we report
root-mean-square deviation (RMSD) at individual well level, measured via
(”yzmedian - yZH%/TIL)l/Q ={(1/T3)- Z?il (@;kt,median - yit)Q}l/Q: a lower value
for the RMSD indicates a better predictive accuracy among considered test
wells. RMSDs of the two test wells based on the spatial Weibull model
are 0.178 (well-1) and 0.305 (well-2). From the panels, we can also observe
that pointwise posterior predictive 95% credible interval of the production
rates of the well-1 is relatively narrower than that of the well-2 during the
production period. To see the benefit of the latent kriging (5.3), we also
measured RMSDs based on the non-spatial Weibull model, which resulted
in 0.180 (well-1) and 0.348 (well-2), higher than those based on the spatial
one, respectively.

e Training wells
= API| 10 = 4249332630
A API 10 = 4231135594

: e
S
0 Fo
P e
-sf, .
r

PN,

Figure 9: Locations of 324 training wells and two test wells. The symbols
B and A represent the locations of well-1 (API10=4249332630) and well-2
(API10=4231135594), respectively
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Figure 10: Spatial predictions for two test wells: well-1 (top) and well-2
(bottom). The left and right panels are displayed in the original and log-
transformed scales for the oil production rates, respectively

Table 3 summarizes prediction results for the EUR for the two test wells:
posterior mean, posterior median, and posterior predictive 95% credible in-
terval of EUR*. Because either of the wells did not produce oil for 30 years,
there is no reference value to validate a predictive accuracy. Posterior pre-
dictive 95% credible interval of EUR* of the well-1 is narrower than that of
the well-2.

Based on the prediction outcomes of the two test wells and groupwise
comparison in Section 6.1, we conclude that the latent kriging helps improve
the predictive accuracy (the RMSD and MSE) and quality (the length of
95% credible interval). This means that the spatial model (5.1)-(5.6) takes

Table 3: Summaries of EUR*s for the two test wells

API10 Posterior mean Posterior median 95% credible interval
4249332630 128013.5 126391.9 (58340.3, 226077.5)
4231135594 167384.9 165041.3 (46443.1, 317699.5)

NOTE: Unit of the measurements is Barrel over 30 years
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an advantage of utilization of the geological proximity information in the
prediction via the latent kriging. More concretely, spatial prediction at the
location of the well-1 borrows some useful information from neighboring
wells, while the isolated position of the well-2 renders its prediction sub-
optimal. Having no use for the location information forfeits the benefit.

7 Discussion

In this paper, we explored shale oil production results from a shale
reservoir and described some characteristics of the obtainable dataset, and
suggested a “shale reservoir problem” that can be useful for the upstream
petroleum industry. Drawing attention to a limitation of the traditional
DCA that only utilizes the temporal profile from the production results, we
eventually proposed a new platform of a spatial model that harnesses the
full aspects of the shale oil wells data with a fully Bayesian approach. One
of the notable results is the superiority of the spatial Weibull model over its
non-spatial counterpart, which elucidates that reasonable exploitation of ge-
ological information can bring an advantage to better forecasting the future
behavior of oil or gas production before actual drilling takes place. This can
save a large degree of well construction costs.

We regard that the followings are salient contributions of the paper: first,
we clarified the shale oil wells dataset and articulated a recent request from
the petroleum industry in the Era of Big Data from the perspective of statis-
ticians so as to call for more interdisciplinary researches across statistics and
petroleum engineering communities; and second, we extended the platform
of the traditional DCA to that of non-linear mixed effect models endowed
with the latent kriging, perhaps a new trial in the interdisciplinary works.

Some future directions of research are as follows. First, provided the pres-
ence of a strong serial correlation in the data level (5.1), one may include
autoregressive parameters in the error assumption or introduce nonhomoge-
neous Ornstein-Uhlenbeck process (Zhang et al., 1998) to model such a cor-
relation. Second, the notion of the seemingly unrelated regressions (Fiebig,
2001) can be used instead of the separate regressions (5.2) to associate in-
teraction between the individual regressions. Third, one may seek a fully
Bayesian approach to estimate the range parameters in Eq. 5.3. Fourth,
various correlation functions, for example, the Matérn correlation function
or an anisotropic covariance function (Banerjee et al., 2014), can be used
to improve the predictive performance using the latent kriging. Fifth, to
enhance the computational speed, variational methods (Blei et al., 2017;
Bishop, 2006) can be used to approximate the posterior distribution; this
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new optimization technique will be particularly useful when analyzing an
enormously large number of shale oil wells in a reservoir region. Lastly,
it will be interesting to accommodate some time-varying covariates such
as water or gas production rate time series data to adjust oil production
decline curve in the curve-fitting. These time-varying covariates may be
used in data level (5.1) endowed with center-adjusted inference or prediction
(Li et al., 2010).
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Appendix : posterior computation
A.1 A vector-form expression of the spatial model

The present section aims to provide a full description of a posterior com-
putation for the spatial Bayesian hierarchical model (5.1)—(5.6) through a
MCMC sampling technique (Robert and Casella, 2013). To start with, we
shall integrate out the Gaussian process 7;(-) in each of the spatial linear
regressions (5.2) indexed with [ = 1,2 and 3 to alleviate the computational
burden associated with sampling from multivariate Gaussian distribution
involving the spatial random effects. After the marginalization, a hierar-
chical structure of the proposed model can be expressed in a vector-form
stage-wisely.

Stage 1: individual-level model.

Vil61i, 09, 03i, 0 ~ N, (1(614, 025, 03:), o°1), (t=1,---,N). (A1)

Stage 2: population model.

Oilar, B, of, 1 ~ Ny (Lay + XBy,0f T+ 47 B(py),  (1=1,2,3), (A.2)
Bilm, M, of ~ Np(0, 077 Ay), (1=1,2,3),(A.3)
o,y Mg, T~ CT(0,1), (1=1,2,3,7=1,---,p), (A.4)
oy ~mlag) x 1, of ~w(of) < 1/of, (1=1,2,3). (A.5)

On the first stage, for each well i (i = 1,--- , N), the vector notations y;
and p; (61, 02;,03;) represent T;-dimensional vectors recording the observed
log-scaled oil production rate time series data and its corresponding mean
part from the likelihood (A.1), respectively, over the production period T;
months:

.
vi = (Wit vit, > ¥iT,)
1 (015,025, 03:) = (1(1; 014,094, 03:), . ., j(t; 014, 02, 03) - ., (T 014, 024, 033)) |,

where p(t;01,602,03) is a log-scaled RDC whose options are Weibull model
M (3.2), Arps’ hyperbolic model M3 (3.3), SEDM M3 (3.4), and Duong
model My (3.5).
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On the second stage, the vector notation 6; = (6;1,--- ,0,5)" (1 =1,2,3)
represents the N-dimensional vector for the curve parameters participated
in a chosen log-scaled RDC across the N wells. The matrix notation X is
N-by-p design matrix whose i-th row vector is given by the p completion
predictors x; = (x;1,- - ,l‘ip)—r € RP. Before implementing a sampler, it
is recommended that each of the column vectors of the design matrix X is
standardized (Tibshirani, 1996; Armagan et al., 2013): that is, each column
vector has been centered, and then columnwisely scaled so that each column
vector has mean zero and unit standard deviation. The matrix notation
I stands for an identity matrix. The matrix notation B(p;) represents N-
by-N correlation matrix whose ij-entry is [B(p;)]i; = exp(—e”t||s; — s;||3),
(i,j = 1,--+- ,N), induced by the Gaussian correlation function in Eq. 5.3.
The matrix A; is a p-by-p diagonal matrix formulated by the local-scale
parameters of the horseshoe prior, A; = diag(\?, - - ,)\lzp) (1=1,2,3).

Directed asymmetric graphical model representation (Bishop, 2006) of
the model (A.1)-(A.5) is depicted in Fig. 11. Following the grammar of the
graphical model, the circled variables indicate stochastic variables, while ob-
served ones are additionally colored in grey. Hyper-parameters is not circled,
implying non-stochasticity. The arrows indicate the conditional dependency
between the variables.

P3
P1 P2

Figure 11: The proposed spatial model as a graphical model
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A.2 Gibbs sampling algorithm

Under the formulation of the spatial Bayesian hierarchical model (A.1)—
(A.5), the eventual goal of the present section is to sample from its full joint
posterior density whose proportional part is given by

N 3
{ 11 ./\/’Ti(yi|“i(‘91i792i793i)7021)}{ [T NN (Bil10r + XBy, 07T+ 47 B(p1))

=1 i=1

Np(B1]0, o7 7 Ar) - 7(m) - w(N) - (o7 -W(w)} ~m(0).

To sample from the full joint posterior density, we use a Gibbs sampler
(Casella and George, 1992; Lee, 2020a) to exploit conditional independence
relationships induced by the hierarchy of the model. Before constructing a
relevant Gibbs sampler, we shall make use of a parameter expansion about
a half-Cauchy random variable (Makalic and Schmidt, 2015). Generally,
it is known that a half-Cauchy random variable X can be decomposed as
follow: X ~ Ct(0,1) & X?|Y ~ ZG(1/2,1/Y) and Y ~ ZG(1/2,1). Here,
the notation ZG(a,b) stands for the inverse-gamma distribution with the
shape parameter a and the scale parameter b, and the notation < denotes
a distributional equivalence between the random variables on the left and
right hand sides.

Half-Cauchy distributed latent variables in the spatial model are listed
in Eq. A.4, and they can be equivalently expressed as:

o ~ CY0,1) & d%¢p ~TG(1/2,1/¢) and ¢ ~ ZG(1/2,1),  (A.6)
Yo~ CH0,1) & P lw ~ZG(1/2,1/w;) and w; ~ ZG(1/2,1), (A.7)
Ay~ CT(0,1) & Afj|v; ~IG(1/2,1/v;) and v; ~ IG(1/2,1),(A.8)
n o~ CT0,1) & 7716 ~IG(1/2,1/&) and & ~ IG(1/2,1),  (A.9)

independently for each [ =1,2,3 and j=1,--- ,p.

We are now in a position to propose a Gibbs sampler. The following
algorithm describes a straightforward Gibbs sampler that approximates the
full joint posterior distribution obtained from the hierarchical formulation
(A.1)-(A.5) where in half-Cauchy distributed latent variables (that is, the
latent variables in Eq. A.4) are replaced by Eqs. A.6-A.9.

Step 1. Sample v;;, 1 =1,2,3, j =1,---,p, independently from their
full conditional distributions

(=) ~ IG(1, 1+ 1/A%).
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Step 2. Sample &, [ = 1,2, 3, independently from their full conditional
distributions

m(&l-) ~ZG(1, 1+ 1/77).

Step 3. Sample )\12]-, 1=1,2,3,5=1,---,p, independently from their
full conditional distributions

m(Aj=) ~ ZG(1, 1/w; + B} /207 7).

Step 4. Sample 7'12, Il =1,2,3, independently from their full condi-
tional distributions

n(m|=) ~ ZG((p + 1)/2,1/& + B A; ' B1/207),
where A; = diag(A\}, - - ,/\lzp) € RP*P,

Step 5. Sample 012, [ = 1,2,3, independently from their full condi-
tional distributions. Proportional parts of the distributions are given

g " 272 -1g T -1
m(of|-) o (ﬁ)-W—l.exP{_%(@l [I+('Yl/gz)B(P2l)] 0u+8/ A, 51)}
i

L+ (/o) B(p)| (A.10)

where 6, = 6; — 1a; — X3, € RY. The notation |A| indicates the
determinant of the matrix A. The density m(o?|—) is not a known
distribution, and we use a Metropolis-Hastings algorithm (Chib and
Greenberg, 1995) within this Gibbs sampler to sample from the den-
sity. A proposal density for the algorithm is suggested in the next
subsection.

Step 6. Sample 8;, | = 1,2,3, independently from their full condi-
tional distributions

T(By=) ~ Np(Ep, X [0fT+17B(p1)] (61 — 1), Bp,),

where Xg, = {X " [01 +1?B(p1)] !X + (1/0?)A,'} ! € RPP with
[B(p)i; = exp(—e™|ls; —sjll3) (4,5 = 1,--,N), and Ay = 7°4; €
RP*P. The notation || - |2 indicates the ly-norm.
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Step 7. Sample oy, | = 1,2,3, independently from their full condi-
tional distributions

17 [02T+92B(p)] 1 (8,— X)) 1
m(aul=) NM( TP 2B TR 7B )

where the notation 1 stands for a vector whose entries are ones.

Step 8. Sample 61 from its full conditional distribution
m(01]=) ~ Nn (e, {(1/0)r + [07T + 7/ B(p1)] ' (11 + XB)}, Be, ),

where Xg, = {(1/0®)T + [0?1 +7?B(p1)] 1}~ € RV*NV,

Here, the r is a N-dimensional vector-valued function of {(62;,03;)}
across the N wells, given by

r=(1"{y; —h(021,031)},...,1 {yn — h(ban,0:x)}) ",

whereas the h(6;,0s;) is a T;-dimensional vector-valued function of
((921‘, 931) for the i-th well (z =1, 7‘]\[)

N
i=1

h(02;,03) = p;(014,02,03) — 164,
= (u(1; 6014, 001, 03) — Ovis ..., u(Ty; 014, 04, 035) — 01) "

Step 9. Sample 0y; and 63;, © = 1,--- | N, independently from their
full conditional distributions. Proportional parts of the distributions
are

1

2(05 +73)
1

2(02% ++2)

1
7(0ail) o exp (= oyl — maCOus Oais ) - (02— a2 = x[ £,

1
w(Oail) o exp (= ooyl — maOus Oas, ) - (6a: — a3~ xT 8)° ).

Note that the above densities are not be expressed as known distribu-
tions because two parameters, #o; and 603;, participate to the function
w;(01i,02;,603;) in a nonlinear way. We use the Metropolis algorithm
(Andrieu et al., 2003) with Gaussian proposal densities within this
Gibbs sampler algorithm.

Step 10. Sample ¢ from its full conditional distribution

T(¢l=) ~IG(1, 1+ 1/0?).
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Step 11. Sample o2 from its full conditional distribution

trace(T) +1 1

7(0?|-) Nzg< > J

N
1
b3 2 Iy = it O 0 ).
=1

where T = diag(T},--- ,Ty) € RVXV,

Step 12. Sample 712, I =1,2,3, independently from their full condi-
tional distributions. Proportional parts of the distributions are given
by

2 wy

wi1_y ,exp{ B 1(@T[<a?/v?>I+B<pl>1161 L1 )}

2 2\ —
(i l=) o< (v)” 2 2
l

(o2 /42)L+ B(py)| 2.

The density m(7#|—) is not a known distribution and we use a Metropolis-
Hastings algorithm where its proposal density is suggested in the next
subsection.

Step 13. Sample wy, [ = 1,2, 3, independently from their full condi-
tional distributions

m(wi|=) ~ ZG(1, 1+ 1/47).
R code for the Gibbs sampler is available on https://github.com/yain22/SWM.

A.3 Proposal densities for the Step 5 and 12

In the present subsection, we suggest a proposal density that can be
used to implement the Metropolis-Hastings algorithm for the Step 5. For
a fixed | (I = 1,2,3), suppose that the signal-to-noise ratio, ¢; = 77 /07, is
constant in the Step 5 (A.10): then, the full conditional posterior of o can
be expressed in a closed form distribution

~T ~
9 N+p 6, T+B(p)]~'0,+ B8/ A,'B,
7T(0'l ‘_) ~ Ig 2 ) 9 3

because the determinant term in Eq. A.10 is constant with respect to 012. In
the Metropolis-Hastings algorithm, we use this inverse-gamma distribution
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as a proposal density. That being said, given previous sample (O'l2)(8), a
candidate for the next sample (07)*V) is drawn from

~T ~ _
N+p 6, [I+(c)®B(p)] 16, + 8] A;'B
’ 2

J(o?|(0})®) = 16 (”?

) =R,

and then evaluated whether to accept it or not based on the Metropolis-
Hastings rejection criteria: see page 184 of Hoff (2009). The suggested
proposal density is a canonical byproduct because it becomes the full con-
ditional posterior distribution of 012 when the spatial random effects are
removed (that is, 72 = 0) from the regression (5.2).

As similar to how we derived a proposal density for the Step 5, we obtain
a proposal density for the Metropolis-Hastings algorithm for the Step 12
to sample from the full conditional distribution of 4? (I =1,2,3):

~ T (S) 15
N+1 6, [(1/eg ) I+B(p)]" 6, 1 s
2 : 3 : l+wl o =6h /et

TR = 70 (712
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