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Abstract

Background Mortality research has identified biomarkers predictive of all-cause mortality

risk. Most of these markers, such as body mass index, are predictive cross-sectionally, while

for others the longitudinal change has been shown to be predictive, for instance greater-than-

average muscle and weight loss in older adults. And while sometimes markers are derived

from imaging modalities such as DXA, full scans are rarely used. This study builds on that

knowledge and tests two hypotheses to improve all-cause mortality prediction. The first

hypothesis is that features derived from raw total-body DXA imaging using deep learning are

predictive of all-cause mortality with and without clinical risk factors, meanwhile, the second

hypothesis states that sequential total-body DXA scans and recurrent neural network models

outperform comparable models using only one observation with and without clinical risk

factors.

Methods Multiple deep neural network architectures were designed to test theses

hypotheses. The models were trained and evaluated on data from the 16-year-long Health,

Aging, and Body Composition Study including over 15,000 scans from over 3000 older,

multi-race male and female adults. This study further used explainable AI techniques to

interpret the predictions and evaluate the contribution of different inputs.

Results The results demonstrate that longitudinal total-body DXA scans are predictive of all-

cause mortality and improve performance of traditional mortality prediction models. On a

held-out test set, the strongest model achieves an area under the receiver operator char-

acteristic curve of 0.79.

Conclusion This study demonstrates the efficacy of deep learning for the analysis of DXA

medical imaging in a cross-sectional and longitudinal setting. By analyzing the trained deep

learning models, this work also sheds light on what constitutes healthy aging in a diverse

cohort.
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Plain language summary
Body composition – the overall pro-

portion of fat, muscle, and bone in

one’s body – has been associated

with mortality. It is important to

better understand the relationship

between body composition and mor-

tality as changing body composition

is an important goal of many drug

and lifestyle interventions. Here, we

combine medical images used for

body composition measurement

directly with information from the

medical history of a large number of

people to predict mortality. We use

machine learning, which relies on

mathematical models that extract

useful features from images and use

these to predict an outcome. Our

findings show that combining body

composition imaging with traditional

mortality risk factors improves the

prediction of mortality. This may help

clinicians to more accurately predict

who is at risk of dying in the future

and target these patients with

appropriate interventions.
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The field of mortality research has produced rich literature
on how variables describing body composition can predict
mortality. The Health, Aging, and Body Composition

(Health ABC) study, is a prospective cohort study of 3075
individuals1 that has provided many insights into the relationship
between body composition and mortality. For instance, Newman2

used the Health ABC dataset to show that baseline strength is
predictive of all-cause mortality, while thigh muscle area obtained
from computerized tomography (CT) scans and regional DXA
lean mass showed no association. Building on these results.
Santanasto and colleagues3 used the dataset to show that change
in muscle mass, derived from longitudinal CT scans, and greater
than average weight loss are individually predictive of all-cause
mortality. However, they failed to find any statistically significant
relationship between mortality and visceral and subcutaneous
abdominal fat or subcutaneous thigh fat. They also did not find a
significant relationship between changes in lean and fat mass,
derived from Total Body Dual-Energy X-ray absorptiometry
(TBDXA) and all-cause mortality. Most recently, Westbury et al.4

have analyzed the impact of baseline levels and change over time
of various body composition variables on adverse health out-
comes and overall mortality in the Health ABC dataset. Their
results indicate that lower-than-average baseline levels are more
predictive of adverse outcomes than greater decline over time.

In parallel, there have been efforts in related all-cause mortality
prediction problems to include medical imaging data. Elton et al.5

have successfully explored using abdominal CT scans for cardi-
ovascular disease and five-year survival prediction, similarly, in
another work focused on CT imaging, Yan and colleagues6 used
low-dose CT imaging to predict all-cause mortality for lung
cancer subjects. However, such imaging-focused approaches have
not yet been explored for general body-composition-based all-
cause mortality prediction models.

So, while it is well-established that body composition and
changes in muscle mass are predictive of mortality, changes in
total lean and fat mass appear less relevant. Thus, mortality
prediction models typically use only the baseline patient record.
Furthermore, imaging data is not used directly by current body-
composition-based mortality models—instead variables of inter-
est are extracted for modeling, discarding all other information
contained in the imaging.

Based on this knowledge, this study aims to test two hypotheses:
The first hypothesis is that risk features derived from raw total-

body DXA imaging data using deep learning are predictive of all-
cause mortality with and without clinical risk factors. TBDXA
imaging scans contain rich body composition information such as
central adiposity, regional muscle, fat, and bone mass, and bone
density, making it the criterion method for body composition
assessment7. Additionally, DXA scans are relatively cheap and
widely available throughout North America and the world, can be
taken at any age, and only use a low radiation dose making them
well-suited to collect longitudinal data with8. CT, being another
imaging modality used for body-composition-related mortality
analyses and broadly used for diagnostic imaging, is comparably
more expensive and higher in radiation dose8; coupled with the
often limited availability of CT for risk screening due to its role as
an emergency imaging modality, DXA-based modeling for mor-
tality risk may be more immediately useful to clinical practice
than modeling based on CT imaging. It is also easier to collect
total-body scans with DXA than with other modalities that would
otherwise be good candidates for this type of analysis, like MRI9.
Two sample TBDXA scans with high and low energy channels
separated can be seen in Fig. 1a.

The second hypothesis is that sequential TBDXA scans and
recurrent neural network models (RNNs) outperform comparable
models using only one observation with and without clinical risk

factors. This hypothesis is supported by the previously mentioned
work showing that some longitudinal changes in body composi-
tion are associated with mortality, together with the intuition that
these and other changes in body composition should be reflected
in the progression of longitudinal TBDXA scans.

Deep artificial neural network models (DNNs) are well-suited for
this analysis, as convolutional architectures can capture translation
invariances in imaging data, recurrent architectures can model
variable length sequences of visit records, and multimodal archi-
tectures can combine multiple types of features such as images and
tabular data. For example, Yala et al.10 and Motwani et al.11 have
demonstrated the efficacy of deep neural networks for mortality
prediction. Here, convolutional long short-term memory (LSTM)
networks are employed to incorporate all available DXA images
and clinical risk factors over multiple visits and capture longitudinal
changes in body composition. This modeling approach is most
closely related to the method proposed by Cui et al.12 for Alzhei-
mer’s disease diagnosis from structural MRI. LSTMs are a type of
RNN and have two major benefits: the model’s ability to process
sequences of different lengths without requiring padding or trun-
cating any of the data, which is desirable because not all participants
have the same number of datapoints available for various reasons;
and RNN architectures model temporal dependencies of a
sequence, unlike alternatives such as ensemble models. This also
distinguishes the proposed method from previous efforts in the
literature using longitudinal information such as Santanasto et al.3

or Westbury et al.4 who use feature-engineering (i.e. subtracting the
baseline value of a marker from the current value to signify change
over time in4) because the proposed approach models the time
dependency directly using deep learning.

This study demonstrates that combining full TBDXA scans and
traditional mortality risk factors results in stronger mortality
prediction models than using either modality on its own. The
results presented here also show that the progression of body
composition and health markers over time can be leveraged to
further improve mortality prediction, resulting in our best overall
model achieving a 0.79 area under the receiver operator curve
(AUROC) by integrating longitudinal TBDXA information and
traditional mortality risk factors.

Methods
Study population. The data used for our analysis was collected as
part of the Health ABC study and we retrospectively analyze the
completed cohort. Health ABC is a prospective cohort study of
3075 participants (48.4% men, 51.6% women) aged 70 to 79 years
at the time of recruitment, 41.6% of whom are Black with the
remaining 58.4% being non-Hispanic White. Participants were
recruited from Medicare-eligible adults in metropolitan areas
surrounding Pittsburgh, Pennsylvania and Memphis, Tennessee.
Eligibility criteria were for participants to be within the age range;
self-report having no difficulty walking a quarter mile, climbing
10 steps, or performing activities of daily living; have no history of
treatment for cancer within the previous three years; and have no
plans of moving out of the area within three years of being
recruited1,13. All subjects signed an informed consent form and
the IRB boards at each field center (University of Pittsburg, PA
and University of Tennessee, Memphis, TN) approved the con-
sent forms and protocol.

At intake, participants’ medical characteristics were recorded
through a questionnaire. Concerning this study, across the entire
population, 58% self-reported a previous heart condition (one or
multiple of: previous heart attack or myocardial infarction, a
history of chest pain, previous congestive heart failure, previous
strokes, a history of hypertension), 21% self-reported previous
respiratory illness (one or multiple of: diagnosed with asthma,
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diagnosed with chronic bronchitis, diagnosed with emphysema,
diagnosed with chronic obstructive respiratory disease (COPD),
diagnosed with pneumonia in the past twelve months), 31% self-
reported stomach or gallbladder issues (one or multiple of:
previous stomach or duodenal ulcers, previous stomach or
intestinal bleeding, previous surgery to remove parts of the
stomach, gallstones), 15% self-reported being previously diag-
nosed with diabetes by a doctor, and 19% reported being
previously diagnosed with cancer by a doctor.

After the conclusion of participant follow-up, 1992 deaths were
recorded within the cohort.

Clinical data. Participants were followed for 16 years with regular
check-ins consisting of a combination of questionnaire and exam
measures. Clinical data collected from participants in the Health
ABC study, hereafter referred to as “metadata”, consists of
demographics and anthropometric measurements (race, sex, age,
height, weight, BMI), blood markers (blood glucose, fasting glu-
cose, blood insulin, fasting insulin, hemoglobin A1c, interleukin
6), general indicators of fitness (walking speed over 3/4/6 m,
20 m, and 400m; grip strength), and self-reported questionnaire
answers (disability status for walking, climbing stairs, and activ-
ities of daily living; whether the participant had any recent falls
and if so how many). Basic characteristics of this metadata can be
found in Table 1.

Image acquisition. The Health ABC study attempted to collect
whole-body DXA scans on eight different occasions1. These scans
were collected using a Hologic system (Hologic QDR 4500,
software version 8.21, Hologic Inc., MA) with strict acquisition
procedures in place to ensure reproducibility, including a detailed
DXA operations manual14, annual operator training, and con-
tracting the services of a DXA reading center15. Throughout the
study, whole-body phantoms and human volunteers were used to
verify proper DXA calibration15.

Data preparation and split. Since questionnaire and exam
measures were irregularly scheduled and did not always line up
with each other or when imaging was done, not all data was
collected contemporaneously with the scans. Which datapoints
were included in the dataset used for this study was determined
by when scans were collected. Missing values in other modalities
were then simply backfilled with the most recent values available
or a default out-of-distribution value.

The dataset was then split by participant with 70% of the being
assigned to the training data set, 10% assigned to the validation
split for hyperparameter tuning and early stopping during
training, and 20% reserved as a hold-out test set for the final
model comparison. This particular split was selected to ensure the
maximal amount of training data for the DNN models while
maintaining a representative test set, the validation data was only
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a secondary priority where 10% of the dataset are a compromise
to still get a reasonable performance estimate for hyperparameter
selection and early stopping.

Categorical metadata features including race, sex, disability
statuses, as well as whether the participant had any recent falls
were encoded as one-hot vectors. All other numeric values were
min-max-scaled between zero and one based on the training data
distribution.

Using custom software developed by the authors in Python
(version 3.8)16, raw low- and high-energy (HE) X-ray attenuation
values were extracted from the DXA scan file. For Hologic
systems of this generation, low energy X-ray exposure conditions
are 100 kVp (X mAs) with 6.1 mm equivalent aluminum (Al)
filtration, and high energy X-ray exposures conditions are 140
kVp (X mAs) with 53 mm equivalent Al filtration. These raw
attenuation images had a resolution (width and height) of
109 × 150 pixels, at 16-bit pixel depth. Each pixel had spatial
dimensions of 2 mm×12.76 mm. All images were upscaled by a
factor of two to a resolution of 218 × 300 using bicubic
interpolation. Bone and soft tissues calibration phases in the
scan file were used to restore the high and low images to their full
resolution resulting in a width of 654 pixels. Image pixels were
squared (2 mm × 2mm) upon export by upscaling, via bicubic
interpolation, by a factor of 6.38 in the y-direction for a final
654 × 1914 image.

Single-record models. Figure 1 shows the basic architecture of
the single-record mortality models; input modalities are pro-
cessed separately by appropriate architectures and the outputs
can then either be concatenated for a combined-modality model
or used separately for a final prediction.

Since the scans that are inputs to the image model have two
“channels” (low and high energy attenuated scans), a 224 by 224
crop from the image is first passed through a single convolutional
layer with a 1-by-1 kernel and three filters to conform with standard
RGB (three channel) image dimensionality. The output from that
convolution is then passed into a DenseNet12117 model where the
penultimate ReLU unit activations are mean-pooled to create a
1024-dimensional embedding passed to a single sigmoid unit for
prediction in the image-only model. The DenseNet was initialized
with ImageNet weights and training was done with a combination of
the RAdam18 optimizer and the lookahead19 algorithm (also known
as the “Ranger” optimizer). The first 20 epochs during training are a
linear warmup from 0 to the maximum 0.001 learning rate and then
linearly decreasing back for 50 epochs toward 0.00001. Lookahead
has a 7-epoch synchronization period and a 0.4 slow weight update
ratio. Training is stopped when no improvement in validation loss is
observed for 10 epochs.

The metadata model is a neural network with a single 32-unit,
ReLU activation hidden layer and a single sigmoid unit for the
final prediction. This model is trained using the Adam
optimizer20 with the suggested parametrization until no improve-
ment in validation loss is observed for 10 epochs.

The combined-modality model concatenates the 1024 and 32
dimensional embedding vectors from the two single-modality
models into a vector that is then passed through a 512-unit and a
64-unit fully-connected ReLU layer and finally a single sigmoid
unit for mortality prediction. This model is trained in two steps.
First, the weights for the two modality subnetworks are locked
and only the last three dense layers are trained using the Adam
optimizer for 30 epochs, training is stopped early when no
validation loss improvement is seen for 10 epochs. Second, all
weights in the network are unlocked and it is trained using the
Ranger optimizer in the same configuration as above but with a
12 epoch warmup portion. Training is concluded after not
improvement in validation loss is seen for 10 epochs.

During training, a 50% dropout rate is applied to all outputs
from the penultimate model layers before the sigmoid unit to
avoid overfitting. Additionally, an image augmentation scheme is
applied during training for all models with that input modality.
First, to fit the height and width input dimensionality of the
pretrained DenseNet, a random 224 by 224 section of the image is
cropped out. Then four possible augmentations may be applied to
the crop, each with an individual probability of 30%: a blur with a
random kernel size between 3 and 5, the crop may be rotated up
to 10 degrees clockwise or counterclockwise, a Gaussian noise
kernel with mean 10 and a random variance between 1 and 20, up
to three Cutout21 dropouts of up to one-third of the image each.

All models are evaluated by their AUROC score on the test set.
For all models involving scans, instead of the random cropping
done during training, the 224 by 224 scan slice is obtained by
always center-cropping and no augmentation is done. Records
were assigned a positive (1) label if the person died within 10 years
of when the scan was taken and otherwise a negative (0) label.

All confidence intervals shown across all results are calculated by
computing the AUROCs of 1000 bootstrap samples from the test set.

Sequence models. For each modality, the single-record models
serve as a base model. Each participant is represented as a
sequence of visits where data from each visit is passed through the
appropriate model to create an embedding, resulting in a
sequence of embeddings after all visits are processed. For
instance, for the combined-modality sequence model, the scan
and metadata obtained at each visit are first passed through the
combined-modality single-record model with the final sigmoid
unit removed, resulting in a 64-dimensional embedding vector for

Table 1 Characteristics of study participant from a cross-sectional and longitudinal perspective across the entire dataset.

Cross-sectional mean (SD) Mean (SD) change from first to last datapoint

Age, y 75.2 (3) 6.3 (3.1)
Height, m 1.66 (0.1) −0.006 (0.001)
Weight, kg 74.8 (15.0) −2.4 (6.2)
BMI, kg/m2 27.1 (4.8) −0.7 (2.3)
Fasting blood glucose, mg/dL 102.9 (28.5) 0.9 (24.3)
Blood glucose, mg/dL 103.2 (29.1) 0.9 (26.5)
Hemoglobin A1c, % 6.0 (1.0) −0.3 (0.8)
Interleukin 6, pg/mL 3.3 (3.2) 0.5 (3.0)
Walking speed over 4 m, 5 m, or 6 m, m/sec 1.1 (0.3) −0.2 (0.3)
Walking speed over 20m, m/sec 1.1 (0.2) −0.2 (0.2)
Walking speed over 400m, m/sec 1.3 (1.1) −0.1 (2.0)
Grip strength, kg 27.6 (10.1) −2.4 (6.6)
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each visit. To each vector, one additional number is appended
indicating the time passed between this visit and the previous one
in days scaled to be between −1 and 0; so, the first vector always
has a zero appended and the ones after some negative value
because of the scan ordering. Thus, this sequence of vectors
represents the entire sequence of visits for a participant, starting
with the most recent scan and going back in time. This sequence
is the passed through the sequence model, whose architecture is
consistent for all modalities. The embedding sequence is passed
through a recurrent layer consisting of 8 LSTM cells22 followed
by a subsequent four fully-connected 64 unit ReLU layers and a
single sigmoid output unit. Again, during training a 50% dropout
rate is applied before the output unit.

While training the LSTM parameters, the single-record models’
weights are locked throughout and at no point change. Training is
done until no improvement in validation loss is observed for 30
epochs. The standard Adam optimizer is used and for the image
models the same augmentations are used as for the single-record
models. Additionally, during training, there is a 10% probability
for each visit recorded for a participant to be dropped from the
sequence, potentially shrinking the sequences to a minimum of
two visits at which point no further visits will be dropped. This is
to further avoid overfitting. Specifically, this measure is taken to
avoid the fitting to sequence length information. It is easy to
imagine the model otherwise making the connection that if a
participant has significantly less than the maximum number of
scans, they are likely to have died before the conclusion of the
study and should thus be assigned a higher mortality risk.

All models use the binary crossentropy loss for training and are
implemented in Python 3.816 using the Tensorflow package23.
Details on hyperparameter tuning for all models is provided in
the Supplemental Information including tuning procedure and
detailed hyperparameter ranges in Supplementary Table 1.

Similar to the single-record models, all models are evaluated by
their AUROC score on the test set, again using only center-crops
for any models using imaging data. Since each participant is now
a singular datapoint consisting of a sequence of records labels
were assigned based on the most recent record in the sequence,
where a death within 10 years of that record is assigned a positive
(1) label and everything else is assigned a negative (0) label.

Subgroup performance. Subgroup performance is established on
the test set alone. The race and sex subgroups are determined based on
the demographic information collected as part of the study. The cause-
of-death subgroups are determined based only on the combination of
participants who died within the follow-up window of the Health ABC
study and for whom cause-of-death information was available, serving
as positive examples, and participants who lived either until the study
follow-up period concluded or for at least 10 years after their last
available scan, serving as negative examples. For the purpose of Table 2
in the main text, to determine both cardiovascular and cancer deaths,
either cancer or cardiovascular disease had to have been determined to
be either the immediate or underlying cause of death. The diabetes
subgroups are determined based on the participants’ fasting glucose
levels where less than 100mg/dL were considered “normal”, between
100 and 150mg/dL were considered “prediabetic”, and anything
above 150mg/dL was considered to belong to the “diabetic” subgroup.
For the BMI subgroups, the common BMI categories are applied to
divide the participants (<18.5: “underweight”, 18.5–25: “normal”,
25–30: “overweight”, >30: “obese”).

Feature importance. For the ablation study, all architecture and
training hyperparameters are identical to what is detailed for the
full models with all inputs. T
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Saliency maps are obtained using both the integrated
gradients24 and Grad-CAM25 methods. Since the image model
only considers a 224 by 224 sections at any time a 224 by
224 sliding window is used to get overlapping crops from the
scan. For each crop the sliding window is advanced 50 pixels first
in x direction and when the edge of the scan is reached in y
direction until each part of the scan has been covered in at least
one slice. After activations for all crops are obtained, they are
overlayed and averaged to get the final map over the entire scan.
To obtain the gradients for the integrated gradients maps, the
integral is approximated over 128 steps and an all-zero baseline
vector.

Results
Single-record models
General performance. The first set of models trained are the “single-
record models”, where the dataset was treated as cross-sectional
and each scan represents an independent sample. Figure 2a shows
the test set AUROC of three DNNs with different model inputs
trained in this setting.

The baseline model uses only metadata: a mix of blood markers,
questionnaire answers, and other general health markers collected
from patients. This model is a fully-connected DNN with a single
hidden ReLU layer and achieves a test set AUROC of 0.69.

In contrast, the model combining the metadata input with the
TBDXA imaging data outperforms the metadata model with a 0.71
AUROC on the test set. This model concatenates representations
from the metadata model and an image-only DenseNet17 model
whose input is the two-channel TBDXA scan. The resulting learned
feature vector is then passed through additional densely-connected
layers for the final prediction (Fig. 1). The image-only model on its
own has a 0.63 AUROC score.

Alternative evaluation criteria. To allow for a fair comparison
with the sequence models down the line, the single-record models
were also evaluated on only the most recent scan for each par-
ticipant, resulting in predictably higher AUROCs for all three
models (image −0.64, metadata −0.73, combined-modality

−0.74) (Table 2) relative to the unrestricted test set. The intent
of this adjustment was to match the test sets for the sequence and
single-record models as closely as possible. By using only the
most recent scan for each participant for the single-record
models, it is ensured that 10-year mortality labels are the same for
both models across the test set, whereas otherwise the same
participant can have their label change throughout the course of
the study if they died within follow-up but more than ten years
after their baseline scan. In an effort to match common practice
in mortality analysis2, the single-record models were also eval-
uated on only the baseline records for each participant and the
results were also included in Table 2 as well as the Supplementary
Table 2 for more subgroups. It is however worth emphasizing that
this does not present a fair comparison of the different approa-
ches because label distributions are different between the
sequence and single-record testing data in this set-up.

Sequence models
General performance. The next set of models are the “sequence
models”. For these models, the dataset was treated in a long-
itudinal manner, where a single datapoint consists of all scans
collected for each individual study participant in chronological
order from the baseline to the most recent scan available. Three
different RNNs were trained, again one for each input modality
and performance is shown in Fig. 2b.

As with the single-record models, the image-only model
performance is the lowest (0.71 AUROC) with the widest 95%
confidence interval, followed by the metadata (0.76 AUROC) and
combined-modality (0.79 AUROC) models, both with tighter
confidence intervals (Table 2). For the purpose of training and
evaluating these models, the predicted 10-year mortality is based
on the most recent scan collected for each individual in the
test set.

Sensitivity and specificity in the strongest models. In an effort to
better understand the combined-modality sequence model per-
formance, the sensitivity and specificity scores of the two strongest
sequence models—the metadata-only and the combined-modality

Fig. 2 Model performance comparison. a Single-record model receiver operating characteristic (ROC) curves and area under the receiver operating
characteristic (AUROC) on held-out test set. b Sequence model ROC curves and AUROCs on held-out test set.
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models—were compared in detail. The analysis, illustrated in
Fig. 3a, shows that for a large range of risk scores, the combined-
modality sequence model has improved sensitivity and specificity,
which translates to an integrated discrimination improvement
(IDI)26,27 of 5.79 (3.46 for events and 2.33 for non-events) and
category free net reclassification improvement (cfNRI) of 51% on
the test set. The cfNRI is the unweighted sum of the net proportion
of events assigned a higher risk score (cfNRI for events being 25%)
and non-events assigned a lower risk score (cfNRI for non-events
being 26%), meaning that for both events and non-events the
combined-modality sequence model assigns more accurate risk
scores about 25% more often than it assigns more inaccurate risk
scores relative to the metadata-only sequence model.

Impact of sequence length on model performance. To understand
how sequence length affects the sequence model’s performance,
participants in the test set were split into subgroups based on how
many scans were collected for each as part of the study (i.e. all
participants with only one available scan were grouped, all with
two available scans, and so on), and then the combined-modality
single-record model and sequence model were evaluated sepa-
rately on each subgroup, with the single-record model’s perfor-
mance being based on its prediction for the most recent available
scan. Figure 3b shows the results of this analysis, where the
sequence model is outperformed only for the subgroup with just
one available scan and is otherwise consistently similar or better
in performance than the single-record model.

Subgroup performance. In addition to evaluating the models on
the entire dataset, analyzing subgroup performance can also shed
light on strengths and weaknesses of our approach; of particular
interest might be the performance for different sexes, as many

traditional approaches28 create separate models for these groups
outright. Table 2 includes model performance for subgroups
based on participant race, sex, and cause-of-death. Performance
trends observed across the entire test set still largely persist here,
with the combined-modality models outperforming their single-
modality counterparts and the sequence models performing
better overall. The subgroup for which all models exhibit the best
performance is for participants who died of causes related to
cardiovascular disease, with the combined-modality sequence
model achieving the highest AUROC of 0.83. More detail on the
cause-of-death subgroup analysis is provided in the Supplemen-
tary Table 3, where the model performances for the four most
common primary and underlying causes of death are recorded
respectively.

Feature importance
Ablation study results. To get a better understanding of what
features are most useful to the models, an ablation study was
conducted where one metadata feature was removed at a time and
models were trained and evaluated without access to that feature.
Other studies10 have used gradient-based methods to attempt to
gain insights into feature importance, but while these methods are
easy to use, they do not necessarily find the most relevant
features29,30. It is also worth noting that while omitting the image
as an input to the model is not explicitly included in the ablation
results, the resulting model would be identical to the metadata
model whose performance is detailed in Table 2.

The ablation results for the combined-modality single-record
model are depicted in Fig. 4a. The figure illustrates that the two
most important metadata variables for model performance are
walking speed over a medium-length distance (20 m) and sex,
both with a 0.01 reduction in AUROC. The metadata variable

Fig. 3 Sequence model performance details. a Risk assessment plot for the performance comparison between the metadata sequence model and the
combined-modality sequence model shows overall improvement in sensitivity and specificity for the model including TBDXA scans. The combined area
between the death and non-death curves for the models represents the integrated discrimination improvement (IDI) score. A positive IDI means that,
generally, risk scores increased for patients that died within the 10 year window, while for patients that did not die risk scores assigned by the combined-
modality model decreased compared to the metadata model. In the plot, the death curves (grey) are similar to plotting sensitivity across all risk scores,
while the non-death curves illustrate 1—specificity overall risk scores. Accordingly, to show that a model has high sensitivity, it is desirable for the grey
curve to be high and toward the right of the plot, while a model with high specificity will have a red curve that is low and toward the left of the plot. For
most risk scores, the combined-modality model is on par with or better than the metadata model in terms of both sensitivity and specificity; only for risk
scores above ~60% does the metadata model have improved specificity. b Plot comparing the performance of the sequence model and single-record model
for participants with different numbers of available scans. The single-record model is evaluated only on the most recent scan while the sequence model is
evaluated on all available scans. Error bars show 95% confidence intervals calculated using bootstrapping on each respective subset.
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with the least impact on model single-record model performance
is grip strength resulting in only a 0.002 drop-off in AUROC
when ablated.

Likewise, Fig. 4b depicts the ablation study results for the
combined-modality sequence model. Here we observe larger
performance drops, specifically for ADL disability status (−0.05
AUROC), fasting serum glucose and walking speed over long
(400 m) and medium (20 m) distances (all decreasing AUROC by
roughly 0.04). The least impactful variable is fasting serum insulin
with a 0.005 AUROC drop.

DXA feature maps. While the ablation study is designed to pro-
vide insight into the contribution of metadata variables, saliency
maps were generated for the combined-modality single-record
model in an effort to understand the specific contribution the
TBDXA scans make to the model’s performance. Two specific
methods for feature visualization were selected because their
different properties grant insights into different properties of the
model. Figure 5a shows pixel-wise integrated gradients24 visua-
lizations. The maps show each pixel’s contribution to the model’s

ultimate output prediction for both a high-risk case and a low-
risk case. Figure 5b shows Grad-CAM25 visualizations for the
same two cases. Grad-CAM feature maps visualize higher-level
features in the network. Instead of allowing for pixel-level attri-
butions, these maps illustrate for which regions of the image
convolutional layers in the network show the greatest activation.

Discussion
The goal of this study was to test two hypotheses ultimately aimed
at improving all-cause mortality prediction models. The first
hypothesis tested stated that raw TBDXA imaging data can be
used by deep learning models to add predictive power to all-cause
mortality models. Our single-record model comparison shows
that a model with access to both metadata variables and TBDXA
imaging outperforms a model using either modality individually,
demonstrating that TBDXA indeed contains complementary
information to traditional mortality risk fact and that deep
learning can effectively extract this information to improve pre-
diction of all-cause mortality. If, on the other hand, no additional
information relevant to mortality prediction were present in the

Fig. 4 Feature importance scores. Scores are change in area under the receiver operating characteristic (AUROC) compared to the full model and error
bars show 95% confidence intervals calculated using bootstrapping. a Ablation study results on test set (n= 3720) for single-record model. b Ablation
study results on test set (n= 639) for sequence model.
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scans, the model could at best match the performance of the
metadata-only model and not exceed it. Other work in this area
has already shown that some DXA-derived body-composition
measurements can be predictive of all-cause mortality. Westbury
et al.4, for instance, showed appendicular lean mass and total-
body fat mass, both derived from TBDXA, to be all-cause mor-
tality predictors, while recent work by Laddu and colleagues31

shows that DXA estimates of central adiposity adds predictive
power to all-cause-mortality models in postmenopausal women.
Farsijani et al.32, in an effort to compare CT- and DXA-derived
measurements for mortality prediction, find DXA fat mass to be
predictive of all-cause mortality. The authors of this work also
propose a novel approach based on compositional data analysis to
derive more sophisticated body-composition based predictors
from imaging, resulting in the finding that lower DXA-derived fat
mass versus lean mass is also predictive of mortality. This
approach can be seen as a limited effort in the same direction as
our proposed method of deriving richer predictors from DXA
imaging data. However, our method of training a deep learning
model to extract information from the raw TBDXA scan employs
more powerful models that can extract information contained in
TBDXA imaging to automatically derive complementary features
to what is already represented in traditional risk factors. This end-
to-end approach removes the reliance on crude summary statis-
tics such as fat or lean mass which must be derived from images
by a radiologist or segmentation algorithm.

The second hypothesis tested stated that RNN models using
TBDXA scans collected over multiple visits for an individual
will outperform models that use the same information from
only a single visit. Our sequence model performances show that

a model with access to longitudinal data performs better than a
model with access to only a single patient record. This obser-
vation held for all modalities, where all sequence models
outperformed their respective single-record counterparts, pro-
viding strong evidence that integrating longitudinal information
in mortality prediction models is beneficial. To our knowledge,
this observation is novel in the all-cause mortality literature as
no such complicated multivariate model has been assessed on
longitudinal data before our study. Previous studies conducted
on longitudinal data for all-cause mortality prediction have
demonstrated a complicated relationship, especially for DXA-
derived predictors. Some predictors, for example grip strength33

and walking speed34, are well established to have a strong
longitudinal association with all-cause mortality. However, for
instance Santanasto et al.3 showed that longitudinal changes in
lean and fat mass alone are not related with all-cause mortality
when adjusting for potential confounders. In light of the results
presented in this paper, this suggests that simple summary
values derived from TBDXA such as total lean and fat mass may
not be sufficient to represent the complicated longitudinal
information contained in a sequence of DXA scans. Interesting
for our observed performances is the work by Westbury et al.4

presenting results where baseline values were found to be
generally more predictive than longitudinal changes in pre-
dictors. The authors of that work suggest incorporating both,
baseline values and change over time, into all-cause-mortality
models, which is implicitly accomplished by our RNN. Our
results also show a greater relative improvement from TBDXA
inclusion in the longitudinal setting versus the single-record
setting, suggesting that unlike the risk factors analyzed in

Fig. 5 Saliency maps. a Integrated gradients pixel-level saliency maps. Low mortality (top row) and high mortality (bottom row) sample scans from test
set. Participants are 73 year old White males with similar body measurements. Rows from left to right depict: high-energy scan, low-energy scan, single-
record combined-modality saliency maps overlayed on scan. b Grad-CAM higher-level convolutional feature maps for the same participants depicted in a.
Feature maps depicted are all from convolutional layers within the dense block of the combined-modality single-record model before the last pooling layer.
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Westbury et al.4, the raw imaging data may have more pre-
dictive power in a longitudinal context.

Overall, this study demonstrates that risk factors derived from
TBDXA using deep neural networks can supplement known
mortality risk factors, and that changes in body composition over
time can be a stronger predictor of mortality than any observa-
tions collected during a single visit.

Subgroup performance. The subgroup performance shown in
Table 2 is critical to evaluate the stability of our models for dif-
ferent populations. Overall performance trends are very con-
sistent, with the combined-modality models performing the best
for both the single-record and sequence scenarios, and the
sequence models outperforming the single-record models overall.
Some other trends also stand out in this analysis.

When analyzing the most common causes of death recorded in
the dataset, cancer and cardiovascular disease, the models
performed most strongly on the group with cardiovascular
disease. In fact, every single model achieved the highest AUROC
observed for any subgroup of the testing data for the participants
who died of cardiovascular disease. This observation aligns well
with the existence of body-composition-related factors contribut-
ing to cardiovascular disease, information that would be available
to the model through both the TBDXA and metadata variables.

Furthermore, the analysis shows that the models perform
better on White participants than on Black individuals, which is
possibly a result of the data distribution being skewed (58.4%
White). The fact that the models also have better AUROCs for the
male subset of the data than for the female is in line with previous
analysis that has shown that certain body composition trends
known to affect mortality appear to be more pronounced in men
than in women3,35. It bears pointing out also, that while other
methods commonly split the dataset on sex and develop separate
models for men and women1,4, our deep learning approach uses a
single model for both groups. The model is flexible enough to
learn differences between groups but can benefit from the larger
training dataset that results from combining groups. More
performance details on subgroups based on baseline diabetes
status and baseline BMI are included in the Supplementary
Table 4. Overall, the performance trends observed above still
consistently hold for those subgroups as well.

Ablation study. The ablation study results grant insight into what
metadata variables are especially predictive of mortality in the
combined-modality setting where imaging data is also available to
the model. For the single-record model, the results mostly show
that no single variable has an outstandingly large impact on
model performance, which is not surprising given that many of
these variables are correlated with each other as well as the
TBDXA scan. Nevertheless, the sequence model shows more
pronounced performance drops when certain variables are not
available. ADL disability status, fasting serum glucose, and
walking speeds stand out by decreasing performance by more
than 0.04 AUROC each when ablated. This relatively large drop
in performance indicates that the longitudinal progression of
these variables contains a large amount of useful information for
mortality prediction. Performing survival analysis on the dataset
provides some hints as to why these variables might hold more
weight to the model. Participants whose disability status either
changed from not being disabled to being disabled over the
course of the study or who were classified as disabled from the
start had shorter survival times than their peers (Supplementary
Fig. 1). Similarly, for walking speed, people in the bottom quartile
(i.e., slow walkers), whose walking speed decreased the most over
the course of the study, had a much lower median survival time.

While the survival discrepancies are less severe for fasting glucose
groups, there still is a clear trend where participants who started
the study as prediabetic and either became diabetic or remained
within that group had shorter survival times than the remaining
participants with lower fasting blood glucose levels. More survival
analysis related to the ablation results can be found in the Sup-
plementary Fig. 1.

DXA feature maps. The saliency maps in Fig. 5 highlight regions
of the DXA scans that are of particular value for the mortality
models’ predictions and can serve as a starting point when ana-
lyzing what parts of the TBDXA imaging drive the increase in
mortality prediction performance. While it is not sensible to
derive precise conclusions from these visualizations, they do grant
some insight into deep convolutional models which are otherwise
often considered a “black box”.

At a low level, the pixel-wise integrated gradient maps
especially highlight a trend in our models where no specific
region or feature obviously stands out. This suggests that beyond
what is reflected in tabular risk factors, diffuse (or disseminated)
changes in tissues, rather than one single area such as the trunk
area and central abdominal adiposity, contribute to the models’
mortality prediction. This may also be a consequence of modeling
choices. Because models, both during training and test time, only
get access to 224 by 224 subsections of the image, it is impossible
for the model to pick up on global features like overall body shape
or posture, whereas the models are actively incentivized to learn
“universal” features that are effective at predicting mortality
regardless of what body part the slice is from.

At a higher semantic level, the Grad-CAM25 maps help shed
further light on image model behavior. By visualizing high level
features in the model, one can observe convolutional layers that
show activation across the entire scan (for instance the second
column in the figure) and others that seem more specialized and
only activate for specific regions in all scans. This allows for some
more speculation as to what components of the scan are
especially informative to the model, however, no conclusions
should be reached based on these saliency maps alone without
further investigation. Many of these maps—for instance columns
one and three—show heightened activation around the periphery
of the body, perhaps identifying body shape or subcutaneous fat
distribution. Column four on the other hand shows the strongest
activation in the femur area.

Overall, these maps seem to suggest that a lot of the
information derived from scans to complement the metadata
might be localized body composition information, distribution of
lean and adipose tissue, or even bone shape and degeneration. A
set of Grad-CAM maps for all convolutional layers in the last
dense block of the model is provided in the Supplementary Fig. 2.

Most importantly, the fact that both the integrated gradients
and Grad-CAM maps show activation in semantically meaningful
regions serves as a sanity check to ensure that the models do not
exploit information contained in the images that is not
biologically meaningful.

Limitations and future direction. While the results presented
here are encouraging and make us confident that our method can
further advance mortality research, there are several limitations
that need to be addressed in future work. While the Health ABC
dataset is relatively large and diverse, it has limitations, especially
for deep learning models. Our analysis needs to be extended to
more diverse ethnicities and populations with larger age ranges.

Because the dataset is relatively small for training a large
convolutional neural network, we had to deliberately use
aggressive cropping as a form of augmentation during training,
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limiting the model’s “field of view” for any given example, and
preventing it from fitting to global information like pose and
overall tissue distribution. Given access to a larger dataset, it is
reasonable to assume that training a similar model but with the
full TBDXA scan as an input could yield further performance
improvements and valuable insights into what drives mortality.

An additional complication is that the last scheduled Health
ABC exam to include TBDXA scans was in 2006 while follow-up
concluded in 2013. This means the mortality labels are noisy for
later scans, because there might have been unrecorded deaths
within the 10-year window after the last scan. This introduces an
unintended bias in the sequence model where, as sequence length
increases, the model becomes more likely to assign a lower
mortality risk. Our analysis in Fig. 3b shows that the sequence
model is more accurate than the single-record model even for the
early years of the study where this effect is not a factor, but this
subtlety must be considered when evaluating any model of
longitudinal data.

We plan on addressing these concerns in future work by
expanding our analysis to other datasets, gaining results on more
diverse data, and increasing confidence in our models. Addition-
ally, we want to repeat this type of analysis for CT imaging, which
has also been collected as part of the Health ABC study. CT-based
models could be used for opportunistic screening36 in the clinical
workflow and comparing these models with the ones presented in
this work could shed further light on drivers of mortality and
improve risk modeling overall.

Data availability
The data that support the findings of this study are available from the National Institute
on Aging, but restrictions apply to the availability of these data, which were used under
license for the current study, and so are not freely available. Data however can be
requested through the study’s website at healthabc.nia.nih.gov.

Code availability
All code for analysis as well as running the trained models is available at github.com/
hawaii-ai/tbdxa_mortality and Zenodo37.
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