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Mauricio Maza g, Kathleen M. Schmeler b, Richard Baraniuk a, Rebecca Richards-Kortum a 

a Rice University, Houston, TX 77005, USA 
b University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 
c Barretos Cancer Hospital, Barretos, São Paulo, Brazil 
d Cleveland Clinic, Cleveland, OH 44195, USA 
e National Cancer Institute, Bethesda, MD 20814, USA 
f A. C. Camargo Cancer Center, Liberdade, São Paulo, Brazil 
g Basic Health International, San Savlador, El Salvador   

A R T I C L E  I N F O   

Keywords: 
Endomicroscopy 
Cervical precancer 
Multi-task learning 
Point-of-care 

A B S T R A C T   

Cervical cancer is a public health emergency in low- and middle-income countries where resource limitations 
hamper standard-of-care prevention strategies. The high-resolution endomicroscope (HRME) is a low-cost, point- 
of-care device with which care providers can image the nuclear morphology of cervical lesions. Here, we propose 
a deep learning framework to diagnose cervical intraepithelial neoplasia grade 2 or more severe from HRME 
images. The proposed multi-task convolutional neural network uses nuclear segmentation to learn a diagnosti
cally relevant representation. Nuclear segmentation was trained via proxy labels to circumvent the need for 
expensive, manually annotated nuclear masks. A dataset of images from over 1600 patients was used to train, 
validate, and test our algorithm; data from 20% of patients were reserved for testing. An external evaluation set 
with images from 508 patients was used to further validate our findings. The proposed method consistently 
outperformed other state-of-the art architectures achieving a test per patient area under the receiver operating 
characteristic curve (AUC-ROC) of 0.87. Performance was comparable to expert colposcopy with a test sensitivity 
and specificity of 0.94 (p = 0.3) and 0.58 (p = 1.0), respectively. Patients with recurrent human papillomavirus 
(HPV) infections are at a higher risk of developing cervical cancer. Thus, we sought to incorporate HPV DNA test 
results as a feature to inform prediction. We found that incorporating patient HPV status improved test specificity 
to 0.71 at a sensitivity of 0.94.   

1. Introduction 

With around 300,000 annual deaths and more than 500,000 new 
cases each year, cervical cancer is the fourth most common cancer in 
women worldwide (Arbyn et al., 2020). The incidence of cervical cancer 
is particularly high in low- and middle-income countries (LMICs), and it 
is the most common cancer in women living in 42 low-income nations 

(Arbyn et al., 2020). 
Human papillomavirus (HPV) vaccination as well as detection and 

treatment of cervical precancerous lesions are highly effective at pre
venting cervical cancer (Arbyn et al., 2020; Lei et al., 2020). Two cer
vical cancer screening methods are widely used: the Papanicolaou test 
(Pap test) and the HPV DNA test (Melnikow et al., 2018; William et al., 
2018). While challenges remain, HPV DNA testing is becoming more 
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widely available in LMICs (Sankaranarayanan, 2014; Villa, 2012). Pa
tients who screen positive are referred to colposcopy for follow-up 
diagnosis. The colposcopist uses a low magnification microscope 
called a colposcope to image the cervix following application of acetic 
acid and, in some cases, Lugol’s iodine, and, when pathology is avail
able, takes biopsies of clinically suspicious lesions (Chase et al., 2009; 
Olatunbosun et al., 1991). Biopsies are sent to a pathologist for diag
nosis. Cervical cancer precursors, also referred to as cervical intra
epithelial neoplasia (CIN), are graded as CIN 1, CIN 2, or CIN 3, in order 
of increasing severity. Patients may also receive a diagnosis of adeno
carcinoma in situ (AIS), which indicates that there were cellular ab
normalities in the columnar tissue. Patients with CIN 2, CIN 3, and AIS 
are at a higher risk of developing cervical cancer and in accordance with 
the World Health Organization guidelines should receive treatment, 
whereas patients with CIN 1 lesions do not require treatment (Organi
zation et al., 2014). Therefore, clinicians aim to distinguish between 
<CIN 2 (normal or CIN 1) and CIN 2 + (CIN 2, CIN 3, AIS or cancer) 
lesions. 

The three-visit process for screening, diagnosis, and treatment of 
cervical precancers has helped reduce the incidence and mortality of 
cervical cancer in high-income countries. However, it has been difficult 
to implement such strategies in low- and middle-income settings due to a 
scarcity of trained professionals (Wilson et al., 2018; Mwaka et al., 
2013), lack of affordable equipment, and high rates of loss to follow-up 
(Hunt et al., 2018; Muñoz et al., 2008). There is a need for low-cost 
technologies that can be used to diagnose cervical cancer and its pre
cursors at the point-of-care. 

Researchers have evaluated whether optical imaging devices 
coupled with automated algorithms could serve as low-cost alternatives 
to diagnose cervical precancer in vivo; such tools could bypass the need 
for a trained colposcopist and pathologist (Thekkek and 
Richards-Kortum, 2008; Gordon et al., 2019; Asiedu et al., 2018). 
Several computer-aided diagnostic (CAD) systems have been developed 
to automate interpretation of colposcopic images, and algorithms that 
leverage advances in deep learning have improved diagnostic perfor
mance (Hu et al., 2019; Yuan et al., 2020; Li et al., 2020). Hu et al. 
(2019) was one of first to explore deep learning-based computer aided 
diagnostic systems for cervical cancer and precancer diagnosis using 
biopsy correlated cervicography data. They successfully trained a Faster 
R-CNN model to detect the presence of CIN 2 + lesions with a sensitivity 
and specificity of 100% and 57.5% respectively on a validation set of 
192 HPV positive patients (Hu et al., 2019). Since then, several studies 
using colposcopy data to train deep learning CAD systems have been 
reported (Yuan et al., 2020; Li et al., 2020; Zhang et al., 2020; Saini 
et al., 2020; Cho et al., 2020). 

Other strategies include high-resolution microendoscope (HRME) 
imaging to visualize subcellular tissue features; previous algorithms 
developed to analyze HRME images use morphologic features such as 
the nuclear-to-cytoplasm area ratio or the number of abnormally shaped 
or sized nuclei. Recently, Hunt et al. (2021) conducted a prospective 
evaluation of 1901 images from colposcopically abnormal lesions in 
Barretos, Brazil. They achieved 89% sensitivity and 54% specificity 
compared to histopathologic diagnosis (Hunt et al., 2021). 

In this paper, we present, to our knowledge, the first application of 
deep learning to detect cervical precancer and cancer from HRME im
ages. We describe a compact multi-task convolutional neural network 
(CNN) architecture that first performs the auxiliary task of nuclear 
segmentation to inform representation learning for HRME image clas
sification to identify the presence of CIN 2 + lesions. Inclusion of an 
auxiliary task can support representation learning for the main classi
fication task by drawing attention to relevant features or preventing 
overfitting (Caruana, 1997; Thung et al., 2017; Yang et al., 2017; Gao 
et al., 2020; Liu et al., 2019). The network also incorporates patient HPV 
status as an additional clinical attribute to inform prediction. To train, 
validate, and test our methods, we used data from two large diagnostic 
studies of HRME imaging conducted in rural Brazil (Hunt et al., 2018; 

2021). To validate generalizability of the trained model, we tested its 
performance on an independent screening study of HRME imaging 
conducted in El Salvador by a separate group of clinicians (Parra et al., 
2021). 

We demonstrate that our method trained from random initialization 
outperforms classification based on morphologic features as well as 
state-of-the-art deep learning architectures trained either from a random 
initialization or pretrained on ImageNet (Deng et al., 2009). We also 
show that our method retains a high performance relative to other deep 
learning benchmarks and morphologic algorithms when training data 
are reduced. Results from the independent validation set show that our 
method performs on par with expert colposcopy. 

2. Materials and methods 

2.1. High-resolution microendoscope 

The HRME is a low-cost, fiber optic fluorescence microscope that is 
used to image nuclear morphology in vivo (Hunt et al., 2018; Grant 
et al., 2015; Pierce et al., 2012). Following topical application of 0.01% 
w/v proflavine (Pantano et al., 2018), the fiber optic probe is placed in 
gentle contact with the cervix to collect HRME images. Images are 
collected at 12 fps; the field of view is 790 µm and the lateral resolution 
is 4.4 µm (Quang et al., 2016). 

2.2. Data acquisition and partitioning 

Data were assembled from three clinical studies designed to compare 
the accuracy of HRME to colposcopy using histopathology as the gold 
standard. The first two studies enrolled screen-positive women in Bar
retos, Brazil; in these populations the prevalence of histologically 
detected CIN 2 + was high (35% and 29%, respectively) (Hunt et al., 
2018; 2021). The third study enrolled women undergoing cervical 
screening in San Salvador, El Salvador; in this population the prevalence 
of CIN 2 + was relatively low (1.5%) (Parra et al., 2021). 

In the two high-prevalence studies in Brazil, study procedures took 
place during a single patient visit. Pap test or HPV DNA (cobas 4800 
HPV test) screen-positive participants underwent colposcopy with 5% 
acetic acid and Lugol’s iodine. The colposcopic impression of any 
abnormal areas (low-grade, high-grade, or suspected cancer) was 
recorded. Following colposcopy, 0.01% proflavine was applied and 
HRME images were acquired from areas noted as abnormal by colpos
copy and from each quadrant with no lesions. In each quadrant without 
a lesion, HRME images were acquired from a randomly selected colpo
scopically normal site at the squamocolumnar junction. When the 
squamocolumnar junction was not present, a random biopsy from an 
apparently normal area was acquired at the clinician’s discretion. The 
clinician acquired a single HRME image per site of interest. The HRME 
result (morphologic abnormality score and classification), colposcopic 
impression of tissue type (squamous, columnar, or metaplasia), and 
colposcopic impression (normal, low-grade, high-grade, or suspected 
cancer) for each site were recorded. Sites identified as abnormal by 
colposcopy and/or by HRME were biopsied. In cases where a lesion 
spanned multiple quadrants, the area within the lesion with the most 
severe colposcopic impression was biopsied. If no abnormal sites were 
identified by either method, then a single biopsy was taken from a 
clinically normal site imaged by the HRME (Hunt et al., 2018; 2021). 

In the El Salvador study, procedures took place during two patient 
visits. During Visit 1 (screening visit) HPV DNA testing (QIAGEN 
careHPV) and VIA screening were performed. Screen-positive women 
and 10% of women who screened negative (HPV- and VIA-), were 
invited back for a second visit (Visit 2: triage and diagnostic visit). 
During Visit 2, VIA was repeated followed by colposcopy with acetic 
acid and Lugol’s iodine. Any abnormalities detected by either VIA or 
colposcopy were noted along with the clinical impression (low-grade, 
high-grade, or suspected cancer). 0.01% proflavine was applied and 
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HRME images were obtained of each abnormality noted during VIA and/ 
or colposcopy along with one normal area of the cervix. All abnormal
ities detected by colposcopy were biopsied. The colposcopically 
apparent normal area was biopsied if abnormal by HRME. If there were 
no abnormalities during the clinical exam, then an HRME image was 
taken of each quadrant of the cervix and the worst scoring area by HRME 
was biopsied, regardless of whether the score was abnormal or normal 
(Parra et al., 2021). The clinician acquired a single HRME image per site 
of interest. Data were divided into training, validation, and test parti
tions in a 3:1:1 ratio stratified by patient histopathology. All data from a 
given patient were assigned to the same partition. The number of imaged 
sites and corresponding patients included in the training, validation, 
test, and external evaluation sets can be found in Table 1; results are 
stratified by histologic diagnosis. 

Studies in Brazil were approved by the Barretos Cancer Hospital 
Ethics Research Committee, the Brazilian National Ethics 
Research Commission/CONEP (CAAE: 37774314.3.0000.5437, 
61743416.1.0000.5437) and the Institutional Review Boards of Rice 
University (ID#: 653693, 2017–293) and The University of Texas MD 
Anderson Cancer Center (ID#: 2015–0442, 2017–0096). The study in El 
Salvador was approved by the Comité Nacional de Ética de la Inves
tigación en Salud (National Ethics Committee of Health Research, ID#: 
CNEIS/005/2015) in El Salvador and the institutional review boards at 
The University of Texas MD Anderson Cancer Center (ID#: 2015–0620), 
Cleveland Clinic (ID#: 15–1162), and Rice University (ID#: 2017–347). 
Written informed consent was provided by all patients. 

2.3. Morphologic analysis 

HRME images were analyzed using a prospective morphologic image 
analysis algorithm. The algorithm segments nuclei within an automati
cally determined region of interest (ROI) that excludes areas of low- and 
high-intensity; classifies each segmented nucleus as normal or abnormal 
based on pre-defined area and eccentricity thresholds; and then reports 
the number of abnormal nuclei per unit area (Grant et al., 2015). The 
number of abnormal nuclei per unit area is used to classify each imaged 
site as normal or abnormal, using a pre-set threshold (Hunt et al., 2018). 

2.4. Deep learning benchmarks 

To benchmark the performance of the proposed method, we trained, 
validated, and tested state-of-the-art, off-the-shelf CNN architectures 
including ResNet18, ResNet34, ResNet50 (He et al., 2015), 
ResNext50_32×4d (Xie et al., 2017), InceptionV3 (Szegedy et al., 2016), 
Wide ResNet50_2 (Zagoruyko and Komodakis, 2016), SqueezeNet1_1 
(Iandola et al., 2016), EfficientNet-B1 (Tan and Le, 2019), and VGG16bn 
(Simonyan and Zisserman, 2015) models. Two different initializations 
were used, Xavier initialization (Glorot and Bengio, 2010) and transfer 
learning from ImageNet. Models initialized through transfer learning 
were trained by full optimization (all weights in the model were learn
able), or by fine-tuning (only weights in the last fully connected layers 
were learnable). Five models were independently trained for each ar
chitecture and initialization-training strategy pair. Original HRME im
ages were center cropped, as shown in Fig. 1, and resized to the 
network’s input size. For networks initialized through transfer learning, 
input images were normalized with the mean and standard deviation of 
ImageNet. Otherwise, input images were normalized with the mean and 
standard deviation of the training set. All networks were trained to 
classify HRME images as either < CIN 2 or CIN 2 + until the training 
AUC-ROC reached one, and the model with the highest validation 
AUC-ROC was selected for testing. Standard data augmentation tech
niques such as rotation, flipping, and random cropping were applied, 
and grid search was used for hyperparameter parameter tuning. 

2.5. Proposed method: Multi-task learning with learning via proxy labels 

The proposed Multi-Task Network (MTN), shown in Fig. 2, performs 
two tasks - nuclear segmentation and classification - and is based on Y- 
Net architecture proposed by Mehta et al. (2018a). The segmentation 
component of the network has an encoder-decoder structure. In the 
encoder, efficient spatial pyramid (ESP) modules handle the primary 
feature extraction operations. The decoder receives the encoder’s final 
feature representation and uses upsampling and pyramid spatial pooling 
(PSP) modules to construct a nuclear mask with same spatial resolution 
as the input. Concatenating skip connections from the encoder to the 
decoder enables information sharing between the two. The MTN’s 
diagnostic component is built on more ESP modules that culminate on 
an average global pooling module followed by two fully connected 
layers. Downsampling operations are handled by a single convolution, 
which reduces spatial resolution of the feature maps by half. Upsampling 
is performed by bilinear interpolation. Batch normalization and ReLU 
activation are applied after each downsampling operation, upsampling 
operation, ESP and PSP module. In the next sections, we describe the 
modules that compose the MTN and the learning via proxy labels. 

2.5.1. Efficient spatial pyramid module 
The ESP module consists of two components: an initial point-wise 

convolution followed by a spatial pyramid of dilated convolutions 
(Mehta et al., 2018b). Point-wise convolution applies a 1 by 1 kernel to 
the input, reducing the number of channels and downstream computa
tions. The spatial pyramid of dilated convolutions takes in the output of 
the point-wise convolution and applies four parallel convolutional fil
ters, each with a 3 by 3 kernel applied at different dilation factors. This 

Table 1 
Number of patients and number of HRME images in the training, validation, test, 
and external evaluation sets stratified by histopathologic diagnosis. Number of 
HRME images are in parentheses.  

Histopathology Training Validation Test External 
Evaluation 

Negative 547 (689) 191 (238) 193 
(237) 

274 (437) 

CIN1 125 (158) 42 (54) 44 (53) 206 (414) 
CIN2 69 (104) 24 (37) 22 (35) 6 (18) 
CIN3 203 (280) 71 (103) 70 (99) 21 (37) 
AIS – – – 1 (1) 
Invasive 

Carcinoma 
15 (23) 5 (9) 6 (11) – 

Total 959 
(1254) 

333 (441) 335 
(435) 

508 (907)  

Fig. 1. Pre-processing of high-resolution microendoscopy (HRME) images 
before the Multi-Task Network’s classification. The original HRME image is 
cropped and divided into four quadrants. The Multi-Task Network is then used 
to calculate the probability that each quadrant corresponds to CIN2 + . Scale 
bar is 200 µm. (View in color.). 
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dilation increases the network’s receptive field, incorporating 
multi-scale information without increasing the number of parameters 
(Yu and Koltun, 2015). Outputs from each dilated convolution are hi
erarchically summed, beginning with the lower levels, and the sum
mations are concatenated. A residual connection between the input and 
output of the ESP module aids in gradient stability. In addition, a series 
of consecutive ESP modules has a concatenating skip connection joining 
the input and output feature maps. 

2.5.2. Pyramid spatial pooling module 
The PSP module extends the network’s receptive field by integrating 

multi-scale features (Zhao et al., 2017). The PSP module uses average 
pooling operations at four different levels. The output of each pooling 
operation undergoes a point-wise convolution that compresses the 
number of channels and bilinear upsampling to match their spatial 
resolution to that of the input. The input and output feature maps of each 
pooling operating are concatenated. 

2.5.3. Learning via proxy labels and two stage training 
The MTN is trained in two stages, starting with the segmentation 

component. As shown in Fig. 1, cropped HRME images were divided into 
four non-overlapping image quadrants and passed through the network 
separately. The nuclear segmentation resulting from the morphologic 
algorithm was used to supervise the nuclear segmentation performed 
with the MTN. This stage was trained using stochastic gradient descent 
for three hundred epochs with a cosine annealing scheduled learning 
rate with restarts every 30 epochs and batch size of 10 (Loshchilov and 
Hutter, 2016). The model with the highest validation mean intersection 
over union (mIOU) was selected to initialize training stage two. 

In stage two, the diagnostic and segmentation components were 
optimized together. The diagnostic branch was appended to the archi
tecture, and weights learned in stage one were used to initialize the 
architecture. This second stage was trained via stochastic gradient 
descent for 300 epochs with an annealing cosine scheduled learning rate 
with restarts every 20 epochs with a batch size of 5. Hyperparameters 

were optimized via grid search. In both stages, input data augmentation 
techniques such as rotation, flipping, and random cropping were 
applied. All code was written in Python 3.6 using PyTorch 1.5.0. Ex
periments ran in a CUDA 10.2 enabled computer with two GeForce RTX 
2080 Ti graphics processing units each with 12 GB VRAM. 

2.5.4. Ablation of nuclear segmentation task 
To evaluate the contribution of the nuclear segmentation component 

to the diagnostic performance of the MTN, an ablation study was con
ducted where the nuclear segmentation decoder of the MTN was 
removed. This ablated structure, consisting of the segmentation encoder 
and the diagnostic branch, was initialized using Xavier initialization and 
trained to classify HRME quadrants as <CIN 2 or CIN 2 + . The network 
was optimized via stochastic gradient descent for 300 epochs with an 
annealing cosine scheduled learning rate with restarts every 20 epochs 
with a batch size of 5. Hyperparameters were optimized via grid search. 
Input data augmentation techniques such as rotation, flipping, and 
random cropping were applied. 

2.5.5. Incorporating patient HPV status 
One-hot encoding was applied to convert results of the HPV DNA test 

into a numeric value (high-risk HPV positive: 1, high-risk HPV negative: 
0). This attribute was appended to the feature vector of the MTN after 
average pooling and passed on to the fully connected layers for classi
fication. Patients were excluded if HPV DNA test results were not 
available or were indeterminant, resulting in exclusions of 101, 34, and 
24 patients from the training, validation, and test sets respectively. HPV 
DNA test results were available for all patients in the external evaluation 
set. The prevalence of high-risk HPV in the test and evaluation sets was 
65% and 36%, respectively. Patient HPV results were also incorporated 
on the second training stage. The performance of the MTN with and 
without incorporating patient HPV DNA test results was compared for 
the test and external evaluation sets. 

Fig. 2. The Multi-Task Network architecture consists of two main components: (a) Nuclear segmentation component and (b) Diagnostic classification component. In 
the nuclear segmentation component, the network generates a binary mask corresponding to cervical cell nuclei in the quadrant image. In the diagnostic classifi
cation component, diagnostic feature maps from the nuclear segmentation component are used to calculate the probability that each quadrant image corresponds to 
CIN2 + . (View in color.). 
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Fig. 3. Area under the per site ROC curve for algorithms applied to the test set, including morphologic analysis, the deep learning benchmark architectures using 
three different initialization-training strategies, and for the Multi-Task Network. The Multi-Task Network outperforms all the benchmarks, including morpho
logic analysis. 

Fig. 4. Area under the per site ROC curve for algorithms applied to the test set stratified by amount of training data; algorithms include the Multi-Task Network and 
the top three performing architectures from the Xavier random initialization group. The Multi-Task Network consistently outperforms the deep learning benchmarks 
and morphologic analysis, even as the number of patient images in the training set is reduced from 100% to 25%. 

Fig. 5. ROC curves for the Multi-Task Network for HRME images in the validation and test sets when data are analyzed per site (a) or per patient (b) using his
topathologic diagnosis as the gold standard. The performance of colposcopy is also shown for the validation and test datasets (triangle marker). The Multi-Task 
Network achieves similar sensitivity and specificity to that of colposcopy. 
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2.6. Training set size reduction 

To test performance of the MTN when training data are limited, we 
reduced the amount of training data to 10%, 25%, 50%, and 75% of its 
original size. These reductions were applied at the patient level to 
simulate a smaller-scale study where sample diversity may be limited. 
Sampling was stratified by pathology to retain the same disease preva
lence in each reduced set. The MTN and benchmarks were trained using 
these reduced sets in replicates of five, where each replicate contained a 
different set of patients sampled from the training data. 

2.7. Visualizations 

After the networks were trained, we used guided-backpropagation to 
visualize which input features were prioritized by the network 
(Springenberg et al., 2014). We compared results of 
guided-backpropagation of the MTN to that of the best-performing 
off-the-shelf CNN. 

To visualize the impact tissue-type has on the feature space of the 
MTN, we generate a t-Distributed Stochastic Neighbor Embedding (t- 
SNE) plot of the penultimate fully connected layer of the MTN (der 
Maaten and Hinton, 2008). We implemented t-SNE with a principal 

component analysis initialization and perplexity of 50. K-means clus
tering was used to demarcate image groups. t-SNE plots were con
structed for the validation and the test set. 

2.8. Diagnostic evaluation metrics 

The diagnostic performance of morphologic analysis and the MTN 
were evaluated by constructing the receiver operating characteristic 
(ROC) curves, computing the area under the ROC curve (AUC-ROC), and 
the sensitivity and specificity at relevant operating points. Statistical 
significance testing for differences in sensitivity and specificity between 
colposcopy and the MTN was performed using McNemar’s test (McNe
mar, 1947). The Y-Net’s operating point was determined by selecting a 
threshold at which its per site sensitivity matches that of the colposcopic 
impression for the validation set. This selection criterion ensures that the 
instrument’s performance was on par with expert colposcopy with 
regards to sensitivity, encouraging a low number of false negatives. 
Since patients can have multiple suspicious lesions, results are given 
both at a per site and per patient level. Clinical decision making is done 
based on the worst histopathology result across all lesions. 

Fig. 6. ROC curves for the Multi-Task Network for HRME images in the external evaluation set when data are analyzed per site (a) or per patient (b) using his
topathologic diagnosis as the gold standard. The performance of colposcopy is also shown (triangle marker). 

Fig. 7. Per patient ROC curves for the test (a) and external evaluation (b) sets with and without incorporating patient high-risk HPV DNA test results as a feature.  
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3. Results 

As shown in Fig. 3, the MTN outperformed all CNN benchmarks and 
the morphologic algorithm when applied to the test set. The per site 
AUC-ROC for the MTN was 0.85. In contrast, the best-performing CNN 
benchmark architecture within the same initialization-training strategy 

was a ResNext50_32×4d model with a per site AUC-ROC of 0.77. Using 
transfer learning to initialize the networks improved the performance of 
the CNN benchmarks. The best-performing CNN benchmark that un
derwent transfer learning initialization was a ResNext50_32×4d model 
from the Transfer Learning Fine-Tuning group, with a per site AUC-ROC 
of 0.82. The per site AUC-ROC of the ablated MTN without the nuclear 
segmentation decoder was 0.76. 

The Multi-Task Network outperformed all CNN benchmarks and the 
morphologic algorithm even as the amount of training data was reduced. 
As illustrated in Fig. 4, reducing the amount of training data decreased 
the performance of the MTN. Nevertheless, the MTN consistently out
performed all CNN benchmarks and the morphologic algorithm even 
when only 25% of training data were used. 

The per site validation and test ROC curves depicted in Fig. 5a for the 
best-performing MTN model show no generalization gap between the 
network’s performance on the two sets. For the test set, the sensitivity of 
the MTN was 0.93 and specificity was 0.55 at the Q-point. There were no 
statistically significant differences in the sensitivity (p = 0.2) and 
specificity (p = 1.0) of the MTN and expert colposcopic impression. 
Similarly, in the per patient analysis shown in Fig. 5b, no generalization 
gap was observed between the validation and test sets and no significant 
differences were found in the sensitivity and specificity of the MTN and 
colposcopic impression. The MTN had a per-patient AUC-ROC of 0.87 
and a sensitivity and specificity of 0.94 (p = 0.3) and 0.58 (p = 1.0), 
respectively. Table A. 1 provides a summary of the clinical performance 
of colposcopic impression, the morphologic analysis, and the MTN. 

When applied to the external evaluation set, the MTN achieved a per 
site AUC-ROC of 0.81 as shown in Fig. 6a. While no significant difference 
in specificity was found between the MTN and colposcopic impression 
(p = 1.0), the MTN’s sensitivity was significantly lower; the sensitivity 
of the MTN was 0.86 while that of colposcopic impression was 0.89 
(p < 0.0001). However, in the per patient analysis depicted in Fig. 6b 
the MTN outperformed colposcopic impression. The MTN had a per 
patient AUC-ROC of 0.87 and a sensitivity and specificity of 0.96 
(p = 0.005) and 0.59 (p = 0.37), respectively. For comparison, the per 
site and per patient AUC-ROCs of the best overall CNN benchmark 
(ResNext50_32×4d Transfer Learning Fine-Tuning) on the external 
evaluation set were 0.77 and 0.81, respectively. 

Incorporating patient HPV DNA test results as a feature into the MTN 
increased the per patient AUC-ROC for both test and external evaluation 
sets. An increase in AUC-ROC of 3.4% (0.87–0.90) was observed for the 
test set, whereas the AUC-ROC increased by 4.6% (0.87–0.91) for the 
external evaluation set as shown in Fig. 7. This increase in AUC-ROC can 

Fig. 8. Representative test set image quadrants from sites diagnosed as <CIN2 
(left column) and CIN2 + (right column) that were correctly classified by the 
Multi-Task Network. Scale bar is 100 µm. (a) Original images; (b) Proxy label of 
nuclear segmentation; (c) Binary mask resulting from Multi-Task Network nu
clear segmentation; (d) Guided backpropagation using the best-performing 
deep learning benchmark (ResNext50_32×4d transfer learned, fine-tuned 
model); and (e) Guided-backpropagation using the Multi-Task Network 
model. Multi-Task Network guided-backpropagation more consistently em
phasizes pixels associated with nuclei than the best-performing deep 
learning benchmark. 

Fig. 9. t-SNE visualization of features from the 
penultimate fully connected layer of the Multi- 
Task Network for image quadrants in the test 
set (a). Each point corresponds to features from 
a single image quadrant, and is colored ac
cording to pathology and shaded according to 
tissue type. Image quadrant features cluster not 
only by pathology but also by colposcopic tissue 
type. K-means clustering (k = 3) produces: 1. A 
cluster of < CIN2, squamous tissue type sites; 2. 
A cluster with increased amounts of columnar 
tissue type and CIN2 + sites; and 3. A cluster of 
mostly columnar tissue with CIN2 + sites. 
Clusters were named by comparing their pa
thology and tissue-type distributions (b). This 
clustering highlights the confounding effect 
tissue type has on the Multi-Task Network’s 
feature extraction for pathology prediction.   
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be attributed to an improvement in specificity at the high sensitivity 
operating points of the ROC. At the test set operating point corre
sponding to a sensitivity of 0.94, the specificity increased from 0.58 to 
0.71. 

Fig. 8 highlights differences in feature attention between the MTN 
and the best overall CNN benchmark (ResNext50_32×4d Transfer 
Learning Fine-Tuning) by visualizing the guided-backpropagations of a 
representative image set. The MTN guided-backpropagations had 
strong, well-defined activation in regions corresponding to cell nuclei. In 
contrast, the benchmark guided-backpropagations had sporadic activa
tions in regions corresponding to cell nuclei as well as surrounding 
areas. 

The test set TSNE plot in Fig. 9a illustrates the impact that tissue type 
has on the MTN’s feature embedding. K-Means clustering (k = 3) yields 
three distinct clusters with an increasing percentage of both columnar 
tissue and CIN 2 + lesions (Fig. 9b): 1. A cluster containing 89% squa
mous tissue sites with 93% of sites < CIN 2; 2. A cluster containing 34% 
columnar tissue sites with 38% of sites containing CIN 2 + ; and 3. A 
cluster of mostly columnar tissue sites (44%) with 61% of sites con
taining CIN 2 + . Fig. B1 exemplifies the visual differences between 
squamous and columnar/metaplasia images that could lead the MTN to 
generate different embeddings for each tissue type. 

4. Discussion 

Cervical precancer and cancer detection remains a challenge in low- 
and middle-income countries due to poor access to diagnosis, limited 
number of trained professionals, and lack of affordable equipment. To 
tackle this problem and provide an alternative to conventional biopsy 
and histopathology, we developed a deep learning-based CAD system to 
interpret high resolution images and detect precancer and cancer. The 
diagnostic performance of the MTN was on par with expert colposcopic 
impression for the test and external-evaluation sets in the per patient 
analysis. The MTN described here has several advantages compared to 
other deep learning architectures by leveraging nuclear segmentation as 
an auxiliary task for classification. As suggested by the guided- 
backpropagations, the segmentation task may have steered the MTN’s 
attention to nuclei, favoring the extraction of nuclear morphology and 
the tissue organization information that aids in pathology prediction. 

Moreover, incorporating HPV status as a diagnostic feature boosted 
the per patient specificity at high sensitivity operating points for the test 
and external-evaluation sets. High-risk HPV plays a critical role in the 
progression to cervical cancer. As high-risk HPV DNA testing becomes 
more available in LMICs (William et al., 2018) this clinical variable 
could become an integral input to CAD systems for automated cervical 
precancer diagnosis in low- and middle-income countries. This work 
defined the HPV status as a pooled result of high-risk HPV variants. 
However, future work may focus on the role of specific HPV variants, 
such as HPV 16 and HPV 18 which are known to be more oncogenic. 
Aside from high-risk HPV status, several works on colposcopy image 
classification have explored age and Pap test result among others as 
useful clinical variables to aid in patient diagnosis (Yuan et al., 2020; Xu 
et al., 2016). While this study does not study these variables, we 
acknowledge that they may also be of interest for future work. 

While the MTN was successful at diagnostic feature extraction, we 
observed that the network’s performance to classify images of columnar 
sites was lower than that for squamous sites. Nuclei in benign columnar 
sites tend to be tightly packed and are often arranged in a glandular 
pattern, whereas nuclei in benign squamous sites are more evenly 
distributed. The t-SNE of the MTNs features suggests that the network 
may be sensitive to these morphometric differences. As a result, tissue 
type may act as a confounding variable limiting the model’s perfor
mance. Future work should explore untangling tissue type prediction 
from pathology prediction to improve diagnostic performance. 

The HRME does not operate as a standalone device and must rely on 
guidance from colposcopic impression. When colposcopists are un
available this presents a significant limitation. Advancement in the field 
of colposcopy image analysis may aid in guiding appropriate placement 
of the HRME probe by localizing high-risk areas on the cervix. 

Low-cost imaging technologies coupled with deep learning-based 
CAD systems could address the challenges faced by low- and middle- 
income countries in expanding and optimizing cervical cancer preven
tion programs. In this work, we show that the HRME powered by our 
deep learning based diagnostic system performs comparable to expert 
colposcopy for cervical precancer and cancer diagnosis. 

Citation diversity 

Recent work in several fields of science has identified a bias in 
citation practices such that papers from women and other minority 
scholars are undercited relative to the number of papers in the field 
(Caplar et al., 2017; Dworkin et al., 2020; Maliniak et al., 2013; Dion 
et al., 2018). We recognize this bias and have worked diligently to 
ensure that we are referencing appropriate papers with fair gender and 
racial author inclusion. 
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Appendix A. . Overall per patient performance comparison 
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Appendix B. . Visual differences across tissue types 

See Fig. B1. 
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Arbyn, M., Weiderpass, E., Bruni, L., de Sanjośe, S., Saraiya, M., Ferlay, J., Bray, F., 2020. 
Estimates of incidence and mortality of cervical cancer in 410 2018: a worldwide 
analysis. Lancet Glob. Health 8, e191–e203. 

Asiedu, M.N., Simhal, A., Chaudhary, U., Mueller, J.L., Lam, C.T., Schmitt, J.W., 
Venegas, G., Sapiro, G., Ramanujam, N., 2018. Development of algorithms for 
automated detection of cervical pre-cancers with a low-cost, point-of-care, pocket 
colposcope. IEEE Trans. Biomed. Eng. 66, 2306–2318. 

Caplar, N., Tacchella, S., Birrer, S., 2017. Quantitative evaluation of gender bias in 
astronomical publications from citation counts. Nat. Astron. 1, 141. 

Caruana, R., 1997. Multitask learning. Mach. Learn. 28, 41–75. 
Chase, D.M., Kalouyan, M., DiSaia, P.J., 2009. Colposcopy to evaluate abnormal cervical 

cytology in 2008. Am. J. Obstet. Gynecol. 200, 472–480. 
Cho, B.J., Choi, Y.J., Lee, M.J., Kim, J.H., Son, G.H., Park, S.H., Kim, H.B., Joo, Y.J., 

Cho, H.Y., Kyung, M.S., et al., 2020. Classification of cervical neoplasms on 
colposcopic photography using deep learning. Sci. Rep. 10, 1–10. 

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. Imagenet: A large-scale 
hierarchical image database 2009 248 255. 

der Maaten, L., Hinton, G., 2008. Visualizing data using T-sne. J. Mach. Learn. Res. 
Dion, M.L., Sumner, J.L., Mitchell, S.M., 2018. Gendered citation patterns across political 

science and social science methodology fields. Political Anal. 26, 312–327. 
Dworkin, J.D., Linn, K.A., Teich, E.G., Zurn, P., Shinohara, R.T., Bassett, D.S., 2020. The 

extent and drivers of gender imbalance in neuroscience reference lists. Nat. 
Neurosci. 23 (8), 918–926. https://doi.org/10.1101/2020.01.03.894378. 

Gao, F., Yoon, H., Wu, T., Chu, X., 2020. A feature transfer enabled multi-task deep 
learning model on medical imaging. Expert Syst. Appl. 143, 112957. 

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward 
neural networks, in: Proceedings of the thirteenth international conference on 
artificial intelligence and statistics, JMLR Workshop and Conference Proceedings. 
pp. 249–256. 

Gordon, S., Seadia, O., Levi, E., Landesman, I., 2019. A novel multimodal optical imaging 
device for cervical cancer screening and diagnosis. Proceedings, 108560L. 

Grant, B.D., Schwarz, R.A., Quang, T., Schmeler, K.M., Richards-Kortum, R., 2015. High- 
resolution microendoscope for the detection of cervical neoplasia. In: Mobile Health 
Technologies. Springer, pp. 421–434. 

He, K. , Zhang, X. , Ren, S. , Sun, J. , 2015. Deep residual Learn. Image Recognit. 2015. 
Hu, L., Bell, D., Antani, S., Xue, Z., Yu, K., Horning, M.P., Gachuhi, N., Wilson, B., 

Jaiswal, M.S., Befano, B., et al., 2019. An observational study of deep learning and 
automated evaluation of cervical images for cancer screening. JNCI: J. Natl. Cancer 
Inst. 111, 923–932. 

Hunt, B., Fregnani, J.H.T.G., Schwarz, R.A., Pantano, N., Tesoni, S., PossatiResende, J.C., 
Antoniazzi, M., de Oliveira Fonseca, B., de Macêdo Matsushita, G., Scapulatempo- 
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Table A1 
Summary of the per patient diagnostic performance of colposcopy impression, 
morphologic analysis, and the Multi-Task Network on the test set.  

Method Sensitivity Specificity Positive 
Predictive 
Value 

Negative 
Predictive 
Value 

Colposcopy  0.95  0.62  0.50  0.97 
Morphologic 

Analysis  
0.91  0.60  0.48  0.94 

Multi-Task 
Network  

0.94  0.58  0.49  0.96  

Fig. B1. Representative test set image patches from squamous (left column) 
and columnar (right column). (A) Original image, (B) Proxy label of nuclear 
segmentation, and (C) Multi-Task Network’s nuclear segmentation prediction. 
High background, non-nuclear fluorescence in columnar images impedes nu
clear segmentation resulting in less accurate nuclear masks as shown in 
columnar (B) and (C). Scale bar is 100 µm. 
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