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Cervical cancer is a public health emergency in low- and middle-income countries where resource limitations
hamper standard-of-care prevention strategies. The high-resolution endomicroscope (HRME) is a low-cost, point-
of-care device with which care providers can image the nuclear morphology of cervical lesions. Here, we propose
a deep learning framework to diagnose cervical intraepithelial neoplasia grade 2 or more severe from HRME
images. The proposed multi-task convolutional neural network uses nuclear segmentation to learn a diagnosti-
cally relevant representation. Nuclear segmentation was trained via proxy labels to circumvent the need for
expensive, manually annotated nuclear masks. A dataset of images from over 1600 patients was used to train,
validate, and test our algorithm; data from 20% of patients were reserved for testing. An external evaluation set
with images from 508 patients was used to further validate our findings. The proposed method consistently
outperformed other state-of-the art architectures achieving a test per patient area under the receiver operating
characteristic curve (AUC-ROC) of 0.87. Performance was comparable to expert colposcopy with a test sensitivity
and specificity of 0.94 (p = 0.3) and 0.58 (p = 1.0), respectively. Patients with recurrent human papillomavirus
(HPV) infections are at a higher risk of developing cervical cancer. Thus, we sought to incorporate HPV DNA test
results as a feature to inform prediction. We found that incorporating patient HPV status improved test specificity
to 0.71 at a sensitivity of 0.94.

1. Introduction

With around 300,000 annual deaths and more than 500,000 new
cases each year, cervical cancer is the fourth most common cancer in
women worldwide (Arbyn et al., 2020). The incidence of cervical cancer
is particularly high in low- and middle-income countries (LMICs), and it
is the most common cancer in women living in 42 low-income nations

* Corresponding author.

(Arbyn et al., 2020).

Human papillomavirus (HPV) vaccination as well as detection and
treatment of cervical precancerous lesions are highly effective at pre-
venting cervical cancer (Arbyn et al., 2020; Lei et al., 2020). Two cer-
vical cancer screening methods are widely used: the Papanicolaou test
(Pap test) and the HPV DNA test (Melnikow et al., 2018; William et al.,
2018). While challenges remain, HPV DNA testing is becoming more
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widely available in LMICs (Sankaranarayanan, 2014; Villa, 2012). Pa-
tients who screen positive are referred to colposcopy for follow-up
diagnosis. The colposcopist uses a low magnification microscope
called a colposcope to image the cervix following application of acetic
acid and, in some cases, Lugol’s iodine, and, when pathology is avail-
able, takes biopsies of clinically suspicious lesions (Chase et al., 2009;
Olatunbosun et al., 1991). Biopsies are sent to a pathologist for diag-
nosis. Cervical cancer precursors, also referred to as cervical intra-
epithelial neoplasia (CIN), are graded as CIN 1, CIN 2, or CIN 3, in order
of increasing severity. Patients may also receive a diagnosis of adeno-
carcinoma in situ (AIS), which indicates that there were cellular ab-
normalities in the columnar tissue. Patients with CIN 2, CIN 3, and AIS
are at a higher risk of developing cervical cancer and in accordance with
the World Health Organization guidelines should receive treatment,
whereas patients with CIN 1 lesions do not require treatment (Organi-
zation et al., 2014). Therefore, clinicians aim to distinguish between
<CIN 2 (normal or CIN 1) and CIN 2 + (CIN 2, CIN 3, AIS or cancer)
lesions.

The three-visit process for screening, diagnosis, and treatment of
cervical precancers has helped reduce the incidence and mortality of
cervical cancer in high-income countries. However, it has been difficult
to implement such strategies in low- and middle-income settings due to a
scarcity of trained professionals (Wilson et al., 2018; Mwaka et al.,
2013), lack of affordable equipment, and high rates of loss to follow-up
(Hunt et al., 2018; Munoz et al., 2008). There is a need for low-cost
technologies that can be used to diagnose cervical cancer and its pre-
cursors at the point-of-care.

Researchers have evaluated whether optical imaging devices
coupled with automated algorithms could serve as low-cost alternatives
to diagnose cervical precancer in vivo; such tools could bypass the need
for a trained colposcopist and pathologist (Thekkek and
Richards-Kortum, 2008; Gordon et al., 2019; Asiedu et al., 2018).
Several computer-aided diagnostic (CAD) systems have been developed
to automate interpretation of colposcopic images, and algorithms that
leverage advances in deep learning have improved diagnostic perfor-
mance (Hu et al., 2019; Yuan et al., 2020; Li et al., 2020). Hu et al.
(2019) was one of first to explore deep learning-based computer aided
diagnostic systems for cervical cancer and precancer diagnosis using
biopsy correlated cervicography data. They successfully trained a Faster
R-CNN model to detect the presence of CIN 2 + lesions with a sensitivity
and specificity of 100% and 57.5% respectively on a validation set of
192 HPV positive patients (Hu et al., 2019). Since then, several studies
using colposcopy data to train deep learning CAD systems have been
reported (Yuan et al., 2020; Li et al., 2020; Zhang et al., 2020; Saini
et al., 2020; Cho et al., 2020).

Other strategies include high-resolution microendoscope (HRME)
imaging to visualize subcellular tissue features; previous algorithms
developed to analyze HRME images use morphologic features such as
the nuclear-to-cytoplasm area ratio or the number of abnormally shaped
or sized nuclei. Recently, Hunt et al. (2021) conducted a prospective
evaluation of 1901 images from colposcopically abnormal lesions in
Barretos, Brazil. They achieved 89% sensitivity and 54% specificity
compared to histopathologic diagnosis (Hunt et al., 2021).

In this paper, we present, to our knowledge, the first application of
deep learning to detect cervical precancer and cancer from HRME im-
ages. We describe a compact multi-task convolutional neural network
(CNN) architecture that first performs the auxiliary task of nuclear
segmentation to inform representation learning for HRME image clas-
sification to identify the presence of CIN 2 + lesions. Inclusion of an
auxiliary task can support representation learning for the main classi-
fication task by drawing attention to relevant features or preventing
overfitting (Caruana, 1997; Thung et al., 2017; Yang et al., 2017; Gao
etal., 2020; Liu et al., 2019). The network also incorporates patient HPV
status as an additional clinical attribute to inform prediction. To train,
validate, and test our methods, we used data from two large diagnostic
studies of HRME imaging conducted in rural Brazil (Hunt et al., 2018;
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2021). To validate generalizability of the trained model, we tested its
performance on an independent screening study of HRME imaging
conducted in El Salvador by a separate group of clinicians (Parra et al.,
2021).

We demonstrate that our method trained from random initialization
outperforms classification based on morphologic features as well as
state-of-the-art deep learning architectures trained either from a random
initialization or pretrained on ImageNet (Deng et al., 2009). We also
show that our method retains a high performance relative to other deep
learning benchmarks and morphologic algorithms when training data
are reduced. Results from the independent validation set show that our
method performs on par with expert colposcopy.

2. Materials and methods
2.1. High-resolution microendoscope

The HRME is a low-cost, fiber optic fluorescence microscope that is
used to image nuclear morphology in vivo (Hunt et al., 2018; Grant
et al., 2015; Pierce et al., 2012). Following topical application of 0.01%
w/v proflavine (Pantano et al., 2018), the fiber optic probe is placed in
gentle contact with the cervix to collect HRME images. Images are
collected at 12 fps; the field of view is 790 um and the lateral resolution
is 4.4 um (Quang et al., 2016).

2.2. Data acquisition and partitioning

Data were assembled from three clinical studies designed to compare
the accuracy of HRME to colposcopy using histopathology as the gold
standard. The first two studies enrolled screen-positive women in Bar-
retos, Brazil; in these populations the prevalence of histologically
detected CIN 2 + was high (35% and 29%, respectively) (Hunt et al.,
2018; 2021). The third study enrolled women undergoing cervical
screening in San Salvador, El Salvador; in this population the prevalence
of CIN 2 + was relatively low (1.5%) (Parra et al., 2021).

In the two high-prevalence studies in Brazil, study procedures took
place during a single patient visit. Pap test or HPV DNA (cobas 4800
HPV test) screen-positive participants underwent colposcopy with 5%
acetic acid and Lugol’s iodine. The colposcopic impression of any
abnormal areas (low-grade, high-grade, or suspected cancer) was
recorded. Following colposcopy, 0.01% proflavine was applied and
HRME images were acquired from areas noted as abnormal by colpos-
copy and from each quadrant with no lesions. In each quadrant without
a lesion, HRME images were acquired from a randomly selected colpo-
scopically normal site at the squamocolumnar junction. When the
squamocolumnar junction was not present, a random biopsy from an
apparently normal area was acquired at the clinician’s discretion. The
clinician acquired a single HRME image per site of interest. The HRME
result (morphologic abnormality score and classification), colposcopic
impression of tissue type (squamous, columnar, or metaplasia), and
colposcopic impression (normal, low-grade, high-grade, or suspected
cancer) for each site were recorded. Sites identified as abnormal by
colposcopy and/or by HRME were biopsied. In cases where a lesion
spanned multiple quadrants, the area within the lesion with the most
severe colposcopic impression was biopsied. If no abnormal sites were
identified by either method, then a single biopsy was taken from a
clinically normal site imaged by the HRME (Hunt et al., 2018; 2021).

In the El Salvador study, procedures took place during two patient
visits. During Visit 1 (screening visit) HPV DNA testing (QIAGEN
careHPV) and VIA screening were performed. Screen-positive women
and 10% of women who screened negative (HPV- and VIA-), were
invited back for a second visit (Visit 2: triage and diagnostic visit).
During Visit 2, VIA was repeated followed by colposcopy with acetic
acid and Lugol’s iodine. Any abnormalities detected by either VIA or
colposcopy were noted along with the clinical impression (low-grade,
high-grade, or suspected cancer). 0.01% proflavine was applied and
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Table 1

Number of patients and number of HRME images in the training, validation, test,
and external evaluation sets stratified by histopathologic diagnosis. Number of
HRME images are in parentheses.

Histopathology Training Validation  Test External
Evaluation
Negative 547 (689) 191 (238) 193 274 (437)
(237)
CIN1 125 (158) 42 (54) 44 (53) 206 (414)
CIN2 69 (104) 24 (37) 22 (35) 6 (18)
CIN3 203 (280) 71 (103) 70 (99) 21 (37)
AIS - - - 1)
Invasive 15 (23) 5(09) 6(11) —
Carcinoma
Total 959 333 (441) 335 508 (907)
(1254) (435)
Crop Quadrant
Image
Generation

Fig. 1. Pre-processing of high-resolution microendoscopy (HRME) images
before the Multi-Task Network’s classification. The original HRME image is
cropped and divided into four quadrants. The Multi-Task Network is then used
to calculate the probability that each quadrant corresponds to CIN2 + . Scale
bar is 200 um. (View in color.).

HRME images were obtained of each abnormality noted during VIA and/
or colposcopy along with one normal area of the cervix. All abnormal-
ities detected by colposcopy were biopsied. The colposcopically
apparent normal area was biopsied if abnormal by HRME. If there were
no abnormalities during the clinical exam, then an HRME image was
taken of each quadrant of the cervix and the worst scoring area by HRME
was biopsied, regardless of whether the score was abnormal or normal
(Parra et al., 2021). The clinician acquired a single HRME image per site
of interest. Data were divided into training, validation, and test parti-
tions in a 3:1:1 ratio stratified by patient histopathology. All data from a
given patient were assigned to the same partition. The number of imaged
sites and corresponding patients included in the training, validation,
test, and external evaluation sets can be found in Table 1; results are
stratified by histologic diagnosis.

Studies in Brazil were approved by the Barretos Cancer Hospital
Ethics Research Committee, the Brazilian National Ethics
Research  Commission/CONEP  (CAAE: 37774314.3.0000.5437,
61743416.1.0000.5437) and the Institutional Review Boards of Rice
University (ID#: 653693, 2017-293) and The University of Texas MD
Anderson Cancer Center (ID#: 2015-0442, 2017-0096). The study in El
Salvador was approved by the Comité Nacional de Etica de la Inves-
tigacion en Salud (National Ethics Committee of Health Research, ID#:
CNEIS/005/2015) in El Salvador and the institutional review boards at
The University of Texas MD Anderson Cancer Center (ID#: 2015-0620),
Cleveland Clinic (ID#: 15-1162), and Rice University (ID#: 2017-347).
Written informed consent was provided by all patients.
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2.3. Morphologic analysis

HRME images were analyzed using a prospective morphologic image
analysis algorithm. The algorithm segments nuclei within an automati-
cally determined region of interest (ROI) that excludes areas of low- and
high-intensity; classifies each segmented nucleus as normal or abnormal
based on pre-defined area and eccentricity thresholds; and then reports
the number of abnormal nuclei per unit area (Grant et al., 2015). The
number of abnormal nuclei per unit area is used to classify each imaged
site as normal or abnormal, using a pre-set threshold (Hunt et al., 2018).

2.4. Deep learning benchmarks

To benchmark the performance of the proposed method, we trained,
validated, and tested state-of-the-art, off-the-shelf CNN architectures
including ResNetl8, ResNet34, ResNet50 (He et al., 2015),
ResNext50_32x4d (Xie et al., 2017), InceptionV3 (Szegedy et al., 2016),
Wide ResNet50_2 (Zagoruyko and Komodakis, 2016), SqueezeNetl_1
(Iandola et al., 2016), EfficientNet-B1 (Tan and Le, 2019), and VGG16bn
(Simonyan and Zisserman, 2015) models. Two different initializations
were used, Xavier initialization (Glorot and Bengio, 2010) and transfer
learning from ImageNet. Models initialized through transfer learning
were trained by full optimization (all weights in the model were learn-
able), or by fine-tuning (only weights in the last fully connected layers
were learnable). Five models were independently trained for each ar-
chitecture and initialization-training strategy pair. Original HRME im-
ages were center cropped, as shown in Fig. 1, and resized to the
network’s input size. For networks initialized through transfer learning,
input images were normalized with the mean and standard deviation of
ImageNet. Otherwise, input images were normalized with the mean and
standard deviation of the training set. All networks were trained to
classify HRME images as either < CIN 2 or CIN 2 + until the training
AUC-ROC reached one, and the model with the highest validation
AUC-ROC was selected for testing. Standard data augmentation tech-
niques such as rotation, flipping, and random cropping were applied,
and grid search was used for hyperparameter parameter tuning.

2.5. Proposed method: Multi-task learning with learning via proxy labels

The proposed Multi-Task Network (MTN), shown in Fig. 2, performs
two tasks - nuclear segmentation and classification - and is based on Y-
Net architecture proposed by Mehta et al. (2018a). The segmentation
component of the network has an encoder-decoder structure. In the
encoder, efficient spatial pyramid (ESP) modules handle the primary
feature extraction operations. The decoder receives the encoder’s final
feature representation and uses upsampling and pyramid spatial pooling
(PSP) modules to construct a nuclear mask with same spatial resolution
as the input. Concatenating skip connections from the encoder to the
decoder enables information sharing between the two. The MTN’s
diagnostic component is built on more ESP modules that culminate on
an average global pooling module followed by two fully connected
layers. Downsampling operations are handled by a single convolution,
which reduces spatial resolution of the feature maps by half. Upsampling
is performed by bilinear interpolation. Batch normalization and ReLU
activation are applied after each downsampling operation, upsampling
operation, ESP and PSP module. In the next sections, we describe the
modules that compose the MTN and the learning via proxy labels.

2.5.1. Efficient spatial pyramid module

The ESP module consists of two components: an initial point-wise
convolution followed by a spatial pyramid of dilated convolutions
(Mehta et al., 2018b). Point-wise convolution applies a 1 by 1 kernel to
the input, reducing the number of channels and downstream computa-
tions. The spatial pyramid of dilated convolutions takes in the output of
the point-wise convolution and applies four parallel convolutional fil-
ters, each with a 3 by 3 kernel applied at different dilation factors. This
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(a) Nuclear Segmentation

Quadrant
Image

Quadrant
Segmentation

(b) Diagnostic Classification

Diagnostic
Feature Maps

I\ ..........

\ 3 3 CIN2+
H ’7 4 E Quadrant
| g S Probability

Downsampling Pyramid Spatial
Convolution Pooling

—— Bilinear Upsampling —— Downsampling

Efficient Spatial
Pyramid

Fully Connected
Layers

----- Skip Connection Feedforward

Fig. 2. The Multi-Task Network architecture consists of two main components: (a) Nuclear segmentation component and (b) Diagnostic classification component. In
the nuclear segmentation component, the network generates a binary mask corresponding to cervical cell nuclei in the quadrant image. In the diagnostic classifi-
cation component, diagnostic feature maps from the nuclear segmentation component are used to calculate the probability that each quadrant image corresponds to

CIN2 + . (View in color.).

dilation increases the network’s receptive field, incorporating
multi-scale information without increasing the number of parameters
(Yu and Koltun, 2015). Outputs from each dilated convolution are hi-
erarchically summed, beginning with the lower levels, and the sum-
mations are concatenated. A residual connection between the input and
output of the ESP module aids in gradient stability. In addition, a series
of consecutive ESP modules has a concatenating skip connection joining
the input and output feature maps.

2.5.2. Pyramid spatial pooling module

The PSP module extends the network’s receptive field by integrating
multi-scale features (Zhao et al., 2017). The PSP module uses average
pooling operations at four different levels. The output of each pooling
operation undergoes a point-wise convolution that compresses the
number of channels and bilinear upsampling to match their spatial
resolution to that of the input. The input and output feature maps of each
pooling operating are concatenated.

2.5.3. Learning via proxy labels and two stage training

The MTN is trained in two stages, starting with the segmentation
component. As shown in Fig. 1, cropped HRME images were divided into
four non-overlapping image quadrants and passed through the network
separately. The nuclear segmentation resulting from the morphologic
algorithm was used to supervise the nuclear segmentation performed
with the MTN. This stage was trained using stochastic gradient descent
for three hundred epochs with a cosine annealing scheduled learning
rate with restarts every 30 epochs and batch size of 10 (Loshchilov and
Hutter, 2016). The model with the highest validation mean intersection
over union (mIOU) was selected to initialize training stage two.

In stage two, the diagnostic and segmentation components were
optimized together. The diagnostic branch was appended to the archi-
tecture, and weights learned in stage one were used to initialize the
architecture. This second stage was trained via stochastic gradient
descent for 300 epochs with an annealing cosine scheduled learning rate
with restarts every 20 epochs with a batch size of 5. Hyperparameters

were optimized via grid search. In both stages, input data augmentation
techniques such as rotation, flipping, and random cropping were
applied. All code was written in Python 3.6 using PyTorch 1.5.0. Ex-
periments ran in a CUDA 10.2 enabled computer with two GeForce RTX
2080 Ti graphics processing units each with 12 GB VRAM.

2.5.4. Ablation of nuclear segmentation task

To evaluate the contribution of the nuclear segmentation component
to the diagnostic performance of the MTN, an ablation study was con-
ducted where the nuclear segmentation decoder of the MTN was
removed. This ablated structure, consisting of the segmentation encoder
and the diagnostic branch, was initialized using Xavier initialization and
trained to classify HRME quadrants as <CIN 2 or CIN 2 + . The network
was optimized via stochastic gradient descent for 300 epochs with an
annealing cosine scheduled learning rate with restarts every 20 epochs
with a batch size of 5. Hyperparameters were optimized via grid search.
Input data augmentation techniques such as rotation, flipping, and
random cropping were applied.

2.5.5. Incorporating patient HPV status

One-hot encoding was applied to convert results of the HPV DNA test
into a numeric value (high-risk HPV positive: 1, high-risk HPV negative:
0). This attribute was appended to the feature vector of the MTN after
average pooling and passed on to the fully connected layers for classi-
fication. Patients were excluded if HPV DNA test results were not
available or were indeterminant, resulting in exclusions of 101, 34, and
24 patients from the training, validation, and test sets respectively. HPV
DNA test results were available for all patients in the external evaluation
set. The prevalence of high-risk HPV in the test and evaluation sets was
65% and 36%, respectively. Patient HPV results were also incorporated
on the second training stage. The performance of the MTN with and
without incorporating patient HPV DNA test results was compared for
the test and external evaluation sets.
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Fig. 3. Area under the per site ROC curve for algorithms applied to the test set, including morphologic analysis, the deep learning benchmark architectures using
three different initialization-training strategies, and for the Multi-Task Network. The Multi-Task Network outperforms all the benchmarks, including morpho-

logic analysis.
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Fig. 4. Area under the per site ROC curve for algorithms applied to the test set stratified by amount of training data; algorithms include the Multi-Task Network and
the top three performing architectures from the Xavier random initialization group. The Multi-Task Network consistently outperforms the deep learning benchmarks
and morphologic analysis, even as the number of patient images in the training set is reduced from 100% to 25%.
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Fig. 5. ROC curves for the Multi-Task Network for HRME images in the validation and test sets when data are analyzed per site (a) or per patient (b) using his-
topathologic diagnosis as the gold standard. The performance of colposcopy is also shown for the validation and test datasets (triangle marker). The Multi-Task
Network achieves similar sensitivity and specificity to that of colposcopy.
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Fig. 6. ROC curves for the Multi-Task Network for HRME images in the external evaluation set when data are analyzed per site (a) or per patient (b) using his-
topathologic diagnosis as the gold standard. The performance of colposcopy is also shown (triangle marker).
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Fig. 7. Per patient ROC curves for the test (a) and external evaluation (b) sets with and without incorporating patient high-risk HPV DNA test results as a feature.

2.6. Training set size reduction

To test performance of the MTN when training data are limited, we
reduced the amount of training data to 10%, 25%, 50%, and 75% of its
original size. These reductions were applied at the patient level to
simulate a smaller-scale study where sample diversity may be limited.
Sampling was stratified by pathology to retain the same disease preva-
lence in each reduced set. The MTN and benchmarks were trained using
these reduced sets in replicates of five, where each replicate contained a
different set of patients sampled from the training data.

2.7. Visualizations

After the networks were trained, we used guided-backpropagation to
visualize which input features were prioritized by the network
(Springenberg et al., 2014). We compared results of
guided-backpropagation of the MTN to that of the best-performing
off-the-shelf CNN.

To visualize the impact tissue-type has on the feature space of the
MTN, we generate a t-Distributed Stochastic Neighbor Embedding (t-
SNE) plot of the penultimate fully connected layer of the MTN (der
Maaten and Hinton, 2008). We implemented t-SNE with a principal

component analysis initialization and perplexity of 50. K-means clus-
tering was used to demarcate image groups. t-SNE plots were con-
structed for the validation and the test set.

2.8. Diagnostic evaluation metrics

The diagnostic performance of morphologic analysis and the MTN
were evaluated by constructing the receiver operating characteristic
(ROC) curves, computing the area under the ROC curve (AUC-ROC), and
the sensitivity and specificity at relevant operating points. Statistical
significance testing for differences in sensitivity and specificity between
colposcopy and the MTN was performed using McNemar’s test (McNe-
mar, 1947). The Y-Net’s operating point was determined by selecting a
threshold at which its per site sensitivity matches that of the colposcopic
impression for the validation set. This selection criterion ensures that the
instrument’s performance was on par with expert colposcopy with
regards to sensitivity, encouraging a low number of false negatives.
Since patients can have multiple suspicious lesions, results are given
both at a per site and per patient level. Clinical decision making is done
based on the worst histopathology result across all lesions.
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(a)

(b)

(c)

(d)

(e)

Fig. 8. Representative test set image quadrants from sites diagnosed as <CIN2
(left column) and CIN2 + (right column) that were correctly classified by the
Multi-Task Network. Scale bar is 100 um. (a) Original images; (b) Proxy label of
nuclear segmentation; (c) Binary mask resulting from Multi-Task Network nu-
clear segmentation; (d) Guided backpropagation using the best-performing
deep learning benchmark (ResNext50_32x4d transfer learned, fine-tuned
model); and (e) Guided-backpropagation using the Multi-Task Network
model. Multi-Task Network guided-backpropagation more consistently em-
phasizes pixels associated with nuclei than the best-performing deep
learning benchmark.

3. Results
As shown in Fig. 3, the MTN outperformed all CNN benchmarks and
the morphologic algorithm when applied to the test set. The per site

AUC-ROC for the MTN was 0.85. In contrast, the best-performing CNN
benchmark architecture within the same initialization-training strategy

401 100+
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was a ResNext50_32x4d model with a per site AUC-ROC of 0.77. Using
transfer learning to initialize the networks improved the performance of
the CNN benchmarks. The best-performing CNN benchmark that un-
derwent transfer learning initialization was a ResNext50_32x4d model
from the Transfer Learning Fine-Tuning group, with a per site AUC-ROC
of 0.82. The per site AUC-ROC of the ablated MTN without the nuclear
segmentation decoder was 0.76.

The Multi-Task Network outperformed all CNN benchmarks and the
morphologic algorithm even as the amount of training data was reduced.
As illustrated in Fig. 4, reducing the amount of training data decreased
the performance of the MTN. Nevertheless, the MTN consistently out-
performed all CNN benchmarks and the morphologic algorithm even
when only 25% of training data were used.

The per site validation and test ROC curves depicted in Fig. 5a for the
best-performing MTN model show no generalization gap between the
network’s performance on the two sets. For the test set, the sensitivity of
the MTN was 0.93 and specificity was 0.55 at the Q-point. There were no
statistically significant differences in the sensitivity (p =0.2) and
specificity (p =1.0) of the MTN and expert colposcopic impression.
Similarly, in the per patient analysis shown in Fig. 5b, no generalization
gap was observed between the validation and test sets and no significant
differences were found in the sensitivity and specificity of the MTN and
colposcopic impression. The MTN had a per-patient AUC-ROC of 0.87
and a sensitivity and specificity of 0.94 (p = 0.3) and 0.58 (p = 1.0),
respectively. Table A. 1 provides a summary of the clinical performance
of colposcopic impression, the morphologic analysis, and the MTN.

When applied to the external evaluation set, the MTN achieved a per
site AUC-ROC of 0.81 as shown in Fig. 6a. While no significant difference
in specificity was found between the MTN and colposcopic impression
(p = 1.0), the MTN’s sensitivity was significantly lower; the sensitivity
of the MTN was 0.86 while that of colposcopic impression was 0.89
(p < 0.0001). However, in the per patient analysis depicted in Fig. 6b
the MTN outperformed colposcopic impression. The MTN had a per
patient AUC-ROC of 0.87 and a sensitivity and specificity of 0.96
(p = 0.005) and 0.59 (p = 0.37), respectively. For comparison, the per
site and per patient AUC-ROCs of the best overall CNN benchmark
(ResNext50_32x4d Transfer Learning Fine-Tuning) on the external
evaluation set were 0.77 and 0.81, respectively.

Incorporating patient HPV DNA test results as a feature into the MTN
increased the per patient AUC-ROC for both test and external evaluation
sets. An increase in AUC-ROC of 3.4% (0.87-0.90) was observed for the
test set, whereas the AUC-ROC increased by 4.6% (0.87-0.91) for the
external evaluation set as shown in Fig. 7. This increase in AUC-ROC can

Fig. 9. t-SNE visualization of features from the

I
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penultimate fully connected layer of the Multi-
Task Network for image quadrants in the test
set (a). Each point corresponds to features from

a single image quadrant, and is colored ac-
cording to pathology and shaded according to
tissue type. Image quadrant features cluster not
only by pathology but also by colposcopic tissue
type. K-means clustering (k = 3) produces: 1. A
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feature extraction for pathology prediction.
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be attributed to an improvement in specificity at the high sensitivity
operating points of the ROC. At the test set operating point corre-
sponding to a sensitivity of 0.94, the specificity increased from 0.58 to
0.71.

Fig. 8 highlights differences in feature attention between the MTN
and the best overall CNN benchmark (ResNext50_32x4d Transfer
Learning Fine-Tuning) by visualizing the guided-backpropagations of a
representative image set. The MTN guided-backpropagations had
strong, well-defined activation in regions corresponding to cell nuclei. In
contrast, the benchmark guided-backpropagations had sporadic activa-
tions in regions corresponding to cell nuclei as well as surrounding
areas.

The test set TSNE plot in Fig. 9a illustrates the impact that tissue type
has on the MTN’s feature embedding. K-Means clustering (k = 3) yields
three distinct clusters with an increasing percentage of both columnar
tissue and CIN 2 + lesions (Fig. 9b): 1. A cluster containing 89% squa-
mous tissue sites with 93% of sites < CIN 2; 2. A cluster containing 34%
columnar tissue sites with 38% of sites containing CIN 2 + ; and 3. A
cluster of mostly columnar tissue sites (44%) with 61% of sites con-
taining CIN 2 + . Fig. Bl exemplifies the visual differences between
squamous and columnar/metaplasia images that could lead the MTN to
generate different embeddings for each tissue type.

4. Discussion

Cervical precancer and cancer detection remains a challenge in low-
and middle-income countries due to poor access to diagnosis, limited
number of trained professionals, and lack of affordable equipment. To
tackle this problem and provide an alternative to conventional biopsy
and histopathology, we developed a deep learning-based CAD system to
interpret high resolution images and detect precancer and cancer. The
diagnostic performance of the MTN was on par with expert colposcopic
impression for the test and external-evaluation sets in the per patient
analysis. The MTN described here has several advantages compared to
other deep learning architectures by leveraging nuclear segmentation as
an auxiliary task for classification. As suggested by the guided-
backpropagations, the segmentation task may have steered the MTN’s
attention to nuclei, favoring the extraction of nuclear morphology and
the tissue organization information that aids in pathology prediction.

Moreover, incorporating HPV status as a diagnostic feature boosted
the per patient specificity at high sensitivity operating points for the test
and external-evaluation sets. High-risk HPV plays a critical role in the
progression to cervical cancer. As high-risk HPV DNA testing becomes
more available in LMICs (William et al., 2018) this clinical variable
could become an integral input to CAD systems for automated cervical
precancer diagnosis in low- and middle-income countries. This work
defined the HPV status as a pooled result of high-risk HPV variants.
However, future work may focus on the role of specific HPV variants,
such as HPV 16 and HPV 18 which are known to be more oncogenic.
Aside from high-risk HPV status, several works on colposcopy image
classification have explored age and Pap test result among others as
useful clinical variables to aid in patient diagnosis (Yuan et al., 2020; Xu
et al.,, 2016). While this study does not study these variables, we
acknowledge that they may also be of interest for future work.

While the MTN was successful at diagnostic feature extraction, we
observed that the network’s performance to classify images of columnar
sites was lower than that for squamous sites. Nuclei in benign columnar
sites tend to be tightly packed and are often arranged in a glandular
pattern, whereas nuclei in benign squamous sites are more evenly
distributed. The t-SNE of the MTNs features suggests that the network
may be sensitive to these morphometric differences. As a result, tissue
type may act as a confounding variable limiting the model’s perfor-
mance. Future work should explore untangling tissue type prediction
from pathology prediction to improve diagnostic performance.
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The HRME does not operate as a standalone device and must rely on
guidance from colposcopic impression. When colposcopists are un-
available this presents a significant limitation. Advancement in the field
of colposcopy image analysis may aid in guiding appropriate placement
of the HRME probe by localizing high-risk areas on the cervix.

Low-cost imaging technologies coupled with deep learning-based
CAD systems could address the challenges faced by low- and middle-
income countries in expanding and optimizing cervical cancer preven-
tion programs. In this work, we show that the HRME powered by our
deep learning based diagnostic system performs comparable to expert
colposcopy for cervical precancer and cancer diagnosis.

Citation diversity

Recent work in several fields of science has identified a bias in
citation practices such that papers from women and other minority
scholars are undercited relative to the number of papers in the field
(Caplar et al., 2017; Dworkin et al., 2020; Maliniak et al., 2013; Dion
et al.,, 2018). We recognize this bias and have worked diligently to
ensure that we are referencing appropriate papers with fair gender and
racial author inclusion.
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Appendix A. . Overall per patient performance comparison

See Appendix Table Al.
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Table Al
Summary of the per patient diagnostic performance of colposcopy impression,
morphologic analysis, and the Multi-Task Network on the test set.

Method Sensitivity ~ Specificity ~ Positive Negative
Predictive Predictive
Value Value
Colposcopy 0.95 0.62 0.50 0.97
Morphologic 0.91 0.60 0.48 0.94
Analysis
Multi-Task 0.94 0.58 0.49 0.96
Network

Appendix B. . Visual differences across tissue types

See Fig. B1.

Squamous

Columnar/Metaplasia

(A)

(B)

Fig. B1. Representative test set image patches from squamous (left column)
and columnar (right column). (A) Original image, (B) Proxy label of nuclear
segmentation, and (C) Multi-Task Network’s nuclear segmentation prediction.
High background, non-nuclear fluorescence in columnar images impedes nu-
clear segmentation resulting in less accurate nuclear masks as shown in
columnar (B) and (C). Scale bar is 100 pm.
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