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ABSTRACT

Computing or approximating the convex hull of a dataset
plays a role in a wide range of applications, including eco-
nomics, statistics, and physics, to name just a few. However,
convex hull computation and approximation is exponentially
complex, in terms of both memory and computation, as
the ambient space dimension increases. In this paper, we
propose DeepHull, a new convex hull approximation algo-
rithm based on convex deep networks (DNs) with continuous
piecewise-affine nonlinearities and nonnegative weights. The
idea is that binary classification between true data samples
and adversarially generated samples with such a DN naturally
induces a polytope decision boundary that approximates the
true data convex hull. A range of exploratory experiments
demonstrates that DeepHull efficiently produces a meaning-
ful convex hull approximation, even in a high-dimensional
ambient space.

Index Terms— convex hull, approximation, convex deep
network, generative adversarial network

1. INTRODUCTION

Convex hulls are important geometrical objects that find ap-
plications in fields ranging from economics [1] to statistics
[2-4] and optimization [5, 6]. Given a dataset X of N sam-
ples in a D-dimensional ambient space, the convex hull is the
smallest polytope that contains all of the data samples; it can
easily be shown that the vertices of the convex hull correspond
to some of the samples [7,8]. Two challenges arise: (i) how to
efficiently compute the convex hull, and (ii) how to efficiently
store the convex hull. These tasks are particularly challenging
when the data is not organized on a low-dimensional affine
subspace of dimension d < D. In fact, as d increases, the
number of faces and vertices describing the convex hull poly-
tope grows exponentially. This exponential complexity holds
whether one considers the H-form of the polytope (in term of
its supporting hyperplanes) or the V-form of the polytope (in
term of its vertices).
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The computational complications that emerge with in-
creasing dimension d have led the combinatorial geome-
try community to specialize the convex hull computation
task to specific cases. For example, highly efficient al-
gorithms for planar data have been developed about four
decades ago [9-11]. Among those methods lies the pop-
ular Quickhull algorithm that was originally developed for
d = 2,3 [12, 13] with asymptotic complexity O(N log(N)),
and was then extended to arbitrary dimensions [14]. More
recently, specialized GPU implementations have been devel-
oped for d = 3 [15-17].

Beyond these specialized algorithms, exact convex hull
computation remains an important open problem in high-
dimensional spaces. Consequently, a parallel line of research
has developed focusing on convex hull approximation. One
illustrative approximation method takes the following form.
Instead of creating the hull’s polytope faces based on data
selection (via the vertices description of each face), one first
starts with a set of hyperplanes (which will serve as the faces
of the approximate convex hull) and then refines the locations
of the hyperplanes such that the intersection of their half-
spaces produces a good convex hull approximation [18-20].
An inspiration for our work has noted that this hyperplane
learning task can be cast as a two-layer deep network (DN)
training task [21]. It is easy to show that K hyperplanes can
be formed from a K x D weight matrix in the DN’s first
layer. That layer’s positive outputs (thanks to the application
of a ReLU thresholding activation function v — max(u, 0))
project data samples applied to the input of the DN onto each
half-space. This 2-layer DN formulation is thus an efficient
half-space projection formulation that can be employed in
any convex hull approximation method.

In this paper, we go one-step further by not only using
DNs as a means to reformulate the convex hull approxima-
tion problem, but also leveraging more complicated DN ar-
chitectures (DNs with varying numbers of layers and units
per layer) as a means to counter the exponential complexity
of convex hull approximation in high-dimensional spaces. We
dub our general approach DeepHull. Our first contribution is
a proof that for any DN architecture f : RP +— R using
(i) continuous piecewise-affine (CPA) nonlinearities and (ii)
nonnegative weights in all but their first layer, the level-set
{f(x) = ¢ | x € RP} defines the boundary of a polytope,
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i.e., it produces a convex hull approximation. Our second
contribution is to formalize an optimization problem that en-
ables us to learn the parameters of DNs abiding by the above
constraints such that {f(z) = c¢ |z € RP} becomes the
approximated convex hull for a given dataset X. Thanks
to the approximation power of DNs, which grows exponen-
tially with depth [22-25], our formulation produces efficient
approximations even in high-dimensional spaces. Our third
contribution is a relaxed form of the above optimization prob-
lem that is tractable regardless of the dataset size or space di-
mension. Our relaxed form recasts convex hull approximation
as a binary classification problem in which one discriminates
between the true data samples and adversarial samples that
lie within and outside the convex hull approximation, respec-
tively.

Our results in this paper, including a number of visu-
alizations and quantitative approximation results, demon-
strate the promise of using DN-based methods for efficient
and effective convex hull approximation, especially in high-
dimensional space. We leave it to future work to develop an
implementation that can be applied universally. In the re-
mainder of the paper, we first develop our approach to convex
hull approximation of a dataset X via convex DNs (Sec. 2).
Then, we demonstrate how convex DNs can be trained on
real data via a binary classification problem and an adver-
sarial sampler (Sec. 3). We empirically validate our method
on a range of datasets (Sec. 4). We conclude by discussing
the limitations of DeepHull and future research directions
(Sec. 5).

2. DEEPHULL: FROM DEEP NETWORKS TO
CONVEX HULLS

In this section, we develop DeepHull, a new convex hull ap-
proximation method that relies on two ingredients: (i) a con-
vex DN f using continuous piecewise-affine (CPA) nonlinear-
ities and nonnegative weights in all but its first layer; and (ii) a
learned adversarial data sampler that generates positive sam-
ples to train f to discriminate against the true data samples
(negative samples). We first introduce some notation to ease
our development.

Notation. We denote the DN input-output mapping as f :
RP +— R. In this paper, we will consider only DNs with uni-
variate output for a reason that will become clear in the next
section. This DN can be written as a composition of L layer
mappings f = (f&) o--- o f1), where f® : RP" s
RP“" | At each layer ¢, the input-output mapping takes the
form £ (v) = @ (WE v 4 b)) where o is a pointwise
activation function, W® is a weight matrix of dimensions
DD % DO and b®) is a bias vector of length D“+1)_ Cer-
tain W will often have a specific structure (e.g., circulant)
at different layers.

Deep Network based Convex Hull Formulation. Recall that
DeepHull is designed to work with DN that fulfill specific

constraints. These constraints result in DNs with a special
property called input-convex, which we formulate in Prop. 1.

Proposition 1 (input-convex DNs [23,24,26]) A DN is a
convex mapping with respect to its input (which we will refer
to as input-convex) if it obeys the following constraints:

1. the activation functions c©) ¢ are CPA functions; all
but the first activation functions o) ¢ = 2, ..., L are
increasing functions (e.g., leaky-ReLU);

2. all but the first layer weight matrices W) ( =
2, ..., L are nonnegative, the first weight matrix W)
is arbitrary

The above result holds for strict convexity by replacing the
increasing activation with a strictly increasing activation func-
tion and the nonnegative weight matrices with strictly positive
weight matrices. Input-convex DNs have been applied in con-
trol problems [26], where the convexity property enabled the
simplification of the gradient based optimization of the DN
input. DeepHull relies heavily on input-convex DNs that em-
ploy CPA nonlinearities for a reason that is made clear in the
following formal result.

Proposition 2 For any architecture and parameters of an
input-convex DN f, the set {f(x) = c : x € RP} defines the
boundary of a polytope. The sets {f(x) < ¢ | * € RP} and
{f(x) > c |z € RP} are the interior and exterior of the
polytope, respectively.

Input-convex DNs with CPA nonlinearities thus have the
capability to approximate the convex hull of a dataset X.
This is done by finding the parameters 6 of the DN such that
the DN-induced polytope contains all the data samples while
minimizing its volume

volume minimization

rre}}?Vol({f(x) <cl|xzeRPY)

st. X C{f(z) <c|xzeRP}. (1)

dataset inclusion

Theorem 1 Given a DN f with sufficiently many layers/units,
all the local minima of (1) are global minimia and result in
{f(x) = c¢: x € RP} being the exact convex hull of X.

The proof of the Theorem 1 follows easily by considering f to
be able to represent decision boundaries with as many piece-
wise linear regions as needed for the convex hull of X. In
that setting, minimizing (1) simply amounts to adapting the
decision boundary such that it perfectly matches with the true
data convex hull. Of course, this optimization problem is not
practical, since Vol({f(z) < ¢ : € RP}) would require a
tremendous amount of computation to obtain. We thus pro-
pose a training method to obtain f and its parameters 6, ¢ on
a relaxed optimization problem in the next section.
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Fig. 1. DeepHull examples for various 2-dimensional datasets uniformly sampled from eight distributions: a Gaussian, mixtures of 2 to 5
Gaussians, 1 to 2 moons, and a pentagon. The black dashed line represents the exact convex hull, while the purple line represents DeepHull
approximated convex hull. The plots in the top row use A = 1 in the loss (5). The plots in the bottom row use A = 1.5 in the loss (5). In
both cases, the DeepHull approximation captures the geometry of the data. A controls the tightness of the approximation, potentially at the
cost of disregarding a few of the data samples that lie outside the approximated convex hull when a tighter approximation fits the majority of
the remaining samples. One can easily tune A to obtain an approximation that includes all data samples in the resulting approximated convex

hull. Methods for automatically tuning A are left for future work.

Fig. 2. Visualization of the decision boundary/convex hull approximation during training at the 0, 25, 50, 75, 100, 125, 300, 1500, and
5000-th epochs. The DeepHull model converges quickly and provides a good approximation even at early stages of training.

3. EFFICIENT DEEPHULL FITTING
VIA BINARY CLASSIFICATION

We demonstrated in the previous section how imposing sim-
ple constraints on any given DN architecture leads to an
input-convex DN whose level sets define polytope bound-
aries. Given an input-convex DN, we train it such that the
polytope boundaries match as closely as possible to the true
data convex hull. We now construct a binary classification
problem to solve this task efficiently.

Relaxed Dataset Inclusion Loss. From Sec. 2, it is clear that
the convex hull approximator, f, must fulfill f(z) < ¢,Vx €
X where X is the training set, i.e., the set of samples for
which we try to approximate the convex hull. For the remain-
der of this paper, we consider the last layer to have linear acti-
vation function o(") (1) = u, and we incorporate the constant
c as part of the last layer bias as in b(%) « b(L) — ¢. Given
the above parametrization, we use the following differentiable
loss function to enforce data inclusion

Loos(2) = —log (1 - sigmoid(f(2)). (@)

As aresult, as < SN Lpos(z) — 0, the approximated con-
vex hull ({f(z) < 0 : @ € RP}) contains all of the training
data. Minimizing (2) is however not enough, since it does
not enforce tightness of the approximation, i.e., the convex
hull approximation can cover more and more space and still
minimize (2).

Relaxed Volume Minimization Loss. We also introduce the

following relaxed version of the volume minimization term
from (1)

Lueg(2) = — log (sigmoid(f(2))) 3)

to obtain the total loss
1N
L=+ ; Lpos(z) + AE. o) [Lneg(2)], @)

where A is an hyper-parameter that controls the tightness of
the approximated convex hull. As samples z are sampled
from the ambient space, the DN decision boundary will be
trained to contain the samples X to minimize the first term in
(4) and exclude anything else to minimize the second term.
The hyper-parameter A\ needs to be chosen carefully: if A is
too large, then the DN will start to exclude some of the sam-
ples in X; if A is too small, then the approximated convex hull
might not be tight enough. We will visualize the effect of A in
Sec. 4.

We propose one last modification to (4) to further improve
its efficiency in high-dimensional settings. Note that we do
not need to sample uniformly in R” to ensure tightness. In-
stead, we only need to be able to sample around the boundary
of the current convex hull approximation. This is also true in
term of gradient dynamics because samples z positioned far
away from the boundary of the current convex hull approxi-
mation will have vanishing gradient from (2) and thus will not
impact the update of the DN weights. Consequently, our final
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Table 1. Precision and recall of DeepHull’s approximation.
D=3 D=4 D=5 D=6 D=7

P R P R P R P R

92.1 92.0 85.8 85.5 79.2 784 792 79.2 77.8 77.8

loss function takes the form

dataset inclusion tightness loss around

approximated boundary

N e
1 Z
L= N n=1 ﬁpos(af) + AE:.q ['C“eg(z)]

+ E. v (re) [sigmoid(f(G(2)))]. (5)

adversarial training of distribution
G parametrized as a deep network

4. EXPERIMENTAL VALIDATION

We now report on a series of carefully controlled experiments
that validate and illustrate the behavior of DeepHull.

Role of \ and Training Dynamics. We first propose in
Fig. 1 a collection of 2-dimensional datasets where we study
the impact of the hyper-parameter \ (recall (5)). The role of
A is to ensure that the convex hull approximation neither de-
generates, i.e., it covers the entire space, nor underfits, i.e.,
it excludes many samples that should belong to the convex
hull. With a carefully chosen )\, we see that we achieve a
good approximation, while A too small leads to underfitting.
While it is out of the scope of this paper, enabling underfit-
ting could open the door for new convex hull approximation
applications, e.g., robust to outliers.

We depict in Fig. 2 how the convex hull approximation
is progressively built through the training updates of the DN.
In the first stages the approximation, the approximation is de-
generate around 0, because we chose to keep initialize the
DN with b(5) = 0 (standard practice). Once the approxima-
tion expands to include the training samples, we see that the
tightness loss term (recall (3)) takes effect and prevents the
convex hull from expanding beyond that point. One interest-
ing open question is the design of a parameter initialization
for W, b(®) that provides a more adapted initial guess for
the convex hull approximation.

DeepHull in Higher Dimensions. We validate our approach
in higher dimensions and demonstrate that it has a stable
computation time while achieving reasonable convex hull
approximation. We randomly sample 100,000 points from an
isotropic multivariate Gaussian A'(1,Y), where 1 € R” and
¥ € RP*P is a diagonal matrix with 0.01 on the diagonal.
We vary D € {3,4,5,6,7,8,9} and measure the goodness of
the DeepHull approximation and compares its computation
time with the exact convex hull method. Going beyond D =9
makes the exact convex hull computation highly prohibitive,
precluding comparison. Since it is impossible to visualize
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Fig. 3. Computation time of DeepHull vs. the exact convex hull
method (QHull implementation of Quickhull [27]).

a convex hull in higher dimensions, we compute the preci-
sion and recall to measure the tightness and coverage of the
approximation, respectively, by uniformly sampling 500,000
points in the D-dimensional space, computing the number of
points in the ground-truth convex hull [14], and the number
of points in the approximated convex hull. Table 1 sum-
marizes DeepHull’s convex hull approximation performance
for D € {3,4,5,6,7}; we do not report performance for
D € {8,9}, because computing whether a point belongs to
a convex hull becomes computationally infeasible for D > 7
on our hardware. We see that DeepHull maintains reasonable
performance for all D, indicating that the approximation is
tight and covers most of the ground-truth hull. In Fig. 3 we
compare the DeepHull’s computation time with the exact
convex hull computation method. We observe that as d (and
D) increases, the exact method requires nearly exponentially
more computation time, while DeepHull’s computation time
remains nearly constant. Additionally, our method also bene-
fits from linear computational complexity with respect to the
number of samples V. This can even be made constant via
mini-batching, in both cases we shall highlight that current
approximation methods for high dimension are quadratic in
N and constant in d [20]. In summary, DeepHull can effi-
ciently compute a decent approximation to convex hulls that
are computationally infeasible with classical, exact methods.

5. CONCLUSIONS

This paper has opened the door to the potential use of DNs for
the important but computationally expensive task of convex
hull approximation. Our preliminary results with DeepHull
demonstrate the validity of our approach and demonstrated
that linear in N and constant in d solutions exist. While thor-
ough comparisons are needed to pinpoint the exact beneficial
use-cases of our method against current approximation meth-
ods (quadratic in IV and constant in d), we believe that many
future research directions should first be explored. For ex-
ample, include adaptive DN parameter initialization, adaptive
hyper-parameter (\) tuning, convex hull approximation in the
presence of outliers, and approximation error guarantees be-
tween the approximated and true convex hull.
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