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Deep Learning (DL) has recently enabled unprecedented advances in one of the grand

challenges in computational biology: the half-century-old problem of protein structure pre-

diction. In this paper we discuss recent advances, limitations, and future perspectives of DL

on five broad areas: protein structure prediction, protein function prediction, genome engi-

neering, systems biology and data integration, and phylogenetic inference. We discuss each

application area and cover the main bottlenecks of DL approaches, such as training data,

problem scope, and the ability to leverage existing DL architectures in new contexts. To

conclude, we provide a summary of the subject-specific and general challenges for DL across

the biosciences.

The recent success of AlphaFold21 in predicting the 3D structure of proteins from their
sequences highlights one of the most effective applications of deep learning in compu-
tational biology to date. Deep learning (DL) allows for finding a representation of the data

with multiple layers of abstraction using complex models that are composed of several layers of
nonlinear computational units (Fig. 1). Observed through the success of DL in a broad variety of
application domains, the efficacy of using DL depends on the development of specialized neural
network architectures that can capture important properties of the data such as spatial locality
(convolutional neural networks – CNNs), sequential nature (recurrent neural networks – RNNs),
context dependence (Transformers), and data distribution (autoencoders – AEs). Figure 1
illustrates six DL architectures that have found the most applications within the realm of
computational biology. We refer the reader to LeCun et al. 2 for a complete review of DL
methods and architectures and keep the focus of the paper on computational biology applica-
tions. These DL models have revolutionized speech recognition, visual object recognition, and
object detection and have lately played a key role in solving important problems in computa-
tional biology. The applications of DL in other areas of computational biology, such as functional
biology, are only growing while other areas, such as phylogenetics, are in their infancy. Given the
wide divide between the receptiveness of DL in different areas in computational biology,
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Fig. 1 An overview of machine learning scenarios and commonly used DL architectures. Top panel encapsulates the three most common paradigms of
machine learning: supervised learning in which dataset contains ground truth labels, unsupervised learning in which dataset does not contain ground truth
labels, and reinforcement learning in which an algorithmic agent interacts with a real or simulated environment. The bottom panels provide an overview of
the most prevalent DL architecture ideas each designed to achieve specific highlighted goals. An additional set of short descriptions is provided for other
common components of DL architectures mentioned in the manuscript.
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some key questions remain unanswered: (1) What makes an area
prime for DL methods? (2) What are the potential limitations of
DL for computational biology applications? (3) Which DL model
is most appropriate for a specific application area in computa-
tional biology?

In this paper, we aim to address these foundational questions
from the lens of computational biology. The answers, however,
are highly task specific and can only be addressed in the context
of the corresponding applications. The pitfalls of applying
machine learning (ML) in genomics have been discussed in
Whalen et al.3, but our goal is to provide a perspective on the
impact of DL across five distinct areas. While there are multiple
areas of interest in the biosciences where DL has achieved
notable successes (e.g. DeepVariant4, DeepArg5, metagenomic
binning6, and lab-of-origin attribution7), we aim to only focus on
a few diverse and broad subtopics. In those areas we evaluate the
improvements that DL has had over classical ML techniques in
computational biology with varying levels of success to date
(Fig. 2). For each area, we explore limitations of current
approaches and opportunities for improvement, and include

practical tips. We anchor our discussions around five broad,
distinct areas in computational biology: protein structure pre-
diction, protein function prediction, genome engineering, sys-
tems biology and data integration, and phylogenetic inference
(Table 1). These areas provide a range of impact levels from
major paradigm shifts (AlphaFold2) to DL applications in their
infancy (phylogenetic inference); and collectively, they provide
rich enough technical diversity to address the questions raised in
this perspective. Over the next several subsections, we will review
progress in each of the four computational biology topics,
ordered from (i) paradigm shifting (where DL clearly outper-
forms other ML and classical approaches, and provides a field-
wide impact), (ii) major success (where DL performance is
typically higher than of that of other ML and classical approa-
ches), (iii) moderate success (where DL performance is typically
comparable to other ML and classical approaches) to (iv) minor
successes (where DL methods are not widely adopted or
underperform compared to other ML and classical approaches),
and then discuss common challenges for DL in biosciences
(Table 2).

number of datapoints 102 104 106 1080

Phylogenetic
Inference CNN ResNetsimulated phylogenetic trees

labeled data mixed labeled/unlabeled

labeled simulated data unlabeled data

task complexity

volume of data available

Genome
Engineering

gRNA sites on human genome
CNNMLP

Systems Biology
& Data Integration GEO, SRA, ArrayExpress, TCGA, PRIDE, CCLE, GTEx, ... CNN RNN VAE
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Structure
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Fig. 2 A summary view of the major labeled and unlabeled datasets, and the architectures being used in deep-learning methods in computational
biology. For each of the areas considered in this manuscript, it summarizes estimated sizes of key datasets and databases, as well as the projected growth
rate of these. Additionally the rightmost column summarizes the most popular DL architectures applied to the corresponding areas in biosciences.

Table 1 Impact of Deep Learning on Computational Biology.

Each of the subareas in biosciences considered in this manuscript is assigned a level of success of the DL applications based on the relative performance of DL as compared to other ML and classical
methods.
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Paradigm shifting successes of DL
Protein structure prediction. We start our discussion with pro-
tein structure prediction which is arguably one of the most suc-
cessful applications of DL in computational biology; this success is
what we refer to as a paradigm shift. It is largely known that the
protein’s amino acid sequence determines its 3D structure, which is
in turn directly related to its function (e.g., chemical reaction
catalysis, signal transduction, scaffold, etc.)8,9. The history of pro-
tein structure prediction problem goes back to the determination of
the 3D structure of myoglobin by John Kendrew in the 1950s
which was a landmark in biochemistry and structural biology10.
Since then, X-ray crystallography has become the gold-standard
experimental method for protein structure determination11,12, as
well as the reference to validate computational models for protein
structure prediction. Considering the high cost and technical
limitations of X-ray crystallography, and the growing access to
biological sequences following the Human Genome Project, pre-
dicting the 3D structure of a protein from its sequence became the
Mount Everest in computational biology8; a challenge broadly
known as the “protein folding problem”. Initial efforts con-
centrated on the use of biophysically-accurate energy functions and
knowledge-based statistical reasoning, but faster progress was
recently achieved with a greater focus on DL.

One of the key reasons for the recent success of DL in this area
has been the wealth of unsupervised data in the form of multiple
sequence alignment (MSA)1,9,13–17, which has enabled learning a
nonlinear evolution-informed representation of proteins. Pro-
gress in the field has been accelerated by the creation of a bi-
annual international competition, called the Critical Assessment
of Protein Structure Prediction (CASP). Launched in 1994, CASP
created the means to objectively test available methods through
blind predictions, providing competing groups with a set of
challenges (i.e., sequences of proteins with unknown structures),
and evaluating their performances against the respective
experimentally-determined structures. In their first participation
in CASP13, AlphaFold, implemented by DeepMind group at
Google, made the news by clearly outperforming the second best
method14, and nearly twice beyond the projection based on
previous editions18. Following recent trends in the field13,16,19,20,
AlphaFold and AlphaFold2 leverage the combined use of DL and
MSA18,21. This proved to be a winning strategy which was able to
overcome the lack of large training datasets on protein structure.
The Protein Data Bank (PDB)22 is the reference database for
experimentally-determined macromolecular structures, and cur-
rently hosts close to 180,000 entries. This is a small number of
data points for a complex mapping involved in the problem, and
these are further biased by technical constraints of the
experimental methods. Protein sequence data, on the other hand,

is available on a much larger scale. Therefore, MSA allows
modeling methods to extract pairwise evolutionary correlations
from this larger corpus of data, maximizing the learning on
available structural data. Other key factors for the success of DL in
this area include innovation in model design such as new attention
strategies tuned towards invariances and symmetries in proteins,
graph-based representations, and model recycling strategies.

The impact of AlphaFold2 on the field of structural biology is
undeniable; it successfully demonstrated the use of a DL-based
implementation for high accuracy protein structure prediction21.
This achievement is already driving and accelerating further
developments in the field, as highlighted by the remarkable
number of early citations. In addition, DeepMind has partnered
with the European Molecular Biology Laboratory (EMBL)23 to
create an open-access database of protein structures modeled with
AlphaFold217. The database already covers 98.5% of human
proteins, for which at least 36% of the amino acid residues were
predicted with high confidence. Finally, rather than retiring
experimental methods, DL-based methods might augment the
accuracy and reach of experimental methods as demonstrated by
preliminary applications to solving challenging structures with data
from X-ray crystallography and cryo-EM1,15. However, many
caveats, limitations and open questions8,9 remain. In particular,
while AlphaFold2 successfully predicts the static structure of a
protein, many key insights about protein’s biological function come
from its dynamic conformations. Furthermore, dynamics of
interaction of multiple proteins still present open challenges in
the field. Moving forward, it will be important to monitor the
application of DL to these follow up research areas.

Major successes of DL
Protein function prediction. Predicting protein function is
a natural next step after protein structure prediction. Protein
function prediction involves mapping target proteins to curated
ontologies, such as Gene Ontology (GO) terms, Biological Pro-
cesses (BP), Molecular Functions (MF) and Cellular components
(CC). Protein structure can convey a lot of information about these
ontologies, however, there is no direct mapping between the two
and the mapping is often very complex24. Despite the tremendous
growth of protein sequences available in the UniProtKB database,
functional annotations for the vast majority of proteins still remain
partly or completely unknown25. Limited and imbalanced training
examples, a large output space of possible functions and the
hierarchical nature of the GO labels are some of the main bottle-
necks associated with functional annotation of proteins26. To
overcome some of the issues recent methods have leveraged fea-
tures from different sources including sequence27, structure22,

Table 2 Commonly faced challenges in computational biology and potential solution avenues when using DL.

Challenge Experimental/non-DL solution DL solution

Biased results Improve study design Identify forms and sources of technical bias
Fair AI approaches

High infrastructure costs Optimize code performance Optimize DL architecture
Parallelize code Parallelize to low-cost devices
Sub-sample analyzed data Condense training data (e.g. coresets)

Lack of explainability Statistical analyses Explainable post-hoc methods
Limited training data Generate and label more data Data augmentation (e.g. GANs)
Overfitting Regularization Dropout

Early stopping
Smaller models
Additional training data

Poor performance on novel data Expand databases Use larger models
Analyze generalization potential
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interaction networks28, scientific literature, homologies, domain
information29 and even incorporate one or a combination of DL
architectures to handle different stages of prediction task (e.g.
feature representation, feature selection, and classification).

One of the most successful DL approaches to the problem,
DeepGO30 incorporated CNN to learn sequence-level embed-
dings and combines it with knowledge graph embeddings for
each protein obtained31 from Protein-Protein Interaction (PPI)
networks. DeepGO was one of the first DL based models to
perform better than BLAST32 and previous methods on
functional annotation tasks over the three GO categories30. An
improved version of the tool, DeepGOPlus33 emerged as one of
the top performers when compared to other tools in the CAFA3
challenge across the three GO categories33. DeepGOPlus used
convolutional filters of different sizes with individual max-
pooling to learn dense feature representations of protein
sequences embedded in a one-hot encoding scheme. The authors
showed that combining the outputs from CNN with homology-
based predictions from DIAMOND34 can result in better
predictive accuracy.

Unsupervised methods such as DAEs also have been instru-
mental by learning dense, robust, and low-dimensional repre-
sentations of proteins. Chicco et al.35 developed a DAE to
represent proteins for assigning missing GO annotations and
showed 6% to 36% improvements compared to non-DL methods
over six different GO datasets. Miranda and Hu36 introduced the
Stacked Denoising Autoencoders (sdAE) to learn more robust
representation of proteins. Gilgorijevic et al. introduced deepNF37

that uses Multimodal DAE (MDA) to extract features from
multiple heterogeneous interaction networks which outperform
methods based on matrix factorization and linear regression 37.
Methods for learning low-dimensional embeddings of proteins
continue to grow.

Beyond just predicting Gene Ontology labels, studies have also
focused on several other task-specific functional categories such
as identifying specific enzyme functions38 and potential post-
translational modification sites39. These studies are a funda-
mental step towards developing novel proteins with specialized
functions or modifying the efficacy of existing proteins as seen in
the recent advances of DL in enzyme engineering40. Going
forward, applications of deep learning in engineering proteins
tailored to specific functions can help increase throughput of
candidate proteins for pharmaceutical applications among other
domains.

Besides these canonical architectures, there have been other
approaches that have used a combination of the above methods for
function classification41. Overall, previous results indicate that
models integrating features from multi-modal data types (e.g.,
sequence, structure, PPI, etc) are more likely to outperform the
ones that rely on a single datatype. Trends from literature indicate
that relying on task-specific architectures could help greatly
enhance the feature representation from respective data types.
Future work in this direction could focus on combining DAEs and
RNNs for sequence based representation, and Graph Convolu-
tional Networks (GCNs) for structure based as well as PPI based
information. Combining these representations in a hierarchical
classifier such as the multi-task DNN with biologically-relevant
regularization methods42,43 could allow for an explainable and
computationally feasible DL architecture for protein function
prediction.

Genome engineering. Biomedical engineering, and in particular
genome engineering, is an important area in biology where DL
models have been increasingly employed. Among genome
engineering technologies, clustered regularly interspaced short

palindromic repeats (CRISPR), i.e., a family of DNA sequences
found in the genomes of prokaryotic organisms, have been
recently used as a guide to recognize and cleave specific locations
on the human genome. In the CRISPR-associated protein 9
(Cas9) technology, a single-guide RNA (gRNA) steers the protein
to a specific genomic target. When the 20-nucleotide gRNA
sequence complements the genome, Cas9 creates a double-strand
break (DSB) on the targets (an on-target event). Due to the ability
to precisely target specific locations on the genome, we have
observed enormous advancements in CRISPR-based editing
technologies since the development of Cas9. However, recent
studies have shown that multiple mismatches between the gRNA
and the genomic targets are tolerated and, as a result, Cas9 can
cut unwanted locations on the genome (an off-target event). Off-
target edits have pathogenic effects on the functionality and
integrity of the cell. Therefore, the full clinical deployment of
Cas9 has been slow due to the insufficient efficiency, reliability,
and controllability challenges for therapeutic purposes. As a
result, reducing off-target while improving the on-target effi-
ciency has been an important ultimate goal in genome engi-
neering target by DL techniques.

The sheer complexity of the biological process involved in
modeling the DNA repair process and the growing availability of
labeled data caused by a rapid drop in the cost of CRISPR assays,
have made DL-based methods particularly successful choices to
find the root cause of these inefficiencies. The use of DL models
was triggered by the observation that the on-target and off-target
events and the DNA repair outcome44 are predictable by the
sequence around the DSB, its location on the genome, and the
potential mistargeted sequences on the genome. Several compu-
tational tools have been successfully developed to design gRNAs
with maximum on-target activity and minimum off-target
effects45. DeepCas9 is among CNN-based models which learns
functional gRNAs directly from their canonical sequence
representation46,47. The success of DeepCRISPR, on the other
hand, relies on extracting about half a billion unlabeled gRNA
sequences from the human coding and non-coding regions and
learning a low-dimensional representation of the gRNA48.
DeepCRISPR also uses a data augmentation method to create
less than a million sgRNAs with known knockout efficiencies to
train a larger CNN model. CnnCrispr uses a language processing
model to learn the representation of gRNA and then employs a
combination of bidirectional LSTM and CNN49 while RNNs have
been the reason for the success of other models50. Attention
mechanism has also been shown to improve the accuracy in
predicting on and off target effects51,52. ADAPT53 is another
recent CNN-based method for fully-automated CRISPR design
for vertebrate-infecting viral diagnostics which owes its success to
the construction of a massive training CRISPR dataset. Recent
methods for predicting the DNA repair outcome employ other
strategies. SPROUT compensates the lack of labels on harder-to-
collect human CD4+ T cells by predicting a summary statistics of
the DNA repair outcome54. FORECasT employs a larger dataset
from easier-to-collect human chronic myelogenous leukemia cell-
line (K562)55. InDelphi creates hand-designed features of the
input sequence including the length and GC content of the
homologous sequences around the cut site56 while CROTON
avoids feature engineering and instead performs neural archi-
tecture search57. All these strategies help reducing the number of
labeled data points required to learn the input-output mapping.

The future of DL is geared towards new editing technologies
such as CRISPR-Cas12a (cpf1)58, base editors59, and prime
editors60. While these methods do not introduce DSBs, their
efficiency is still improving61; in fact, DL has already shown
promise in predicting the efficiency of Adenine base editors (ABEs)
and Cytosine base editors (CBEs)59 as well as prime editor 2 (PE2)
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activities in human cells60. The future challenges, however, are in
understanding these models. CRISPRLand is a recent framework
which takes the first step towards interpretation and visualization
of DL models in terms of higher-order interactions62. Besides
explainablity, we speculate that methods that enable an uncertainty
estimate of the prediction outcome become more prevalent in
genome editing. Further, due to the significant cell-type effects on
the efficiency of the CRISPR experiments, it is critical to be aware
of the distribution shifts in deploying DL models in genome
engineering. The integration of domain adaptation63 methods to
limit the effect of such distribution shifts are among other
important future directions.

Moderate successes of DL
Systems biology and data integration. Systems biology takes a
holistic view of modeling complex biological processes to ultimately
unravel the link between genotype and phenotype. Integration of
diverse -omics data is central in bridging this gap, enabling robust
predictive models that have led to several recent breakthroughs,
spanning from basic biology64 to precision medicine. These data are
now more accessible than ever, due to improvements in sequencing
technologies and the establishment of open access public reposi-
tories where researchers can deposit their own studies, such as
SRA65, GEO65, ArrayExpress66, and PRIDE67; and large coordinated
efforts with structured multi-omic datasets: TCGA68, CCLE69,
GTEx70, and ENCODE71. Given recent successes and the prevalence
of both single and co-assay data, the field is now focused on inte-
grating different data types (e.g., genomics, transcriptomics, epige-
nomics, proteomics, metabolomics) on single individuals, across
many individuals, within and between phenotypic groups, and
across different organisms. Data integration tasks fall into two main
categories: 1) integration across different platforms and studies of a
single data type, at times with other non-omics data (e.g., protein-
protein interactions, pathway annotations, motif presence) and 2)
integration between different -omic data types (e.g., RNA-seq, ChIP-
seq, ATAC-seq, BS-seq). Much progress has been made on inte-
gration within a single data type, especially transcriptomics data,
with classical ML and statistical approaches developed for batch
correction72–75, modeling global gene co-expression patterns76,
Bayesian integration strategies for function prediction77,78, and
phenotype classification79. More recently, the increasing prevalence
of single-cell transcriptomics has given rise to a new host of classic
ML80–82 and DL83,84 approaches for data integration across
experiments. DL methods in this space have arisen out of the need
for methods that scale well with the large number of cells and ability
to model non-linear patterns of cell similarity83,85. Here, we have
only skimmed the surface of methods being developed for expres-
sion data, but this trend is emerging for other -omics data types,
similarly driven by the resolution of improved high-resolution
experimental assays86,87. Broadly, data integration analyses that
simultaneously combine data types together, either from different
studies or different types, typically fall into one of three categories,
given the stage at which the integration is performed88: con-
catenation-based, transformation-based, or model-based. While data
integration across studies can be data of the same type, here we focus
on methods that specifically integrate across different -omics types,
as these questions introduce additional technical challenges and
complexity.

Concatenation-based integration methods perform data integra-
tion early in the method pipeline by combining data, in raw or
processed forms, before any joint modeling and analysis. Tradi-
tional ML concatenation-based methods are often unsupervised and
typically use automatic feature extraction techniques such as lasso89,
joint clustering schemes90, and dimensionality reduction91 to find
relevant signal. These methods are usually applied to well-curated,

multi-omic datasets from large consortia (e.g., TCGA), and thus
most often have been used to find meaningful patient subgroups
characterized by distinct patterns across data modalities. More
recently, autoencoders have been used as an initial data processing
step to generate lower dimensional embeddings that are then
concatenated together as features for downstream models92,93.
These approaches have improved performance over existing
methods likely due to the advantages autoencoders have in
denoising tasks, as well as their abilities to model nonlinear latent
structure, even without sample labels.

Instead of directly concatenating separate latent embeddings,
some groups have pursued transformation-based integration
methods by modeling data jointly by mapping to a common
representation (e.g., graph or kernel matrix). Historically, classic
transformation-based ML methods use known anchor references94,
kernel95, or manifold methods96 to align multi-omics data. This is
a rapidly growing area in data integration, especially for DL
methods. Building off of the use of anchors from classical ML
methods, new state-of-the-art methods frequently train single
modality autoencoders, followed by an alignment procedure across
modalities97. This direction is exciting, because once trained, the
models can be used to predict an unobserved modality given a
single data type. Additional exciting developments harness the
power of these embedding representations together with other DL
methods, including CNNs and RNNs for wide ranging predictive
tasks, including cell fate98, drug response99, survival92,100, and
clinical disease features101.

Perhaps the most straightforward way to integrate multi-modal
data is to train individual data modality models, then integrate them
by combining the results from the individual models, termed
model-based integration. To some degree, this is similar to
ensemble approaches frequently used in classical ML. Methods in
this space can take wide-ranging approaches, including building
data modality-specific networks before fusing them using message-
passing theory102 or combining different data representations using
a discriminative learning approach103. DL methods have yet to gain
much momentum for model-based integration, likely because the
very nature of most DL methods blurs the line between the
transformation-based and model-based paradigms. Classical
approaches here try to bridge data modalities by finding a common
modeling space, while DL naturally can identify common
representations and model them jointly, thus circumventing the
need for separate modeling and integration steps. While it is clear
that deep neural networks will likely lead to better performance in
data integration tasks, it is also important to keep in mind the
limitations of DL, as well as important areas for continued research.
Specifically, it is known that DL has the tendency to overfit to data.
On the other hand, in data integration tasks, batch effects can be
prevalent and it is often easy to have “contamination” between the
training and test sets, all of which can lead to inflated performance
estimates. Thus, it is important to carefully set up truly independent
evaluation sets and identify appropriate performance baselines3.
Furthermore, while genome-wide and whole transcriptomics
datasets have broad coverage across the genome and transcriptome,
human data (and in some cases, model organism data) is often
skewed towards a disproportional amount of sick individuals104, is
sex-biased towards men105, and biased by race with an over-
represented population of Europeans106. These biases can result in
spurious associations that plague all ML methods, but may be
particularly difficult to identify when using DL.

Minor successes of DL
Phylogenetics. A phylogeny is an evolutionary tree that models
the evolutionary history of a set of taxa. The phylogeny inference
problem concerns building a phylogeny from data—often
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molecular sequences—obtained from the set of taxa under
investigation 107. Figure 3 illustrates the phylogeny inference pro-
blem on four taxa; in this case it can be viewed as a classification
problem among three possible topologies. However, classification
methods have a major limitation in that they cannot infer branch
lengths, nor do they scale beyond a very small number of taxa
because the number of possible topologies (classes) grows super-
exponentially with this variable. But perhaps more importantly,
classifiers like DL models require training data, and benchmark
data where the true phylogeny is known is almost impossible to
obtain in this field. Instead, simulations have been the method of
choice for generating training data, but this is a major dependency
and methods are known to have divergent performance on
simulated and biological data108. For complex versions of the
phylogeny inference problem, more realistic simulation protocols
are needed. Finally, phylogenetic inference on a single gene is in
one sense a simplified problem itself: inferring a single phylogeny
from genome-wide data introduces the complication that different
genes can have different histories, or the true phylogeny might be a
network109, rather than a tree. For these reasons DL has either had
limited success or been restricted to small sub-problems aside from
the main inference task.

Nonetheless, there have been attempts to use DL for the
classification task as described above. The Self-Organizing Tree
(SOTA) algorithm110 is a two-decades old unsupervised hierarch-
ical clustering method based on a neural network to classify
sequences and reconstruct phylogenetic trees from sequence data.
SOTA follows the SOM (Self-Organizing Map) algorithm in
growing cell structures from top to bottom dynamically until a
desired (user-provided) taxonomic level is reached. Recently CNNs
have been used to infer the unrooted phylogenetic tree on four taxa
(called a quartet)111,112. Authors used simulated data for training a
classifier which assigns sequences to their phylogenetic tree (Fig. 3).
But an analysis of the performance of the method of Zou et al.112

by Zaharias et al.113 shows that CNNs were not as accurate as other
standard tree estimation methods, e.g., maximum likelihood,
maximum parsimony, and neighbor joining, neither in terms of
quartet estimation nor in terms of full tree estimation, especially
when the sequence length was relatively short and/or rates of
evolution were not sufficiently low. A potential workaround is to
approach phylogeny inference as a graph generation problem, a
more complex learning task.

Distance-based methods are another class of commonly used
techniques for phylogenetic inference among which the neighbor
joining method is the most common one, and DL has been
applied to improve the distance representation. Jiang et al.114

addressed the phylogenetic placement problem, i.e., the problem
of adding a new taxon to a given tree without having to rebuild

the tree from scratch, by training a CNN using a simulated
backbone tree and sequences. Given the backbone tree with its
associated and query sequences, the model outputs an embedding
of the query and reference species which can be used as input to
some distance-based phylogenetic placement tools, which then
places the query sequences onto the reference tree. Bhattacharjee
et al.115 addressed the data imputation problem in the incomplete
distance matrix using autoencoders. However, the key limitation
of these methods is that trees cannot be reliably embedded into a
Euclidean space of low dimensions116. Hyperbolic space, on the
other hand, has been demonstrated to be more suitable for
representing data with hierarchical latent structure117.

Other applications have used DL to aid in a more traditional
inference pipeline. For example, the particular likelihood model
to use for a maximum-likelihood search is often taken for granted
as user decision, but a recent method used DL to optimize this
decision118. In another case, DL was used to aid decision-making
in the tree-search algorithm used in a traditional maximum
likelihood heuristic. Finally, a very recent application uses a
sparse learning model for something almost like the reverse
process: given a phylogeny, it identifies the portions of a genome
that most directly explain or relate to that model119. This can be
used to validate phylogenetic inference as well as guide down-
stream analyses such as hypothesis generation and testing.

A traditional problem is the inference of perfect phylogeny
where every site in the sequences mutates at most once along the
branches of the tree. The problem of determining whether a
perfect phylogeny exists and inferring it, if one exists, from binary
data that is assumed to be correct is polynomially solvable.
However, if the data is assumed to have errors, one approach to
inferring a perfect phylogeny is by solving the minimum-flip
problem: given a binary matrix of mutations - where each entry
represents the presence (state 1) or absence (state 0) of mutation
in a sample and a site - that does not admit a perfect phylogeny,
the minimum number of “state flips" (from 0 to 1 or 1 to 0) to the
data is sought so that a perfect phylogeny is admitted. Sadeqi Azer
et al.120 used an existing DL framework originally designed for
solving the traveling salesman problem to tackle this problem121.
Here, the input consists of the inferred single-nucleotide
variations (SNVs) in single cells across different sites. The output
is a matrix that admits a perfect phylogeny with the minimum
number of state flips from the input matrix. The input matrix is
flattened and passed through convolutional layers for encoding.
The encoded data is fed to a Long Short Term Memory (LSTM)
layer as a decoder. Then, an attention layer takes the outputs of
the LSTM layer to score the entries of the mutation matrix
according to the impact that flipping them might have on
minimizing the overall number of state flips. This architecture
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results in a probability distribution on the entries of the input
matrix that is used for flipping them. The model is trained using
simulated data where the matrix and the number of flips to
perform are provided. The key limitation of this approach is that
there is no guarantee that the output admits a perfect phylogeny
because the cost function might not be fully optimized.

Taken altogether, these related successes are impressive, but
given the challenges outlined above it is difficult to conceive of an
end-to-end DL model to directly estimate phylogenetic trees from
raw data in the near future. And if one were to be developed,
given its reliance on (likely simulated) training data, its
applicability to actual biological sequences will need to be
carefully validated before traditional phylogenetic methods are
displaced.

General challenges for DL in the biosciences
Not all applications of DL have been equally successful in com-
putational biology. While in some areas such as protein structure
prediction and genome editing DL has found major success, in
other areas like phylogenetic inference, DL has faced major
hurdles (Table 1). Most common issues faced by DL approaches
stem from the lack of annotated data, inherent absence of the
ground truth for non-simulated datasets, severe discrepancies
between training data distribution and real-world test (e.g., clin-
ical) data distribution, potential difficulties in result benchmark-
ing and interpretation, and finally overcoming the biases and
ethical issues in datasets and models. Additionally, with the
growth of the data and DL models, training efficiency has become
a major bottleneck for progress.

Specifically, the success of DL in different subareas in com-
putational biology highly relies on the availability and diversity of
standardized supervised and unsupervised datasets, ML bench-
marks with clear biological impact, the computational nature of
the problem, and the software engineering infrastructure to train
the DL models. The remaining challenges of DL in computational
biology are tied with improving model explainability, extracting
actionable and human-understandable insights, boosting the
efficiency and limiting the training costs, and finally mitigating
the growing ethical issues of DL models; innovative solutions are
emerging in DL and computational biology communities
(Table 2). We will now review two key areas for improvement: (i)
Explainability and (ii) Training efficiency.

Explainability. Perhaps one of the most critical limitations of DL
models today, especially for biological and clinical applications, is
that they are not as explainable as the simpler regression models
in statistics; it is challenging to explain what each node of the
network represents and how important it is to model perfor-
mance. The highly nonlinear decision boundaries of DNNs and
their overparameterized nature, which enable them to achieve
high prediction accuracy, make them hard to explain as well. This
lack of explanability becomes an important issue in computa-
tional biology, because trustworthiness of DNNs is arguably one
of the most pressing problems in biological and sensitive clinical
decision making applications. In fact, in biology often the ques-
tion of why a model can predict well is as important as how
accurately it can predict a phenomenon. For example in protein
structure/function prediction we would like to know what rules in
a predictive model govern the 3D geometry of a protein and its
properties; in genome editing we aim to understand the biological
DNA repair processes inferred from CRISPR models; in systems
biology we aim to know the specific molecular differences that
give rise to different phenotypes; in phylogenetics we aim to know
the features that enable us to infer a phylogenetic tree. Addressing

these questions are key in producing biological knowledge and
creating actionable decisions in the clinical settings.

There have been some efforts in the ML community to develop
methods to explain “black-box” DL models in the past few
years122. Earlier works were developed in computer vision and
biomedical applications, some of which have been applied to
problems in computational biology as well. Activation maximiza-
tion is a large class of algorithms which searches for an input
which maximizes the model response typically by using gradient
descent123,124; the idea is to generate an input that best
symbolizes an outcome. To make them human-interpretable,
the input gets regularized using closed-form density functions of
the data or GANs that mimic the data distribution. Methods that
address the explainability question use more direct ways to gain
insights from the NN function using their Taylor expansion125 or
Fourier transform42,62. The explanation takes the form of a
heatmap which shows the importance of each input feature.
Sensitivity analysis is another popular method of this sort which
finds the input features to which the output is most sensitive to
using backpropagation126; this has been used for classification
and diagnostic prediction of cancers using DNNs and gene
expression profiling as well127. LIME128 is a popular sensitivity
analysis method which learns an interpretable model locally
around the prediction. Simonyan et al.124 proposed using the
gradient of the output with respect to pixels of an input image to
compute a saliency map of the image. To avoid the saturation
effect in perturbation-based and gradient-based approaches,
DeepLIFT129 decomposes the output prediction of a neural
network on a specific input by backpropagating the contributions
of all neurons in the network to every feature of the input.
SHAP130 unifies these approaches using a theoretically grounded
method which assigns each feature an importance value for a
particular prediction. Finally, GNNExplainer131 is a new
approach among a family of methods which provide interpretable
explanations for predictions of GNN-based models on graph-
based DL tasks. Given an instance, GNNExplainer identifies a
compact subgraph structure and a small subset of node features
that have a crucial role in GNN’s prediction.

The efforts towards developing tools for explanation of DNNs
are still in their infancy and are rapidly growing; challenges still
abound towards a fully explainable systems in biology. The key
problem is that the current general purpose methods to explain
DL models are not sufficient especially in the clinical settings132.
For the scientist and clinicians to trust these black box models
they need to be able to explain themselves in a human-
understandable fashion with quantifiable level of uncertainty,
summarize the reasons for their behaviours, and suggest the
additional steps (e.g., experiments, clinical studies, etc.) required
to be able to reliably defend their decisions. We speculate that the
new generation of explainable methods focus on helping these
black-box models to transition from hypothesis generation
machines into hypothesis testing ones which can communicate
easier with medical practitioners.

Training efficiency. Despite the high accuracy of many DL
approaches, their performance often comes at a high monetary
and computational cost. For example, the monetary cost of
consumed power and computation time is estimated to be up to
hundreds of thousands of US dollars to train a single model133.
The extreme costs of large DL models can prevent broader
research community from reproducing and improving upon the
current results. Thus, it is practical to consider lower-cost alter-
natives that are available and feasible for researchers with more
modest resources. These issues are relevant for applying DL to
computational biology. For instance, training the state-of-the-art
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protein structure prediction model AlphaFold2 requires compu-
tational resources equivalent to 100–200 GPUs running for a few
weeks21. In the following paragraphs, we discuss common stra-
tegies utilized by the DL community to decrease the memory and
computation cost in training, and potential directions for
applying similar strategies to improve the efficiency of DL models
in computational biology.

The most direct method of reducing the training cost of a DL
method is to perform transfer learning on the available pretrained
general model, instead of training the new model from scratch. It’s
a common approach in training DL models for NLP tasks, and it
has been shown that general language knowledge models are a
good starting point for various different NLP tasks134. This
approach can be adopted in computational biology, if all
downstream tasks can start with a general model on biological
data. For example, Zaheer et al.135 trained a general human DNA
sequence model based on human reference genome GRCh37, with
self-supervised learning (masked DNA sequence prediction and
next DNA sequence segment prediction). Subsequently, they have
shown successful downstream task (Promoter Region Prediction)
performance by solely applying transfer learning on the general
model. Using pretrained models largely decreases (i) the size of
task-specific datasets needed for training; and (ii) the total amount
of local training needed for certain tasks that researchers are
interested in. Thus creating general models that can be shared and
used by the entire research community will greatly reduce the
resources needed for training models on specific tasks by
individual research groups. However, this approach will be less
useful if the data distribution for different downstream tasks is
drastically different compared with the data used by the general
pretrained model. For instance, DeepVariant has limited applic-
ability to non-human SNV calling due to the differences between
diploid and haploid genomes, and nucleic acid distributions4. In
these cases, we still need to train from scratch or spend a
significant amount of resources on re-training the base model.

An alternative approach is to design DL model architectures with
improved efficiency. As one of the most widely-studied architec-
tures in DL, numerous low-cost variants of CNNs have been
proposed. Some popular examples of efficient CNN architectures
include the MobileNet family136, DenseNet137, EfficientNet138, and
CSPNet139. Similarly, numerous efficiency-based architectural
modifications have been proposed for the transformer model,
many of which aim to reduce the quadratic computational
complexity incurred by the self-attention mechanism140. Addition-
ally, some transformer architectural variants explore the use of
parameter sharing and factorization to reduce the memory cost of
model training141. Going further, efficient architectural variants
have been discovered for RNNs142 and graph neural networks
(GNNs)143,144, including specialized architectures that are tuned for
better efficiency within the biological domain145.

For computational biology applications, one approach for
boosting efficiency relies on exploiting inherent sparsity and
locality of biological data (e.g. focusing only on the SNV calls
rather than the whole genome146). Researchers are also using
transformers for DNA/RNA sequence modeling135, but transfor-
mer models have high training costs due to the expensive global
attention mechanism. Prior domain expertise can be leveraged
here to help prune attention neighborhoods, and subsequently
improve training efficiency of the models. Finally, one can also
change the model’s architecture during training to adaptively
improve the training efficiency. The practice of model pruning,
which removes unimportant parameters from the model, has
become a popular method of deriving lightweight DL models147

in deployment.
As the amount of biological data keeps increasing, the size of

the neural networks will increase as well, and lead to a higher

total number of training iterations required for convergence.
Therefore it’s natural to explore dataset reduction strategies as
one of solutions to the efficiency challenge. One feasible proposal
is to construct coresets of the training dataset148. This can be
done by using clustering methods on the dataset and choosing
centroids as the representatives of the dataset. Alternatively,
dataset condensation can be achieved by selecting the data
samples that can best approximate the effect of training the model
on the whole dataset. An orthogonal way of solving the high
training cost problem for DL is to distribute the training on
several cheap low-end devices. This step will decrease the total
training time by distributing training, and decrease the total
budget by using multiple cheap devices with less computation
power. In general, the major distributed training methods are
data parallelism, model parallelism and hybrid parallel training.
Data parallel training splits and distributes parts of the dataset to
each device149, where model parallel training splits and
distributes parts of the model to each device150. As all above
methods are task-agnostic, they can be readily applied to DL
models for computational biology.

Concluding comments. In summary, while the success of DL in
areas such as protein structure prediction is paradigm shifting,
other areas such as function prediction, genome engineering, and
multi-omics are also observing rapid gains in performance
compared to traditional approaches. For other areas such as
phylogenetics, classical computational approaches seem to have
the upper hand in those areas. Additional advances specific to DL
applied to challenges across the biosciences will further leverage
domain-specific biological knowledge while striving for high
explainability and improved efficiency.
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